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lecture 7: Trigonometric Interpolation

1.9 Trigonometric interpolation for periodic functions

Thus far all our interpolation schemes have been based on polynomi-
als. However, if the function f is periodic, one might naturally prefer
to interpolate f with some set of periodic functions.

To be concrete, suppose we have a continuous 2p-periodic func-
‘2p-periodic’ means that f is
continuous throughout IR and
f (x) = f (x + 2p) for all x 2 IR.

The choice of period 2p makes the
notation a bit simpler, but the idea can
be easily adapted for any period.

tion f that we wish to interpolate at the uniformly spaced points
xk = 2pk/n for k = 0, . . . , n with n = 5. We shall build an interpolant
as a linear combination of the 2p-periodic functions

b0(x) = 1, b1(x) = sin(x), b2(x) = cos(x), b3(x) = sin(2x), b4(x) = cos(2x).

Note that we have six interpolation conditions at xk for k = 0, . . . , 5,
but only five basis functions. This is not a problem: since f is peri-
odic, f (x0) = f (x5), and the same will be true of our 2p-periodic
interpolant: the last interpolation condition is automatically satisfied.

We shall construct an interpolant of the form

t5(x) =
4

Â
k=0

ck bk(x)

such that
t5(xj) = f (xj), j = 0, . . . , 4.

To compute the unknown coefficients c0, . . . , c4, set up a linear system
as usual,
2
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b0(x0) b1(x0) b2(x0) b3(x0) b4(x0)

b0(x1) b1(x1) b2(x1) b3(x1) b4(x1)

b0(x2) b1(x2) b2(x2) b3(x2) b4(x2)

b0(x3) b1(x3) b2(x3) b3(x3) b4(x3)

b0(x4) b1(x4) b2(x4) b3(x4) b4(x4)
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=
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f (x0)

f (x1)

f (x2)

f (x3)

f (x4)

3

777775
,

which can be readily generalized to accommodate more interpolation
points. We could solve this system for c0, . . . , cn, but we prefer to You would b6(x) = sin(3x),

b7(x) = cos(3x), etc.: one function
for each additional interpolation point.
Generally you would use an odd value
of n, to include pairs of sines and
cosines.

express the problem in a more convenient basis for the trigonometric
functions. Recall Euler’s formula,

To prove this, write the Taylor expan-
sion of eiqx , then separate the real and
imaginary components to give Taylor
expansions for cos(qx) and sin(qx).

eiqx = cos(qx) + i sin(qx),

which also implies that

e�iqx = cos(qx)� i sin(qx).

From these formulas it follows that

span{eiqx, e�iqx} = {cos(qx), sin(qx)}.
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Note that we can also write b0(x) ⌘ 1 = ei0x. Putting these pieces
together, we arrive at an alternative basis for the trigonometric inter-
polation space:

span{1, sin(x), cos(x), sin(2x), cos(2x)} = span{e�2ix, e�ix, e0ix, eix, e2ix}.

The interpolant tn can thus be expressed in the form

t4(x) =
2

Â
k=�2

gk eikx =
2

Â
k=�2

gk (eix)k.

This last sum is written in a manner that emphasizes that t4 is a
polynomial in the variable eix, and hence tn is a trigonometric polynomial.
In this basis, the interpolation conditions give the linear system

2
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e�2ix0 e�ix0 e0ix0 eix0 ei2x0

e�2ix1 e�ix1 e0ix1 eix1 ei2x1

e�2ix2 e�ix2 e0ix2 eix2 ei2x2

e�2ix3 e�ix3 e0ix3 eix3 ei2x3

e�2ix4 e�ix4 e0ix4 eix4 ei2x4
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again with the natural generalization to larger odd integers n. At first
blush this matrix looks no simpler than the one we first encountered,
but a fascinating structure lurks. Notice that a generic entry of this
matrix has the form e`ixk for ` = �(n � 1)/2, . . . , (n � 1)/2 and
k = 0, . . . , n � 1. Since xk = 2pk/n, rewrite this entry as

e`ixk =
�
eixk

�`
=

�
e2p ik/n�` =

�
e2p i/n�k`

= w

k`,

where w = e2p i/n is an nth root of unity. In the n = 5 case, the linear This name comes from the fact that
w

n = 1.system can thus be written as

(1.30)
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Denote this system by Fg = f. Notice that each column of F equals
some (entrywise) power of the vector
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In other words, the matrix F has Vandermonde structure. From our past
experience with polynomial fitting addressed in Section 1.2.1, we
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might fear that this formulation is ill-suited to numerical computa-
tions, i.e., solutions g to the system Fg = f could be polluted by large

In the language of numerical linear
algebra, we might fear that the matrix
F is ill-conditioned, i.e., the condition
number kFkkF

�1k is large.numerical errors.

