SPECTRAL APPROXIMATION OF BANDED
LAURENT MATRICES WITH LOCALIZED
RANDOM PERTURBATIONS

A. Bottcher, M. Embree, M. Lindner

This paper explores the relationship between the spectra of perturbed infinite banded Laurent
matrices L(a) + K and their approximations by perturbed circulant matrices Cy,(a) + P, K P,
for large n. The entries K;;, of the perturbation matrices assume values in prescribed sets
Q. at the sites (j, k) of a fixed finite set E, and are zero at the sites (j, k) outside E. With
ICg denoting the ensemble of these perturbation matrices, it is shown that

lim ) sp(Cu(a) + PukP) = ) sp(L(a) + K)
n—oo
KeKE KeKE

under several fairly general assumptions on E and (.

1 Introduction and main results

Given a continuous complex-valued function a on the complex unit circle T, we denote by
{a, }nez the sequence of its Fourier coefficients,

1 27 ) )
a(ezﬁ)e—znﬂ d9,

an = —

2m 0
and by L(a) the matrix (a;_x);kez. The matrix L(a) is called the Laurent matrix with
the symbol a, and it is well known that L(a) induces a bounded operator on ¢?(Z) whose
spectrum is the range a(T) of a, sp L(a) = a(T).

Let P denote the set of all trigonometric polynomials. Thus, a € P if and only if a,, # 0
for at most finitely many n. Throughout what follows we assume that a € P, which is
equivalent to the requirement that L(a) be a banded matrix.

For a € P, we define the n x n matrix Cy,(a) by Cy(a) = (¢jk)}x—; With ¢jr = @k (modn)-
The matrix Cp(a) is a circulant matrix provided n exceeds the bandwidth of L(a). For



example, if a(t) = a_1t7" + ag + a1t + ayt? (t € T), then

Qo a_i 0 0 (%)) ay
ay Qg a_i 0 0 a9
a, a1 ay a_1 O 0

0 (5} a1 Qo a_1 0
0 0 Q9 ay Qg a_q
a_1 0 0 (5} aq Qg

The spectrum of C,(a) is a(T,), where T,, denotes the set of the nth unit roots. Thus,
the spectrum of C,,(a) approximates the spectrum of L(a) as n — oc.

This paper addresses the relationship between the spectra of L(a) + K and Cy(a) +
P,KP, as n — oo when K = (Kj;) is a (deterministic or random) matrix whose nonzero
entries are all situated in a fixed finite set E of sites (j, k) with 7,k € {1,...,m}, and where
P,KP, = (Kj;)}-,- Related problems arise in the discretization of initial-boundary value
problems [1], [8], [14], the theory of linear systems with uncertain data [7], [12], [13], small-
world networks [20], population biology [16], and non-Hermitian quantum mechanics [4],
[5], [6], [10], [21]. A prominent question is whether the spectrum of L(a) + K can be
found by replacing L(a) + K with Cy,(a) + P,KP,, where n is large, and then computing
the eigenvalues of C,(a) + P,K P, numerically. The reverse question is also of interest:
Sometimes the spectrum of L(a) + K is known, and the problem is whether this tells us
anything about the eigenvalues of C,(a) + P,K P, for large n. In the language of physics,
we are here concerned with the problem of whether the passage from the “finite volume
case” to the “infinite volume case” is continuous or not.

One can show that sp L(a) = a(T) is always a subset of sp (L(a) + K). Thus
sp(L(a) + K) =spL(a) UX =a(T)UX

with some (possibly empty) set X, all points of which are eigenvalues of L(a) + K. The
difficulty with spectral approximation is that X may contain entire connected components
of C\ a(T), which, moreover, can emerge suddenly even if K changes continuously. For
instance, if a(t) =t (¢t € T), in which case L(a) is the forward shift on ¢?(Z), and K is the
matrix whose (2, 1) entry is w with all other entries zero, then

T if w#—1;
UCOREEES S

where D = {\ € C : |\| < 1}, while, for n > 2,
sp(Cr(a) + P,KP,) ={\ € C: \" =1+ w},

which shows that sp(Cy(a) + P, K P,) does not approximate sp(L(a) + K) if w = —1. (See
Example 4.1 for further details.)

Given a nonempty compact set M C C and a sequence {M,} of nonempty compact
sets M, C C, we write lim M,, = M if Mn_ converges to M in the Hausdgrff metric. The
closure of a set G C C will be denoted by G or clos G, and its boundary G \ G by 0G.
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Theorem 1.1 If a connected component G of C\ a(T) is not entirely contained in the set
sp (L(a) + K), then

lim ((Sp(Cn(a) + P,KP,)NG)U a(;) = sp (L(a) + K) N G. (1)

n—oo

FEquality (1) holds in particular if G is the unbounded connected component of C\ a(T).

We will show that (1) is in general no longer true if G is contained in sp (L(a) + K).

Here is a result for perturbations localized on the main diagonal or in a single site.
For a € P, let B(a) be the union of a(T) and all bounded components of C \ a(T).
Furthermore, for p > 0, define a, € P by a,(t) = a(pt) (¢ € T). Thus, if a(t) = Y, axt”,
then a,(t) = >, axp™t*. Finally, put

B*(a) = () B(a,)-

p>0

Theorem 1.2 Let G be a connected component of C\ a(T).

