
CAAM 335 · MATRIX ANALYSIS

Physical Laboratory

Steven J. Cox, Mark Embree, Jeffrey M. Hokanson

Computational and Applied Mathematics

Rice University

draft version, 23 August 2008

Contents

1. Circuits I . 1

2. Circuits II . 7

3. Springs I . 17

4. Springs II . 24

5. Frequency Identification via Fourier Transformation 27

6. Discovering Frequencies in a Time Series . 38

7. RLC Circuit Dynamics . 42

8. Dynamics of Compound Pendula . 50

9. Dynamics of a Beaded String . 61

10. Hearing the Beads on a String . 70

iii

Preface

The seventeenth and eighteenth centuries witnessed momentous progress in our understand-

ing of the world. The savants responsible for this progress were not physicists, nor as-

tronomers, nor mathematicians, but rather natural philosophers, masters who drew upon a

range of skills to attack the fundamental questions that surrounded them. Since their time

these tools have been perfected, extended, specialized. For example, the development of

matrix techniques and spectral theory during the nineteenth century provided a mechanism

for organizing and understanding ever-larger physical models.

Too often in our classrooms, such mathematical techniques are separated from the ap-

plications that motivate them. Our goal is to supplement undergraduate linear algebra

education with a series of physical laboratories that make tangible – and extend – the ma-

terial typically covered in such a course. Inverse problems form a prevailing theme, arising

in the context of electrical impedance tomography, structures, and vibrating systems.

These notes were developed to accompany the CAAM 335 Matrix Analysis course offered

each semester at Rice University. Students may participate in the physical laboratory for

one extra course credit. We are very grateful for the helpful comments from students who

have participated in these labs, who have impressed us with their persistence and insight.

Caveat lector: These notes are a work-in-progress, and may still contain errors, typo-

graphical or more substantial. We are grateful for the assistance of Kenneth Davis, who

drafted the early text for several of these labs, to Brian Leake for his extensive comments

and creative suggestions, and to support from a Brown Teaching Grant during the summer

of 2007.

v

Lab 1: Circuits I

I Introduction

The course notes develop a model of a nerve fiber as an electrical network, which in turn reduces
to a system of linear algebraic equations (ATGAx = f) using a four-step methodology, the ‘Strang
Quartet’. In this lab, you shall investigate the accuracy of such a mathematical description of a
circuit by comparing your predictions to measurements from several physical circuits.

I Using the Breadboard

The central component of our testbed is a breadboard, a rectangular plastic card lined with holes
arranged in a specific pattern. This pattern governs how these holes are connected to one another,

Figure 1.1: The lab breadboard (large white rectangle in center), with supporting elements.

1

v0

Ri x1
Ri x2

Ri x3

Rm Rm Rm

Figure 1.2: The three-compartment nerve fiber circuit from the CAAM 335 class notes, with a
potential v0 replacing the current source i0 given in the notes.

Figure 1.3: An implementation of the circuit from Figure 1.2 using an input voltage of +12 V.

underneath the board. You will use these connections to configure simple circuits: By plugging the
(stripped) end of a wire into one of these holes, you connect that wire to any other device plugged
into an associated hole. Understanding the pattern of connections is clearly fundamental.

The breadboard, which forms the largest panel in Figure 1.1, has four major sets of holes. The
two middle sets each consist of 64 columns of five holes each; each of these five holes is connected
to all other holes in that column. This means that each column can act as a separate node in our
circuit. To illustrate this, consider the three-compartment nerve model shown in Figure 1.2. (Here
we presume we know a potential v0 (in volts), rather than the current i0 as in the class notes; as a
result, there is no unknown potential between the voltage source and the first resistor.) Figure 1.3

2

shows one way to wire this circuit up on the breadboard. Notice how three resistors are connected
to the node at x1. Also notice that the holes are not connected across the divide that separates
the two 64 column sets. This makes it simple to wire up the membrane resistors (Rm) in parallel.

Now we turn to the two remaining sets of holes on the breadboard, those at the top and bottom
of the breadboard each consisting of two rows broken into ten sections of ten holes each. Each
row is connected horizontally, independently of the sections but disconnected in the middle (near
the screw). Thus, each row gives two connected components. There are no vertical connections,
so between the top and bottom sets of holes, we have a total of eight independent components.
Although we will use these upper and lower sets as nodes, they are generally used in applying a
current to the circuit. We, however, possess alternate means of supplying power.

Just below the breadboard is a much smaller strip with labeled columns that will be our means
of supplying power and variable resistance to the circuit. Just as before, the holes of this section are
connected vertically. We are most interested in the columns labeled GND (there are three of them),
−V, +V, −12, and +12. GND denotes the ground, −12 and +12 refer to the voltage (in volts) of
constant potential sources, and −V and +V are variable input voltages that can be adjusted by
levers just above the breadboard. As shown in the Figure 1.3, we can simply use a wire to connect
the circuit to the power supply.

There are two sliders below the breadboard identical to the voltage sliders above the breadboard.
These lower sliders, along with the corresponding sections on the smaller strip marked 10K and
100K, can be used to apply variable resistance. If we choose to utilize a variable resistor, or
potentiometer, of resistance no greater than 10 kΩ (actually, it is approximately 9.5 kΩ) in our
circuit, we must connect two wires to the 10K section – one in the slot labeled 1 and the other
in slot 2. The opposite ends of these two wires should be inserted into the circuit in the same
manner that an actual resistor would be connected. If we know the resistance value we wish to use
beforehand, we should be sure to set the resistance before connecting it to the rest of the circuit
because of our method of measurement.

I Measurements

During this lab it will be necessary to acquire data from the circuit we have constructed. More
specifically, we will need to measure the resistance of and the potential drop across each resistor.
To do so, we will use a multimeter.

A multimeter is a device that can measure current, potential difference, and resistance; we shall
only be concerned with the latter two in this lab. The multimeter is divided into five sections
labeled with V, Ω, and A for measuring voltage, resistance, and current, respectively. There are
two sections labeled A and two labeled V, one pair of A and V accounting for direct current (DC),
the other for alternating current (AC). In this lab, we are interested in a constant potential source
(i.e., DC), and hence will use the A and V marked −−−. The multimeter has a central dial that
can be set to any of several numerically labeled positions. This value corresponds to the maximum

3

value that the multimeter can record. For example, if the dial is set to ‘200 V’, we will be unable
to measure any voltage greater than 200 V. You may have to adjust the dial while measuring in
order to get a reading.

When using the multimeter, one must be careful of where to plug in and place the leads. The
negative (black) lead should always be plugged in to the slot marked COM while the positive (red)
lead should be plugged in to one of the other three. In our case only the slot marked V Ω will be
needed. When both leads are plugged in correctly, we are ready to take a measurement. When
measuring a voltage drop across a resistor, we place the negative lead on one side of the resistor and
the positive lead on the other so that current is flowing from the positive to the negative. Reversing
these positions will result in a voltage of opposite sign. In this lab however, we will be measuring
the potential at each node with respect to ground so the negative lead will remain in GND while
we place the positive lead on the appropriate node.

To measure the resistance, place the leads on opposite sides of the resistor. Resistance is always
a positive value so the direction of measurement is unimportant. For variable resistors, place the
leads at the same nodes to which the wires of the variable resistor are attached. The inner workings
of the multimeter allow us to measure the correct resistance only when the variable resistor is not
connected to the rest of the circuit.

I Measuring Resistance

One can quickly approximate resistance using the color-coded bands on the side of the resistor. Our

Table 1.1: A resistor color code chart (adapted from http://www.elexp.com/t resist.htm).

COLOR 1st BAND 2nd BAND MULTIPLIER TOLERANCE

black 0 0 1 Ω

brown 1 1 10 Ω ±1%

red 2 2 100 Ω ±2%

orange 3 3 1 KΩ

yellow 4 4 10 KΩ

green 5 5 100 KΩ ±0.5%

blue 6 6 1 MΩ ±0.25%

violet 7 7 1 MΩ ±0.10%

gray 8 8 ±0.05%

white 9 9

gold 0.1 Ω ±5%

silver 0.01 Ω ±10%

4

resistors have four bands. To read the resistance, place the gold or silver colored band to the right.
Then reading left to right, the first two bands will be the first two digits of the resistance. The
third band gives the value of a multiplier. The final band indicates the tolerance of the resistor,
referring the difference between labeled resistance and measured resistance. A table of the color
codes is shown in Table 1.1.

For example, a resistor with brown, black, red, and gold bands, in that order, has a value of
10× 102 Ω, or 1 kΩ, with a tolerance of 5%, meaning that we can expect a resistance value in the
range .95 – 1.05 kΩ. To convince yourself of this, try using Table 1.1 to predict a resistance value,
which you can then check with the multimeter.

I Wheatstone Bridge

One circuit you will encounter in this lab is the famous Wheatstone bridge, named after Sir Charles
Wheatstone who greatly improved upon Samuel Hunter Christie’s original invention. First intro-
duced in 1833, the Wheatstone bridge is a circuit that is commonly used to capture unknown
resistances. As shown in Figure 1.4, the Wheatstone bridge consists of four resistors: two with
known resistances (R1 and R2), one with variable resistance (R3), and one with unknown resis-
tance (R4). Whenever a voltmeter placed between nodes x1 and x2 reads 0 V, the bridge is balanced
and the following equality holds:

R4 =
R1R3

R2
(1.1)

v0

R1R2

R3 R4

x2 x1

y2 y1

y3 y4

Figure 1.4: The Wheatstone bridge circuit diagram.

I Lab Instructions

1. Build and analyze five- and ten-compartment models of the nerve cell per the diagram in
Figure 1.5. To be precise, we learned in Section 1.1 of the course notes that the axial resistance
of anN -compartment fiber obeysRi = (ρi`/(πa2))/N , while the membrane resistance isRm =

5

v0

x1 x2 xN−1 xN
Ri Ri Ri

Rm Rm Rm Rm

Figure 1.5: The N -compartment model of the neuron.

ρmN/(2πa`). We suppose that ` = 1 cm and (ρi`/(πa2)) = 10 kΩ and ρm/(2πa`) = 5 kΩ. We
also suppose that v0 = 10 V.

(a) With N = 5 build the 5-compartment circuit by proper placement of Ri = 2 kΩ and
Rm = 25 kΩ resistors. Use the multimeter to measure the 5 potentials, with respect to
ground, and graph them in MATLAB in the manner used in Figure 1.4 of the course
notes, with line type ’o-’.

(b) With N = 10 build the 10-compartment circuit by proper placement of Ri = 1 kΩ and
Rm = 50 kΩ resistors. Use the multimeter to measure the 10 potentials, with respect to
ground, and graph them in the same figure created in (a), this time with line type ’x-’.

(c) Read exercise [1.2] in the course notes and compare (in prose) your two curves with one
another and with Figure 1.4 of the course notes. What do you expect to happen as N
increases? Submit your graph and prose.

2. Regarding the Wheatstone bridge:

(a) On paper and by hand, follow the four steps of the Strang Quartet. Carefully show that
if x1 = x2 then R4 may indeed be determined via equation (1.1).

(b) Construct a Wheatstone bridge on the breadboard, with v0 = 10 V, R1 = R2 = 10 kΩ,
R4 = 50 kΩ, and R3 determined via the built-in R22 potentiometer. Use the multimeter
to (i) measure the true values of R1, R2 and R4, and (ii) display the potential difference
x1 − x2. Now vary R3 until x1 − x2 is as close as possible to zero. Use the multimeter
to determine the value of R3 and assess (in complete sentences) the accuracy of (1.1).
Submit a table of all measured values and your written assessment.

6

Lab 2: Circuits II

I Introduction

It is rare today to design, let alone fabricate, a complicated electrical device prior to simulating
its behavior on a computer. The simulation requires the construction of a mathematical model.
Matrix algebra is the language for expressing such models.

As an example, let us consider the medical application of EIT, Electrical Impedance Tomogra-
phy. The premise behind this technology is that healthy and diseased tissue present significantly
different resistance to electrical current. With regard to a brain tumor, one exploits this difference
by applying a (safe) current across two electrodes placed on the skull. By measuring the resulting
potential difference across a companion pair of electrodes, and repeating the test at a variety of
sites around the skull one can determine the size, location, and conductivity of the tumor. In order
to simulate such a procedure we must construct a mathematical model of a resistor network and
be able to compute the potential difference between two points on the ‘boundary’ from knowledge
of the current applied to the network.

I Layer-Stripping, Theory

The network portrayed in Figure 2.1 is a crude conduction model of a cross-section of the human
head. Assuming that diseased tissue offers a different resistance to current than healthy tissue, one
asks whether providing stimulus and measuring response at the ‘boundary’ of the network might
produce information about the Rj values in the ‘interior.’

In the interest of actually putting this into practice, the rules of the game state that, at the
boundary, one may

(i) ground any one node,

(ii) specify every current, and

(iii) measure every potential.

The difficulty is to determine which current patterns coax from the network the most information
about its conductance. The simplest approach to this problem is the so-called layer-stripping tech-
nique of Curtis and Morrow (“Determining the Resistors in a Network,” SIAM J. Appl. Math. 50(3),
pp. 918–930, 1990).

The phrase ‘layer-stripping’ refers to starting at one corner of the network and sequentially
determining diagonal layers of resistors.

7

x1 x2

x3 x4 x5 x6

x7 x8 x9 x10

x11 x12

R1 R2

R3 R4 R5

R6 R7

R8 R9 R10

R11 R12

Figure 2.1: A network of resistors, forming a crude model of a cross-section of a human head.

To begin, we note that rules (i)–(iii), together with the laws of Ohm and Kirchhoff, permit the
easy determination of the resistors at every corner. Let us start at the upper right. In particular,
let us inject f2 amperes of current at x2 and remove f2 amperes of current at x6. Recalling

Ohm’s Law: The potential difference (tail minus head) across a resistor equals the
product of its resistance and current,

we find

x2 − x5 = R2f2 and x5 − x6 = R5f2.

As both x2 and x6 may be measured, we find that both R2 and R5 are hence readily determined
once we know x5. We extract this interior potential through a clever use of rule (i). Namely, we
ground node 3, i.e., set x3 = 0. Let ‘edge j’ denote the edge with resistor Rj . As current enters and
leaves through edges 2 and 5, it follows that all the other boundary currents are zero. Denoting the
current on edge j by yj we find, in particular, that y3 = 0 and hence Ohm’s law on edge 3 produces

x3 − x4 = R3y3, i.e., − x4 = 0.

This implies that Ohm’s Law on edge 4 takes the form

−x5 = R4y4.

Applying

8

Kirchhoff’s Current Law: The net current (in minus out) at each node must vanish,

at node 5 we conclude that y4 = 0 and x5 = 0 as well. As a result,

R2 = x2/f2 and R5 = −x6/f2.

The next step is to determine the resistors in the second layer, i.e., R1, R4, R7 and R10. In the first
layer we had the luxury of injecting and removing current in a path that contained the resistors
of interest. To emulate that at the second layer we should inject in node 1 and remove at node 10
in such a way that y6 and y9 both vanish. Unfortunately, the easy fix, i.e., ground nodes 3 and 7,
violates rule (i). The way out is to combine two experiments in such a way that both x3 and x7

vanish.

R1

R4 R5

R6 R7

R9 R10

x1

x4

x8

x5

x9

x6

x10

Figure 2.2: A sub-network of Figure 2.1.

In each experiment we inject current at node 1 while grounding node 3. The experiments differ
in that current is removed at node 6 in the former and node 10 in the latter. As a result, the current
through edges 2, 3, 8, 11, and 12 is zero and so we need only examine the subnet in Figure 2.2. Note
also that as the current through edge 2 is zero it follows from Ohm’s Law that x5 = x2. Hence x5,
and similarly x8 and x9 are visible from the boundary. We gather the vector of relevant potentials
in

x = [x1 x5 x6 x8 x9 x10]T ,

and their associated differences in

e = [e1 e4 e5 e6 e7 e9 e10]T

where

e1 = x1

9

e4 = −x5

e5 = x5 − x6

e6 = −x8

e7 = x5 − x9

e9 = x8 − x9

e10 = x9 − x10.

This is more conveniently expressed in the matrix notation

e = −Ax where A =



−1 0 0 0 0 0
0 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 0
0 −1 0 0 1 0
0 0 0 −1 1 0
0 0 0 0 −1 1


.

Next comes Ohm’s Law,
yj = ej/Rj , j = 1, 4, 5, 6, 7, 9, 10

or, in matrix notation,
y = Ge

where

G =



1/R1 0 0 0 0 0 0
0 1/R4 0 0 0 0 0
0 0 1/R5 0 0 0 0
0 0 0 1/R6 0 0 0
0 0 0 0 1/R7 0 0
0 0 0 0 0 1/R9 0
0 0 0 0 0 0 1/R10


Denoting by fk the current into node k apply Kirchhoff’s Current Law,

f1 − y1 = 0
y4 − y5 − y7 = 0

y5 + f6 = 0
y6 − y9 = 0

y7 + y9 − y10 = 0
y10 + f10 = 0

10

at each of the ungrounded nodes. In matrix notation this reads

By = −f

where

B =



−1 0 0 0 0 0 0
0 1 −1 0 −1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 −1 0
0 0 0 0 1 1 −1
0 0 0 0 0 0 1


and f =



f1

0
f6

0
0
f10


.

