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lecture 10: B-Splines

1.11.2 B-Splines: a basis for splines

Throughout our discussion of standard polynomial interpolation, we
viewed Pn as a linear space of dimension n + 1, and then expressed
the unique interpolating polynomial in several different bases (mono-
mial, Newton, Lagrange). The most elegant way to develop spline
functions uses the same approach. A set of basis splines, depending
only on the location of the knots and the degree of the approximating
piecewise polynomials can be developed in a convenient, numerically
stable manner. (Cubic splines are the most prominent special case.)

For example, each cubic basis spline, or B-spline, is a continuous
piecewise-cubic function with continuous first and second deriva-
tives. Thus any linear combination of such B-splines will inherit the
same continuity properties. The coefficients in the linear combination
are chosen to obey the specified interpolation conditions.

B-splines are built up recursively from constant B-splines. Though
we are interpolating data at n + 1 knots x0, . . . , xn, to derive B-splines
we need extra nodes outside [x0, xn] as scaffolding upon which to
construct the basis. Thus, add knots on either end of x0 and xn:

· · · < x�2 < x�1 < x0 < x1 < · · · < xn < xn+1 < · · · .

Given these knots, define the constant (zeroth-degree) B-splines:

Bj,0(x) =

(
1 x 2 [xj, xj+1);
0 otherwise.

The following plot shows the basis function B0,0 for the knots xj = j.
Note, in particular, that Bj,0(xj+1) = 0. The line drawn beneath
the spline marks the support of the spline, that is, the values of x for
which B0,0(x) 6= 0.
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From these degree-0 B-splines, manufacture B-splines of higher de-
gree via the recurrence

(1.32) Bj,k(x) =

 
x � xj

xj+k � xj

!
Bj,k�1(x) +

 
xj+k+1 � x

xj+k+1 � xj+1

!
Bj+1,k�1(x).
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While not immediately obvious from the formula, this construction
ensures that Bj,k has one more continuous derivative than does Bj,k�1.
Thus, while Bj,0 is discontinuous (see previous plot), Bj,1 is continu-
ous, Bj,2 2 C1(IR), and Bj,3 2 C2(IR). One can see this in the three
plots below, where again xj = j. As the degree increases, the B-spline
Bj,k becomes increasingly smooth. Smooth is good, but it has a con-
sequence: the support of Bj,k gets larger as we increase k. This, as we
will see, has implications on the number of nonzero entries in the
linear system we must ultimately solve to find the expansion of the
desired spline in the B-spline basis.
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From these plots and the recurrence defining Bj,k, one can deduce

several important properties:

• Bj,k 2 Ck�1(IR) (continuity);

• Bj,k(x) = 0 if x 62 (xj, xj+k+1) (compact support);

• Bj,k(x) > 0 for x 2 (xj, xj+k+1) (positivity).

Finally, we are prepared to write down a formula for the spline
that interpolates {(xj, f j)}n

j=0 as a linear combination of the basis
splines we have just constructed. Let Sk(x) denote the spline consist-
ing of piecewise polynomials in Pk. In particular, Sk must obey the
following properties:
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• Sk(xj) = f j for j = 0, . . . , n;

• Sk 2 Ck�1[x0, xn] for k � 1.

The beauty of B-splines is that the second of these properties is
automatically inherited from the B-splines themselves. (Any linear
combination of Ck�1(IR) functions must itself be a Ck�1(IR) function.)
The interpolation conditions give n + 1 equations that constrain the
unknown coefficients cj,k in the expansion of Sk:

(1.33) Sk(x) = Â
j

cj,kBj,k(x).

What limits should j have in this sum? For the greatest flexibility, let

If Bj,k(x) = 0 for all x 2 [x0, xn], it
cannot contribute to the interpolation
requirement Sk(xj) = f j, j = 0, . . . , n.

j range over all values for which

Bj,k(x) 6= 0 for some x 2 [x0, xn].

Figure 1.22 shows the B-splines of degree k = 1, 2, 3 that overlap
the interval [x0, x4] for xj = j. For k � 1, Bj,k(x) is supported on
(xj, xj+k+1), and hence the limits on the sum in (1.33) take the form

(1.34) Sk(x) =
n�1

Â
j=�k

cj,kBj,k(x), k � 1.

The sum involves n + k coefficients cj,k, which must be determined to
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Figure 1.22: B-splines of degree k = 1
(top), k = 2 (middle), and k = 3
(bottom) that are supported on the
interval [x0, xn] for xj = j with n = 4.
Note that n + k B-splines are supported
on [x0, xn].
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satisfy the n + 1 interpolation conditions

f` = Sk(x`) =
n�1

Â
j=�k

cj,kBj,k(x`), ` = 0, . . . , n.