Before jumping to this conclusion, examine F

⇤
F. To form F

⇤ note F

⇤ is the conjugate-transpose of F:

F

⇤ = F

T,

so (F⇤)j,k = Fk,j.

that w

�` = w

`, so

F

⇤
F =
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The (`, k) entry for F

⇤
F thus takes the form

(F⇤
F)`,k = w

0 + w

(k�`) + w

2(k�`) + w

3(k�`) + w

4(k�`).

On the diagonal, when ` = k, we simply have

(F⇤
F)k,k = w

0 + w

0 + w

0 + w

0 + w

0 = n.

On the off-diagonal, use w

n = 1 to see that all the off diagonal entries
simplify to

(F⇤
F)`,k = w

0 + w

1 + w

2 + w

3 + w

4, ` 6= k.

You can think of this last entry as n times the average of w

0, w

1, w

2,
w

3, and w

4, which are uniformly spaced points on the unit circle,
shown in the plot to the right.
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As these points are uniformly positioned about the unit circle,
their mean must be zero, and hence

(F⇤
F)`,k = 0, ` 6= k.

We thus must conclude that

F

⇤
F = nI,

thus giving a formula for the inverse:

F

�1 =
1
n

F

⇤.

The system Fg = f can be immediately solved without the need for
any factorization of F:

g =
1
n

F

⇤
f.

The ready formula for F

�1 is reminiscent of a unitary matrix. In fact, Q 2 Cn⇥n is unitary if and only if
Q

�1 = Q

⇤, or, equivalently, Q

⇤
Q = I.the matrices

1p
n

F and
1p
n

F

⇤
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are indeed unitary, and hence kn�1/2
Fk2 = kn�1/2

F

⇤k2 = 1. The matrix 2-norm is defined as

kFk2 = max
x 6=0

kFxk2
kxk2

,

where the vector norm on the right
hand side is the Euclidean norm

kyk2 =
⇣

Â
k
|yk |2

⌘1/2
= (y⇤

y)1/2.

The 2-norm of a unitary matrix is one:
If Q

⇤
Q = I, then

kQxk2
2 = x

⇤
Q

⇤
Qx = x

⇤
x = kxk2,

so kQk2 = 1.

From this we can compute the condition number of F:

kFk2kF

�1k2 =
1
n
kFk2kF

⇤k2 = kn�1/2
Fk2kn�1/2

F

⇤k2 = 1.

This special Vandermonde matrix is perfectly conditioned! One can easily
solve the system Fg = f to high precision. The key distinction be-
tween this case and standard polynomial interpolation is that now we
have a Vandermonde matrix based on points eixk that are equally spaced
about the unit circle in the complex plane, whereas before our points
were distributed over an interval on the real line. This distinction
makes all the difference between an unstable matrix equation and
one that is not only perfectly stable, but also forms the cornerstone of
modern signal processing.

In fact, we have just computed the ‘Discrete Fourier Transform’
(DFT) of the data vector

2

66664

f (x0)

f (x1)
...

f (xn�1)

3

77775
.

The coefficients g�(n�1)/2, . . . , g(n�1)/2 that make up the vector

g =
1
n

F

⇤
f

are the discrete Fourier coefficients of the data in f. From where does
this name derive?

1.9.1 Connection to Fourier series

In a real/functional analysis course, one learns that a 2p-periodic
function f can be written as the Fourier series

f (x) =
•

Â
k=�•

ck eikx,

where the Fourier coefficients c` are defined via

ck :=
1

2p

Z 2p

0
f (x)e�ikx.

Notice that gk = ((1/n)F⇤
f)k is an approximation to this ck:

To ensure pointwise convergence of
this series for all x 2 [0, 2p], f must
be a continuous 2p-periodic function
with a continuous first derivative. The
functions ek(x) = eikx/

p
2p form

an orthonormal basis for the space
L2[0, 2p] endowed with the inner
product

( f , g) =
Z 2p

0
f (x)g(x)dx.

The Fourier series is simply an expan-
sion of f in this basis: f = Â

k
( f , ek) ek .

gk =
1
n

n�1

Ầ
=0

f (x`)w�`k

=
1
n

n�1

Â
k=0

f (xk)e�(2pk/n)i` =
1
n

n�1

Â
k=0

f (xk)e�i`xk .
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Now use the fact that f (x0)e�i`x0 = f (xn)e�i`xn to view the last sum
as a composite trapezoid rule approximation of an integral: The composite trapezoid rule will be

discussed in Chapter 3.