Turning back the page we recognize in B the transpose of A. Calling it such, we recall our main
steps

e = −Ax, y = Ge, and AT y = −f.

On substitution of the first two into the third we arrive at

ATGAx = f. (2.1)

This is our desired matrix model for the subnetwork of Figure 2.2. The A matrix encodes the geom-
etry of the network, the G matrix encodes the physical characteristics of the network components,
the f vector captures the stimulus and the x measures the network’s response. In circuit analysis
one meets both (1) problems of analysis: given G and f find x, as well as (2) problems of design
or synthesis: what must G be in order that a prescribed f elicit a particular x? In this jargon, our
EIT problem is one of synthesis. We agreed at the outset of this lab that we would carry out two
distinct experiments on the subnetwork. In both cases we inject 1 ampere at node 1. In the first
(second) case we remove it from node 6 (10) respectively. This gives rise to respective f vectors

f (1) =



1
0
−1
0
0
0


and f (2) =



1
0
0
0
0
−1


and their associated responses, x(1) and x(2). In light of (2.1) we note that they satisfy

ATGAx(k) = f (k), k = 1, 2. (2.2)

With (2.2) we are now close to our hope of grounding node 8. More precisely, for any two scalars
a1 and a2 it follows directly from (2.2) that

ATGA(a1x
(1) + a2x

(2)) = a1f
(1) + a2f

(2).

11

Now one simply chooses a1 and a2 so that

a1x
(1)
8 + a2x

(2)
8 = 0. (2.3)

As there are many possible solutions to (2.3) we append to it another equation that renders the
solution unique. Namely, in the interest of keeping the total injected current at 1 ampere, we ask
that

a1 + a2 = 1. (2.4)

Combining (2.3) and (2.4) we arrive at[
x

(1)
8 x

(2)
8

1 1

] [
a1

a2

]
=
[

0
1

]
.

This system indeed has a unique solution so long as x(1)
8 6= x

(2)
8 . Can you argue on physical grounds

why these two potentials should be distinct?

With a1 and a2 under our belts, let us now solve for the desired resistances. For ease of refer-
ence let us now write x for a1x

(1) + a2x
(2) and note that by construction this x corresponds to the

subnet below.

Can you explain why grounding node 8 has effectively grounded node 9? From Figure 2.3, R1

and R10 are easily recovered, namely

R1 = x1 and R10 = −x10/a2. (2.5)

R1

R4 R5

a1

R7

R10

a2

x1

x4 x5

x9

x6

x10

Figure 2.3: A sub-network of Figure 2.2.

12

As y4 = y1 = 1 and y7 = a2, it follows that

R4 = −x5 and R7 = x5/a2. (2.6)

The remaining resistors may be determined precisely as above by instead starting in the bottom
left corner and stripping up.

I Layer-Stripping: A Numerical Example

As a simple example let us suppose that the value of each resistance is 1, except R7, which has the
value 10. As the retrieval of R2 and R5 is relatively straightforward, let us proceed directly to the
second layer. The relevant matrix is

ATGA =



1 0 0 0 0 0
0 2.1 −1 0 −0.1 0
0 −1 1 0 0 0
0 0 0 2 −1 0
0 −0.1 0 −1 2.1 −1
0 0 0 0 −1 1


Solving (2.2) we arrive at

x(1) =



1.0000
−0.9231
−1.9231
−0.0769
−0.1538
−0.1538


and x(2) =



1.0000
−0.1538
−0.1538
−0.8462
−1.6923
−2.6923


and so the system for a1 and a2 reads[−0.0769 −0.8462

1 1

] [
a1

a2

]
=
[

0
1

]
.

Hence,
a1 = 1.1, a2 = −0.1

and

x =



1
−1
−2.1

0
0

0.1


and so indeed

R4 = −x5 = 1, R7 = x5/a2 = −1/(−0.1) = 10.

13

I Layer-Stripping: Practical Implementation

We present in this section one means by which the main steps of layer-stripping may be imple-
mented. The central problem is to supply/draw equal current to/from two specified nodes while
grounding a third. As voltage is typically more easy to regulate than current we shall rely on two
voltage sources to get the job done. More precisely, the equipment we require, in addition to the
resistor network, is

• One positive voltage supply, call it V+;

• One negative voltage supply, call it V−;

• One digital multimeter, measuring ohms, volts and amps.

Setup: Insert 3 wires into holes associated with GND, V+ and V−. Insert the black connector into
the COM port of the multimeter. Insert the red connector into the red V Ω port of the multimeter.
Connect the alligator clip of the red wire to the V+ wire and the other alligator clip to the GND
wire and slide V+ until the multimeter reads 1.77 V. V+ will remain at this level throughout the
remainder of the experiment.
With reference to Figure 2.1 we proceed as follows.

Layer 1: Connect V+ to node 2 with the red double-ended jumper. Connect V− to node 6
with the yellow double-ended jumper. Ground node 3 through the multimeter. This will permit
you to measure y3. Vary V− until y3 = 0. Remove the multimeter and connect the GND wire to
node 3. As y3 = 0 it follows that x4 = x3 = 0. As y4 is also 0 then so too is x5. Now insert the
multimeter between V+ and node 2 and measure y2. Finally,

R2 = V+/y2, R5 = −V−/y2.

Layer 2(1): Connect V+ to node 1. Connect V− to node 6. Ground node 3 through the multimeter.
Vary V− until y3 = 0. Use the multimeter to measure

x(1) = [x(1)
1 x

(1)
5 x

(1)
6 x

(1)
8 x

(1)
9 x

(1)
10]T ,

noting that the potential at nodes 5, 8, and 9 may be measured at nodes 2, 7 and 12 due to the
absence of current through resistors 2, 8 and 12, respectively. Use the multimeter to measure y(1)

1 .
Recover the edge resistance

R1 = V+/y
(1)
1 .

Layer 2(2): Connect V+ to node 1. Connect V− to node 10. Ground node 3 through the multimeter.
Vary V− until y3 = 0. Use the multimeter to measure

x(2) = [x(2)
1 x

(2)
5 x

(2)
6 x

(2)
8 x

(2)
9 x

(2)
10]T ,

14

noting, as before, that the potential at nodes 5, 8, and 9 may be measured at nodes 2, 7 and 12
due to the absence of current through resistors 2, 8 and 12, respectively. Use the multimeter to
measure y(2)

1 . Recover the edge resistance

R10 =
x

(2)
9 − x

(2)
10

y
(2)
1

.

Layer 2: In order to recover the interior resistors set up and solve the linear system[
x

(1)
8 x

(2)
8

1 1

] [
a1

a2

]
=
[

0
1

]
for a1 and a2 and calculate

R4 = −a1x
(1)
5 + a2x

(2)
5

a1y
(1)
1 + a2y

(2)
1

and R7 =
a1x

(1)
5 + a2x

(2)
5

a2y
(2)
1

.

I Lab Instructions

Follow the steps laid down above and record your findings on the next page.

15

Name: Date:

Circuits II – Results

Record all currents in amps and all potentials in volts.

Layer 1: y2 = 17.03× 10−3

V+ = 1.77 V− =

R2 = V+/y2 = true R2 =

R5 = −V−/y2 = true R5 =

Layer 2(1): x
(1)
1 = x

(1)
5 =

x
(1)
6 = x

(1)
8 =

x
(1)
9 = x

(1)
10 =

y
(1)
1 =

R1 = x
(1)
1 /y

(1)
1 = true R1 =

Layer 2(2): x
(2)
1 = x

(2)
5 =

x
(2)
6 = x

(2)
8 =

x
(2)
9 = x

(2)
10 =

y
(2)
1 =

R10 = (x(2)
9 − x

(2)
10)/y(2)

1 = true R10 =

Layer 2: A =
[
x

(1)
8 x

(2)
8

1 1

]
, b =

[
0
1

]
a =

[
a1

a2

]
= A\b =

[]

R7 =
a1x

(1)
5 + a2x

(2)
5

a2y
(2)
1

= true R7 =

R4 = −a1x
(1)
5 + a2x

(2)
5

a1y
(1)
1 + a2y

(2)
1

= true R4 =

16

Lab 3: Springs I

I Introduction

The next two labs investigate different aspects of the Strang Quartet model of two-dimensional
spring networks. In this first lab, we shall verify the ability of our model to predict displacements
given a known load. Next week, we shall physically realize Exercise [2] in Chapter 2 of the course
notes: detecting a stiff spring in a network.

The present lab consists of two parts. In part one, we will determine spring constants for two
types of springs. In part two, we will arrange these springs into a network, load the net, capture
the ensuing displacement, and compare the results with those predicted by the Strang Quartet.

Figure 3.1: Force table and spring network.

I Part 1: Measuring Hooke’s Constants

Our primary hardware for this lab is a force ta-
ble, shown in Figure 3.1, on which we can mount
a network of springs that we load by suspend-
ing masses. These masses are attached to the
network via strings that run atop pulleys, then
drop over the edge of the table. For this lab we
will be working with springs of two different stiff-
nesses: identical horizontal and vertical springs of
rest length 1.25 inches, and diagonal springs of
length 1.75 inches (notice that 1.75 ≈ 1.25

√
2 =

1.7677 . . .).

Before we can intelligently predict the behavior
of our network, we must first estimate the Hooke’s
constants for these two types of springs. Toward
this end, pick one example of each. For each spring,
secure one end to an immobile support (e.g., a large
paper clip anchored at the opposite end) and the
other to string that runs over a pulley and attaches
to a mass hook hung over the side of the table. Fix
a metric ruler to the table near this latter end of
the spring. You will then place brass masses on

17

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

3

6

9

12

15

e (meters)

f
(N

ew
to

ns
)

k = (fT e)/(eT e) ≈ 418 N/m

Figure 3.2: Computing a spring constant.

the hook and measure the associated elongation, in units of meters (m). As you do this for, say,
four distinct masses, m1, m2, m3 and m4, in units of kilograms (kg), you will have applied forces
fj = mjg, where g = 9.81 m/s2, in units of Newtons (N = kg m/s2). (We recommend that you
begin with a single 0.5 kg mass and increase from there; the hook has mass 0.05 kg.) Hooke’s law
informs us that fj = kej , where the spring constant k is in units of N/m. In order to reconcile
these four distinct empirical estimates, k = fj/ej , we wish to find the value of k that minimizes
the misfit between the theoretical force (kej) and the experimental measurement (fj). There are
various ways to compute this misfit; one appealing approach, to be justified in Chapter 5 of the
course notes, minimizes the sum of the squares of the errors. In particular, we define the misfit
function

M(k) ≡ 1
2

4∑
j=1

(fj − kej)2 (3.1)

and identify its minimum by solving M ′(k) = 0. When you do this you will arrive at the estimate
of the best

k =
eT f

eT e
. (3.2)

For example, if the masses, forces, and elongations are

m =


0.55
0.75
0.95
1.15

 kg, f =


5.3955
7.3575
9.3195
10.3005

N, e =


0.011
0.0175
0.022
0.028

m,

then k ≈ 418 N/m. It may help to visualize this data, as in Figure 3.2.

18

1 2

3 4 5

6 7

k1
k2

k3

k4
k5

k6

k7

k8 k9

k10

k11
k12

k13

k14

k15 k16

Figure 3.3: The spring network for this lab. The dashed lines indicate wires from which masses
are to be attached; the gray nodes are tied in a fixed position to anchor the network. Two types
of springs should be used in this lab: one for all horizontal and vertical members, another for all
those on the diagonals.

I Part 2: Predicting Displacements of a Small Network

Now we wish to experiment with the spring network shown in Figure 3.3, made up of sixteen
springs and nine nodes, two of which are fixed in place to remove four degrees of freedom from the
problem. We are left with seven free nodes (hence fourteen degrees of freedom), and the resulting
adjacency matrix A and Strang Quartet matrix ATKA are nonsingular. (It can be quite difficult
to spot instabilities by simply looking at the network; see the example in the Epilogue to this lab.)

We build this network using the 1.25 inch springs for the horizontal and vertical components,
and the 1.75 inch springs for the diagonal components. Springs are connected together using the
pennies as the nodes. The pennies are also connected to strings that go over the pulleys and are
connected to suspended weights. The pulleys themselves are free to slide up and down along the
steel rod; ensure they are positioned so that the forces are aligned in the horizontal and vertical
directions, rather than being askew.

Unlike the scenario described in the course notes, we do not have the leisure of accurately
measuring the node locations for a completely unloaded network. (Even with two nodes fixed, the
other springs and nodes will fall slack without any load.) Instead, we shall first load the network
with a control load and measure the node locations (using the webcam, as described below). Then

19

we shall adjust the forces, make predictions for the displacements from the control using the Strang
Quartet, and check the veracity of the model using measurements of the new node locations.

For the control configuration, suspend 0.5 kg masses from each 0.05 kg mass hook. Under this
load f (1), the masses will displace by x(1), according to the Strang Quartet:

ATKAx(1) = f (1). (3.3)

You can (and should) measure f (1), but it would be difficult to measure the displacements x(1),
because we do not know the positions of the nodes in the absence of any load. Use the webcam to
record the positions of the nodes under the load f (1); let us call this vector of positions p(1).

Having recorded p(1), add further masses to obtain a load f (2). Now the masses displace
according to

ATKAx(2) = f (2). (3.4)

As before, we cannot measure the displacement x(2) directly, but with the webcam we can measure
the new positions, say p(2). (We assume that p(2) is measured in the same coordinate frame as p(1),
i.e., that you have not bumped the table or webcam between experiments!) Now the difference of
the two webcam measurements gives us the difference of displacements:

p(2) − p(1) = x(2) − x(1). (3.5)

We can obtain a Strangian equation for this difference by subtracting (3.3) from (3.4):

ATKA(x(2) − x(1)) = f (2) − f (1). (3.6)

With this equation in hand, we can predict the difference x(2)−x(1) knowing only f (1) and f (2). For
this particular network, the matrix ATKA will be invertible, and so we can compute the difference
using

x(2) − x(1) = (ATKA)−1(f (2) − f (1)). (3.7)

Now we can predict the location of the perturbed state via

p̃(2) = p(1) + x(2) − x(1). (3.8)

Our goal is to compare this prediction p̃(2) with the measurements of the perturbed location p(2)

obtained via the lab webcam.

I Lab Hardware and Software

When you enter the lab, the webcam should already be mounted on a stand and centered above
the force table. The following command will open up a preview window in MATLAB of the table
surface:

vid = videoinput(’winvideo’,1,’IYUV_640x480’);

preview(vid);

20

You may need to focus or adjust lighting. To focus, turn the orange cone on the camera. To change
lighting, click on the white webcam item in the toolbar. Under the tab camera controls, adjust
shutter speed until a reasonable image is obtained. Do not change the color balance.

A script has been provided that will locate red pennies and return a vector of their loca-
tions. The script is located under C:\CAAMlab\Scripts and is called getloc. (You may wish to
addpath C:\CAAMlab\Scripts so that MATLAB finds getloc whatever your working directory.)
To locate N pennies, call

p = getloc(N);

This function requires you to click on the N different pennies in the image, and returns a vector p

with 2N components denoting the centers of the pennies in pixels, listed in the order in which you
clicked on them. Thus the first two entries of p denote the horizontal and vertical positions of the
first penny; the next two entries give the position of the second penny, and so forth.

To begin, you will need to calibrate the experiment so that you can convert the pixel measure-
ments from getloc into metric distances. (This is necessary because of the adjustable height of
the arm on which the webcam is mounted.) To calibrate, clear the force table except for two red
pennies placed directly on the surface, separated by a known distance (say, 10 cm = 0.1 m apart).
Now run getloc with N=2 to locate these two pennies. The pixel distance between the pennies is
thus √

(p(3)− p(1))2 + (p(4)− p(2))2,

giving the conversion factor from pixels to meters of

pix2m =
0.1√

(p(3)− p(1))2 + (p(4)− p(2))2
.

With this conversion factor at hand, we can proceed to the main experiment described above
in Figure 3.3. Set up the loaded network and run

p = getloc(6); % obtain the position of 6 pennies

p = p*pix2m; % convert pixels to meters

I Tasks

1. Derive the equation (3.2) by setting the derivative of (3.1) to zero and solving for k.

2. Estimate spring constants for each of the two types of spring used. Include plots of force
versus elongation, as in Figure 3.2. Label and title each plot as above. If so inclined, repeat
the experiment for several of the other springs you will use in the sixteen-spring network to
investigate their uniformity.

3. Derive the adjacency matrix A for the network in Figure 3.3, and use the null command in
MATLAB to verify that it possesses a trivial null space.

21

4. Conduct the control and variable experiment with the sixteen-spring network. You may wish
to perform a handful of experiments with different loads. How do your predictions of the
displacement x2 − x1 match the measured quantities? List some potential sources of error in
this procedure. (We expect that your data may be fairly messy for this lab.)