(a) Finitely-Many Main Diagonal Perturbations. If K = diag (Ki1,..., Kmm) and G
contains at least one point of C\ B*(a), then equality (1) is true.

(b) Single-Entry Perturbations. If K is a matriz whose (j,k) entry is w with all other
entries zero, and if the (k — j)th Fourier coefficient of 1/(a — \) is either identically zero
in G or nowhere locally constant in G, then equality (1) is valid.

For tridiagonal Laurent matrices with a finite number of perturbed diagonal entries, we
have the following.

Corollary 1.3 Ifa(t) =t + o’ (t € T) with a € [0,1] and K = diag (K11, ..., Knum),
then
Tim (sp (Cu(a) + P.KP,) U a(T)) = sp (L(a) + K). 2)
These three results are related to the results of [1], [8], [14] and are perhaps known to
specialists. We state and prove these results here for the reader’s convenience and because
we have not found them explicitly in the literature.

We now consider the case where K is randomly chosen. Let E be a finite set of sites
(7, k) with 5,k € {1,...,m} and suppose for each (j, k) € E we are given a compact subset
€ of the plane that contains the origin. We put = {3} r)cr and denote by KE the
set of all matrices K = (Kjj) for which Kj; € Qj if (j, k) € E and K, = 0if (5, k) ¢ E.
Finally, for a finite or infinite matrix A, we define

SpE A = U sp (A + K). (3)

KeKE

Clearly, we may think of spE A as the union of all possible spectra that may emerge when
perturbing A by a matrix K randomly chosen in K&.



Each of the previous three results has a direct analogue relating sps Cy,(a) to spg L(a).
These results do not use any specific knowledge of the probability distributions specifying
how perturbations are drawn from €2, but only depend upon the support of the perturba-
tions; see Davies [4] for a similar approach. Knowledge of distributions may lead to more
precise statements about the rate at which spectral limits are reached; see [21].

Theorem 1.4 Let G be a connected component of C\ a(T) and suppose G is not contained
in spS L(a). Then _ B
lim (spy Cn(a) N G) =spg L(a) NG. (4)
n—oo

In particular, (4) is true if G is the unbounded connected component of C\ a(T).

Theorem 1.5 Let G be a connected component of C \ a(T).

(a) Finitely-Many Main Diagonal Perturbations. If E = {(1,1),...,(m,m)} and G
contains at least one point of C\ B*(a), then equality (4) holds.

(b) Single-Entry Perturbations. If E = {(j,k)} and if the (k — j)th Fourier coefficient
of 1/(a — \) is either identically zero in G or nowhere locally constant in G, then equality
(4) is satisfied.

Corollary 1.6 Let E = {(1,1),...,(m,m)}. Ifa(t) =t+ o’ (t € T) with a € [0,1],
then
nh_g)lo spg Cn(a) = spb L(a).
A set S C C is said to be starlike if it, together with each of its points w, contains the
line segment [0, w]. We let S° denote the set of all interior points of S. For ¢ > 0, we define
eS as {ew : w € S} and € as {eQi }(jk)en-

Theorem 1.7 If each Sy, is a starlike compact nonempty set such that §j, = clos €22,
then

lim spZy Cn(a) = spzq L(a) (5)
for all ¢ € (0,00) except for at most finitely many €1, . ..,p, where £ does not exceed the

number of bounded components of C\ a(T).

We conjecture that, under the above hypotheses for 2, equality (5) is actually true for
all € € (0,00), but we have not been able to prove this.

For tridiagonal Laurent matrices, we can supplement Theorems 1.4 and 1.7 by the
following result, which concerns perturbations in a single site.

Theorem 1.8 Let E = {(j, k)} and let Qj be a compact subset of C containing the origin.
Furthermore, suppose a(t) =t +o*t™ (t € T) with o € [0,1]. Ifa=1o0orj—k#1 or
—1/e & Qjyi, then (5) is valid. Otherwise, if a € [0,1), j—k =1, and —1/¢ € Qj;, then (5)
is not true for Q;, = {—1/e,0}, while (5) holds if Qi contains, in addition to —1/¢ and 0,
a third point wy and a continuous curve between —1/e and wy.



Corollary 1.6 and Theorem 1.8 show in particular that (5) is valid for all € € (0, 00) if
L(a) is tridiagonal, €2 is a closed ellipse (including the interesting extreme cases of a line
segment and of a closed disk) that contains the origin, and E is a singleton or a finite subset
of the main diagonal.

The paper is organized as follows. We have produced several pictures in order to demon-
strate how spectral approximation works in practice; Section 2 contains the comments to
these pictures. In Section 3 we record some well-known results that are used in the sub-
sequent proofs. The proofs of Theorems 1.1 and 1.2 and of Corollary 1.3 are contained
in Section 4, while Theorems 1.4, 1.5, 1.7, 1.8 and Corollary 1.6 are proved in Section 5.
In Section 6 we briefly address the different limiting behavior observed for Toeplitz and
circulant matrices, and conclude in Section 7 with a few conjectures that might stimulate
further research.

