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lecture 3: Interpolation Error Bounds

1.6 Convergence Theory for Polynomial Interpolation

Interpolation can be used to generate low-degree polynomials that
approximate a complicated function over the interval [a, b]. One
might assume that the more data points that are interpolated (for a
fixed [a, b]), the more accurate the resulting approximation. In this
lecture, we address the behavior of the maximum error

max
x2[a,b]

| f (x)� p

n

(x)|

as the number of interpolation points—hence, the degree of the in-
terpolating polynomial—is increased. We begin with a theoretical
result.

Theorem 3.2 (Weierstrass Approximation Theorem).
Suppose f 2 C[a, b]. For any # > 0 there exists some polynomial p

n

of finite degree n such that max
x2[a,b] | f (x)� p

n

(x)|  #.

Unfortunately, we do not have time to prove this in class.7 As 7 The typical proof is a construction
based on Bernstein polynomials; see,
e.g., Kincaid and Cheney, Numerical

Analysis, 3rd edition, pages 320–323.
This result can be generalized to the
Stone–Weierstrass Theorem, itself a
special case of Bishop’s Theorem for
approximation problems in operator
algebras; see e.g., §5.6–§5.8 of Rudin,
Functional Analysis, 2nd ed. (McGraw
Hill, 1991).

stated, this theorem gives no hint about what the approximating
polynomial looks like, whether p

n

interpolates f at n + 1 points, or
merely approximates f well throughout [a, b], nor does the Weier-
strass theorem describe the accuracy of a polynomial for a specific
value of n (though one could gain insight into such questions by
studying the constructive proof).

On the other hand, for the interpolation problem studied in the
preceding lectures, we can obtain a specific error formula that gives a
bound on max

x2[a,b] | f (x)� p

n

(x)|. From this bound, we can deduce
if interpolating f at increasingly many points will eventually yield
a polynomial approximation to f that is accurate to any specified
precision.

Theorem 3.3 (Interpolation Error Formula).
Suppose f 2 C

n+1[a, b] and let p

n

2 P
n

denote the polynomial that
interpolates {(x

j

, f (x

j

)}n

j=0 with x

j

2 [a, b] for j = 0, . . . , n. The for
every x 2 [a, b] there exists x 2 [a, b] such that

f (x)� p

n

(x) =
f

(n+1)(x)
(n + 1)!

n

’
j=0

(x � x

j

).

From this formula follows a bound for the worst error over [a, b]:

(1.5) max
x2[a,b]

| f (x)� p

n

(x)| 
✓

max
x2[a,b]

| f

(n+1)(x)|
(n + 1)!

◆✓
max

x2[a,b]

n

’
j=0

|x � x

j

|
◆

.
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We shall carefully prove this essential result; it will repay the ef-
fort, for this theorem becomes the foundation upon which we shall
build the convergence theory for piecewise polynomial approxima-
tion and interpolatory quadrature rules for definite integrals.

Proof. Consider some arbitrary point b
x 2 [a, b]. We seek a de-

scriptive expression for the error f (bx) � p

n

(bx). If b
x = x

j

for some
j 2 {0, . . . , n}, then f (bx)� p

n

(bx) = 0 and there is nothing to prove.
Thus, suppose for the rest of the proof that b

x is not one of the inter-
polation points.

To describe f (bx)� p

n

(bx), we shall build the polynomial of degree
n + 1 that interpolates f at x0, . . . , x

n

, and also b
x. Of course, this

polynomial will give zero error at b
x, since it interpolates f there.

From this polynomial we can extract a formula for f (bx) � p

n

(bx) by
measuring how much the degree n + 1 interpolant improves upon the
degree-n interpolant p

n

at b
x.