For each experiment, include an image of the perturbed state taken by the webcam, over-
laid with squares marking the unperturbed location p(1), circles showing the perturbed lo-
cation p(2) measured from the webcam, and dots at the predicted perturbed location p̃(2),
as measured by the Strang Quartet. Use large, colorful markers that are visible against the
background of the force table image; for example, to plot large, white squares, use

plot(p(1:2:end-1),p(2:2:end),’ws’,’markersize’,10,’markerfacecolor’,’w’)

Finally, use the measured change in positions p(1) and p(2) to predict the change in forces,
i.e., compare the expected value f (2) − f (1) to the prediction

ATKA(p(2) − p(1)) = ATKA(x(2) − x(1)).

I Epilogue: The Subtlety of the Null Space

Suppose we now allow the lower-left node in Figure 3.3 to move freely in both directions, leading to

1 2 3

4 5 6

7 8

k1
k2

k3

k4
k5

k6

k7

k8 k9

k10

k11
k12

k13

k14

k15 k16

Figure 3.4: The network resulting from unfixing the bottom left node in Figure 3.3. This new
network has 16 springs and 16 degrees of freedom, but N(A) is nontrivial: it corresponds to in-
finitesimal rotations about the fixed node, shown in gray.

22

the configuration in Figure 3.4. Since this new network has eight free nodes, there are now sixteen
degrees of freedom. As there are also sixteen springs, A ∈ R16×16, and we might expect this square
matrix to be invertible, and hence have a trivial null space. Perhaps you might initially struggle
to spot any instabilities – ways of displacing the eight nodes without stretching any springs. For
example, the fixed upper-right node prevents such a stretch-free shifting of all nodes uniformly in
either the horizontal or vertical directions. However, we can still rotate the entire structure about
that one fixed node, and indeed such displacements characterize the null space:

N(A) = span{[2, 2, 2, 1, 2, 0, 1, 2, 1, 1, 1, 0, 0, 2, 0, 1]T }.

23

Lab 4: Springs II

I Introduction

The first spring network laboratory focused on the forward problem of predicting the displacements
that will result from a given load, presuming we know the material properties of the springs. Now
we turn our attention to an inverse problem. Suppose we apply a variety of loads to the network,
and measure the displacements induced by these loads. What can such experiments reveal about
the material properties of the springs? We might imagine that we are conducting a biopsy, looking
for some hidden flaw in a material we are not permitted to dissect or otherwise mangle.

I The Biaxial Truss, Revisited

We shall focus on a modest alteration to the network proposed in Figure 3.3 of the last lab. In that
lab, all the springs were rather elastic; now replace one of the diagonal springs, say the ninth one,
with a very stiff spring of the same unstretched length, as reflected in Figure 4.1. Can we identify
the stiff spring using only force and displacement data?

1 2

3 4 5

6 7

k1
k2

k3

k4
k5

k6

k7

k8
k9

k10

k11
k12

k13

k14

k15 k16

Figure 4.1: A repetition of the network in Figure 3.3, but here with the ninth spring replaced by
one of significantly greater stiffness.

24

I The Inverse Problem

To extract the spring constants from the data we are permitted to measure, we shall follow the
methodology described in Section 5.3 of the course notes. Need to sort out displacements at-
tributable to the net force.

There is one small alteration to the setting in the notes, caused by our inability to reliably
measure the position of the unloaded network. As in the last lab, we shall impose an initial control
force, which we here call f (0), that leads to the positions recorded in the vector p(0). We shall then
conduct a series of experiments with loads

f (1), f (2), . . . , f (s)

and corresponding positions

p(1), p(2), . . . , p(s)

for some modest value of s ≥ 2. For these positions we can determine the net displacements from
the control, x(j) − x(0), which satisfy

x(j) − x(0) = p(j) − p(0), j = 1, . . . , s. (4.1)

As we saw in the last lab, these displacements should also satisfy the mathematical model

ATKA(x(j) − x(0)) = f (j) − f (0), j = 1, . . . , s, (4.2)

where the adjacency matrix A ∈ Rm×n with m = n = 16 for the network in Figure 4.1. In this
present lab, we treat the matrix K ∈ Rm×m containing the spring constants as unknown. Notice
that, for a generic x, we can write

KAx =

 k1
. . .

km


 a11 · · · a1n

...
. . .

...
am1 · · · amn


 x1

...
xn

 =

 k1
∑n

j=1 a1jxj
...

km
∑n

j=1 amjxj

 = diag(Ax)

 k1
...
km

 ,
where diag(Ax) is the m×m matrix obtained by putting the entries of Ax along the diagonal:

diag(Ax) =


∑n

j=1 a1jxj
. . . ∑n

j=1 amjxj

 ,
with all unspecified entries equal to zero.

With this observation, we can rewrite (4.2) as

ATdiag(A(x(j) − x(0)))k = f (j) − f (0). (4.3)

25

For the present network, the matrix ATdiag(A(x(j) − x(0))) is a square 16 × 16 matrix that will
almost always be invertible. Still, we expect the measured values of x(j) − x(0) from (4.1) to be
polluted with experimental error (not to mention approximations inherent in the mathematical
model). For this reason, we choose not to solve (4.3) directly, but rather to accumulate data from
numerous experiments and then solve a least squares problem. In particular, form the matrix and
vector

B =


ATdiag(A(x(1) − x(0)))
ATdiag(A(x(2) − x(0)))

...
ATdiag(A(x(s) − x(0)))

 ∈ Rsn×m, f =


f (1) − f (0)

f (2) − f (0)

...
f (s) − f (0)

 ∈ Rsn, (4.4)

and then determine the k by solving the least squares problem

min
k∈Rm

‖Bk − f‖,

which you can solve via the normal equations

k = (BTB)−1BT f.

I Hardware and Software Notes

This lab asks you conduct the experiment we have just described using the spring network from
Lab 3; the software tools are identical to those you used in the last lab.

• Use the getloc routine from the C:\CAAMlab\Scripts directory (which can be added to your
MATLAB path via addpath C:\CAAMlab\Scripts).

• You will need to use getloc to calibrate webcam, i.e., to compute the pixel-to-meter conver-
sion ratio.

I Tasks

• Calibrate the camera, compute the displacement p(0) for a control load f (0) (e.g., 0.55 kg
loaded onto each mass hook). Now conduct s ≥ 3 experiments as described above to obtain
positions p(1), . . . , p(s).

• Set up the matrix B and vector f in (4.4), and solve the least squares problem to obtain an
estimate to the vector of spring constants, k.

• Display your results as a bar chart using MATLAB’s bar command. Ideally, you will see
three prominent spring constants: one for the identical horizontal and vertical springs, one
for the three identical diagonal springs, and one for the stiff diagonal spring. Given the noise
in our measurements and approximations in our model, can you at least identify the stiff
spring from the others?

• How do your results differ if you use data from only one experiment (s = 1)?

26

Lab 5: Frequency Identification via Fourier Transformation

I Introduction

Thus far all our labs have studied systems in static equilibrium; for the rest of the semester we shall
study the rather more exciting world of dynamics, in which case we investigate the way a system
evolves in time. Suppose we examine that system at a single point in space, such as a node in a
circuit network or a point on a plucked guitar string, and measure a physical quantity like potential
or displacement as a function of time,

f(t), t ≥ 0.

The forces and constraints controlling the systems we study shall typically induce vibrations, and
thus we might expect f(t) to be periodic in time. Let us call the period τ , so that

f(t+ τ) = f(t), for all t ≥ 0.

For example, the function in Figure 5.1 has period τ = 2π.

0 π 2π 3π 4π 5π 6π

−4

−3

−2

−1

0

1

2

3

4

t

f(t)

Figure 5.1: A function f(t) with period τ = 2π.

Notice that this function has components of various different time scales: some rapid vibrations
appear to be superimposed upon a slower structure. This hints that we might be able to write f
as a linear combination of trigonometric functions, each with a period that perfectly divides τ :

f(t) = a0 +
∞∑
k=1

ak cos
(2πk
τ
t
)

+
∞∑
k=1

bk sin
(2πk
τ
t
)
. (5.1)

27

In the language of linear algebra, we are trying to write the periodic function f as a linear com-
bination of 1, cos(2πt/τ), sin(2πt/τ), cos(4πt/τ), sin(4πt/τ), Such an expansion is called a
Fourier series, and you might find it remarkable that any τ -periodic function can be written in this
form. We shall postpone the details, including how the coefficients ak and bk in (5.1) are found, to
a future course, but we wish to stress this key concept: the size of those coefficients reveals how
much each frequency 2πk/τ contributes to the function f .

Our immediate interest is the discovery of a more compact way to write the Fourier series (5.1)
that will ultimately prove extremely useful. The derivation requires a bit of complex arithmetic;
we shall provide a crash course here, and you can also consult Chapter 7 of the CAAM 335 notes.

I Digression I: complex exponentials

Any complex number z can be written in the form z = a+ ib, where i =
√
−1. The real number a

is called the real part of z and the real number b is the imaginary part of z.
How might we extend familiar real-variable functions to work with complex variables? One

approach is to plug the complex number z into the familiar Taylor series introduced in basic
calculus. For example, if for real t we have

et = 1 + t+ 1
2! t

2 + 1
3! t

3 + · · · ,

then for complex z we can define

ez = 1 + z + 1
2!z

2 + 1
3!z

3 + · · · .

What can we say about the exponential of a purely imaginary number? By unpacking the first few
terms of the Taylor series, we shall discover a gorgeous pattern. Since (ib)2 = −b2, (ib)3 = −ib3,
etc., we find that

eib = 1 + ib+ 1
2!(ib)

2 + 1
3!(ib)

3 + · · ·

= 1 + ib− 1
2!b

2 − 1
3! ib

3 + · · ·

=
(

1− 1
2!b

2 + 1
4!b

4 − · · ·
)

+ i
(
b− 1

3!b
3 + 1

5!b
5 − · · ·

)
.

In this last line we have separated the terms into those that are purely real and purely imaginary,
and we see that each of these is a Taylor series in the real variable b. Do you recognize these series?
They are simply Taylor expansions for cos(b) and sin(b). We have just derived Euler’s formula:

eib = cos(b) + i sin(b).

I Complex Fourier series

Euler’s formula allows us to write Fourier series in a compact manner, by replacing trigonometric

28

functions with exponentials, at the cost of complex coefficients. For starters, note that

(a+ ib)eiωt = (a+ ib)(cos(ωt) + i sin(ωt))

= (a cos(ωt)− b sin(ωt)) + i(a sin(ωt) + b cos(ωt))

(a− ib)e−iωt = (a− ib)(cos(ωt)− i sin(ωt))

= (a cos(ωt)− b sin(ωt))− i(a sin(ωt) + b cos(ωt)).

Adding these two expressions gives the identity

(a+ ib)eiωt + (a− ib)e−iωt = 2a cos(ωt)− 2b sin(ωt). (5.2)

Thus we can write any linear combination of cos(ωt) and sin(ωt) as a realted linear combination of
eiωt and e−iωt. Using this new nomenclature, the trigonometric Fourier series

f(t) = a0 +
∞∑
k=1

ak cos
(2πk
τ
t
)

+
∞∑
k=1

bk sin
(2πk
τ
t
)

can now be written as

f(t) =
∞∑

k=−∞
cke

i(2πk/τ)t.

The formula (5.2) gives a way to relate the new c±k coefficients to the old ak and bk coefficients:

c±k =

{
(ak ± ibk)/2, if k 6= 0;

a0, if k = 0.

I Discrete Fourier transforms

In practice, we are unable to measure the function f(t) at all t: we can only measure the function
at distinct points in time. By sampling the function in this way, we are discretizing it, that is,
converting a continuous quantity to an N -vector:

f =


f0

f2
...

fN−1

 ,
where fk = f(tk) for k = 0, . . . , N − 1. (Why go from 0 to N − 1 instead of 1 to N? This makes
the notation easier later.) Figure 5.2 shows one period of the function f from Figure 5.1 with
samples at N = 8 points. We would still like to uncover the frequencies of vibration inherent in
this function, even though we only know its value at certain points. Can we still determine the
Fourier series?

29

0 π/2 π 3π/2 2π

−4

−3

−2

−1

0

1

2

3

4

t

f(t)

Figure 5.2: One period of the function f(t) from Figure 5.2, with dots representing samples at
N = 8 equally spaced points.

There is good news: we can still perform Fourier analysis on discrete data – but there is a
significant caveat. As we only have data at N points, we should not expect to be able to uniquely
determine the infinitely many Fourier coefficients. In fact, suppose g is any periodic function
that happens to be zero at every point we sample: g(tk) = 0 for k = 0, . . . , N − 1. In this
case, the data we have cannot distinguish between f(t) and f(t) + g(t). Figure 5.3 illustrates this
phenomenon, known as aliasing : the dark line shows f(t) and the gray line illustrates f(t) + g(t);
both functions agree at the data points, fk = f(xk) = f(xk)+g(xk). The problem becomes obvious
when considered from the perspective of linear algebra: we are trying to determine infinitely many

0 π/2 π 3π/2 2π

−4

−3

−2

−1

0

1

2

3

4

t

Figure 5.3: The functions f(t) (dark line) and f(t) + g(t) (gray line) are identical at the eight
sample points (dots).

30

unknowns c0, c±1, c±2, . . . in terms of only N equations, one for each of the f`, ` = 0, . . . , N − 1.
Clearly the solution to such an underdetermined system cannot be unique!

We only hope to recover N unknowns from N data points. Thus, we shall try to find coefficients
for an N -term Fourier series that agrees with our data. That is, we seek c0, . . . , cN−1 such that

N−1∑
k=0

cke
i(2πk/τ)t` = f`, ` = 0, . . . , N − 1.

The ck values here will generally differ from those in the infinite Fourier series, since the finite sum
is only an approximation.

We presume that the data is measured at evenly spaced points starting with t0 = 0; that is,

t` = `τ/N, ` = 0, . . . , N − 1.

Substituting this into our sum, we find that

N−1∑
k=0

cke
2πi`k/N = f`, ` = 0, . . . , N − 1.

Before we write this system in matrix form, we should make one more notational simplification.
Define

ω = e2πi/N ,

which we call an N th root of unity since ωN = e2πi = cos(2π) + i sin(2π) = 1. With this shorthand,
the finite Fourier series simply becomes

N−1∑
k=0

ckω
`k = f`, ` = 1, . . . , N.

Let us look at the N = 4 case. We have the four equations:

` = 0: c0ω
0·0 + c1ω

0·1 + c2ω
0·2 + c3ω

0·3 = f0;

` = 1: c0ω
1·0 + c1ω

1·1 + c2ω
1·2 + c3ω

1·3 = f1;

` = 2: c0ω
2·0 + c1ω

2·1 + c2ω
2·2 + c3ω

2·3 = f2;

` = 3: c0ω
3·0 + c1ω

3·1 + c2ω
3·2 + c3ω

3·3 = f3.

In matrix form, this becomes 
1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9



c0

c1

c2

c3

 =


f0

f1

f2

f3

 .
31

For general N , we have 
1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) · · · ω(N−1)2


This matrix is called the Fourier matrix of order N ; we shall denote it by F. Recalling that matrix-
vector multiplication amounts to taking a linear combination of matrix columns, we see that we
are writing our function f in terms of the Fourier basis vectors

1
ωk

ω2k

...
ω(N−1)k

 , k = 0, . . . , N − 1,

and the coefficients c0, . . . , cN−1 tell us how strong our signal is in each of these basis vectors. The
larger the value of k, the more oscillations in the corresponding sin and cos, and thus the ‘higher
the frequency’.

For N = 4, things look particularly clean: ω = eπi = i (note that i4 = 1), and hence we can
also write the matrix equation as

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



c0

c1

c2

c3

 =


f0

f1

f2

f3

 ,
which we shall denote as

Fc = f. (5.3)

Given the samples of f(t) stored in the vector f, we wish to find the coefficients c as rapidly as
possible – we may have thousands, even millions, or samples! To understand how to invert F
rapidly, we need to understand the linear algebra of complex matrices and vectors.

I Digression II: norms and orthogonality for complex vectors

If you have some vector with real entries, say,

x =
[
x1

x2

]
,

then we measure its ‘length’, or, more properly, its norm, by

‖x‖ =
√

xTx =
√

(x1)2 + (x2)2.

32

From this formula it should be clear that only the zero vector has zero length. For complex vectors,
the situation requires more care. For example, if

x =
[
i

1

]
,

then

xTx = [i 1]
[
i

1

]
= i2 + 1 = 0,

so our conventional definition suggests that this nonzero vector has norm zero. Hence we need to
refine the notion of length for complex vectors. If z = a+ ib is a complex scalar, then we can define
its magnitude to be |z| =

√
a2 + b2, and this is always a positive quantity when z 6= 0. We also

define the conjugate of z to be

z = a− ib,

i.e., we just flip the sign on the imaginary part. The conjugate provides a slick way to define the
magnitude:

|z| =
√
zz.