2 Illustrations

We will refer to

a(t) = (1.5 —1.29)z*
+(0.34 4+ 0.844)z + (—0.46 — 0.14)2% + (0.17 — 1.174)2* + (=1 + 0.774)2*

as the animal symbol or the 8¢ symbol; spectral approximation for this symbol leads to
pictures of several animals; Figure 3 shows two birds, while the right column of Figure 10
is reminiscent of horses in cave paintings. The range a(T) and the set B*(a) are shown in
Figure 1. Figure 2 provides an indication of the set

”
U sp¥L(a), (6)
1<j<5
1<k<5

where spU*) is an abbreviation for sp{U#)}. We see that (6) is the union of a(T) and many
antennae (which, in the case at hand, replace the “wings” of [3], [10]). Theorem 1.5(b) would
guarantee that Figure 2 indeed approximates (6) if we knew that the analytic functions
[1/(a — A)]k—; were nowhere locally constant for —5 < k — j < 5. This is definitely true in
the unbounded component of C\ a(T). We have checked numerically that each component
of C\ a(T) contains two points A\; and Ay such that [1/(a — A1)]x—; and [1/(a — Ag)]x—; are
different. For example, the points \; = 1.5 and Ay = 2.25 4 0.5¢ belong to the upper-right
component of C\ a(T) (constituting the head and the upper part of the body of the animal
&¢), and the values of [1/(a—A1)]x—; and [1/(a—A2)]x—; are given in Table 1. Consequently,
we may use Theorem 1.5(b) to conclude that Figure 2 should be a good approximation of
the set (6).

Figure 3 shows approximations to spfim]L(a) for the 8¢ symbol when F = {(1,1),(2,1)}
(top) and E = {(1,1),(1,2)} (bottom). By Theorem 1.4, the plots should approximate
spf”: 771 (a) well in the unbounded component of C\ a(T), that is, the birds’ bills and tails
are close to the truth. Our results are not applicable to the bounded components.
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Figure 2: Eigenvalues of Cos9(a) for the animal symbol, perturbed in one randomly chosen
entry in the upper left 5 x 5 block by a random number uniformly distributed in [—7,7]. This
plot superimposes the eigenvalues of 2000 samples.

| k-j=-5 | k—j=-4 | k—-j=-3 k—j=-2 |
A1 | —0.2037 +0.11144 | —0.1443 — 0.06544 | —0.0841 + 0.0648 7 | —0.2849 — 0.0149
A2 | —0.1500 + 0.19244 | —0.0908 + 0.03314 | —0.1066 + 0.17824 | —0.3709 + 0.03194
k—j=-1 | k—j=0 | k—j=1 k—j=2
A1 | —0.1288 — 0.20194 | —0.0933 — 0.02584 | 0.1289 + 0.12924 | 0.0881 + 0.0532
Mg | —0.2111 — 0.26244 | —0.0734 — 0.14404 | 0.1884 + 0.03837 | 0.1294 + 0.0836 i

| k-j=3 | k—j=4 \ k—j=5 \
0.0499 + 0.03634 | 0.0146 — 0.10364 | —0.0872 — 0.0707 i
0.0391 + 0.11324 | —0.0413 — 0.02484 | —0.0947 — 0.0557 i

A1
A2

Table 1: Fourier coefficients of [1/(a—A1)]x—; and [1/(a— A2)]x—; for the animal symbol, where
A1 = 1.5 and Ay = 2.25 4+ 0.54. These coefficients were computed using MATLAB'’s built-in
quadrature routine quadl, and are believed to be correct to the digits presented.



Figure 3: Eigenvalues of Cy50(a) for the animal symbol, perturbed simultaneously in two entries
by random numbers uniformly distributed in [—7,7]. On the top, the (1,1) and (2,1) entries are
varied; on the bottom, the (1,1) and (1,2) entries are perturbed. Each plot superimposes the
eigenvalues of 2000 samples.

Figure 4: Eigenvalues of Caso(a) for the animal symbol, perturbed in the (j, k) entry by a
random number uniformly distributed in 7D. On the left, we take (j — k) (modn) = —1; on
the right, (j — k) (modn) = 1. Each plot superimposes the eigenvalues of 2000 samples.



In Figure 4 we see approximations to sp%k)L(a) for the 8¢ symbol when (j, k) = (1,2)
(left) and (j,k) = (2,1) (right). Using Theorem 1.4 for the unbounded component and
Theorem 1.5(b) along with the numerically established fact that [1/(a — A)]x—; is nowhere

locally constant, we can accept Figure 4 as a good approximation to sp(%C )L(a).

Figures 5 through 8 investigate a different symbol, which we call the capricorn symbol
(W symbol). It is given by

a(t) = (—=0.69 — 0.134)2° + (0.73 — 0.524i)z * + (—0.06 — 0.7414)z 3
+ (—0.31 — 0.049)22 + (=0.11 + 0.104) 2" + (—2.26 + 1.574)z
+ (—0.13 + 0.054)2* + (0.53 + 0.217)2* + (0.37 — 0.314)2* + (0.22 — 0.03 7)2°

Figure 5 shows a(T) and B*(a). Figure 6 is the analogue of Figure 2 and indicates the set

Tk
U b (0. ©

1<j<5

1<k<5
One can again numerically verify that [1/(a — A)]x_; is nowhere locally constant for —5 <
k — j < 5. Thus, Theorem 1.5(b) can be employed to justify that the antennae of Figure 6
are really all present in the set (7), and that Figures 7 and 8 should be good approximations

to
spl g L(a), splpL(a), spJL(a).

1
10D P1oD 0D
Finally, Figure 9 involves tridiagonal matrices, illustrating the set

U spP3iLla) for a(t)=t+1"/9. (8)
j—k#—1

The limiting set (8) was derived in our paper [3] and is portrayed at the top of Figure 9; we
believe this plot is correct to plotting accuracy. (Similar figures appear in [3].) Theorem 1.8
implies that . .