Since we wish to understand the relationship of the degree n + 1
interpolant to p

n

, we shall write that degree n + 1 interpolant in a
manner that explicitly incorporates p

n

. Given this setting, use of the
Newton form of the interpolant is natural; i.e., we write the degree
n + 1 polynomial as

p

n

(x) + l

n

’
j=0

(x � x

j

)

for some constant l chosen to make the interpolant exact at b
x. For

convenience, we write

w(x) ⌘
n

’
j=0

(x � x

j

)

and then denote the error of this degree n + 1 interpolant by

f(x) ⌘ f (x)�
�

p

n

(x) + lw(x)
�
.

To make the polynomial p

n

(x) + lw(x) interpolate f at b
x, we shall

pick l such that f(bx) = 0. The fact that b
x 62 {x

j

}n

j=0 ensures that
w(bx) 6= 0, and so we can force f(bx) = 0 by setting

l =
f (bx)� p

n

(bx)
w(bx) .

Furthermore, since f (x

j

) = p

n

(x

j

) and w(x

j

) = 0 at all the n + 1
interpolation points x0, . . . , x

n

, we also have f(x

j

) = f (x

j

)� p

n

(x

j

)�
lw(x

j

) = 0. Thus, f is a function with at least n + 2 zeros in the
interval [a, b]. Rolle’s Theorem8 tells us that between every two con- 8 Recall the Mean Value Theorem

from calculus: Given d > c, suppose
f 2 C[c, d] is differentiable on (c, d).
Then there exists some h 2 (c, d) such
that ( f (d) � f (c))/(d � c) = f

0(h).
Rolle’s Theorem is a special case: If
f (d) = f (c), then there is some point
h 2 (c, d) such that f

0(h) = 0.

secutive zeros of f, there is some zero of f

0. Since f has at least n + 2
zeros in [a, b], f

0 has at least n + 1 zeros in this same interval. We
can repeat this argument with f

0 to see that f

00 must have at least n
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zeros in [a, b]. Continuing in this manner with higher derivatives, we
eventually conclude that f

(n+1) must have at least one zero in [a, b];
we denote this zero as x, so that f

(n+1)(x) = 0.
We now want a more concrete expression for f

(n+1). Note that

f

(n+1)(x) = f

(n+1)(x)� p

(n+1)
n

(x)� lw

(n+1)(x).

Since p

n

is a polynomial of degree n or less, p

(n+1)
n

⌘ 0. Now observe
that w is a polynomial of degree n + 1. We could write out all the
coefficients of this polynomial explicitly, but that is a bit tedious,
and we do not need all of them. Simply observe that we can write
w(x) = x

n+1 + q(x), for some q 2 P
n

, and this polynomial q will
vanish when we take n + 1 derivatives:

w

(n+1)(x) =

✓
d

n+1

dx

n+1 x

n+1
◆
+ q

(n+1)(x) = (n + 1)! + 0.

Assembling the pieces, f

(n+1)(x) = f

(n+1)(x) � l (n + 1)!. Since
f

(n+1)(x) = 0, we conclude that

l =
f

(n+1)(x)
(n + 1)!

.

Substituting this expression into 0 = f(bx) = f (bx)� p

n

(bx)� lw(bx),
we obtain

f (bx)� p

n

(bx) = f

(n+1)(x)
(n + 1)!

n

’
j=0

(bx � x

j

).

This error bound has strong parallels to the remainder term in
Taylor’s formula. Recall that for sufficiently smooth h, the Taylor
expansion of f about the point x0 is given by

f (x) = f (x0)+ (x� x0) f

0(x0)+ · · ·+ (x � x0)k

k!
f

(k)(x0)+ remainder.

Ignoring the remainder term at the end, note that the Taylor expan-
sion gives a polynomial model of f , but one based on local infor-
mation about f and its derivatives, as opposed to the polynomial
interpolant, which is based on global information, but only about f ,
not its derivatives.