Now we are ready to define the norm of a complex vector :

‖x‖ =
√
|x1|2 + |x2|2 + · · · |xN |2 =

√
x∗x,

where x∗ = [x1 x2 · · · xN] is called the conjugate-transpose of the vector x.
The conjugate-transpose also allows us generalize the familiar dot product to complex vectors:

the inner product of complex vectors x and y is the scalar x∗y. Genearlizing from the real case,
we say that x and y are orthogonal if

x∗y = 0.

This digression will allow us to observe a fundamental property of the Fourier matrix.

I Inverting the Fourier matrix

If we look at the Fourier matrix for N = 4 displayed above, we observe a remarkable fact. Take
the inner product of the first and second columns:

[1 1 1 1]


1
i

−1
−i

 = 1 + i− 1− i = 0.

Thus the first two columns are orthogonal. In fact, all columns of the Fourier matrix are orthogonal
to one another (try it!), and this remains true for any value of N . The norm of each column is also
easy: each is precisely

√
N , as the inner product of any column with itself is N . We can summarize

33

this information in the matrix F∗F, whose (j, k) entry is the inner product of the j and k columns
of F. Our previous observations tell us that, in the N = 4 case,

F∗F =


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

 ,
and for general N ,

F∗F = NI,

where I is the identity matrix. Do you see that F∗ must thus be related to the inverse of F?
Multiply each side of this last equation on the right by F−1 and divide by N to conclude

F−1 =
1
N

F∗.

To solve the linear system
Fc = f

for the coefficients c0, . . . , cN−1, we need only premultiply both sides by the conjugate-transpose of
the Fourier matrix, and scale:

c =
1
N

F∗f.

This operation is called the Fourier transform (or DFT, for Discrete Fourier Transform) of f.
With this technique, we can transform back and forth between the ‘time domain’ (the vector f,

which contains samples of the function f at fixed times) and the ‘frequency domain’ (the vector c,
which is the representation of f in the Fourier basis) via multiplication by the Fourier matrix and
its conjugate transpose. The number of basic arithmetic operations required to compute a generic
matrix-vector product grows inproportion to N2; we say that matrix-vector multiplication is an
O(N2) algorithm. If the columns of F were not orthogonal, we would have to invert this matrix using
Gaussian elimination to solve (5.3), an operation that would require O(N3) operations. Actually,
we have it even better: In 1965 Cooley and Tukey rediscovered and popularized something that was
known to Gauss some 160 years earlier: the special structure of the Fourier matrix allows matrix-
vector multiplication with F and F∗ to be performed in O(N logN) operations. The resulting
algorithm, fast Fourier transform (FFT), makes it possible to efficiently process signals with very
large values of N . MATLAB incorporates a particularly efficient implementation known as FFTW
(the Fastest Fourier Transform in the West).

I A nagging little question

It is about time we admit to twisting your arm a bit back on page 31, when we truncated the
infinite Fourier series

∞∑
k=−∞

cke
i(2πk/τ)t

34

to the finite series
N−1∑
k=0

cke
i(2πk/τ)t.

Did you wonder why we chose the limits k = 0, . . . , N on this sum, rather than something like
k = −N, . . . , N? After all, when we first wrote down the infinite series, we saw that we would need
both positive and negative k to represent real-valued functions f (recall that ck = c−k = (ak+ibk)/2
on page 3). We took nonnegative k values in our finite sum to respect time-honored conventions;
we shall now see that nothing has been lost, and the reason boils down to aliasing.

Each row of the formula Fc = f that determines the coefficients c0, . . . , cN takes the form

N−1∑
k=0

ckω
`k = f`, ` = 0, . . . , N − 1.

It will prove convenient to look at an odd value of N ; let us take N = 5 for a concrete example.
This gives the linear system

1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω6 ω8

1 ω3 ω6 ω9 ω12

1 ω4 ω8 ω12 ω16




c0

c1

c2

c3

c4

 =


f0

f1

f2

f3

f4

 .

For odd N , define n = (N − 1)/2, so for the present example n = 2. Suppose we now write out a
finite Fourier series that has N terms, but now running from k = −n to n:

n∑
k=−n

γkω
`k = f`, ` = 0, . . . , N − 1.

(We use constants γk to distinguish them from the ck values obtained from the k = 0, . . . , N sum.)
In the N = 5 case, these N equations in the N unknowns γ−n, . . . , γn give the linear system

1 1 1 1 1
ω−2 ω−1 1 ω ω2

ω−4 ω−2 1 ω2 ω4

ω−6 ω−3 1 ω3 ω6

ω−8 ω−4 1 ω4 ω8




γ−2

γ−1

γ0

γ1

γ2

 =


f0

f1

f2

f3

f4

 .

This system so closely resembles the old one (the last three columns of the new matrix match the
first three columns of the old), that we have to wonder if there is some way to resolve the modest
differences. Recall that ω was constructed so that ωN = 1. It thus follows that ω−` = ωNω−` =
ωN−`. Similarly, for any integer m we have

ω−` = ωmN−`.

35

This enables us to observe, in the N = 5 case, that
1 1 1 1 1
ω−2 ω−1 1 ω ω2

ω−4 ω−2 1 ω2 ω4

ω−6 ω−3 1 ω3 ω6

ω−8 ω−4 1 ω4 ω8

 =


1 1 1 1 1

ω5−2 ω5−1 1 ω ω2

ω10−4 ω10−2 1 ω2 ω4

ω15−6 ω15−3 1 ω3 ω6

ω20−8 ω20−4 1 ω4 ω8

 =


1 1 1 1 1
ω3 ω4 1 ω ω2

ω6 ω8 1 ω2 ω4

ω9 ω12 1 ω3 ω6

ω12 ω16 1 ω4 ω8

 .

Notice that this last matrix has the same columns as our old k = 0, . . . , N matrix, but in a different
order. We obtain that old matrix for our new system by reordering the unknowns:

1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω6 ω8

1 ω3 ω6 ω9 ω12

1 ω4 ω8 ω12 ω16




γ0

γ1

γ2

γ−1

γ−2

 =


f0

f1

f2

f3

f4

 .

We arrive at the beautiful conclusion that γ0 = c0, γ1 = c1, γ2 = c2, γ−1 = c3 and γ−2 = c4. In
general,

γk =

{
ck if 0 ≤ k ≤ n;

cn−k if −n ≤ k < 0.

Thus we have neither gained nor lost anything by working with the k = 0 . . . , N sum rather than
the k = −n, . . . , n sum: the only difference is the order of the coefficients. The convention is to use
the k = 0, . . . , N sum, owing to the high elegance of the F matrix. (For example, MATLAB’s fft

command uses this ordering.) To work with the more natural −n . . . , n sum, we simply rearrange
the coefficients.

In fact, we need not make things so complicated. For real data, f0, . . . , fN , we will always have

γk = γ−k

just as for the infinite Fourier series. Thus we get full knowledge by only examining γk for k ≥ 0,
in which case γk = ck. In many applications we only care about the ‘amount of energy’ in each
frequency k, and thus we typically produce a plot of |ck| versus k for k = 0, . . . , n.

I Tasks: experiments with discrete Fourier analysis

The first three exercises will introduce you to the fft command in MATLAB. The fourth exercise
involves analysis of the human voice.

1. Try fft(eye(4)) and ifft(eye(4)). How do these matrices relate to F and (1/N)F∗ ?

2. Consider the function

f(t) = 1 + sin(t) + 1
2 cos(t) + sin(2t) + cos(3t).

36

Let the vector t consist of N points uniformly spaced on [0, 2π). For example,
t=linspace(0,2*pi,N+1); t=t(1:N);

In MATLAB, compute the fft of f(t) for some odd N of your choosing. Explain your results.

3. The C:\CAAMlab\Scripts directory on the lab PC contains a file called mystery_f.p that
produces the function shown in Figure 5.1. You are unable to see the source for this routine,
but you can call mystery_f just as if it were a usual m-file; e.g., ft = mystery_f(t) for
a vector t. This function is a linear combination of trigonometric functions. Use fft to
determine a formula for mystery_f.

4. What frequency is your ‘ee’?
Run MATLAB on the lab computer, add the C:\CAAMlab\Scripts directory to your MAT-
LAB path. The getSound script allows you to record data from the lab microphone, using
the PC’s soundcard. For example, to record for 5 seconds, type

[f,dt] = getSound(5);

and hit the return key. (Be sure the microphone is turned on!)

The vector f contains the amplitude of the sound at times 0, dt, 2dt, . . . , 5− dt.

To replay your recording, type
wavplay(f,dt);

The goal of this exercise is to study the frequency fluctuations in the human voice as it
pronounces the long-e (‘ee’) sound.

Record your voice speaking the ‘ee’ sound, stored in the vector f. Take the fft of your f,
and produce a semilogy plot of the magnitude of the Fourier coefficients γk, k = 0, . . . , n,
versus k (use the abs command to compute the magnitudes).

Experiment with different recording lengths and judicious choices of axis to reveal the most
prominent frequencies and fluctuations in your voice. Submit plots of the time domain(f
versus t) in addition to your plots of the frequency domain (i.e., the fft).

A note about scaling. The fft command assumes that your f is sampled over an interval of
length 2π. If you record for T seconds, you will need to scale the horizontal axis by 2π/T .
For example,

fftf = fft(f);

semilogy([0:n]*(2*pi/T)), abs(fftf(1:n+1))/(2*n+1))

[This problem, like much of this lab, is inspired by and adapted from Chapter 4 of Gilbert
Strang’s Introduction to Applied Mathematics, 1986.]

37

Lab 6: Discovering Frequencies in a Time Series

I Introduction

The last lab covered the basic techniques of Fourier analysis; now it is time to put these tools to
use on data from a real application. All the remaining labs deal with vibrations, be they electrical
fluctuations (Lab 7), motion of a swinging compound pendulum (Lab 8), or the oscillations of a
string loaded with beads (Labs 9 and 10). The present short lab is designed to help you understand
how to identify the ‘peaks’ that reveal the frequencies at which a system vibrates, and in the
process to discover how sample rate and the duration of a sample affect the quality of the data.
An understanding of such vibrations is fundamental throughout science and engineering, from the
tuning of a radio to the design of buildings that will not resonate with the quaking earth.

To isolate our situation as much as possible, in this lab we will work exclusively with synthetic
data that mimics the physical experiments you will be conduct in Lab 8. Consider a (massless)
string suspended from a height, loaded with three objects of equal mass (750 g) that are separated
at uniform intervals (25 cm) along the length of the string. At rest, these masses hang in a vertical
line, as illustrated in left image of Figure 6.1. When displaced from this equilibrium, gravity causes
the entire configuration to vibrate (forever, in principle, if there are no damping forces to brake
the motion). We are interested in relatively small displacements from the vertical equilibrium, and
in this regime we can approximate that each mass moves only in the horizontal direction. In a
few weeks we shall derive a mathematical model for this motion, then measure the displacements
with the help of a webcam. For the time being, we shall be content to use a black-box routine
(called pendulum.p) to simulate the motion of this three-mass pendulum. Snapshots of the motion

m1

m2

m3

at rest t = 0 t = 2

Figure 6.1: A compound pendulum with three masses at rest (left), with an initial displacement
(middle), and after two seconds of evolution.

38

are shown in Figure 6.1: the masses are initially displaced as in the middle image, and released
at time t = 0. After two seconds, the three masses have swung into the position shown in the
rightmost plot. These few still images poorly communicate the beauty of this motion; please run
the pendulum_movie script to view the action it its full glory.

I Synthetic data generation

The data that drives the movie is generated with the pendulum.p routine, which you can find on
the class website, or in the C:\CAAMlab\Scripts directory on the lab computer. (Remember to
addpath C:\CAAMlab\Scripts for convenience.) This routine is called as

x = pendulum(duration, samp_per_sec);

The variable duration specifies the length of the simulation (in seconds), and samp_per_sec spec-
ifies the number of samples to be recorded per second. The function returns a matrix x with three
columns (one for each mass) and 1 + duration×samp_per_sec rows (which includes a sample at
time t = 0). In particular, x(j,k) records the horizontal displacement (in meters) of mass k at
time (j − 1)×samp_per_sec seconds.

The pendulum routine is compiled into a ‘p-file’, which can be run just like an m-file, but the
guts are hidden. You will learn to program them for yourself from scratch in a few weeks, but
for the purpose of this lab, it does not matter how this data is generated: think of pendulum as a
black-box that records measurements from an experiment.

From pendulum_movie, perhaps you can see that the configuration vibrates in some roughly
periodic manner. With a keen eye you might even observe that there seem to be several different

−0.5

−0.25

0

0.25

0.5

−0.5

−0.25

0

0.25

0.5

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.25

0

0.25

0.5

time, sec

m1

m2

m3

Figure 6.2: Horizontal displacements (meters) of the three masses over 10 seconds, 40 samples/sec.

39

0 1 2 3 4 5 6 7 8 9 10
10−1

100

101

102

Hertz (cycles/sec)

|ck|

Figure 6.3: Fourier coefficients from the displacement of the first mass, based on 10 seconds of
data, 40 samples/sec.

patterns that occur with varying frequency. This becomes more evident if we plot the displacements
against time, as in Figure 6.2. One can detect multiple frequencies of vibration, particularly for the
top two masses. The goal of this lab is to use the techniques of Fourier analysis that you mastered
in Lab 5 to determine these frequencies to high precision.

Figure 6.3 shows the Fourier transformation of the data for mass m1 that was given in Figure 6.2.
You can obtain a similar plot with

semilogy([0:length(x(:,1))-1]/duration,abs(fft(x(:,1))))

and adjusting the axis to look at the leading Fourier coefficients. Scaling the horizontal axis in
this way gives units of cycles per second. (Can you explain why? Recall that ck is the coefficient
that multiplies ei(2πk/τ)t in the finite Fourier series, where τ represents the period.) You can verify
that this scaling looks reasonable by noticing that the most prominent feature in the m1 plot in
Figure 6.2 repeats a little less than once per second, which corresponds to the dominant peak in
Figure 6.3.

What is perhaps most surprising about Figure 6.3 is the appearance of two smaller peaks in
this data, indicating that there could be features of the motion of m1 that vibrate at a higher
frequency. In the exercises, we want to explore these secondary peaks in greater detail, to see if
they are legitimate, or merely an artifact of duration and samp_per_sec.

I Lab Instructions

The exercises for this lab are very basic, and do not require the use of any special lab equipment.
The goal is for you to deeply understand how the duration and samp_per_sec parameters affect

40

the accuracy with which you can determine the frequency of vibration in displacement data.

1. Produce Figure 6.3 for yourself, using duration=10 and samp_per_sec=40. Now adjust the
parameters duration and samp_per_sec independently. How does each of the parameters
affect the shape of the peaks in the Fourier transform? In particular: If one wants to plot peaks
over a large range of frequencies (cycles/sec), should one increase duration or samp_per_sec?
What if one wants to determine sharp peaks over a fixed frequency band?

2. Submit several plots showing sharp peaks for the displacement of m1. Write down the fre-
quencies (in Hertz) accurate to several digits.

3. Repeat the experiment in the previous question for m2 and m3.

4. Our synthetic data is essentially perfect – it does not bear the scars of experimental error
that mar real data. Simulate experimental error by polluting the measured displacement
data. For example, a random error on the order of ten-percent can be produced via

x_err = x+.10*randn(size(x))*max(max(abs(x)));

Conduct experiments with various levels of error for mass m3. What affect does this have
on your frequency plots? (Please include a few examples.) At what error threshold does it
become difficult to determine the three peaks in the data?

(Such numerical investigations are very important in practice, for they suggest something
about the robustness of your model, as well as the precision to which you will need to build
you experimental apparatus.)

41

Lab 7: RLC Circuit Dynamics

The last two labs have provided you with a background in signal processing: given a function in time
that is sampled at discrete points, identify the fundamental frequencies latent in that signal. These
previous labs anticipate our study of dynamical systems. In this lab we begin that investigation by
solving an ordinary differential equation that models a resistor–inductor–capacitor (RLC) circuit,
and we see how this circuit reacts as we drive it at a single frequency.

I Capacitors and Inductors

The first two circuit labs involved only resistors and a voltage source. Now we shall add capacitors
and inductors into the mix, as seen in the circuit diagram in Figure 7.1. Capacitance is measured
in farads, inductance in henrys; like resistance, you can determine these quantities using the lab’s
multimeter.

v(t)

+

−

R

C L

x(t)

Figure 7.1: A simple resistor–inductor–capacitor (RLC) circuit.

The circuit is now driven by a potential source of v(t) volts that can depend on time, and our
goal is to describe how this source affects the unknown potential x(t). (Note that this differs from
the examples in the CAAM 335 notes, where v(t) is replaced by a static current source, denoted
i0, and from the Circuits I and II labs, where we have the constant potential v0 in place of v(t).)

We wish to discover how the potential x(t) is affected by the current and the circuit elements.
This modest (but still interesting) circuit has the single unknown potential x(t), so we are dealing
in the realm of scalar quantities rather than vectors and matrices. This is the simplest setting
to investigate these new electronic components, but the techniques generalize readily to far more
sophisticated circuits.

The above circuit introduces a capacitor and an inductor in parallel. The current across a

42

capacitor of capacitance C is given by the relation

current = (capacitance)× (time rate-of-change of potential).