Jim sp{’, Cua) = sp’%y La)

for the symbol under consideration, and Figure 9 illustrates this convincingly.

3 Preliminaries

Let a € P and let K be the infinite matrix that is supported in the sites (j, k) with
J.k € {1,...,m}. We denote by P,, the projection that sends a sequence z = {z;} to the
sequence given by (Px), = xy for k € {1,...,m} and (Pz); = 0 otherwise. If A = (a,;)
is an infinite matrix or a finite matrix of dimension n > m, we identify P,, AP,, with the
m X m matrix (a;x)7_-

We know that sp L(a) = a(T). For A € C\ a(T), the inverse of L(a) — A\ = L(a — A)
is L((a — A\)™1). The function

F:C\a(T) = C, Ars det (Im + P L((a— A)—l)PmKPm) 9)

8
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Figure 5: a(T) (thick line) and B*(a) (thin line) for the capricorn symbol.

——— L

Figure 6: Eigenvalues of Cas0(a) for the capricorn symbol, perturbed in one randomly chosen
entry in the upper left 5 x 5 block by a random number uniformly distributed in [—10, 10]. This
plot superimposes the eigenvalues of 2000 samples.



Figure 7: Eigenvalues of Cyso(a) for the capricorn symbol, perturbed in the (j,j) entry by a
random number uniformly distributed in 10D. This plot superimposes the eigenvalues of 2000
samples.

Figure 8: Eigenvalues of Caso(a) for the capricorn symbol, perturbed in the (j, k) entry by a
random number uniformly distributed in 10D. On the left, (7 — k) (modn) = —2; on the right,
(j — k) (modn) = 2. Each plot superimposes the eigenvalues of 2000 samples.
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Figure 9: The set U#k_lspfi’i)[l]L(a) (top) and eigenvalues of random single entry perturbations
to Cos0(a) from [—4,4] (bottom) for the symbol a(t) = ¢t + o*t~! with o = 1/3. (The lower

plot superimposes the eigenvalues of 2000 samples.)
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is analytic, and it is easily checked that if A € C \ a(T), then
Ae€sp(L(a)+ K) < f(A\)=0.

(10)

We now state some well known facts for the circulant matrices C,(a); throughout what

follows we assume that n is at least as large as the bandwidth of L(a). Let w, = e

put
1 1 1 1
2 4 n—
F,=11 % ufn Wn , Un:%Fn.
1 wnl 2D L DD

n

The matrix U, is unitary and a straightforward computation shows that

i n—1
Cu(a) — M, = Cy(a — X) = U diag (a(w;) - /\) U,

=0

and

(11)

Formula (11) implies that sp Cy,(a) = a(T,). For A & a(T,), we denote by C,'(a — \) the

inverse of Cy,(a — A). By analogy to (90; and (10), we see that the functions
fo: C\a(T,) — C, A det (Im + PuCl(a — /\)PmKPm)
are analytic and that, for A € C\ a(T,),
A€sp(Cp(a) + P,KP,) < f.(\)=0.

Moreover, formula (11) gives
C-Ya - \) = U diag ((a(wg;) - )\)‘1) U,

and hence the (j, k) entry of C'(a — ) is
n-1 é(j—l)wﬁ(k—l)

[C_l(a - )‘)]jk = m

n
£=0

For A ¢ a(T), the right-hand side of (15) converges to

1 2% e-ibl—k) »
%/0 a(e?) — )\de B ((a - )j—k’

and the convergence is uniform on compact subsets of C \ a(T). It follows that

tm [erto 0], = o0 ),

and thus
Tim fa(N) = FOV),

the convergence being uniform on compact subsets of C \ a(T).

12
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(13)

(15)



Theorem 3.1 (Hurwitz). Let G C C be an open set, let f be a function that is analytic
in G and does not vanish identically, and let { f,} be a sequence of analytic functions in G
that converges to f uniformly on compact subsets of G. If f(A) =0 for some A € G, then
there is a sequence {\,} of points \, € G such that A, — X as n — oo and fr,(\,) =0 for
all sufficiently large n.

Two proofs of Hurwitz’ theorem are in [18, pp. 205 and 312], for example.

Let {M,} be a sequence of nonempty subsets of C. The uniform limiting set lim inf M,
is defined as the set of all A € C that are the limit of some sequence {\,} with A, € M,,
while the partial limiting set lim sup M,, is the set of all A € C that are a partial limit of
some sequence {\,} with A\, € M,,. Naturally, liminf M,, C lim sup M,,.

Theorem 3.2 (Hausdorff). Let M and the members of the sequence {M,} be nonempty
compact subsets of C. Then {M,} converges to M in the Hausdorff metric,

lim M, = M,

n—oo

iof and only of
lim inf M,, = lim sup M,, = M.

n—=00 n—00

Proofs can be found in [9, Sections 3.1.1 and 3.1.2] and in [11, Section 2.8].

4 Deterministic perturbations

This section is devoted to the proofs of Theorems 1.1 and 1.3.

Proof of Theorem 1.1. We abbreviate L(a) + K and Cy,(a) + P,KP, to A and A,,
respectively. Since the connected component G is not a subset of sp A, we infer from (10)
that the function f given by (9) does not vanish identically on G. Define f, by (12).