Before addressing general k � 1, we pause to handle the special case
of k = 0, i.e., constant splines.

1.11.3 Constant splines, k = 0

The constant B-splines give Bn,0(xn) = 1 and so, unlike the general
k � 1 case, the j = n B-spline must be included in the spline sum:

S0(x) =
n

Â
j=0

cj,0Bj,0(x).

The interpolation conditions give, for ` = 0, . . . , n,

f` = S0(x`) =
n

Â
j=0

cj,0Bj,0(x`)

= c`,0B`,0(x`) = c`,0,

since Bj,0(x`) = 0 if j 6= `, and B`,0(x`) = 1 (recall the plot of
B0,0(x) shown earlier). Thus c`,0 = f`, and the degree k = 0 spline
interpolant is simply

S0(x) =
n

Â
j=0

f j Bj,0(x).
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lecture 11: Matrix Determination of Splines; Energy Minimization

1.11.4 General case, k � 1

Now consider the general spline interpolant of degree k � 1,

Sk(x) =
n�1

Â
j=�k

cj,kBj,k(x),

with constants c�k,k, . . . , cn�1,k determined to satisfy the interpolation
conditions Sk(`) = f`, i.e.,

n�1

Â
j=�k

cj,kBj,k(x`) = f`, ` = 0, . . . , n.

By now we are accustomed to transforming constraints like this into
matrix equations. Each value ` = 0, . . . , n gives a row of the equation

(1.35)

2

6666666664

B�k,k(x0) B�k+1,k(x0) · · · Bn�1,k(x0)

B�k,k(x1) B�k+1,k(x1) · · · Bn�1,k(x1)

...
...

. . .
...

B�k,k(xn) B�k+1,k(xn) · · · Bn�1,k(xn)

3

7777777775

2

6666666664

c�k,k

c�k+1,k

...

cn�1,k

3

7777777775

=

2

6666666664

f0

f1

...

fn

3

7777777775

.

Let us consider the matrix in this equation. The matrix will have
n + 1 rows and n + k columns, so when k > 1 the system of equations
will be underdetermined. Since B-splines have ‘small support’ (i.e., One could obtain an (n + 1)⇥ (n + 1)

matrix by arbitrarily setting k � 1
certain values of cj,k to zero, but this
would miss a great opportunity: we can
constructively include all n+ k B-splines
and impose k extra properties on Sk to
pick out a unique spline interpolant
from the infinitely many options that
satisfy the interpolation conditions.

Bj,k(x) = 0 for most x 2 [x0, xn]), this matrix will be sparse: most
entries will be zero.

The following subsections will describe the particular form the
system (1.35) takes for k = 1, 2, 3. In each case we will illustrate the
resulting spline interpolant through the following data set.

(1.36)
j 0 1 2 3 4

xj 0 1 2 3 4
f j 1 3 2 �1 1

1.11.5 Linear splines, k = 1

Linear splines are simple to construct: in this case n + k = n + 1, so
the matrix in (1.35) is square. Let us evaluate it: since

Bj,1(x`) =

(
1, j = `;
0, j 6= `,
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Figure 1.23: Linear spline S1 interpolat-
ing 5 data points {(xj, f j)}4

j=0.

the matrix is simply
2

6666666664

B�1,1(x0) B0,1(x0) · · · Bn�1,1(x0)

B�1,1(x1) B0,1(x1) · · · Bn�1,1(x1)

...
...

. . .
...

B�1,1(xn) B0,1(xn) · · · Bn�1,1(xn)

3

7777777775

=

2

6666666664

1 0 · · · 0

0 1
. . .

...

...
. . . . . . 0

0 · · · 0 1

3

7777777775

= I.

The system (1.35) is thus trivial to solve, reducing to
2

6666666664

c�1,1

c�0,k

...

cn�1,k

3

7777777775

=

2

6666666664

f0

f1

...

fn

3

7777777775

,

which gives the unique linear spline

This above discussion is a pedantic way
to arrive at an obvious solution: Since
the jth ‘hat function’ B-spline equals
one at xj+1 and zero at all other knots,
just write the unique formula for the
interpolant immediately.

S1(x) =
n�1

Â
j=�1

f j+1 Bj,1(x).

Figure 1.23 shows the unique piecewise linear spline interpolant to
the data in (1.36), which is a linear combination of the five linear
splines shown in Figure 1.22. Explicitly,

S1(x) = f0B�1,1(x) + f1B0,1(x) + f2B1,1(x) + f3B2,1(x) + f4B3,1(x)

= B�1,1(x) + 3 B0,1(x) + 2 B1,1(x)� B2,1(x) + B3,1(x).
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Note that linear splines are simply C0 functions that interpolate a
given data set—between the knots, they are identical to the piecewise
linear functions constructed in Section 1.10.1. Note that S1(x) is sup-
ported on (x�1, xn+1) with S1(x) = 0 for all x 62 (x�1, xn+1). This is
a general feature of splines: Outside the range of interpolation, Sk(x)
goes to zero as quickly as possible for a given set of knots while still
maintaining the specified continuity.

