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lecture 24: Gaussian quadrature rules: fundamentals

3.4 Gaussian quadrature

It is clear that the trapezoid rule,

b � a
2

�

f (a) + f (b)
�

,

exactly integrates linear polynomials, but not all quadratics. In fact,
one can show that no quadrature rule of the form

wa f (a) + wb f (b)

will exactly integrate all quadratics over [a, b], regardless of the choice
of constants wa and wb. However, notice that a general quadrature
rule with two points,

w0 f (x0) + w1 f (x1),

has four parameters (w0, x0, w1, x1). We might then hope that we
could pick these four parameters in such a fashion that the quadra-
ture rule is exact for a four-dimensional subspace of functions, P3.
This section explores generalizations of this question.

3.4.1 A special 2-point rule

Suppose we consider a more general class of 2-point quadrature
rules, where we do not initially fix the points at which the integrand
f is evaluated:

I( f ) = w0 f (x0) + w1 f (x1)

for unknowns nodes x0, x1 2 [a, b] and weights w0 and w1. We wish to
pick x0, x1, w0, and w1 so that the quadrature rule exactly integrates
all polynomials of the largest degree possible. Since this quadrature
rule is linear, it will suffice to check that it is exact on monomials.
There are four unknowns; to get four equations, we will require I( f )
to exactly integrate 1, x, x2, x3.

f (x) = 1 :
Z b

a
1 dx = I(1) =) b � a = w0 + w1

f (x) = x :
Z b

a
x dx = I(x) =) 1

2 (b
2 � a2) = w0x0 + w1x1

f (x) = x2 :
Z b

a
x2 dx = I(x2) =) 1

3 (b
3 � a3) = w0x2

0 + w1x2
1

f (x) = x3 :
Z b

a
x3 dx = I(x3) =) 1

4 (b
4 � a4) = w0x3

0 + w1x3
1
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Three of these constraints are nonlinear equations of the unknowns
x0, x1, w0, and w1: thus questions of existence and uniqueness of
solutions becomes a bit more subtle than for the linear equations we
so often encounter.

In this case, a solution does exist:

w0 = w1 = 1
2 (b � a),

x0 = 1
2 (b + a)�

p
3

6 (b � a), x1 = 1
2 (b + a) +

p
3

6 (b � a).

Notice that x0, x1 2 [a, b]: If this were not the case, we could not
use these points as quadrature nodes, since f might not be defined
outside [a, b]. When [a, b] = [�1, 1], the interpolation points are
±1/

p
3, giving the quadrature rule

I( f ) = f (�1/
p

3) + f (1/
p

3).

3.4.2 Generalization to higher degrees

Emboldened by the success of this humble 2-point rule, we consider
generalizations to higher degrees. If some two-point rule (n + 1 inte-
gration nodes, for n = 1) will exactly integrate all cubics (3 = 2n + 1),
one might anticipate the existence of rules based on n + 1 points that
exactly integrate all polynomials of degree 2n + 1, for general values
of n. Toward this end, consider quadrature rules of the form

In( f ) =
n

Â
j=0

wj f (xj),

for which we will choose the nodes {xj} and weights {wj} (a total
of 2n + 2 variables) to maximize the degree of polynomial that is
integrated exactly.

The primary challenge is to find satisfactory quadrature nodes.
Once these are found, the weights follow easily: in theory, one could
obtain them by integrating the polynomial interpolant at the nodes,
though better methods are available in practice. In particular, this
procedure for assigning weights ensures, at a minimum, that In( f )
will exactly integrate all polynomials of degree n. This assumption
will play a key role in the coming development.

Orthogonal polynomials, introduced in Section 2.5, play a central
role in this exposition, and they suggest a generalization of the inter-
polatory quadrature procedures we have studied up to this point.

Let {fj}n+1
j=0 be a system of orthogonal polynomials with respect to

the inner product

h f , gi =
Z b

a
f (x)g(x)w(x)dx
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for some weight function w 2 C(a, b) that is non-negative over (a, b) and
takes the value of zero only on a set of measure zero.

This weight function plays an essential
role in the discussion: it defines the
inner product, and so it dictates what
it means for two functions to be or-
thogonal. Change the weight function,
and you will change the orthogonal
polynomials.

Now we wish to construct an interpolatory quadrature rule for an
integral that incorporates the weight function w(x) in the integrand:

In the Section 3.4.4 we shall see some
useful examples of weight functions.

In( f ) =
n

Â
j=0

wj f (xj) ⇡
Z b

a
f (x)w(x)dx.

