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Approximation Theory

lecture 12: Introduction to Approximation Theory

Interpolation is an invaluable tool in numerical analysis: it
provides an easy way to replace a complicated function by a polyno-
mial (or piecewise polynomial), and, at least as importantly, it provides
a mechanism for developing numerical algorithms for more sophis-
ticated problems. Interpolation is not the only way to approximate We saw one example in Section 1.7:

finite difference formulas for approxi-
mating derivatives and solving differen-
tial equation boundary value problems.
Several other applications will follow
later in the semester.

a function, though: and indeed, we have seen that the quality of the
approximation can depend perilously on the choice of interpolation
points.

If approximation is our goal, interpolation is only one means to
that end. In this chapter we investigate alternative approaches that
directly optimize the quality of the approximation. How do we mea-
sure this quality? That depends on the application. Perhaps the most
natural means is to minimize the maximum error of the approximation.

Given f 2 C[a, b], find p⇤ 2 Pn such that

max
x2[a,b]

| f (x)� p⇤(x)| = min
p2Pn

max
x2[a,b]

| f (x)� p(x)|.

This is called the minimax approximation problem.
Norms clarify the notation. For any g 2 C[a, b], define

kgk• := max
x2[a,b]

|g(x)|,

the ‘infinity norm of g’. One can show that k · k• satisfies the basic
norm axioms on the vector space C[a, b] of continuous functions. kgk• � 0 for all g 2 C[a, b]

kgk• = 0 () g(x) = 0 for all x 2 [a, b].
kagk• = |a|kgk• for all a 2 C, g 2 C[a, b].
kg + hk•  kgk• + khk•, for all g, h 2 C[a, b].

Thus the minimax approximation problem seeks p⇤ 2 Pn such that

k f � p⇤k• = min
p2Pn

k f � pk•.
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Notice that, for better or worse, this approximation will be heavily
influenced by extreme values of f (x), even if they occur over only a
small range of x 2 [a, b].

Some applications call instead for an approximation that balances
the size of the errors against the range of x values over which they
are attained. In such cases it is most common to minimize the inte-
gral of the square of the error, the least squares approximation problem.

Given f 2 C[a, b], find p⇤ 2 Pn such that

⇣ Z b

a
( f (x)� p⇤(x))2 dx

⌘1/2
= min

p2Pn

⇣ Z b

a
( f (x)� p(x))2 dx

⌘1/2
.

This problem is often associated with energy minimization in mechan-
ics, giving one motivation for its widespread appeal. As before, we
express this more compactly by introducing the two-norm of g 2 [a, b]:

kgk2 =
⇣ Z b

a
|g(x)|2 dx

⌘1/2
,

so the least squares problem becomes

k f � p⇤k2 = min
p2Pn

k f � pk2.

This chapter focuses on these two problems. Before attacking them
we mention one other possibility, minimizing the absolute value of
the integral of the error: the least absolute deviations problem. This problem has become quite im-

portant in recent years. In particular,
the analogous problem resulting when
f is replaced by its vector discretiza-
tion f 2 Cn plays a pivotal role in
compressive sensing.

Given f 2 C[a, b], find p⇤ 2 Pn such that

Z b

a
| f (x)� p⇤(x)|dx = min

p2Pn

Z b

a
| f (x)� p(x)|dx.

With this problem we associate the one-norm of g 2 C[a, b],

kgk1 =
Z b

a
|g(x)|dx,

giving the least absolute deviations problem as

k f � p⇤k1 = min
p2Pn

k f � pk1.
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2.1 Minimax Approximation: General Theory

The goal of minimizing the maximum error of a polynomial p from
the function f 2 C[a, b] is called minimax (or uniform, or L•) approxi-
mation: Find p⇤ 2 Pn such that

k f � p⇤k• = min
p2Pn

k f � pk•.

Let us begin by connecting this problem to polynomial interpolation.
On Problem Set 2 you were asked to prove that

(2.1) k f � Pn f k• 
�
1 + kPnk•

�
k f � p⇤k•,

where Pn is the linear interpolation operator for That is, p = Pn f 2 Pn is the polynomial
that interpolates f at x0, . . . , xn.

x0 < x1 < · · · < xn

with x0, . . . , xn 2 [a, b]. Here kPnk• is the operator norm of Pn:

kPnk• = max
f2C[a,b]

kPn f k•
k f k•

You further show that

kPnk = max
x2[a,b]

n

Â
j=0

|`j(x)|,

where `j denotes the jth Lagrange interpolation basis function

`j(x) =
n

’
k=0
k 6=j

x � xk
xj � xk

.

Now appreciate the utility of bound (2.1): the linear interpolant
Pn f (which is easy to compute) is within a factor of 1 + kPnk• of the
optimal approximation p⇤. Note that kPnk• � 1: how much larger
than one depends on the distribution of the interpolation points.

In the following sections we shall characterize and compute p⇤
(indeed more difficult than computing the interpolant), then use the
theory of minimax approximation to find an excellent set of almost
fail-safe interpolation points.

We begin by working out a simple example by hand.

Example 2.1. Suppose we seek the constant that best approximates
f (x) = ex over the interval [0, 1], shown in the margin. Before go-
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ing on, sketch out a constant function (degree-0 polynomial) that
approximates f in a manner that minimizes the maximum error.

Since f (x) increases monotonically for x 2 [0, 1], the optimal
constant approximation p⇤ = c0 must fall between f (0) = 1 and
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f (1) = e, i.e., 1  c0  e. Moreover, since f is monotonic and p⇤ is
a constant, the function f � p⇤ is also monotonic, so the maximum
error maxx2[a,b] | f (x) � p⇤(x)| must be attained at one of the end
points, x = 0 or x = 1. Thus,

k f � p⇤k• = max{|e0 � c0|, |e1 � c0|}.

The picture to the right shows |e0 � c0| (blue) and |e1 � c0| (red) for
c0 2 [1, e]. The optimal value for c0 will be the point at which the

         
   

   

   e � 1

e � 1
2

0
1 e � 1

2
e

c0

|e
0 � c 0|

|e 1� c0 |
larger of these two lines is minimal. The figure clearly reveals that this
happens when the errors are equal, at c0 = (1 + e)/2. We conclude
that the optimal minimax constant polynomial approximation to ex

on x 2 [0, 1] is p⇤(x) = c0 = (1 + e)/2.

The plots in Figure 2.1 compare f to the optimal polynomial p⇤
(top), and show the error f � p⇤ (bottom). We picked c0 so that the
error f � p⇤ was equal in magnitude at the end points x = 0 and
x = 1; in fact, it is equal in magnitude, but opposite in sign,

e0 � c0 = �(e1 � c0).

This property—maximal error being attained with alternating sign—
is a key feature of minimax approximation.
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Figure 2.1: Minimax approximation
of degree k = 0 to f (x) = ex on
x 2 [0, 1]. The top plot compares f
to p⇤; the bottom plot shows the error
f � p⇤, whose extreme magnitude is
attained, with opposite sign, at two values
of x 2 [0, 1].