1.11.6 Quadratic splines, k = 2

The construction of quadratic B-splines from the linear splines via
the recurrence (1.32) forces the functions Bj,2 to have a continuous
derivative, and also to be supported over three intervals per spline, as
seen in the middle plot in Figure 1.22. The interpolant takes the form

S2(x) =
n�1

Â
j=�2

cj,2Bj,2(x),

with coefficients specified by n + 1 equations in n + 2 unknowns:

(1.37)

2

6666666664

B�2,2(x0) B�1,2(x0) · · · Bn�1,2(x0)

B�2,2(x1) B�1,2(x1) · · · Bn�1,2(x1)

...
...

. . .
...

B�2,2(xn) B�1,2(xn) · · · Bn�1,2(xn)

3

7777777775

2

6666666664

c�2,2

c�1,2

...

cn�1,2

3

7777777775

=

2

6666666664

f0

f1

...

fn

3

7777777775

.

Since there are more variables than constraints, we expect infinitely
many quadratic splines that interpolate the data.

Evaluate the entries of the matrix in (1.37). First note that

Bj,2(x`) = 0, ` 62 {j + 1, j + 2},

so the matrix is zero in all entries except the main diagonal (Bj,2(xj+2))
and the first superdiagonal (Bj,2(xj+1)). To evaluate these nonzero en-
tries, recall that the recursion (1.32) for B-splines gives

Bj,2(x) =
⇣ x � xj

xj+2 � xj

⌘
Bj,1(x) +

⇣ xj+3 � x
xj+3 � xj+1

⌘
Bj+1,1(x).

Evaluate this function at xj+1 and xj+2, using our knowledge of the
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Bj,1 linear B-splines (‘hat functions’):

Bj,2(xj+1) =
⇣ xj+1 � xj

xj+2 � xj

⌘
Bj,1(xj+1) +

⇣ xj+3 � xj+1

xj+3 � xj+1

⌘
Bj+1,1(xj+1)

=
⇣ xj+1 � xj

xj+2 � xj

⌘
· 1 +

⇣ xj+3 � xj+1

xj+3 � xj+1

⌘
· 0 =

xj+1 � xj

xj+2 � xj
;

Bj,2(xj+2) =
⇣ xj+2 � xj

xj+2 � xj

⌘
Bj,1(xj+2) +

⇣ xj+3 � xj+2

xj+3 � xj+1

⌘
Bj+1,1(xj+2)

=
⇣ xj+2 � xj

xj+2 � xj

⌘
· 0 +

⇣ xj+3 � xj+2

xj+3 � xj+1

⌘
· 1 =

xj+3 � xj+2

xj+3 � xj+1
.

Use these formulas to populate the superdiagonal and subdiagonal
of the matrix in (1.37). In the (important) special case of uniformly
spaced knots

xj = x0 + jh, for fixed h > 0,

gives the particularly simple formulas

Bj,2(xj+1) = Bj,2(xj+2) =
1
2

,

hence the system (1.37) becomes

2

666664

1/2 1/2

1/2 1/2
. . . . . .

1/2 1/2

3

777775

2

666666664

c�2,2

c�1,2

c0,2
...

cn�1,2

3

777777775

=

2

666664

f0

f1
...

fn

3

777775
,

where the blank entries are zero. This (n + 1)⇥ (n + 2) system will
have infinitely many solutions, i.e., infinitely many splines that satisfy
the interpolation conditions. How to choose among them? Impose
one extra condition, such as S0

2(x0) = 0 or S0
2(xn) = 0.

As an example, let us work through the condition S0
2(x0) = 0; it

raises an interesting issue. Refer to the middle plot in Figure 1.22.
Due to the small support of the quadratic B-splines, B0

j,2(x0) = 0 for
j > 0, so

(1.38) S0
2(x0) = c�2,2B0

�2,2(x0) + c�1,2B0
�1,2(x0) + c0,2B0

0,2(x0).

The derivatives of the B-splines at knots are tricky to compute. Dif-
ferentiating the recurrence (1.32) with k = 2, we can formally write

B0
j,2(x) =

⇣ 1
xj+2 � xj

⌘
Bj,1(x)+

⇣ x � xj

xj+2 � xj

⌘
B0

j,1(x)�
⇣ 1

xj+3 � xj+1

⌘
Bj+1,1(x)+

⇣ xj+3 � x
xj+3 � xj+1

⌘
B0

j+1,1(x).