We first show that lim sup ((sp A, NG)UOG) C sp ANG. Suppose ) is not in sp ANG.
If A & G, then A is clearly not in the partial limiting set. Thus, let A € G. As A\ & sp A,
we see that f(A) # 0 due to (10). From (17) we therefore conclude that there is an open
neighborhood U C G of A and a natural number ngy such that f,(u) # 0 for all y € U and
all n > ny. Consequently, by (13), UNsp A, = for all n > ng, which implies that A is not
in lim sup ((sp 4, N G) U 0G).

We now prove that sp ANG C liminf ((sp 4, NG) UIG). Pick Ainsp ANG. If X € 0G,
then A is obviously in the uniform limiting set. So assume A € G. Then f(\) = 0 by virtue
of (10). Hence, Theorem 3.1 guarantees the existence of A\, € G such that A\, — X and
fa(An) = 0 for all sufficiently large n. From (13) we infer that A\, € sp A,. It follows that
A belongs to liminf ((sp 4, N G) U 0G).

Combining the two inclusions shown in the preceding two paragraphs with Theorem 3.2,
we arrive at equality (1). m
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Example 4.1. Here we demonstrate that the hypothesis on G in Theorem 1.1 is necessary
in general; that is, we show that the equality (1) does not generally hold if the connected
component G of C \ a(T) is entirely contained in the set sp (L(a) + K). Let a(t) =
t+ a?t™! (t € T) with « € [0,1]. The set a(T) is the ellipse

{(1+a?) cosf+i(l —a?)sinf:0< 6 < 27},
with foci £2«. Let G and G_ denote the bounded and unbounded components of C\ a(T)

respectively. Notice that a(T) = T if @« = 0 and a(T) = [-2, 2] (whence G, = ) if a = 1.
Theorem 1.1 shows that

lim ((sp(Cn(a) +P,KP)NG_)U a(T)) = sp(L(a) + K) N G-. (18)

n—oo

In particular, it follows that (2) holds for @ = 1 and an arbitrary finitely-supported matrix
K. We therefore consider the case where o € [0,1) and X € G,.

First let « =0. Then Gy =D = {\ € C: |A| < 1}, and it is easily seen that

0 1 X X
0o 0 1 A
PoL((a—N)"YP,=| 0 0 0 1 (19)
o 0 0 0
Formula (15) and a straightforward computation give
)\nfl 1 by .. )\an
) )\n72 /\an 1 . )\nf?)
07:1(0, _ /\) _ )\nf?) /\n72 /\nfl . )\n74 ‘ (20)
1= : : : :
1 A A2t

Let E;wE}) be the matrix whose (j, k) entry is w with all other entries zero. From (10) we
observe that A € sp (L(a) + E;wEy) if and only if 1 + [L((a — A\)™1)]gjw = 0. Taking into
account (19) we see that D is contained in sp (L(a) + E;wE})) only when j — k = 1 and
w = —1. In that case (13) and (20) imply that sp (Cy(a) + E;wE;) N D is {0}.

Now let o € (0,1). Every point A € G can be written in the form

A=pe? +a’ple™ with a<p<1, 0<6< 2. (21)
It follows that a(t) — A = t71(t — 21)(t — 22) with 21 = &?p e ™ and 2z = pe®®. As |z| < 1
and |z] < 1, we get
1 1 21 2 29 25
——(1+2 122 (122024 ... 929
a(t) — A t(+t+t2+ >(+t+t2+ ’ (22)
whence
0 1 Z1 + 29 Z%+2122+Z%
0 0 1 zZ1 + 2o e
PnL((a—XN) YHYP,=1] 0 0 0 1 R (23)
0 0 0 0

14



Notice that z; + 22 = A and 27+ 2120+ 25 = A2 —a®. The values of [L((a—A)")]j at A=10
and A\ = 2« are easily seen to be different if j — £ > 2. From (9) we therefore get that G
is a subset of sp (L(a) + EjwEy) if and only if j —k =1 and w = —1. Solet j —k =1 and
w = —1. By (13),

M, :=sp(Cyn(a) + BjwE) NGy ={\€ G, :1—[C, (a— N)]; =0}, (24)
and from (15) and (22) we conclude that

[Cola— N = Z(1+——|——+ )(1—{—%4-;_5@4_...)

n n
= 1+ ( +27 e+ +25)
+ (" + 2" e+ )

Z?—I—l Z;H_l Z%n—l—l Zgn—l—l
= 1+ + -+ -
21 — 22 21 — %2
1 ol ol
= 1+ L =2 ). (25)
21 — 29 \1 — 27 11— P2

Recalling that 2; = a?p~te™™ and 2o = pe', we see that the set (24) is

— {)\ € G 2n+2 z(2n—|—2)0 (1 pnemﬂ) 2n+2 +a2npn+2 i(n+2)0 }

Hence, if A € M,,, then
C¥2n+2 S p2n+2 < 2a2n+2+a2n < 3a2n‘

It follows that p — « as n — oo, and so (21) implies that lim sup M,, C [—2«, 2«]. In other
words, the sets (24) cluster on the segment between the foci of the ellipse G and do not
fill out all of G .