If y(t) denotes the current and e(t) the potential drop across the capacitor, then we write the
capacitor law as

y(t) = Ce′(t).

An inductor of inductance L obeys a complementary law:

potential = (inductance)× (time rate-of-change of current),

which we write in the form
e(t) = Ly′(t). (7.1)

Notice that this equation involves y′(t), while the analogous formulae for resistors and capacitors
used y(t). To allow us to combine expressions for all three electrical components, we shall transform
y′(t) in (7.1) into y(t) with the help of the fundamental theorem of calculus, yielding

y(t) =
1
L

∫ t

0
e(τ) dτ − y(0).

I Solution of a Simple RLC Circuit

We shall now see how to assemble these new elements into a differential equation, once again
following the Strang Quartet methodology.

• Step 1: The potential drop across the resistor is given by v(t)− x(t), which we label

e(t) := v(t)− x(t).

The potential drop across the parallel capacitor and inductor is x(t)−0, so we do not introduce
any new notation in this simple setting.

• Step 2: We apply the constitutive laws to compute the current across each component:

resistor: yres(t) =
1
R
e(t);

capacitor: ycap(t) = Cx′(t);

inductor: yind(t) =
1
L

∫ t

0
x(τ) dτ − yind(0).

(We have used x rather than e in the last two formulas, as x(t) denotes the potential drop
across the capacitor and inductor for the circuit in Figure 7.1. To analyze more complicated
circuits we would introduce variables e1, e2, . . . for the potential drop across each of the
components. Given the simplicity of the circuit at hand, we have opted for a leaner notation.)

43

• Step 3: Kirchhoff’s Current Law at the node x(t) implies that

yres(t) = ycap(t) + yind(t),

so incorporating the formulas from Step 2 gives the integro-differential equation

1
R
e(t) = Cx′(t) +

1
L

∫ t

0
x(τ) dτ − yind(0). (7.2)

• Step 4: As we wish to solve for the unknown potential x(t), we substitute the definition of
e(t) into (7.2) to get

1
R

(v(t)− x(t)) = Cx′(t) +
1
L

∫ t

0
x(τ) dτ − yind(0).

We could take the Laplace transform of this equation directly (provided we know a rule for
transforming integrals). Alternatively, we can take a derivative of the equation and rearrange
to obtain

x′′(t) = − 1
LC

x(t)− 1
RC

x′(t) +
1
RC

v′(t),

a second-order ordinary differential equation for x(t). We could solve this by Laplace trans-
form (provided we know a rule for transforming second derivatives), but we will instead use
a little linear algebra. Notice that this second-order equation can be written in the form of a
first-order system of equations

d

dt

[
x(t)
x′(t)

]
=
[

0 1
− 1
LC − 1

RC

] [
x(t)
x′(t)

]
+
[

0
1
RC v

′(t)

]
. (7.3)

The first row of (7.3) merely states a tautology:

d

dt
x(t) = x′(t).

The second row captures the differential equation we are after:

d

dt
x′(t) = − 1

LC
x(t)− 1

RC
x′(t) +

1
RC

v′(t).

The first-order system (7.3) has the general form

z′(t) = Kz(t) + f(t),

an equation familiar to you from Chapter 6 of the course notes; you will recall that such an
equation can be solved via can be solved exactly via the Laplace transform, or approximately
via the backward Euler method. To do so, we need an initial condition. The simplest approach
is to take

v(t) = 0 for all t ≤ 0,

which then suggests [
x(0)
x′(0)

]
=
[

0
0

]
.

44

I Backward Euler method

In this lab we shall construct approximate solutions to the differential equation z′(t) = Kz(t)+f(t)
using the backward Euler method. This algorithm is described in the CAAM 335 course notes; we
recap here for convenience.

Given a time-step h > 0, we seek solutions to the differential equations at times

tk = kh.

Notice that we can write

z(tk)− z(tk−1)
h

≈ z′(tk) = Kz(tk) + f(tk);

the approximation follows from the definition of the derivative, and the equality follows from the
differential equation. To obtain an approximate solution to the differential equation, we simply
replace ≈ with =. The values we obtain shall no longer be the exact solution to the differential
equation, and we reflect this fact by replacing the notation z(tk) by zk, and z(tk−1) by zk−1. In
short, we have

zk − zk−1

h
= Kzk + f(tk). (7.4)

We are given

z0 = z(0) =
[
x(0)
x′(0)

]
=
[

0
0

]
,

and we will use the formula (7.4) to step forward in time to z1, then z2, etc. To do so, we solve (7.4)
for zk. We find that

(I − hK)zk = zk−1 + hf(tk),

and hence
zk = (I − hK)−1(zk−1 + hf(tk)). (7.5)

From the first component of the vector zk ∈ R2, we extract an approximation to x(tk).

I Band-Pass Filter

The circuit shown in Figure 7.1 is called a band-pass filter, because it responds sympathetically
only to a particular range of input frequencies. More specifically, suppose we use the lab’s function
generator to produce an input potential

v(t) = sin(ωt)

for some frequency ω. For ω = 0 there is obviously no input, and the initial condition x(0) =
x′(0) = 0 ensures that nothing happens: x(t) = 0 for all time.

What can be said as we increase ω? As you can verify through experiments with the backward
Euler method:

45

• |x(t)| is consistently small for small ω values;
• |x(t)| is large for an intermediate range of ω values, called the band ;
• |x(t)| is consistently small for large ω values.

[In fact, within the band there is a distinguished value of ω for which v(t) = sin(ωt) passes through
optimally. The explanation for this fact follows from spectral theory, a topic covered later in
CAAM 335.]

I Lab Instructions

In this lab you will investigate this circuit through both numerical and physical experiments.

1. Develop a MATLAB implementation of the backward Euler method (7.5) for solving the RLC
differential equation (7.3). Test it with the values R = 1/2, L = C = 1, and v(t) = sin(t) for
t ∈ [0, 50] with x(0) = x′(0) = 0, and compare your results exact solution

x(t) = sin(t)− te−t

for several time-steps h > 0. (Turn in plots of x(t) versus t, and plots of the difference between
the true and backward Euler solutions versus time.)

2. We wish to investigate a bandpass filter with R = 982 Ω, L = 5.30 mH, and C = 70.2 nF.
Before implementing such a circuit on a breadboard, we wish to simulate the predicted be-
havior with the backward Euler method. These values of L and C are somewhat extreme, and
you need to be careful to integrate on the correct times scale. Integrate over t ∈ [0, .001] sec.
with appropriately small time-step h. Produce plots showing your backward Euler approx-
imation to x(t) versus t with v(t) = sin(ωt) and x(0) = x′(0) = 0 for a range of values of

Figure 7.2: An implementation of the band-pass filter circuit from Figure 7.1 on a small breadboard.

46

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x(t)

t,ms t,ms t,ms

Figure 7.3: Backward Euler solutions to (7.3) with R = 982 Ω, L = 5.30 mH, and C = 70.2 nF
driven by v(t) = sin(ωt) for values of ω corresponding to 2000 Hz, 8200 Hz, and 18000 Hz.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

frequency, kHz

m
ax

t∈
[0
,1

]
m

s
|x

(t
)|

Figure 7.4: Maximum amplitude of the potential x(t) over t ∈ [0, 1] ms for R = 982 Ω, L = 5.30 mH,
and C = 70.2 nF driven by v(t) = sin(ωt) over a range of ω values (ω = 2πf , where f denotes the
frequency in Hertz).

ω ∈ [104, 105]. (Notice that since Hertz denote cycles per second, sin(ωt) corresponds to a
frequency of ω/(2π) Hz.) Show plots for three values of ω: one below, one in, and above
one the band; use the same axis in each figure to aid comparison. Your output should
resemble Figure 7.3. You should observe the band-pass phenomenon described above; see
also Figure 7.4.

How does the value of ω that you found in the band compare to the magnitude of the
eigenvalues of K (abs(eig(K)))?

(As an alternative to working with these badly scaled values of C, L, and t, you may change the
time-scale of the problem from seconds to milliseconds. This gives the values R = 982 V/A,
L = 5.3 V ·ms/A, and C = 7.02 × 105 A ·ms/V. The values of ω must also be scaled; say,
take ω ∈ [0, 120]. Now integrate over t ∈ [0, 1] ms.)

47

3. Implement the band-pass filter circuit, specified in Figure 7.1, on a small breadboard in the
lab; see Figure 7.2. Use a resistor with R = 982 Ω, an inductor with L = 5.30 mH, and
a capacitor with C = 70.2 nF. (These components will be set aside in the lab; use the
multimeter to measure these values, which may exhibit some slight deviation from those
specified.) Connect the function generator to the circuit using the black and red terminals.

Tune the function generator to 8 kHz. Then slowly increase the amplitude until you observe
a response peak, then reduce amplitude slightly. (This ensures that we do not overload the
circuit.) Now connect the oscilloscope probe to the function generator input and measure the
amplitude of the signal.

Reconnect the oscilloscope probe to the node x(t) in Figure 7.1. Now reduce the frequency to
2 kHz and step through in 1 kHz intervals to 18 kHz. At each frequency, record the maximum
amplitude. Submit a MATLAB plot of frequency versus amplitude, which should resemble
numerically-computed plot in Figure 7.4.

As usual, please include all MATLAB scripts in your lab report.

I Optional: Band-stop Filter

A simple rearrangement of the band-pass filter yields the circuit in Figure 7.5, now called a band-stop
filter. Whereas a band-pass filter supports inputs sin(ωt) at particular frequencies ω, a band-stop
filter does just the opposite: it prevents inputs v(t) = sin(ωt) at a distinct range of frequencies
ω from passing. Band-stop filters are used in public address systems and musical instrument
amplifiers.

1. Develop a second order differential equation akin to (7.3) for the band-stop circuit.

2. Produce backward Euler solutions to this equation with v(t) = sin(ωt) for a range of ω values
and the same R, L, and C values measured for the band-pass filter. Produce plots for various
ω that confirm the expected band-stop behavior.

v(t)

+

−

L

C R

x(t)

Figure 7.5: A band-stop circuit.

48

Figure 7.6: The oscilloscope in the lab.

3. Confirm your mathematical model and numerical results by implementing the circuit on the
lab breadboard, measuring the amplitude, and comparing the results to predictions from the
backward Euler method. Use ω values below the band, in the band, and above the band.

I Appendix: Using the oscilloscope

Oscilloscopes contain many advanced features but you’ll only need to work with a small subset.
On the left there is a CRT screen on to which a line is projected representing the amplitude as a
function of time. For this lab we will only need to work on the first channel. Its settings are located
immediately to the right of the screen. The switch with options ‘AC’, ‘GND’, and ‘DC’ should be
set to DC. Use the dial labeled ‘POS’ to move the trace line up and down. The dial labeled ‘CH1
VOLTS/DIV’ indicates the scale for each of the horizontal lines crossing the screen.

To measure amplitude, measure the number of vertical units spanned by the signal on the
screen. The solid lines denote whole units; the secondary hash marks give further divisions of
0.2 units. Check that the signal shown in Figure 7.6 has an amplitude of 2.2 units. Now multiply
this amplitude by the VOLTS/DIV setting. Here this is 2.2× 0.2 = 0.44; this is the peak-to-peak
amplitude. We are interested in peak to ground amplitude, so divide this result by two to arrive
at the final amplitude, 0.22 V.

49

Lab 8: Dynamics of Compound Pendula

In the first part of the semester, we followed our initial labs on static circuits with analogous labs
involving mechanical systems. We shall follow that pattern again, now with dynamical systems.
In the last lab we studied how electrical potential evolves in time in an RLC circuit. Now, we
study the motion of swinging masses attached to a cable: a compound pendulum. Our inspira-
tion for this study is a fundamental paper published in 1733 by the Swiss mathematician Daniel
Bernoulli (“Theoremata de Oscillationibus Coporum filo Flexili Connexorum et catena Verticaliter
Suspensae”), and the systemization of this work described by Russian mathematicians Felix Gant-
macher and Mark Krein in their book, Oscillation Matrices and Kernels and Small Vibrations of
Mechanical Systems (AMS, 2002).

I Setting

m1

m2

m3

m4

?

6
?

6
?

6
?

6

`1

`2

`3

`4

Figure 8.1: Pendulum
with four masses at rest.

We are concerned with a (massless) string suspended from a fixed block.
Upon this string we mount n point masses m1, m2, . . . , mn. Let `k
denote the distance between mass mk and mk+1 (or, in the case of
k = n, between mass mk and the block). The physical arrangement of
this compound pendulum is illustrated in Figure 8.1, where the radii of
the black circles are drawn proportional to the (point) masses.

In the absence of external forces, this configuration with all masses
hanging in a vertical line will remain still. Suppose we displace one or
more of the masses from the vertical and release it. How will the system
evolve in time? The mechanics are described by nonlinear differential
equations, and when the displacements are quite large the behavior
can be exceptionally complex. In this lab we restrict our attention to
small displacements, which allow us to approximate to high accuracy
the evolution of the system in time using linear differential equations. We shall see that the
behavior of these equations can be completely understood from the spectral properties (eigenvalues
and eigenvectors) of an n× n matrix.

I Kinetic and Potential Energies

Let x1(t), . . . , xn(t) denote the horizontal displacement of masses m1, . . . ,mn from the vertical rest
configuration at time t ≥ 0. Given knowledge of the masses and string lengths, and the state of the

50

system at time t = 0 (specified through x1(0), . . . , xn(0)), we wish to determine the displacements
of the masses at all future times. Our main tool for this will be the Principle of Least Action and
the allied Euler–Lagrange equation, which relates a system’s kinetic and potential energies.

The kinetic energy in the entire pendulum is found by summing the kinetic energy 1
2mk[x′k(t)]

2

associated with each mass:

T (t) =
1
2

n∑
k=1

mk[x′k(t)]
2.

6

?

`k

-�
xk

-�
xk+1

mk+1

mk

Figure 8.2: Stretched segment.

Similarly, the total potential energy must be summed over all the
masses; on each segment we need the product of the tension and
elongation. The tension σk on the kth segment depends on the
total mass suspended under it:

σk = g

k∑
j=1

mj ,

where g is the acceleration due to gravity. The elongation requires
approximation. As can be deduced from Figure 8.2 with the help of
the Pythagorean Theorem, the stretched length of the kth segment
is simply √

`2k + (xk − xk+1)2 − `k.

(You might be concerned about the k = n case: the nth segment is anchored at the top; there is
no mk+1 to be displaced. If we define xn+1 = 0, this elongation formula works without a hitch.)
The square root puts the elongation formula beyond the realm of linear algebra. However, since
the displacements xk and xk+1 are both assumed to be small relative to `k, we can use the same
linear approximation that arose earlier in the semester during our study of the biaxial truss. Using
the Taylor expansion

√
1 + ξ = 1 + 1

2ξ −
1
8ξ

2 + · · ·, we have

√
`2k + (xk − xk+1)2 − `k =

√
`2k

(
1 +

(xk − xk+1)2

`2k

)
− `k

= `k

√
1 +

(xk − xk+1)2

`2k
− `k

= `k

(
1 +

1
2

(xk − xk+1)2

`2k
− 1

8
(xk − xk+1)4

`4k
+ · · ·

)
− `k

≈ `k

(
1 +

1
2

(xk − xk+1)2

`2k

)
− `k

=
(xk − xk+1)2

2`k
.

51

The total potential energy is then the sum of the products of tension and elongation:

V (t) =
1
2

n∑
k=1

σk
`k

(xk − xk+1)2.

I Euler–Lagrange Equation

The Principle of Least Action posits that a system will move in time in the manner that yields the
smallest “action”. This is quantified through the Euler–Lagrange equation:

d

dt

∂T

∂x′j
+
∂V

∂xj
= 0, j = 1, . . . , n.

We shall apply these equations to our system one step at a time. First, consider ∂T/∂x′j . The
notation merits a little explanation: we are treating the entity x′k as a variable, and differentiating
with respect to that symbol. Hence

∂T (t)
∂x′j

=
∂

∂x′j

(
1
2

n∑
k=1

mk[x′k(t)]
2

)
=

1
2

n∑
k=1

mk

(
∂

∂x′j
[x′k(t)]

2

)
= mj x

′
j(t).

With this formula in hand, it is simple to take a time derivative:

d

dt

∂T

∂x′j
=

d

dt

(
mj x

′
j(t)
)

= mj x
′′
j (t).

We turn our attention to the potential energy:

∂V (t)
∂xj

=
∂

∂xj

(
1
2

n∑
k=1

σk
`k

(xk − xk+1)2
)

=
1
2

n∑
k=1

σk
`k

(
∂

∂xj
(xk − xk+1)2

)
The partial derivative in the rightmost term will be zero except when j = k or j = k+1, and hence

∂V (t)
∂xj

=
1
2

(
σj−1

`j−1
(− 2xj−1 + 2xj) +

σj
`j

(2xj − 2xj+1)
)

=
(
− σj−1

`j−1

)
xj−1 +

(σj−1

`j−1
+
σj
`j

)
xj +

(
− σj
`j

)
xj+1.