2pg` =
2p

n

✓
1
2

f (x0)e�i`x0 +
n�1

Â
k=1

f (xk)e�i`xk +
1
2

f (xn)e�i`xn

◆

⇡
Z 2p

0
f (x)e�i`x dx

= 2pc`.

The coefficient g` that premultiplies ei`x in the trigonometric interpolating
polynomial is actually an approximation of the Fourier coefficient c`.

Let us go one step further. Notice that the trigonometric interpolant

tn(x) =
(n�1)/2

Â
k=�(n�1)/2

gk eikx

is an approximation to the Fourier series

f (x) =
•

Â
k=�•

ck eikx

obtained by (1) truncating the series, and (2) replacing ck with gk.
To assess the quality of the approximation, we need to understand
the magnitude of the terms dropped from the sum, as well as the
accuracy of the composite trapezoid rule approximation gk to ck. We
will thus postpone discussion of f (x)� tn(x) until we develop a few
more analytical tools in the next two chapters.

1.9.2 Computing the discrete Fourier coefficients

Normally we would require O(n2) operations to compute these co-
efficients using matrix-vector multiplication with F

⇤, but Cooley and
Tukey discovered in 1965 that given the amazing structure in F

⇤,
one can arrange operations so as to compute g = n�1

F

⇤
f in only

O(n log n) operations: a procedure that we now famously call the Fast

Apparently the FFT was discovered
earlier by Gauss, but it was forgotten,
given its limited utility before the
advent of automatic computation.
Jack Good (Bletchley Park codebreaker
and, later, a Virginia Tech statistician)
published a similar idea in 1958. Good
recalls: ‘John Tukey (December 1956)
and Richard L. Garwin (September
1957) visited Cheltenham and I had
them round to steaks and fries on
separate occasions. I told Tukey briefly
about my FFT (with little detail) and,
in Cooley and Tukey’s well known
paper of 1965, my 1958 paper is the
only citation.’ See D. L. Banks, ‘A
conversation with I. J. Good,’ Stat. Sci.
11 (1996) 1–19.

Fourier Transform (FFT).

We can summarize this section as follows.

The FFT of a vector of uniform samples of a 2p-periodic
function f gives the coefficients for the trigonometric in-
terpolant to f at those sample points. These coefficients
approximate the function’s Fourier coefficients.
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Example 1.8 (Trig interpolation of a smooth periodic function).
Figure 1.14 shows the degree n = 5, 7, 9 and 11 trigonometric inter-
polants to the 2p-periodic function f (x) = ecos(x)+sin(2x). Notice that
although all the interpolation points are all drawn from the interval
[0, 2p) (indicated by the gray region on the plot), the interpolants are
just as accurate outside this region. In contrast, a standard polyno-
mial fit through the same points will behave very differently: (non-
constant) polynomials must satisfy |pn(x)| ! • as |x| ! •. Fig-
ure 1.15 shows this behavior for n = 7: for x 2 [0, 2p], the polynomial
fit to f is about as accurate as the n = 7 trigonometric polynomial in
Figure 1.14. Outside of [0, 2p],the polynomial is much worse.

Example 1.9 (Trig interpolation of non-smooth function).
Figure 1.15 shows that a standard (non-perioidic) polynomial fit to
a periodic function can yield a good approximation, at least over the
interval from which the interpolation points are drawn. Now turn
the tables: how well does a (periodic) trigonometric polynomial fit a
smooth but non-periodic function? Simply take f (x) = x on [0, 2p],
and construct the trigonometric interpolant as described above for
n = 11. The top plot in Figure 1.16 shows that t11 gives a very poor
approximation to f , constrained by design to be periodic even though
f is not. The fact that f (2p) 6= f (0) acts like a discontinuity, vastly
impairing the quality of the approximation. The bottom plot in Fig-
ure 1.16 repeats this exercise for f (x) = (x � p)2. Since in this case
f (0) = f (2p) we might expect better results; indeed, the approxi-
mation looks quite reasonable. Note, however, that f 0(0) 6= f 0(p),
and this lack of smoothness severely slows convergence of tn to f as
n ! •. Figure 1.17 contrasts this slow rate of convergence with the
much faster convergence observed for f (x) = ecos(x)+sin(2x) used in
Figure 1.14. Clearly the periodic interpolant is much better suited to
smooth f .