To physicists, the matrix Cy(a) is the deterministic component of a model for “a quan-
tum particle hopping on a ring”, in the language of Feinberg and Zee [6]. Each row of
Cy(a) corresponds to one of n sites arranged in a circle, each one of which only commu-
nicates with its nearest neighbors on either side. The perturbation E;wE}, (for j —k =1
and w = —1) essentially fractures this periodic structure in the more dominant direc-
tion. For n > 2, the resulting matrix is unitarily similar to the Toeplitz matrix 7,,(a,) for
an(t) = t+a?(t~! +1"); its eigenvalues cluster on [—2c, 2], but are exceptionally sensitive
to perturbations (see [2], [15], [17]). Thus, the rather benign-looking perturbation E;wEj
transforms a perfectly-conditioned normal matrix eigenvalue problem into a dramatically
ill-conditioned one. m

Proof of Theorem 1.2. By virtue of Theorem 1.1 and (10), it suffices to prove that the
function f defined by (9) is not identically zero in G.

(a) Pick A € G\ B*(a). Then there exists a p > 0 such that A ¢ B(a,). Put D, =
diag (1, p,..., p™1). One can directly verify that

PnL((a—=X) YPyn=D,"PrL((a, — A) ") PnD,,
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and since K is diagonal, we get

PnL((a—X)""PyKP, = D,'P,L((a, —\)")PyD,KPy
D 'PuL((a, — A) ") PuKPy,D,.

Consequently,

f) = det(l, + PnL((a — \)"")P,KP,)
= det(l, + PuL((a, — \) ") PnKPy,). (26)

The determinant (26) is 1 at A = 0o, and hence it cannot vanish identically in the unbounded
component of C\ a,(T). Because A € C\ B(a,) and C\ B(a,) is the unbounded component
of C\ a,(T), it follows that f is not identically zero in an open neighborhood of A and thus
not identically zero throughout G.

(b) In this case, the function (9) is f(A\) = 1+ [(a — A\) ']x—jw, and our assumption
clearly implies that f cannot be identically zero in G. m
Proof of Corollary 1.3. From Example 4.1 we know that the ranges a,(T) are ellipses
with the same foci +2«, and B*(a) is seen to be simply the line segment between the foci.
Since each component of C \ a(T) certainly contains a point outside this line segment,
Theorem 1.2 implies that
lim ((sp (Co(a) + P.KP,) N Gs) U a(T)) = sp (L(a) + K) N Ga.

n—o0

Because lim(X,, UY;,) = lim X, UlimY,, (which easily follows from Theorem 3.2), we arrive
at (2). m

5 Random perturbations

In this section we give proofs to Theorems 1.4, 1.5, 1.7, and 1.8, as well as Corollary 1.6.
Throughout what follows, E is a finite set of sites (4, k) with j,k € {1,...,m} and Q =
{9k} (j,k)er is a family of compact subsets of C, each containing the origin.

Proposition 5.1 If G is a connected component of C\ a(T), then

lim sup (spg Cp(a) NG) C sps L(a) NG. (27)
n—o0
Proof. Pick A in the left-hand side of (27). If A € 0G, then A is in the right-hand side
of (27) because a(T) C sp L(a) C spd L(a). So assume that A € G. By the definition of
the partial limiting set, there are \,, € sp§ Cy,(a) N G such that \,, = A. From (3) and
(13) we infer that for each n, there exists K, € K§ such that

det(I, + PrC; (0 — An,) P Ky, Pr) = 0. (28)

Since KF is a compact set, the matrices K,,, have a partial limit K in Kf. From (16) and
(28) we therefore get
det(I, + PnL((a — \) Y)P,KP,,) =0,

16



which, by (3) and (10), shows that A is in the right-hand side of (27). m
Proof of Theorem 1.4. By virtue of Proposition 5.1 it suffices to show that

spo L(a) NG C li;gglf (spZ C(a) N G). (29)

Since a(T,) = spCy(a) C sp& Cy(a), a point A € G certainly belongs to the right-hand
side of (29). Thus, let A\ € spE L(a)NG. There exists a K € KE such that A € sp(L(a)+K).
By assumption, the component G is not contained in sp5 L(a), and hence it cannot be a
subset of sp(L(a) + K). Thus, we can apply Theorem 1.1 to conclude that there exist
An € sp(Cr(a) + P,KP,) NG C sp§ Cy,(a) N G such that A, — A, which implies that ) is
in the right-hand side of (29). m

Proof of Theorem 1.5. Again, we are left to prove inclusion (29). If A € 0G, then A
is in liminfa(T,) and hence in the right-hand side of (29). Thus, let A € sp& L(a) N G.
There is a K € K& such that A\ € sp(L(a) + K) N G. From Theorem 1.2 we deduce that
there exist ), € sp(Cp(a)+ P, KP,)NG C sp5 C,(a) NG such that )\, — X. Consequently,
A belongs to the right-hand side of (29). =

Proof of Corollary 1.6. This is immediate from Theorem 1.5, because B*(a) is the line
segment [—2a, 2a]. m

Put Q° = {Q5, }(jx)cr, where Q2 is the set of interior points of {2;;. We define

Spoe A = U sp(A+ K) (30)

KeKkE,

if none of the sets €27, is empty, and we let spS. A = ) if one of the sets €27y, is the empty
set.