The cases j = 1 and j = n require some scrutiny. In the former case, there is no j − 1 term, so we
have

∂V (t)
∂x1

=
1
2

n∑
k=1

σk
`k

(
∂

∂x1
(xk − xk+1)2

)
=

1
2
σ1

`1

(
∂

∂x1
(x1 − x2)2

)

=
(σ1

`1

)
x1 +

(
− σ1

`1

)
x2.

For j = n, substituting the identity xn+1 = 0 into general formula for ∂V/∂xj gives

∂V (t)
∂xn

=
(
− σn−1

`n−1

)
xn−1 +

(σn−1

`n−1
+
σn
`n

)
xn.

52

Inserting these various pieces into the Euler–Lagrange equation, we obtain

mjx
′′
j (t) =



(
− σ1

`1

)
x1 +

(σ1

`1

)
x2, j = 1;

(σj−1

`j−1

)
xj−1 +

(
− σj−1

`j−1
− σj
`j

)
xj +

(σj
`j

)
xj+1, 1 < j < n;

(σn−1

`n−1

)
xn−1 +

(
− σn−1

`n−1
− σn
`n

)
xn, j = n.

This equation describes the coupling between the displacements of the various masses (notice the
form: mass times acceleration equals force). All the xj variables appear linearly, hence we have
a linear system of second-order differential equations. To simplify computation and analysis, we
shall write this out using vectors and matrices.

I Matrix Formulation

Let x ∈ Rn denote the vector of horizontal displacements,

x(t) =


x1(t)
x2(t)

...
xn(t)

 .
We wish to find n×n matrices M and K that collect the Euler–Lagrange equations for j = 1, . . . , n
into one matrix differential equation of the form

Mx′′(t) = −Kx(t),

whose jth row encodes the Euler–Lagrange equation for index j. (The negative sign on the right
will prove useful later.) You should verify that these matrices take the form

m1

m2

m3

. . .

mn


︸ ︷︷ ︸

M



x′′1(t)

x′′2(t)

x′′3(t)
...

x′′n(t)


︸ ︷︷ ︸
x′′(t)

=



−σ1
`1

σ1
`1

σ1
`1
−σ1
`1
− σ2

`2
σ2
`2

σ2
`2

−σ2
`2
− σ3

`3

. . .

. σn−1

`n−1

σn−1

`n−1
−σn−1

`n−1
− σn

`n


︸ ︷︷ ︸

−K



x1(t)

x2(t)

x3(t)
...

xn(t)


︸ ︷︷ ︸

x(t)

,

with all blank entries equal to zero.
The matrix M is diagonal, and as the masses are positive it must be invertible. Hence we can

write

x′′(t) = −M−1Kx(t).

53

I Solving the Differential Equation: An Introduction to Eigenvalues and Eigenvectors

What can we say about solutions to the differential equation x′′(t) = −M−1Kx(t)? There are
several ways to proceed; perhaps the most direct way is to “guess” that x(t) has the special form

x(t) = cos(ωt)u,

where u ∈ Rn does not depend on time. That is, we are looking for a solution x(t) that always has
the same direction u in Rn, but has an amplitude cos(ωt) that varies sinusoidally in time. (See the
Appendix for a more satisfying approach that does not require the same degree of inspiration.)

We want to check that this particular form of x(t) satisfies the differential equation x′′(t) =
−M−1Kx(t). First we compute the left hand side,

x′′(t) = −ω2 cos(ωt)u,

and compare it to the right hand side,

−M−1Kx(t) = − cos(ωt)M−1Ku.

Canceling cos(ωt), these two sides agree only in the case that ω and u satisfy

M−1Ku = ω2u.

Is it possible that such ω and (nonzero) u exist to satisfy this equation?
The answer to this question is found in the study of spectral theory : ω2 is called an eigenvalue

of M−1K, and u is an associated eigenvector. As you will see in the CAAM 335 lectures, an n× n
matrix can never have more than n distinct eigenvalues, and it turns out that for matrices of the
kind we have derived for the swinging pendulum, there will always be exactly n distinct positive
real eigenvalues, which we shall label

ω2
1 < ω2

2 < · · · < ω2
n.

With each eigenvalue, we associate corresponding eigenvectors

u1, u2, . . . , un,

which we write componentwise as

u1 =


u1,1

u1,2
...

u1,n

 , u2 =


u2,1

u2,2
...

u2,n

 , · · · , un =


un,1

un,2
...

un,n

 .
54

For these problems, we are guaranteed that {u1, u2, . . . , un} are linearly independent, and hence
form a basis for Rn. Notice that the eigenvectors are only specified up to a scalar multiple: If
M−1Kuj = ω2

juj , then M−1K(αuj) = ω2
j (αuj) for any α. It is often convenient to normalize,

scaling so that ‖uj‖ = 1 or uj,n = 1.
To compute these eigenvalues and eigenvectors in MATLAB, one can call

[U,W2] = eig(M\K);

To impose the ordering ω2
1 < · · · < ω2

n, we can command
[junk,indx] = sort(real(diag(W2)));

U = U(:,indx);

W2 = W2(indx,indx);

To normalize so that uj,n = 1 for all j, we might further issue
U = U*diag(1./U(n,:));

At this point, we have

ω2
j = W2(j,j)

uj = U(:,j)

I Examining Distinguished Solutions

We have discovered n special solutions to the differential equation x′′(t) = −M−1Kx(t), namely:

x(t) = cos(ωjt)uj .

If we displace the pendulum’s masses by the entries of the eigenvector uj and then simultaneously
release, the ensemble will oscillate according to this solution: all future displacements will be
multiples of the eigenvector, and the amplitude will vary sinusoidally with angular frequency ωj .
In this lab, you will verify this statement for several small ensembles. (Of course, experimental
errors in measurement, and modeling errors such as the neglect of friction, will cause some deviation
from the ideal.)

In Figure 8.3 we illustrate the two key displacements for a system with n = 2 and

m1 = m2 = 1, `1 = `2 = 2,

with units selected such that g = 1. In this case, we have

M =
[

1 0
0 1

]
, K =

[
1/2 −1/2
−1/2 3/2

]
,

and corresponding eigenvalues and eigenvectors (see Figure 8.3)

ω2
1 = 1−

√
2

2
, u1 =

[
1 +
√

2
1

]
and

ω2
2 = 1 +

√
2

2
, u2 =

[
1−
√

2
1

]
.

55

u1,2

� -

u1,1

� -

u2,2

� -

u2,1

�-

Figure 8.3: Distinguished displacements in the direction u1 (left) and u2 (right).

Figure 8.4: Experimental set-up: three masses
are suspended on a flexible cable.

I Lab Instructions

Does this mathematical model give an accurate de-
scription of pendulum motion? Can you detect the
n different frequencies present in an n-mass sys-
tem? We shall investigate these questions using
the apparatus shown in Figure 8.4.

1. Select n = 2 masses (see Figure 8.5), weigh
them, set up the M and K matrices, and
compute the eigenvalues and eigenvectors of
M−1K (in MATLAB or by hand, as you pre-
fer).

2. For each eigenvalue, use the eigenvector en-
tries to plot out displacements for each mass
(as in Figure 8.3) on the white-board back-
drop of the lab A-frame. Displace the masses
to these points. Release the masses and film
the motion, as described in the section “Mak-
ing the Recording” below. Use the MAT-
LAB script track, as described in the sec-
tion “Analyzing the Data” below, to process
these images into horizontal displacements.
The track script also takes the fft of the

56

Figure 8.5: steel mass, wrapped with blue tape to allow for image capture against a white blackdrop.
The mass is ‘attached’ to the cable that runs through its vertical axis by means of a small nut. The
nut has a small screw that can be tightened against the cable with the pictured Allen wrench.

horizontal displacements for each mass. Take note of the peaks in this frequency plot. Do
the most prominent frequencies obtained from the different masses agree?

The frequencies are plotted in Hertz, i.e., cycles per second. A sinusoid vibrating at f Hz
would thus have the form, e.g., cos(2πft): over one unit of time, this cosine completes f
periods. In our notation, this corresponds to ω = 2πf , i.e., the eigenvalue

ω2 = 4π2f2.

For each of your n measured frequencies f , derive the eigenvalue ω2. How well do these agree
with the eigenvalues of M−1K?

3. Repeat the above experiment, but now with a random displacement of the masses. Can
you detect the presence of both eigenvalues in the data you record? How pure were your
excitations in the previous section? Quantify by computing the ratio of the desired mode’s
amplitude to the sum of each mode’s amplitude.

4. Repeat exercises 1–3 for a system with n = 3 masses.

I Making the Recording

1. Open VRecord under Programs->Philips ToUCam Camera->Philips Vrecord.

2. Under Options->Video Format set Output size to 640x480.

3. Under File->Set Capture File, give a unique file name in C:\CAAMLab\Videos. You do
not want to place the recording on your network mounted directory, as the latency in writing
to that disk will affect the recording.

57

4. Start your pendulum in motion.

5. Start the recording using Capture->Start Recording.

6. After some time, stop the recording. (Try 30 seconds; this will be sufficient to capture a
number of periods of vibration. Longer capture times should yield greater accuracy; use the
intuition you developed with synthetic data in Lab 6.)

7. At this point, your recording is ready but the avi encoding used by VRecord does not cooperate
well with MATLAB; we need a kludge to fix things up. Open the program VirtualDub by
clicking on the link on the desktop. Open your video file in VirtualDub, and then save it as
an avi file using a different name.

I Analyzing the Data

The MATLAB function track takes the name of an avi file and tracks the motion of the masses in
a similar manner to the findnodes routine used in the spring network lab. To call this function,
give the name of the avi file, including the .avi extension (name) and the number of masses to
track (n) and enter

[X,Y] = track(name,n);

where X and Y contain the displacement of the masses in the horizontal and vertical directions.
(Recall that we have assumed that the masses undergo negligible vertical displacement.)

I Appendix: Another Approach to the Differential Equation

As the eigenvectors {u1, . . . , un} form a basis for Rn, any displacement of the masses can be written
as a linear combination,

x(t) =
n∑
j=1

γj(t)uj . (8.1)

In particular, suppose we the initial disturbance

x(0) =
n∑
j=1

γj(0)uj .

As this is equivalent to 
x1(0)
x2(0)

...
xn(0)

 =

 | | |
u1 u2 · · · un

| | |



γ1(0)
γ2(0)

...
γn(0)

 ,
58

we could determine the initial coefficients γ1(0), . . . , γn(0) via
γ1(0)
γ2(0)

...
γn(0)

 =

 | | |
u1 u2 · · · un

| | |

−1


x1(0)
x2(0)

...
xn(0)

 .
Now suppose further that the masses have no initial velocity, x′(0) = 0, i.e.,

γ′j(0) = 0.

This initial data is sufficient to determine the coefficients γj(t) for all times t ≥ 0. To see this,
substitute the formula (8.1) into the differential equation x′′(t) = −M−1Kx(t) and use the fact
that uj is an eigenvector to obtain

n∑
j=1

γ′′j (t)uj = −
n∑
j=1

γj(t)M−1Kuj

= −
n∑
j=1

ω2
j γj(t)uj .

Because the vectors u1, . . . , un are linearly independent, we can equate the coefficients in this sum:

γ′′j (t) = −ω2
j γj(t), j = 1, . . . , n.

By writing our solution in the basis of eigenvectors, we have transformed an n×n matrix differential
equation into n much simpler scalar equations. Each of these scalar second order homogeneous
differential equations has the general solution

γj(t) = αj sin(ωjt) + βj cos(ωjt).

We can use the initial value of γj(0) and the fact that γ′j(0) = 0 to determine αj and βj . The
general solution gives

γ′j(t) = ωjαj cos(ωjt)− ωjβj sin(ωjt),

and in particular γ′j(0) = ωjαj . As the system starts with γ′j(0) = 0, we conclude αj = 0. Thus

γj(t) = βj cos(ωjt),

and so γj(0) = βj . Thus, the solution to the differential equation x′′(t) = −M−1Kx(t) is given by

x(t) =
n∑
j=1

γj(0) cos(ωjt)uj .

Do you see the great beauty of this expression? It says that the motion of the pendulum is simply a
superposition of eigenvectors, and the component in each eigenvector varies at a different frequency,
ωj . Let us examine two particular cases.

59

• When you start the pendulum with some random initial displacement, the motion will gener-
ically exhibit all frequencies ω1, . . . , ωn, and these will be exhibited when you compute a
Fourier transform of the displacement measurements for any of the masses.

• If you started the pendulum with displacements exactly corresponding to the eigenvector uk,
you would have γj(0) = 0 for j 6= k, and the solution would be

x(t) = γk(0) cos(ωkt)uk.

Of course, in practice you will only have γj(0) ≈ 0, but since |γj(t)| = |γj(0) cos(ωjt)| ≤
|γj(0)|, the components in the unwanted eigenvectors do not get magnified: γk(0) cos(ωkt)uk
will still dominate overall.

60

Lab 9: Dynamics of a Beaded String

In this lab we investigate a second vibration problem: the motion of beads threaded on a taut string
that is anchored at both ends. Like the last lab’s compound pendulum, this problem stimulated
great developments in mechanics during the eighteenth century. As we take more and more masses
and pack them ever closer together, we obtain a model of a continuous string, as you might find on a
violin or guitar. It turns out that the eigenvalues associated with such a string explain the pleasant
progression of musical notes—but that is a story best saved for a course in partial differential
equations.

Here, we imagine n point-masses m1, . . . , mn fixed horizontally from left to right on a taut
massless string of total length `. The rest positions of the masses provide a natural partition of the
string, so the length between the left support and the first bead is `0, between the first and second
bead is `1, etc., as illustrated for n = 4 in Figure 10.1, so that ` =

∑n
k=0 `k.

`0

� -
`1

� -
`2

� -
`3

� -
`4

� -

m1 m2 m3 m4

Figure 9.1: A string with four beads at rest.

Now we pluck the string lightly, so as to induce a vibration among the beads. As the beads are
fixed on the string, they do not slide horizontally. For small vibrations, the dominant displacement
of each mass will be in perpendicular to the rest state, i.e., vertical. We denote the displacement
of mass j at time t by yj(t), as illustrated in Figure 9.2.

Our goal is to determine the displacements yj(t), given a description of the initial pluck and
the various masses and lengths. In next week’s lab, the culminating project of the semester, we
shall solve the inverse problem: Given knowledge of how a beaded string vibrates, how heavy are
the beads and where are they on the string?

Unsurprisingly, the mathematics behind bead vibrations is essentially identical to that of the
compound pendulum; the only difference is the horizontal arrangement of the masses and the fact
that both ends are now fixed. For details on general systems of this sort, see Gantmacher and Krein,
Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (AMS, 2002). We
begin by deriving formulas for the kinetic and potential energies, then set up a system of linear

61

mk−1

mk

mk+1

yk−1

yk

yk+1

`k−1 `k

6

?

6

?

6

?-� -�

Figure 9.2: Close-up of a stretched segment of the string.

differential equations.

I Kinetic and Potential Energies

As before, we use the Euler–Lagrange equation to derive a system of differential equations that
describe the displacements. The formula for kinetic energy is unchanged from the pendulum case;
adding up ‘ 1

2mv
2 ’ at each bead gives

T (t) =
1
2

n∑
k=1

mk[y′k(t)]
2.

The potential energy requires a more subtle computation; again, it will be the sum of the potential
energies in each segment, that is, the sum of the products of tension and elongation. Since the
beads are arranged horizontally, rather than vertically as in the pendulum, we presume that the
string is held in a constant tension σ throughout the entire ensemble. The elongation computation
is identical to the calculation for the pendulum. Suppose we wish to measure the elongation of the
kth segment, as illustrated in Figure 9.2. Assuming that the beads are only moving vertically, the
stretched length of this segment is simply√

`2k + (yk+1 − yk)2 − `k,

and as in the previous lab, we use the fact that `k is much larger than the displacements yk and
yk+1 to argue that

√
`2k + (yk+1 − yk)2 − `k = `k

√
1 +

(yk+1 − yk)2
`2k

− `k

≈ `k

(
1 +

1
2

(yk+1 − yk)2

`2k

)
− `k

=
(yk+1 − yk)2

2`k
.

62

Some special attention must be paid to the end cases, k = 0 and k = n. These can be handled
just as easily as the top segment of the pendulum: since the ends of the string remain fixed, we
define y0 = yn+1 = 0, and the elongation formula works out just right. As we have n+ 1 segments
corresponding to `0, . . . , `n, the formula for the potential energy takes the form

V (t) =
σ

2

n∑
k=0

(yk+1 − yk)2

`k
.

I Euler–Lagrange Equations

We substitute our formulas into the Euler–Lagrange equation

d

dt

∂T

∂y′j
+
∂V

∂yj
= 0, j = 1, . . . , n

just as in the last lab. From the kinetic energy formula, we have

d

dt

∂T

∂y′j
(t) = mjy

′′
j (t).