It is our aim to make In(p) exact for all p 2 P2n+1. First, we will show
that any interpolatory quadrature rule In will at least be exact for the
weighted integral of degree-n polynomials. Showing this is a simple
modification of the argument made in Section 3.1 for unweighted
integrals.

Given a set of distinct nodes x0, . . . , xn, construct the polynomial
interpolant to f at those nodes:

pn(x) =
n

Â
j=0

f (xj)`j(x),

where `j(x) is the usual Lagrange basis function for polynomial
interpolation. The interpolatory quadrature rule will exactly integrate
the weighted integral of the interpolant pn:

Z b

a
f (x)w(x)dx ⇡

Z b

a
pn(x)w(x)dx =

Z b

a

✓ n

Â
j=0

f (xj)`j(x)
◆

w(x)dx

=
n

Â
j=0

f (xj)
Z b

a
`j(x)w(x)dx.

Thus we define the quadrature weights for the weighted integral to be

wj :=
Z b

a
`j(x)w(x)dx,

giving the rule

In( f ) =
n

Â
j=0

wj f (xj) ⇡
Z b

a
f (x)w(x)dx.

Apply this rule to a degree-n polynomial, p. Since p 2 Pn, it is its
own degree-n polynomial interpolant, so the integral of the inter-
polant delivers the exact weighted integral of p: Note that the weight function w(x)

can include all sorts of nastiness, all of
which is absorbed in the quadrature
weights w0, . . . , wn.

Z b

a
p(x)w(x)dx =

n

Â
j=0

wj p(xj) = In(p).

This is the case regardless of how the (distinct) nodes x0, . . . , xn were
chosen. Now we seek a way to choose the nodes so that the quada-
ture rule is exactly for a higher degree polynomials.
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To begin, consider an arbitrary p 2 P2n+1. Using polynomial
division, we can always write

p(x) = fn+1(x)q(x) + r(x)

for some q, r 2 Pn that depend on p. Integrating this p, we obtain
Z b

a
p(x)w(x)dx =

Z b

a
fn+1(x)q(x)w(x)dx +

Z b

a
r(x)w(x)dx

= hfn+1, qi+
Z b

a
r(x)w(x)dx

=
Z b

a
r(x)w(x)dx.

The last step is a consequence that important basic fact, proved in
Section 2.5, that the orthogonal polynomial fn+1 is orthogonal to all
q 2 Pn.

Now apply the quadrature rule to p, and attempt to pick the inter-
polation nodes {xj} to yield the value of the exact integral computed
above. In particular,

In(p) =
n

Â
j=0

wj p(xj) =
n

Â
j=0

wjfn+1(xj)q(xj) +
n

Â
j=0

wjr(xj)

=
n

Â
j=0

wjfn+1(xj)q(xj) +
Z b

a
r(x)w(x)dx.

This last statement is a consequence of the fact that In(·) will exactly
integrate all r 2 Pn. This will be true regardless of our choice for
the distinct nodes {xj} ⇢ [a, b]. (Recall that the quadrature rule
is constructed so that it exactly integrates a degree-n polynomial
interpolant to the integrand, and in this case the integrand, r, is a
degree n polynomial. Hence In(r) will be exact.)

Notice that we can force agreement between In(p) and
R b

a p(x)w(x)dx
provided

n

Â
j=0

wj fn+1(xj)q(xj) = 0.

We cannot make assumptions about q 2 Pn, as this polynomial will
vary with the choice of p, but we can exploit properties of fn+1. Since
fn+1 has exact degree n + 1 (recall this property of all orthogonal
polynomials), it must have n + 1 roots. If we choose the interpolation
nodes {xj} to be the roots of fn+1, then Ân

j=0 wj fn+1(xj)q(xj) =

0 as required, and we have a quadrature rule that is exact for all
polynomials of degree 2n + 1.

Before we can declare victory, though, we must exercise some
caution. Perhaps fn+1 has repeated roots (so that the nodes {xj} are
not distinct), or perhaps these roots lie at points in the complex plane
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where f may not even be defined. Since we are integrating f over the
interval [a, b], it is crucial that fn+1 has n + 1 distinct roots in [a, b].
Fortunately, this is one of the many beautiful properties enjoyed by
orthogonal polynomials.

Theorem 3.6 (Roots of Orthogonal Polynomials).
Let {fk}n+1

k=0 be a system of orthogonal polynomials on [a, b] with
respect to the weight function w(x). Then fk has k distinct real roots,
{x(k)j }k

j=1, with x(k)j 2 [a, b] for j = 1, . . . , k.