An interesting feature of the interpolation bound is the polynomial
w(x) = ’n

j=0(x � x

j

). This quantity plays an essential role in ap-
proximation theory, and also a closely allied subdiscipline of complex
analysis called potential theory. Naturally, one might wonder what
choice of points {x

j

} minimizes |w(x)|: We will revisit this question
when we study approximation theory in the near future. For now, we
simply note that the points that minimize |w(x)| over [a, b] are called
Chebyshev points, which are clustered more densely at the ends of the
interval [a, b].
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Example 3.1 ( f (x) = sin(x)). We shall apply the interpolation
bound to f (x) = sin(x) on x 2 [�5, 5]. Since f

(n+1)(x) = ± sin(x) or
± cos(x), we have max

x2[�5,5] | f

(n+1)(x)| = 1 for all n. The interpo-
lation result we just proved then implies that for any choice of distinct

interpolation points in [�5, 5],

n

’
j=0

|x � x

j

| < 10n+1,

the worst case coming if all the interpolation points are clustered at
an end of the interval [�5, 5]. Now our theorem ensures that

max
x2[�5,5]

| sin(x)� p

n

(x)|  10n+1

(n + 1)!
.

For small values of n, this bound will be very large, but eventually
(n + 1)! grows much faster than 10n+1, so we conclude that our error
must go to zero as n ! • regardless of where in [�5, 5] we place our

interpolation points! The error bound is shown in the first plot below.
Consider the following specific example: Interpolate sin(x) at

points uniformly selected in [�1, 1]. At first glance, you might think
there is no reason that we should expect our interpolants p

n

to con-
verge to sin(x) for all x 2 [�5, 5], since we are only using data from
the subinterval [�1, 1], which is only 20% of the total interval and
does not even include one entire period of the sine function. (In fact,
sin(x) attains neither its maximum nor minimum on [�1, 1].) Yet
the error bound we proved above ensures that the polynomial in-
terpolant must converge throughout [�5, 5]. This is illustrated in
the first plot below. The next plots show the interpolants p4(x) and
p10(x) generated from these interpolation points. Not surprisingly,
these interpolants are most accurate near [�1, 1], the location of the
interpolation points (shown as circles), but we still see convergence
well beyond [�1, 1], in the same way that the Taylor expansion for
sin(x) at x = 0 will converge everywhere.

Example 3.2 (Runge’s Example). The error bound (1.5) suggests those
functions for which interpolants might fail to converge as n ! •:
beware if higher derivatives of f are large in magnitude over the
interpolation interval. The most famous example of such behavior
is due to Carl Runge, who studied convergence of interpolants for
f (x) = 1/(1 + x

2) on the interval [�5, 5]. This function looks beau-
tiful: it resembles a bell curve, with no singularities in sight on IR, as
Figure 1.8 shows. However, the interpolants to f at uniformly spaced
points over [�5, 5] do not seem to converge even for x 2 [�5, 5].
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Figure 1.7: Interpolation of sin(x) at
points x0, . . . , x

n

uniformly distributed
on [�1, 1]. We develop an error bound
from Theorem 3.3 for the interval
[a, b] = [�5, 5]. The bound proves that
even though the interpolation points
only fall in [�1, 1], the interpolant will
still converge throughout [�5, 5]. The
top plot shows this convergence for
n = 0, . . . , 40; the bottom plots show
the polynomials p4 and p10, along with
the interpolation points that determine
these polynomials (black circles).

Look at successive derivatives of f ; they expose its crucial flaw:

f

0(x) = � 2x

(1 + x

2)2

f

00(x) =
8x

2

(1 + x

2)3 � 2
(1 + x

2)2

f

000(x) = � 48x

3

(1 + x

2)4 +
24x

(1 + x

2)3

f

(iv)(x) =
348x

4

(1 + x

2)5 � 288x

2

(1 + x

2)4 +
24

(1 + x

2)3

f

(vi)(x) =
46080x

6

(1 + x

2)7 � 57600x

4

(1 + x

2)6 +
17280x

2

(1 + x

2)5 � 720
(1 + x

2)4 .