The potential energy term,
∂V

∂yj
=
σ

2

n∑
k=0

∂

∂yj

(yk+1 − yk)2

`k
,

again requires a little more work. The partial derivative within the sum on the right will generally
be nonzero except in the cases where k = j − 1 or k = j. That is,

∂V

∂yj
=

σ

2

(∂

∂yj

[(yj − yj−1)2

`j−1

]
+

∂

∂yj

[(yj+1 − yj)2

`j

])
=

σ

2

(2yj − 2yj−1

`j−1
+

2yj − 2yj+1

`j

)
=
(
− σ

`j−1

)
yj−1 +

(σ

`j−1
+
σ

`j

)
yj +

(
− σ

`j

)
yj+1.

The cases of j = 1 and j = n are special, as y0 = yn+1 = 0, and hence

∂V

∂y1
=
(σ
`0

+
σ

`1

)
y1 +

(
− σ

`1

)
y2

∂V

∂yn
=
(
− σ

`n−1

)
yn−1 +

(σ

`n−1
+
σ

`n

)
yn.

These partial derivatives couple each of the n masses to its nearest neighbors, and so we must solve
the Euler–Lagrange equation at all masses simultaneously: these n coupled linear equations lead
to a single differential equation involving n× n matrices.

63

I Matrix Formulation

Substituting the partial derivatives of kinetic and potential energies into the Euler–Lagrange equa-
tion gives

mjy
′′
j (t) =



(
− σ

`0
− σ

`1

)
y1 +

(σ
`1

)
y2, j = 1;

(σ

`j−1

)
yj−1 +

(
− σ

`j−1
− σ

`j

)
yj +

(σ
`j

)
yj+1, 1 < j < n;

(σ

`n−1

)
yn−1 +

(
− σ

`n−1
− σ

`n

)
yn, j = n.

,

or, in matrix form,

m1

m2

m3

. . .

mn


︸ ︷︷ ︸

M



y′′1(t)

y′′2(t)

y′′3(t)
...

y′′n(t)


︸ ︷︷ ︸
y′′(t)

=



− σ
`0
− σ

`1
σ
`1

σ
`1

− σ
`1
− σ

`2
σ
`2

σ
`2

− σ
`2
− σ

`3

. . .

. σ
`n−1

σ
`n−1

− σ
`n−1
− σ

`n


︸ ︷︷ ︸

−K



y1(t)

y2(t)

y3(t)
...

yn(t)


︸ ︷︷ ︸

y(t)

.

This differential equation
y′′(t) = −M−1Ky(t) (9.1)

has the same form as the equation that described motion of the compound pendulum masses, and
we can solve it in the same manner. Let (ω2

j , uj) denote pairs of eigenvalues and eigenvectors of
M−1K, i.e., M−1Kuj = ω2

juj for j = 1, . . . , n. Stacking each of these n eigenvalue–eigenvector
equations side by side results in the matrix equation

M−1KU = UΛ,

where the n× n matrices U and Λ are defined as

U =

 | | |
u1 u2 · · · un

| | |

 , Λ =

ω
2
1

ω2
2

. . . ω2
n

 .
The differential equation (9.1) can thus be translated to

y′′(t) = −UΛU−1y(t),

whereby premultiplication by U−1 gives

U−1y′′(t) = −ΛU−1y(t). (9.2)

64

Let us focus for a moment on this vector U−1y(t), which we define as

ŷ(t) =


γ1(t)
γ2(t)

...
γn(t)

 := U−1y(t).

Notice that

y(t) = UU−1y(t) = U ŷ(t) =
n∑
j=1

γj(t)uj , (9.3)

so the entries of ŷ(t) are simply the coefficients we need to express y(t) in the basis of eigenvectors.
Moreover, equation (9.2) is simply

ŷ ′′(t) = −Λŷ(t),

and since Λ is a diagonal matrix, this n× n system reduces to n independent scalar equations:

γ′′j (t) = −ω2
j γj(t),

each of which has a very simple general solution,

γj(t) = γj(0) cos(ωjt) +
(
γ′j(0)
ωj

)
sin(ωjt), (9.4)

in terms of the initial state γj(0) and velocity γ′j(0).
The general solution (9.4) simplifies if we presume that the string begins with zero initial

velocity,
y′(0) = 0 =⇒ ŷ ′(0) = 0 =⇒ γ′j(0) = 0,

in which case
γj(t) = γj(0) cos(ωjt).

Substituting these equations into the expansion of y(t) in eigenvector coordinates (9.3) reveals a
beautiful solution:

y(t) =
n∑
j=1

γj(0) cos(ωjt)uj .

Enjoy this equation for a moment: it says that the masses are displaced in concert as the superpo-
sition of n independent vectors vibrating at distinct frequencies. Can we detect these frequencies
in the laboratory?

I Experimental Set-Up

The CAAM String Lab features a high-precision monochord that we shall use for this lab, illustrated
in Figure 9.3. Tension is measured with a force transducer placed at the end of the string. The
string then passes through a collet, which itself is mounted in a collet vise that, when tightened,

65

Figure 9.3: The CAAM String Lab monochord.

holds the end of the string tight. The string then passes through a photodetector that is used to
measure the string vibrations at a single point along the string. Brass beads are threaded onto
the string, which then passes through a second collet. (These beads have been carefully machined
so as to snugly fit onto the properly chosen metal string.) Finally, the string is wound upon a
spindle, which is used to apply tension to the string. (This tensioning requires a find hand: even
metal strings will snap!) Close-ups of a collet in a vise and brass beads on a string are shown in
Figure 9.4.

Notice that we do not measure the displacements of any one bead: the photodetector only
measures the displacement of a single point along the string, but this point must vibrate at the
same frequencies as the individual beads. As explained below, you will record displacements at a
single point in time, then compute the Fourier transform of this data. The MATLAB code given
below will produce a plot with horizontal axis in Hertz, i.e., cycles per second. As discussed in the
last lab, a peak at f Hz corresponds to a frequency of

ωj = 2πf.

Figure 9.4: A collet clasping a string (left) and brass beads on a string (right).

66

I Setting Up a Beaded String

We describe the process starting with no string in the device.

• Place the beads on the string in the desired order.

• Run one end through the photodetector, the collet, the force transducer, and the eye bolt
(which prevents the string from slipping through the force transducer). Run the other end
through the second collet.

• On both sides, run the string through the clamps and tighten them.

• On the side of the tensioner, attach the bolt sticking out of the clamp through the hole in the
spindle. On the other side, take up slack so the tensioner will not need to be turned so far.

• Turn the knob on the top of the tensioner until the string is straight.

• Now turn the handles on the collet holders to lock them down on the string.

• Positioning the beads. As the table is currently set up, the center of the string is between
two grid holes. These holes are at one inch intervals. The best way to position the beads is
to place your eye perpendicular to the table above a hole and then position the bead over
it. Be sure to place the heavier beads to the outside, otherwise the vibrations of the lowest
frequency mode are likely to be larger than the range of the photodetector.

I Taking Measurements

• Turn on the power to the measurement electronics by switching on the surge protector on the
table. A red light should turn on at this point.

• Now run the scope script located in the C:\CAAMlab\Scripts directory.

• You should now see four plots. Expand the figure to fill the screen, so as to clearly resolve
the text and features. The top row consists of the string displacement in the y direction
parallel to the surface of the table and perpendicular to the string and in the z direction
(which points up toward the ceiling). The blue line shows the displacement of the string at a
point over a small time interval. The red line is a time average of this displacement. The two
black lines represent the limit of the sensors and the cyan line represents the middle of the
detector. The bottom row consists of the Fourier transform of each of the two plots above.
Unfortunately, for the beaded string, most of features you will observe will be below about
200 Hz and not be distinguishable for reasonable refresh rates. Measurements of the tension
of the string appear in the middle of the plots.

67

You can also use the script stringWatch, which omits the Fourier transform and thus is
slightly faster.

• Now using the micrometer dials, center the string in the sensor by placing the blue line over
the cyan line.

• Unlock the collets by turning their handles, increase tension to the desired amount (between
150 and 220 Netwons is safe), then lock the collets back. Note there will be some ‘creep’
in the string, illustrated by a constantly decreasing tension for a short time. Let this effect
settle down before taking measurements.

• Practice plucking the string so that vibrations stay bounded within the two black lines and
do not exhibit noise. Clipping, when the string travels outside of the range of the sensor, will
create unwanted artifacts in the Fourier transform. Noise can also occur if the vibrations get
too close to the boundary; this will manifest itself in jagged lines when the string approaches
the boundary. If you have a hard time keeping the vibrations within the limits, increase the
tension on the string, or pluck more gently.

• Stop the scope script by pressing Control-C.

• Now that you have practiced plucking, you are prepared to record a pluck. Recall that a rule
of thumb for the resolution of a Fourier transform is that the Fourier transform of a signal
of length T will have T points per Hertz. Since most of the features we want to resolve are
between 10 and 200 Hertz, we require a sample that covers something like 10 or 100 seconds.
We advise a sample rate of 5×104 samples per second, which is fast enough to prevent aliasing
problems. Record the data using the command

[x,sr] = getData(5e4,10);

Remember the semicolon or else you will have quite a few numbers spewing forth.

• Analyzing the data. As we saw in the last lab, the peaks in the Fourier transform relate to
the eigenvalues of the system. To obtain a plot of the Fourier transform, try the following:

samp_per_sec = 5e4;

duration = 10;

[x,sr] = getData(samp_per_sec, duration);

N = length(x);

semilogy([0:N-1]/duration,abs(fft(x)));

xlim([0 200]);

68

Noise in the Fourier transform comes in the form of a jittery magnitudes. Typically the first
channel (blue) is cleaner than the second (green), an artifact of the particular photodetectors
used in our assembly.

• Which peaks? Our measurements do not actually reflect a discretely beaded string, but a
continuous string with non-uniform mass distribution. Because of that, we see many more
peaks than we expect. Peaks coming from the beaded component tend to have larger mag-
nitudes and wider bases (because they decay). However, one good way to tell which peaks
are the right ones is to cheat: compare the experimental data to the frequencies you predict
from the eigenvalues of M−1K.

I Miscellaneous Notes on Using the String Lab

• Please do not move the collet plates, as they are delicately placed.

• The current string length is 42.125 inches.

• If your string breaks and another is not available, contact the lab assistant who will make
another one. (The string diameter so closely fits the beads that the crimping that inevitably
occurs when you cut a string must be milled off.)

• Occasionally MATLAB will pick up an error when you close scope, and this will prevent you
from using any other data acquisition script. If this happens, restart MATLAB.

I Laboratory Instructions

1. Select n = 2 beads, weigh them on the lab scale, set them up as described above.

2. Pluck the string several times, each time recording the eigenvalues and the fundamental
frequencies obtained from the getData script.

3. Compare these values to the eigenvalues that you would expect from the mathematical deriva-
tion described above.

4. Repeat steps 1–3 for n = 4 beads.

69

Lab 10: Hearing the Beads on a String

Our last lab studied the vibrations of a massless string loaded with beads, fixed at both ends.
Given the location of these beads and their masses, we saw how to predict to good accuracy the
frequencies of vibration. Now we turn the tables: if we know those frequencies, what can we
say about the bead locations and the masses? The answer was discovered by Mark Krein about
sixty years ago. Once more, our guide to the mathematics is the book by Gantmacher and Krein,
Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (AMS, 2002); see
Supplement II.

We begin with the same physical setting as the last lab: a massless string of length ` on which
we suspend n beads with masses m1, m2, . . . , mn, held at the uniform tension σ. We assume that
the string is lightly plucked, allowing us to approximate that the beads do not move horizontally,
only vertically. Let yj(t) denote that transverse displacement of mass mj at time t.

`0

� -
`1

� -
`2

� -
`3

� -
`4

� -

m1 m2 m3 m4

Figure 10.1: A string with four beads at rest.

I Construction of Fundamental Polynomials

We approach this problem by first building two sets of polynomials that will play a central role. In
the last lab, we saw that the bead vibrations were governed by the eigenvalues and eigenvectors of
the matrix M−1K, that is, we seek values λ and vectors u such that M−1Ku = λu, i.e.,

Ku = λMu. (10.1)

Here u ∈ Rn is a vector, and it will be most convenient if we change our notation slightly from the
last lab: uj shall denote the jth entry in the vector u, rather than the jth eigenvector. It will also
be helpful for us to refer to the displacements at the left and right ends of the string by u0 and
un+1. Using this notation, we can write out the jth row of equation (10.1) as(

− σ

`j−1

)
uj−1 +

(σ

`j−1
+
σ

`j

)
uj +

(
− σ

`j

)
uj+1 = λmjuj . (10.2)

70

We always assume that the left end of the string is fixed:

u0 = 0.

Given the kinds of matrices that M and K are, one can show that an eigenvector u of M−1K

cannot have any zero entries: uj 6= 0 for j = 1, . . . , n. In particular,

u1 6= 0.

Now notice that we can rearrange equation (10.2) into the form

uj+1 =
(
− `j
`j−1

)
uj−1 +

(
1 +

`j
`j−1

− λ`jmj

σ

)
uj . (10.3)

Since we know values for u0 and u1, we can use this last formula to produce u2, then to produce
u3, and so on: we can construct eigenvectors one entry at a time! The only trick is that we must
know an eigenvalue, λ.

What goes wrong if λ is not and eigenvalue, but we still use u0 = 0, u1 = 1 and the recurrence
formula (10.3) to generate an “eigenvector”? Everything will work out just fine until we compute
un+1. The fact that our string is fixed at the right end requires that un+1 = 0, but for arbitrary
values of λ the recurrence (10.3) will generally produce a nonzero value for un+1, indicating that
λ is not a true eigenvalue and [u1, . . . , un]T is not a true eigenvector of M−1K. If we compute
un+1 = 0 from (10.3), then the value of λ used must indeed be an eigenvalue.

This suggests a procedure for computing eigenvalues known as the shooting method : assume
initial values u0 = 0 and u1 = 1, and adjust λ until (10.3) produces un+1 = 0. (The method gets
its name from the act of progressively adjusting the angle of a cannon barrel to zero a projectile in
on a target.) Rather than simply guessing values of λ, we can get a nicer characterization through
the clever use of polynomials.

When j = 1, the formula (10.3) implies

u2 =
(
− `1
`0

)
u0 +

(
1 +

`1
`0
− λ`1m1

σ

)
u1

=
(

1 +
`1
`0
− λ`1m1

σ

)
u1

= p1(λ)u1,

where
p1(λ) :=

(
1 +

`1
`0

)
− λ

(`1m1

σ

)
is a linear polynomial in λ. For shorthand, we write p1 ∈ P1, where Pk denotes the space of
polynomials of degree k or less. Similarly, we have

u3 =
(
− `2
`1

)
u1 +

(
1 +

`2
`1
− λ`2m2

σ

)
u2

71

=
(
− `2
`1

)
u1 +

(
1 +

`2
`1
− λ`2m2

σ

)
p1(λ)u1

= p2(λ)u1,

where
p2(λ) :=

(
− `2
`1

)
+
[(

1 +
`2
`1

)
− λ

(`2m2

σ

)]
p1(λ),

which is a quadratic polynomial: p2 ∈ P2.
We can continue this process for the subsequent entries in the eigenvector:

uj+1 =
(
− `j
`j−1

)
uj−1 +

(
1 +

`j
`j−1

− λ`jmj

σ

)
uj

=
(
− `j
`j−1

)
pj−2(λ)u1 +

(
1 +

`j
`j−1

− λ`jmj

σ

)
pj−1(λ)u1

= pj(λ)u1,

where
pj(λ) :=

(
− `j
`j−1

)
pj−2(λ) +

[(
1 +

`j
`j−1

)
− λ

(`jmj

σ

)]
pj−1(λ).

(Note that pj ∈ Pj , and that this recurrence works also for j = 2 if we define p0(λ) = 1 for all λ.)
Continuing this process, we eventually arrive at

un+1 = pn(λ)u1,

where pn ∈ Pn. Since u1 6= 0, we see that

un+1 = 0 if and only if pn(λ) = 0.

In other words
λ is an eigenvalue of M−1K if and only if pn(λ) = 0.

Since pn is a polynomial of degree n, it has precisely n roots. We can build pn by following the
recurrence specified above, which requires us to know the lengths {`j}nj=0 and masses {mj}nj=1. On
the other hand, we can always build a polynomial directly from its roots, up to a constant factor.
In other words, if we know the eigenvalues λ1, . . . , λn (e.g., by physical measurement), then we
know that

pn(λ) = γ

n∏
j=1

(λ− λj),

for some constant γ.
Suppose that we know the eigenvalues λ1, . . . , λn, and use them to build the polynomial pn. Can

we reverse engineer the process described above to discover the lengths and masses? In general,
the answer is no – and this should not be entirely surprising, as we are trying to extract 2n + 1

72

pieces of information from n+ 1 pieces of data (the n eigenvalues and the total length, `). To make
the problem well determined, we need n more pieces of data.

One could imagine various sources for this data (e.g., some information about the eigenvectors).
It shall ultimately prove most convenient for us to obtain another set of eigenvalues from a closely
related problem: keep the masses and lengths the same and the left end fixed, but now allow the
right end to move in such a way that the string has zero slope at the end, i.e., un+1 = un. You
might naturally wonder whether such a condition could be reliably implemented in practice (e.g.,
by attaching the right end of the string to a ring mounted in a frictionless fashion to a pole . . .),
but suspend disbelief for the moment. (We will eventually find a sneaky way to get this data.)