Proposition 5.2 If G is a connected component of C\ a(T), then

spoo L(a) NG C liminf (sph Cp(a) N G). (31)

n—0o0

Proof. Let A € spE.L(a) NG. As in the proof of Theorem 1.4, we may suppose that A € G.
By (10) and (30), there exists a K € K&, such that

det(I,, + P,L((a — \)"Y)P,KP,,) = 0.
We define the entire functions ¢ and ¢, by

o(z) = det(l, + PpL((a — NP, (K — 2zK)P,,),
on(2) = det(l, + P,C, " (a — \)Pn(K — 2zK)P,,).
From (16) we see that ¢, converges to ¢ uniformly on compact subsets of C. As ¢(1) =1,
the function ¢ is not identically zero. Since ¢(0) = 0, we deduce from Theorem 3.1 that

there are z, € C such that z, — 0 and ¢,(2,) = 0 for all sufficiently large n. Consequently,
by (13), A € sp (Cp(a) + Po(K — 2,K)P,). As K — z,K € K&, whenever z, is sufficiently
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close to zero, it follows that A € sp5.C,,(a) for all n large enough and hence that ) is in the
right-hand side of (31). m

Proof of Theorem 1.7. Equality (5) is true for some ¢ € (0, 00) if (and only if)
lim (sp%, Cp(a) N Q) = sply, L(a) NG (32)
n—r0Q

for every connected component G of C\ a(T). Theorem 1.4 shows that (32) is true if G
is the unbounded component. We now prove that for each bounded component G there
is at most one value (@) for which (32) is not valid. This will imply the assertion of
Theorem 1.7.

By virtue of Proposition 5.1, equality (32) will follow as soon as we have shown that
spfy L(a) N G C liminf, . (spX, Cn(a) N G). Furthermore, since a(T,) = spCy(a) C
spE, Cy(a), it suffices to show that

spX, L(a) NG C liTInglf (sp%, Cp(a) N G). (33)

Thus, let G be a bounded component of C \ a(T). It is clear that spZ, L(a) does not
contain all of G if ¢ > 0 is sufficiently small. Put

£(G) = sup{e > 0 : sp%, L(a) does not contain G'}.

We claim that (33) holds for all € # £(G).

Suppose 0 < & < &(G). For )y € spf, L(a) NG, there is a K € KZE, such that f()\) = 0,
where f is defined by (9). Since G is not entirely contained in sp%, L(a), we see from (10)
that f is not identically zero in G. Thus, proceeding as in the proof of Theorem 1.4, we
conclude that g is in the right-hand side of (33).

Finally, suppose ¢ > ¢(G). In that case (33) amounts to the inclusion

G C liminf (sp%, C,(a) N G). (34)
n—0o0

Take any ¢ so that £(G) < § < e. Then G C spk, L(a), and since each Qj is starlike and
the closure of its interior points, we have 6§, C 923, and hence spj, L(a) C sply.L(a).
Proposition 5.2 now gives (34). m

Proof of Theorem 1.8. Recall the notation established in Example 4.1. We know from
Theorem 1.7 that (32) is true for G = G_ and arbitrary compact sets €2, containing the
origin. By virtue of Proposition 5.1, equality (5) will follow once we have shown that

spiy, L(a) NGy C liggglf (spi, Cn(a) NGY). (35)

For o = 1, the left-hand side of (35) is empty. So let @ € [0,1). In Example 4.1, we
showed that

Pal@NGy = Ae Gyt [L(la=NT)] e -1/}, (36)
S Cal@) NGy = A€ Gyt [Crl(a— )] € =1/}, (37)

kj
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where —1/(e€j;) == {A : 1 4+ Aw = 0 for some w € €Qj;}. Pick A¢ in (36). Then there
exists some w € £Q;; such that the function f(A\) = 1+ w[L((a — A)~*]x; vanishes at Ao.
By Example 4.1, f is not identically zero in G, whenever j — k # 1 or w # —1. Since
fn(A) = 1+ w[C; (a — N)]k; converges to f(A) uniformly on compact subsets of G by
virtue of (16), we infer from Theorem 3.1 that if j — k # 1 or w # —1, then there exist
An € G4 such that A\, — X\ and f,(\,) = 0 for all sufficiently large n. By (37), this means
that \g is in the right hand side of (35).

Now suppose « € [0,1), j —k =1, and —1 € €Q, ;. In this case (35) is equivalent to
the inclusion
G, C liminf (sp%, Cp(a) N G.). (38)
n—oQ

Let v be a continuous curve between 0 and some point different from 0 such that —1 -+~ C
£Qjp. When o = 0, we have G, = D. We obtain from (20) and (37) that spZ, C,(a) N D
contains the set

{AeD:14w/(1-X")=0forsomew e -1+v}={AeD:\" €},

and it is easily seen that the points of the latter set are asymptotically dense in D as
n — 0o, which proves (38).

Now let o € (0,1). Then (25) and (37) show that sp%, Cy,(a) N G, contains the set

1 il e
AeG, : 1= € 39
{ + 21—22(1—,2? 1—23) }’ (39)

where ¢ := {2/(1 — 2) : z € v}. Clearly, ¢ is also a continuous curve between 0 and some
point different from zero. Fix p € (a, 1) and let A be of the form (21). We then have

1 zn—|—1 Zn—|—1 Zn+1 1 p n+1 1
L2 )= 2 - (2 . )
z1—20 \1—2} 1—-2% 2o —21 \1— 2% 29 1—27

and since, for sufficiently large n,

n
_‘ 2

1
1—27

it follows that as n — oo, (40) equals

n+1
29

(14 O(q™)) for some ¢ € (0,1).
Z9 — 21

Consequently, the argument of (40) is

ez’(n—|—1)
arg (a2p—1e—w " el O(QH))) = (n+ 1)+ B(0) + o(1), (41)

where (8 is continuous and monotonically increasing on [0,27) with (0 + 0) = 7 and
B(2m — 0) = 5m. Thus, as A moves once counter-clockwise along the ellipse defined by (21),
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the point (40) traces out a small continuous curve around 0 (contained in a disk of radius
O(p™*!)) whose winding number with respect to 6 is n+ 3. This curve intersects the curve
J at least n+ 3 times, and from (41) we see that the arguments 0 of the \’s corresponding to
the intersection points are asymptotically dense on [0, 27). As p may be chosen arbitrarily
in (0,1), this proves that every point of G, is in the uniform limiting set of the sets (37)
and hence implies (35).