At certain points on [�5, 5], f

(n+1) blows up more rapidly than
(n + 1)!, and the interpolation bound (1.5) suggests that p

n

will

not converge to f on [�5, 5] as n gets large. Not only does p

n

fail
to converge to f ; the error between certain interpolation points gets
enormous as n increases.
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Figure 1.8: Interpolation of Runge’s
function 1/(x

2 + 1) at points x0, . . . , x

n

uniformly distributed on [�5, 5]. The
top plot shows this convergence for
n = 0, . . . , 25; the bottom plots show the
interpolating polynomials p4, p8, p16,
and p24, along with the interpolation
points that determine these polynomi-
als (black circles). These interpolants
do not converge to f as n ! •. This is
not a numerical instability, but a fatal
flaw that arises when interpolating with
large degree polynomials at uniformly
spaced points.

The following code uses MATLAB’s Symbolic Toolbox to compute
higher derivatives of the Runge function. Several of the resulting
plots follow.9 Note how the scale on the vertical axis changes from plot to

9 Not all versions of MATLAB have the
Symbolic Toolbox, but you should be
able to run this code on any Student
Edition or on copies on Virginia Tech
network.

plot!

% rungederiv.m

% routine to plot derivatives of Runge’s example,

% f(x) = 1/(1+x^2) on [-5,5]
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Figure 1.9: Runge’s function

f (x) =
1

1 + x

2

and a few of its derivatives on x 2
[�5, 5]. Notice how large the derivatives
grow in magnitude: the vertical scale on
the plot for f

(25) (bottom-right) is 1025.

figure(1), clf, set(gca,’fontsize’,18)

for j=0:25

syms x

fj = vectorize(diff(1/(x^2+1),j)); % compute derivative (Symbolic Toolbox)

x = linspace(-5,5,1000); fjx = eval(fj); % evaluate on a grid of points

plot(x,fjx,’b-’,’linewidth’,2); % plot derivative

title(sprintf(’Runge’’s Example: f^{(%d)}(x)’,j),’fontsize’,14)

input(’ ’)

end

Some improvement can be made by a careful selection of the in-
terpolation points {x0}. In fact, if one interpolates Runge’s example,
f (x) = 1/(1 + x

2), at the Chebyshev points for [�5, 5],

x

j

= 5 cos
⇣

jp

n

⌘
, j = 0, . . . , n,
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then the interpolant will converge!
As a general rule, interpolation at Chebyshev points is greatly

preferred over interpolation at uniformly spaced points for reasons
we shall understand in a few lectures. However, even this set is not
perfect: there exist functions for which the interpolants at Chebyshev
points do not converge. Examples to this effect were constructed by
Marcinkiewicz and Grunwald in the 1930s. We close with two re-
sults of a more general nature.10 We require some general notation to 10 An excellent exposition of these

points is given in volume 3 of I. P.
Natanson, Constructive Function Theory

(Ungar, 1965).

describe a family of interpolation points that can change as the poly-
nomial degree increases. Toward this end, let {x

[n]
j

}n

j=0 denote the set
of interpolation points used to construct the degree-n interpolant. As
we are concerned here with the behavior of interpolants as n ! •, so
we will speak of the system of interpolation points {{x

[n]
j

}n

j=0}•
n=0.

Our first result is bad news.

Theorem 3.4 (Faber’s Theorem). Let {{x

[n]
j

}n

j=0}•
n=0 be any system of

interpolation points with x

[n]
j

2 [a, b] and x

[n]
j

6= x

[n]
` for j 6= ` (i.e.,

distinct interpolation points for each polynomial degree). Then there
exists some function f 2 C[a, b] such that the polynomials p

n

that
interpolate f at {x

[n]
j

}n

j=0 do not converge uniformly to f in [a, b] as
n ! •.

The good news is that there always exists a suitable set of interpo-
lation points for any given f 2 C[a, b].

Theorem 3.5 (Marcinkiewicz’s Theorem). Given any f 2 C[a, b], there
exist a system of interpolation points with x

[n]
j

2 [a, b] such that the

polynomials p

n

that interpolate f at {x

[n]
j

}n

j=0 converge uniformly to
f in [a, b] as n ! •.