Proof. The result is trivial for f0. Fix any k 2 {1, . . . , n + 1}. Suppose
that fk, a polynomial of exact degree k, changes sign at j < k distinct
roots {x(k)` }j

`=1, in the interval [a, b]. Then define

q(x) = (x � x(k)1 )(x � x(k)2 ) · · · (x � x(k)j ) 2 Pj.

This function changes sign at exactly the same points as fk does on
[a, b]. Thus, the product of these two functions, fk(x)q(x), does not
change sign on [a, b]. See the illustration in Figure 3.8.

  

0

  

0

  
0

fk(x)
q(x)

fk(x)q(x)

a b a b a b
Figure 3.8: The functions fk , q, and fkq
from the proof of Theorem 3.9.As the weight function w(x) is nonnegative on [a, b], it must also be

that fk qw does not change sign on [a, b]. However, the fact that q 2 Pj
for j < k implies that

Z b

a
fk(x)q(x)w(x)dx = hfk, qi = 0,

since fk is orthogonal to all polynomials of degree k � 1 or lower
(Lemma 2.3). Thus, we conclude that the integral of some continuous
nonzero function fk qw that never changes sign on [a, b] must be zero.
This is a contradiction, as the integral of such a function must always
be positive. Thus, fk must have at least k distinct zeros in [a, b]. As fk
is a polynomial of degree k, it can have no more than k zeros.
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We have arrived at Gaussian quadrature rules: Integrate the polyno-
mial that interpolates f at the roots of the orthogonal polynomial
fn+1. What are the weights {wj}? Write the interpolant, pn, in the
Lagrange basis,

pn(x) =
n

Â
j=0

f (xj)`j(x),

where the basis polynomials `j are defined as usual,

(3.2) `j(x) =
n

’
k=0,k 6=j

(x � xk)
(xj � xk)

.

Integrating this interpolant gives

In( f ) =
Z b

a
pn(x)w(x)dx =

Z b

a

n

Â
j=0

f (xj)`j(x)w(x)dx =
n

Â
j=0

f (xj)
Z b

a
`j(x)w(x)dx,

revealing a formula for the quadrature weights:

wj =
Z b

a
`j(x)w(x)dx.

This construction proves the following result.

Theorem 3.7. Suppose In( f ) is the Gaussian quadrature rule

In( f ) =
n

Â
j=0

wj f (xj),

where the nodes {xj}n
j=0 are the n + 1 roots of a degree-(n + 1) or-

thogonal polynomial on [a, b] with weight function w, and wj =
R b

a `j(x)w(x)dx. Then

In( f ) =
Z b

a
f (x)w(x)dx

for all polynomials f of degree 2n + 1.

As a side-effect of this high-degree exactness, we obtain an inter-
esting new formula for the weights in Gaussian quadrature. Since
the Lagrange basis polynomial `k is the product of n linear factors
(see (3.2)), `k 2 Pn, and

(`k)
2 2 P2n ✓ P2n+1.

Thus the Gaussian quadrature rule exactly integrates (`k)
2w(x). We

write
Z b

a
(`k(x))2w(x)dx =

n

Â
j=0

wj(`k(xj))
2

= wk(`k(xk))
2 = wk,
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where we have used the fact that `k(xj) = 0 if j 6= k, and `k(xk) = 1.
This leads to another formula for the Gaussian quadrature weights:

(3.3) wk =
Z b

a
`k(x)w(x)dx =

Z b

a
(`k(x))2 w(x)dx.

This latter formula is more computationally appealing than the for-
mer, because it is more numerically reliable to integrate positive-
valued integrands. This is a neat fact, but, as described in Section , One avoids floating point errors that

can be introduced by adding quantities
that are similar in magnitude but
opposite in sign, known as catastrophic
cancellation.

there is a still-better way to compute these weights: by computing
eigenvectors of a symmetric tridiagonal matrix.

Of course, in many circumstances we are not simply integrating
polynomials, but more complicated functions, so we want better
insight about the method’s performance than Theorem 3.7 provides.
One can prove the following error bound. See, e.g., Süli and Mayers, pp. 282–283.

Theorem 3.8. Suppose f 2 C2n+2[a, b] and let In( f ) be the usual
(n + 1)-point Gaussian quadrature rule on [a, b] with weight function
w(x) and nodes {xj}n

j=0. Then

Z b

a
f (x)w(x)dx � In( f ) =

f (2n+2)(x)
(2n + 2)!

Z b

a
y

2(x)w(x)dx

for some x 2 [a, b] and y(x) = ’n
j=0(x � xj).