1.9.3 Fast MATLAB implementation

MATLAB organizes its Fast Fourier Transform is a slightly different
fashion than we have described above. To fit with MATLAB, reorder
the unknowns in the system (1.30) to obtain

(1.31)
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Figure 1.14: Trigonometric in-
terpolant to 2p-periodic function
f (x) = ecos(x)+sin(2x), using n = 5, 7, 9
and 11 points uniformly spaced over
[0, 2p) ({xk}n

k=0 for xk = 2pk/n). Since
both f and the interpolant are periodic,
the function fits well throughout IR,
not just on the interval for which the
interpolant was designed.
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Figure 1.15: Polynomial fit of degree
n = 7 through uniformly spaced grid
points x0, . . . , xn for xj = 2p j/n, for
the same function f (x) = ecos(x)+sin(2x)

used in Figure 1.14. In contrast to the
trigonometric fits in the earlier figure,
the polynomial grows very rapidly
outside the interval [0, 2p]. Moral: if
your function is periodic, fit it with a
trigonometric polynomial.
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Figure 1.16: Trigonometric polynomial
fit of degree n = 11 through uniformly
spaced grid points x0, . . . , xn for xj =
2p j/n, for the non-periodic function
f (x) = x (top) and for f (x) = (x � p)2

(bottom). By restricting the latter
function to the domain [0, 2p], one
can view it as a continuous periodic
function with a jump discontinuity in
the first derivative. The interpolant t11
seems to give a good approximation to
f , but the discontinuity in the derivative
slows the convergence of tn to f as
n ! •.

which amounts to reordering the columns of the matrix in (1.30). You
can obtain this matrix by the command ifft(eye(n)). For n = 5,

5 ⇤ ifft(eye(5)) =

2
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Figure 1.17: Convergence of the
trigonometric polynomial inter-
polants to f (x) = ecos(x)+sin(2x) and
f (x) = (x � p)2. For the first func-
tion, convergence is extremely rapid as
n ! •. The second function, restricted
to [0, 2p], can be viewed as a continu-
ous but not continuously differentiable
function. Though the approximation
in Figure 1.16 looks good over [0, 2p],
the convergence of tn to f is slow as
n ! •.

Similarly, the inverse of this matrix can be computed from fft(eye(n))

command:

fft(eye(5))/5 =
1
5
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We could construct this matrix and multiply it against f to obtain g,
but that would require O(n2) operations. Instead, we can compute g

directly using the fft command:

g = fft(f)/n.

Recall that this reordered vector gives

g =

2
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g1
g2

g�2

g�1

3

777775
,

which must be taken into account when constructing tn.

Example 1.10 (MATLAB code for trigonometric interpolation).
We close with a sample of MATLAB code one could use to construct
the interpolant tn for the function f (x) = ecos(x)+sin(2x). First we
present a generic code that will work for any (real- or complex-
valued) 2p-periodic f . Take special note of the simple one line com-
mand to find the coefficients g.
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f = @(x) exp(cos(x)+sin(2*x)); % define the function

n = 5; % # terms in trig polynomial (must be odd)

xk = [0:n-1]’*2*pi/n; % interpolation points

xx = linspace(0,2*pi,500)’; % fine grid on which to plot f, t_n

tn = zeros(size(xx)); % initialize t_n

gamma = fft(f(xk))/n; % solve for coefficients, gamma

for k=1:(n+1)/2

tn = tn + gamma(k)*exp(1i*(k-1)*xx); % add in gamma_0, gamma_1, ... gamma_{(n-1)/2}

end

for k=(n+1)/2+1:n

tn = tn + gamma(k)*exp(1i*(-n+k-1)*xx); % add in gamma_{-(n-1)/2}, ..., gamma_{-1}

end

plot(xx,f(xx),’b-’), hold on % plot f

plot(xx, tn,’r-’) % plot t_n

In the case that f is real-valued (as with all the examples shown in
this section), one can further show that

g�k = gk,

indicating that the imaginary terms will not make any contribution to
tn. Since for k = 1, . . . , (n � 1)/2,

g�ke�1ikx + gke1ikx = 2
⇣

Re(gk) cos(kx)� Im(gk) sin(kx)
⌘

,

the code can be simplified slightly to construct tn as follows.

gamma = fft(f(xk))/n; % solve for coefficients, gamma

tn = gamma(1)*exp(1i*0*xx); % initialize t_n(x) = gamma_0

for k=2:(n+1)/2

tn = tn + 2*real(gamma(k))*cos((k-1)*xx) ...

- 2*imag(gamma(k))*sin((k-1)*xx); % exploit gamma_{-k} = conj(gamma_k)

end