Finally, let o € [0,1), j —k =1, and €€, = {—1,0}. From Example 4.1, together with
(36) and (37), we infer that spZ, L(a) N G = G, while spZ, C,,(a) N G equals

{Ae Gy A" e {-1,0}} for a=0, (42)
AeGy: 21 -2 =231 -2} for a€(0,1). (43)

From (42) it is clear that (5) is not true for « = 0, and in Example 4.1 we showed that the
points of (43) cluster on [—2¢q, 2a], revealing that (5) does not hold for « € (0,1). =

6 Laurent versus Toeplitz

The n x n Toeplitz matrix induced by a € P is the matrix T;,(a) = (a; x)};—,- Schmidt and
Spitzer [19] showed that sp T}, (a) converges in the Hausdorff metric to some set A(a) that is
either a singleton or a finite union of analytic arcs. For example, if a(t) = t+ %t ! (t € T)
with o € [0, 1], then A(a) = [-2c, 2a]. For the 8¢ and R symbols, the set A(a) coincides
with the set B*(a).

It turns out that in general sp5 Cy,(a) and sp§ T, (a) approach different limits as n — oo.
This is nicely seen in Figure 10, where we compare real perturbations to the &¢ symbol for
the circulant (Laurent) and Toeplitz cases.

7 Some conjectures

In this section we formulate a few conjectures that concern refinements of the results we
have proved. Throughout what follows we suppose that a € P and that K has only finitely
many nonzero entries.

Conjecture 7.1. We conjecture that perturbation of a banded Laurent matrix in a single
entry of the main diagonal can never produce a spectrum that contains an entire component
of the complement of the original spectrum, that is, we claim that sp (L(a) + EywE;) never
contains an entire component of C \ a(T). Since

sp(L(a) + EiwE)) = a(T)U{A & a(T) : 1+ [L((a — A) H]11w = 0},
this is equivalent to conjecturing that if a € P, then the zeroth Fourier coefficient of (a—\) !
can never be a nonzero constant throughout some component of C\ a(T).

Conjecture 7.2. We conjecture that sp (L(a) + K) \ sp L(a) is always the union of some
components of C \ a(T) and a finite number of points. Equivalently, we conjecture that
sp (L(a) + K) \ sp L(a) is never countable.
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Circulant Toeplitz

Simultaneous real perturbations to the (1,1) and (2,1) entries

Figure 10: Eigenvalues of random perturbations to Cig(a) (left) and Tigo(a) (right). All
perturbations are uniformly distributed in [—7,7] and each plot superimposes the eigenvalues
of 2000 samples. (The first three plots on the left are identical.) Note that the scale of these
images differs from the one used in Figures 1-4.
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Conjecture 7.3. We conjecture that

a(T) C liminf sp (Cy(a) + P, KP,)

n—oo

holds for all @ € P, and that, in particular, (2) can be replaced by

lim sp (Cp(a) + P,KP,) =sp(L(a) + K).

n—oQ

Conjecture 7.4. In connection with Theorem 1.1, we conjecture that if a bounded com-
ponent G of C\ a(T) is entirely contained in sp(L(a) + K), then

n—oo

lim ((Sp (Cu(a) + P.,KP) N G) U aG)

= lim ((sp To(a) NG) U 8G> =Ala)NG.

n—oo

This conjecture includes the claim that (1) is never true if G is a subset of sp (L(a) + K).

Conjecture 7.5. We conjecture that, under the hypothesis of Theorem 1.7, equality (5)
is actually true for all € € (0, 00).

Conjecture 7.6. Let || - || be the operator norm on #2. Given a bounded operator A on £2
or a matrix A, the structured pseudospectrum or spectral value set sp*A is defined by

spA= | sp(A+ P,KP,)

K| <e
(see (3], [7], [12], [13]). In [7], it is shown that
sp"A=spAU{NE€spA:||Pn(A—N) P, >1/¢}.

Using this equality, we can show that if a € P, then

lim sp]" Cp(a) = sp;"L(a) (44)
n—oo
for all ¢ € (0,00) with the exception of at most finitely many e,...,&s, where £ is not

greater than the number of bounded components of C \ a(T). We conjecture that (44) is
in fact true for all € € (0, 00).

We can prove (44) for all ¢ € (0,00) in the case where a(t) = t + o?t™! (¢t € T) with
a € [0,1] and m < 3. For m = 3, the proof is based on the fact that

PL((a— NP = 1+ 20 gy S
IPsL((a— )Pl =1+ 55+ e+

is nowhere locally constant in the ellipse G,. We conjecture that for m > 4 the norms
|PnL((a — X)) Py, || are also nowhere locally constant in G, .
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