The ‘zero slope’ condition over the last segment of the string will prove to be very useful. In
particular, we shall develop a recurrence akin to (10.3) for the slopes, then use this to derive a
polynomial whose roots correspond to those values of λ for which the eigenvector u satisfies the
zero slope condition.

To start, rearrange (10.3) to obtain a relation between consecutive slopes:

uj+1 − uj
`j

=
uj − uj−1

`j−1
−
(λmj

σ

)
uj . (10.4)

We can use the polynomials {pj} to write the left hand side of (10.4) in the form

uj+1 − uj
`j

=
pj(λ)u1 − pj−1(λ)u1

`j
.

Since pj ∈ Pj and pj−1 ∈ Pj−1, the right hand side is a polynomial in Pj , which we define to be

qj(λ) :=
1
`j

(pj(λ)− pj−1(λ)), (10.5)

for j = 1, . . . , n, so that qj(λ)u1 denotes the slope induced by eigenvector components uj and uj+1.
The right hand side of (10.4) can then be written as

uj − uj−1

`j−1
−
(λmj

σ

)
uj = qj−1(λ)u1 −

(λmj

σ

)
pj−1(λ)u1.

Equating our expressions for the left and right sides of (10.4), we obtain

qj(λ)u1 = qj−1(λ)u1 −
(λmj

σ

)
pj−1(λ)u1,

and since u1 6= 0, we arrive at a relation between the slope and displacement polynomials:

qj(λ) = qj−1(λ)−
(λmj

σ

)
pj−1(λ). (10.6)

A similar relation follows from rearranging the definition of the slope polynomials, (10.5):

pj(λ) = `jqj(λ) + pj−1(λ). (10.7)

73

For the string with the zero-slope boundary condition on the right, we must have

qn(λ)u1 = 0,

and hence λ must be a root of the polynomial qn(λ). Thus, knowledge of the n eigenvalues of the
string with zero-slope boundary condition on the right allows us to construct the polynomial qn up
to a scaling factor.

Now we shall see how to determine material properties of the beaded string from the polynomials
pn and qn. Using the recurrences for the slope and displacement polynomials, we have

pn(λ)
qn(λ)

=
`nqn(λ) + pn−1(λ)

qn(λ)
[by (10.7)]

= `n +
pn−1(λ)
qn(λ)

= `n +
1

qn(λ)
pn−1(λ)

= `n +
1

−(mn/σ)λpn−1(λ) + qn−1(λ)
pn−1(λ)

[by (10.6)]

= `n +
1

−(mn/σ)λ+
1

pn−1(λ)
qn−1(λ)

(10.8)

= `n +
1

−(mn/σ)λ+
1

`n−1qn−1(λ) + pn−2(λ)
qn−1(λ)

[by (10.7)]

...

= `n +
1

−(mn/σ)λ+
1

`n−1 +
1

−(mn−1/σ)λ+ · · ·+ 1

`1 +
1

−(m1/σ)λ+
1
`0

, (10.9)

which is called a continued fraction form of the rational function pn/qn, and from this beautiful
decomposition we can simply read off the masses and string lengths.

To summarize: the eigenvalues of the original system give us the polynomial pn up to a scaling
factor; the eigenvalues of the system with zero-slope on the right end give us qn up to a scaling

74

factor. To construct the continued fraction decomposition (10.9), we used knowledge of the sub-
ordinate polynomials pn−1, qn−1, . . . , which we could not immediately construct directly from the
two sets of eigenvalues. Thus we seek some method for computing the continued fraction decompo-
sition (10.9) that does not require us to know pn−1, qn−1, etc. If we had a recipe for constructing
this decomposition, then we could then read off the values of `j and mj/σ. These would be off by
a scaling factor inherited from pn and qn, but that can be resolved from our knowledge of the total
length `: we must have

∑n
j=0 `j = `. Our next goal is to determine an algorithm that will deliver

the continued fraction decomposition.

I A Recipe Recovering Material Parameters from Polynomials

Suppose we have the measured the eigenvalues of the string with both ends fixed,

λ1 < λ2 < · · · < λn,

and the eigenvalues of the string with fixed left end and a zero-slope on the right,

λ̂1 < λ̂2 < · · · < λ̂n.

With these eigenvalues, we can construct a pair of degree-n polynomials,

an(λ) =
n∏
j=1

(λ− λj) = λn + α1λ
n−1 + α2λ

n−2 + · · ·+ αn−1λ+ αn (10.10)

bn(λ) =
n∏
j=1

(λ− λ̂j) = λn + β1λ
n−1 + β2λ

n−2 + · · ·+ βn−1λ+ βn. (10.11)

Because an and bn of these have a coefficient of one multiplying the leading term, λn, they are
called monic polynomials. These polynomials equal pn and qn up to constants, and so the ratio
an/bn differs from pn/qn only by a constant, which we shall call γn:

γn
pn(λ)
qn(λ)

=
an(λ)
bn(λ)

.

Our goal is to determine a continued fraction decomposition of an/bn that will expose the material
properties of our beaded string. In particular, we seek to write the ratio of the degree n monic
polynomials an and bn as continued fractions involving degree n − 1 monic polynomials an−1 and
bn−1. In particular, we shall seek ξn and γn−1 so that we can write

γn
pn(λ)
qn(λ)

=
an(λ)
bn(λ)

= 1 +
1

−ξnλ+
1

γ−1
n−1

an−1(λ)
bn−1(λ)

.

Once we know how to compute this decomposition, we can apply the same ideas to the ratio
an−1/bn−1, and so on, until we arrive at the monic constants, a0(λ) = 1 and b0(λ) = 1. At this
stage, we will have a decomposition that matches (10.9) up to a constant.

75

Before undertaking the somewhat intricate derivation of this decomposition, we summarize
the results we shall soon justify in the form of recipe for recovering lengths and masses for the
eigenvalues λ1, . . . , λn and λ̂1, . . . , λ̂n.
A note about notation: In what follows, a1 refers to the first element of the vector a, a2:k refers to
vector consisting of the second through kth elements of a, and similarly for b1 and b2:k.

Construct vectors a := [α1, α2, . . . , αn] and b := [β1, β2, . . . , βn] from (10.10) and (10.11).
for k := n, n− 1, . . . , 1

ξk := 1/(b1 − a1)
a := a− b
b := b + ξk[a2:k 0]
γk−1 := b1/a1

a := a2:k/a1

b := b2:k/b1

end

γn :=
1
`

(
1 +

1
γn−1

+
1

γn−2γn−1
+ · · ·+ 1

γ0γ1 · · · γn−1

)
`n := 1/γn
for k := n, n− 1, . . . , 1

`k−1 := `k/γk−1.
mk := σξk/`k

end

I A Derivation of the Continued Fraction Decomposition of an/bn

Now we shall explain where this algorithm comes from. Inspired by the formula (10.8) on the last
page, we would like to write

an(λ)
bn(λ)

= νn +
1

−ξnλ+
1

ân−1(λ)

b̂n−1(λ)

for some constants ξn and νn, and some polynomials ân−1 and b̂n−1, each of degree n − 1. Does
such a decomposition exist? Indeed it does, and we shall show how to determine its various terms.
Algebraically manipulate the right hand side to obtain the equivalent expression

an(λ)
bn(λ)

= νn +
ân−1(λ)

−ξnλân−1(λ) + b̂n−1(λ)
. (10.12)

Our first goal is to determine νn. The definitions of an and bn imply that the left hand side of (10.12)
tends to 1 as λ → ∞, so the same would need to be true of the right hand side. Given that ân−1

76

and b̂n−1 are of degree n− 1, the second term on the right of (10.12) goes to zero as λ→∞, so we
must conclude that

νn = 1.

This would then imply that

an(λ)− bn(λ)
bn(λ)

=
ân−1(λ)

b̂n−1(λ)− ξnλân−1(λ)
.

By equating the numerators and denominators, this formula suggests that we define

ân−1(λ) := an(λ)− bn(λ)

b̂n−1(λ) := bn(λ) + ξnλân−1(λ).

Do these definitions jibe with our demand that both ân−1 and b̂n−1 be degree n− 1 polynomials?
Since an and bn have λn as a common leading term, the definition of ân−1 ensures that its λn

coefficient is zero, and hence ân−1 has degree n− 1. Now we check b̂n−1:

b̂n−1(λ) = bn(λ) + ξnλ
(
an(λ)− bn(λ)

)
=
(
λn + β1λ

n−1 + · · ·+ βn
)

+ ξnλ
(
(α1 − β1)λn−1 + (α2 − β2)λn−2 + · · ·+ (αn − βn)

)
=
(
1 + ξn(α1 − β1)

)
λn +

(
β1 + ξn(α2 − β2)

)
λn−1 + · · ·+

(
βn−1 + ξn(αn − βn)

)
λ+ βn.

This polynomial will have degree n− 1 provided the coefficient of λn is zero, which we can ensure
by assigning the only remaining free parameter to be

ξn :=
1

β1 − α1
.

In summary, we have determined that we can find constant ξn and degree n− 1 polynomials ân−1

and b̂n−1 so that

γn
pn(λ)
qn(λ)

=
an(λ)
bn(λ)

= 1 +
1

−ξnλ+
1

ân−1(λ)

b̂n−1(λ)

.

To get the full continued fraction that reveals all the lengths and masses as in (10.9), we would like
to apply this procedure recursively to ân−1/b̂n−1, but one small adjustment is needed. Recall that
we started with polynomials an and bn that had leading term λn; in general, ân−1 and b̂n−1 will
have nontrivial coefficients multiplying λn−1, as given by

ân−1(λ) =
(
α1 − β1

)
λn−1 + · · ·+

(
αn−1 − βn−1

)
λ+

(
αn − βn

)
b̂n−1(λ) =

(
β1 + ξn(α2 − β2)

)
λn−1 + · · ·+

(
βn−1 + ξn(αn − βn)

)
λ+ βn,

77

and these leading coefficients must be scaled out. Define a constant to capture the ratio of these
coefficients,

γn−1 :=
β1 + ξn(α2 − β2)

α1 − β1
,

so that if we define

an−1(λ) :=
ân−1(λ)
α1 − β1

= λn−1 +
α2 − β2

α1 − β1
λn−2 + · · ·+ αn − βn

α1 − β1
(10.13)

bn−1(λ) :=
b̂n−1(λ)

β1 + ξn(α2 − β2)

= λn−1 +
β2 + ξn(α3 − β3)
β1 + ξn(α2 − β2)

λn−2 + · · ·+ βn−1 + ξn(αn − βn)
β1 + ξn(α2 − β2)

λ+
βn

β1 + ξn(α2 − β2)
,(10.14)

then

γn−1
ân−1(λ)

b̂n−1

=
an−1(λ)
bn−1(λ)

.

Using this expression, our evolving continued fraction takes the form

γn
pn(λ)
qn(λ)

=
an(λ)
bn(λ)

= 1 +
1

−ξnλ+
1

γ−1
n−1

an−1(λ)
bn−1(λ)

.

Note that the coefficients of an−1 and bn−1 can be extracted directly from those of an and bn by
way of the formulas (10.13) and (10.14).

Now apply the procedure we have just described to an−1/bn−1 to obtain the decomposition

an−1(λ)
bn−1(λ)

= 1 +
1

−ξn−1λ+
1

γ−1
n−2

an−2(λ)
bn−2(λ)

,

and continue this process until one finally arrives at a0(λ)/b0(λ): this term must be trivial, since,
by definition, a0(λ) = 1 and b0(λ) = 1 for all λ.

This construction might well seem extremely intricate, but if you keep a clear head you will
find that it becomes rather mechanical. To illustrate this claim, we will work through an example
for the n = 2 case. Once you see these details, larger values of n will be a snap.

Before we proceed to this concrete example, we should address one or two fine points that might
have crossed your mind. (1) Can we be certain that this procedure does not break down? That
is, can we be sure that we never encounter γj = 0, which would give a division by zero? (2) Are
the choices for ξj and γj unique, or are there other equivalent continued fraction decompositions

78

of pn/qn with different constants? For our beaded strings, these issues conveniently will never
arise: the procedure never breaks down, and the decomposition is unique. The details are beyond
the scope of these denote; for more information, consult Gantmacher and Krein (Supplement II,
especially the lemma on page 284). (3) How robust is this procedure to small errors in the data,
i.e., the eigenvalues? You could explore this fascinating question by conducting experiments with
synthetic data: exact eigenvalues computed from the M−1K matrix we constructed in the last lab.

I Special case: n = 2

In the case of a string with two beads, we twice apply the procedure outlined above to obtain

γ2
p2(λ)
q2(λ)

=
a2(λ)
b2(λ)

= 1 +
1

−ξ2λ+
1

γ−1
1

a1(λ)
b1(λ)

= 1 +
1

−ξ2λ+
1

γ−1
1

1 +
1

−ξ1λ+
1

γ−1
0

a0(λ)
b0(λ)


= 1 +

1

−ξ2λ+
1

γ−1
1

1 +
1

−ξ1λ+
1

γ−1
0


= 1 +

1

−ξ2λ+
1

γ−1
1 +

1

−ξ1γ1λ+
1

γ−1
0 γ−1

1

.

Dividing through by the as yet unknown constant γ2, we obtain

p2(λ)
q2(λ)

= γ−1
2 +

1

−ξ2γ2λ+
1

γ−1
1 γ−1

2 +
1

−ξ1γ1γ2λ+
1

γ−1
0 γ−1

1 γ−1
2

. (10.15)

Comparing this term-by-term with the formula (10.9), we identify

`2 =
1
γ2
, `1 =

1
γ1γ2

, `0 =
1

γ0γ1γ2
,

m2 = σξ2γ2, m1 = σξ1γ1γ2.

Even this simple case provides enough clues for you to guess general formulas for n > 2.

79

Given the eigenvalues λ1, λ2, λ̂1, and λ̂2, we can determine the constants ξ2, γ2, ξ1, γ1, and γ0

through the procedure outlined above. Furthermore, we presume that we can measure the tension
σ from the force transducer in the laboratory, and that we also know the total length of the string,
` = `0 + `1 + `2. This last expression finally gives us a formula for last remaining unknown, γ2:
since

` =
1
γ2

+
1

γ1γ2
+

1
γ0γ1γ2

,

we conclude that

γ2 =
1
`

(
1 +

1
γ1

+
1

γ0γ1

)
.

With γ2 in hand, we can compute all the lengths and masses.

I Symmetrically Loaded Strings

Having seen how to determine the bead locations and masses from two sets of eigenvalues, we now
must address the practical issue of experimentally measuring those eigenvalues. When the string is
fixed at both ends, we can approximate the eigenvalues using the reliable experiments performed
in the last lab. It is much more difficult to work with a string with fixed left end and zero slope
condition on the right. (We shall call such a string ‘fixed–flat’ to distinguish it from the usual
‘fixed-fixed’ string.) Fortunately, there is a interesting special case for which we can determine
these eigenvalues without any modification to the experimental apparatus.

Suppose that the number of beads, N , is even, and the masses of the beads and lengths be-
tween them are symmetric about the midpoint of the string. To distinguish this case from the
general scenario considered earlier, we will denote these masses by M1, . . . ,MN , and the lengths by
L0, . . . , LN , with the total length L =

∑N
j=0 Lj . Thus, the symmetric arrangement requires that

M1 = MN

M2 = MN−1

...

MN/2 = MN/2+1,

L0 = LN

L1 = LN−1

...

LN/2−1 = LN/2+1

L0

�-
L1

� -
L2

� -
L3

� -
L4

� -
L5

� -
L6

�-

M1 M2 M3 M4 M5 M6

Figure 10.2: A string with six beads with lengths and masses arranged symmetrically about the
middle of the string, denoted by the vertical gray line.

80

as illustrated for N = 6 in Figure 10.2. We can set up such a symmetric arrangement on our labo-
ratory’s monochord, and then experimentally measure the eigenvalues when both ends of the string
are fixed; let us label these eigenvalues Λ1,Λ2, . . . ,ΛN . In Figure 10.3 we show the eigenvectors for
the configuration shown in Figure 10.2.

Λ1 = 0.17863 . . . Λ2 = 0.55759 . . .

Λ3 = 1.77777 . . . Λ4 = 2.15076 . . .

Λ5 = 2.48803 . . . Λ6 = 3.51386 . . .

Figure 10.3: Eigenvectors for the string shown in Figure 10.2. In each plot, the vertical displacement
of the jth mass indicates the jth entry of the eigenvector of M−1K.

These eigenvectors reveal a remarkable property: eigenvectors corresponding to odd eigenvalues
Λ1, Λ3, and Λ5 are all symmetric about the middle of the string: If we cut the string in half, these
eigenvectors would be fixed on the left end and have zero slope at the right. On the other hand,
eigenvectors corresponding to even eigenvalues Λ2, Λ4, and Λ6 are all antisymmetric about the
midpoint: If we cut the string in half, these eigenvectors would be fixed at zero at both ends.
These observations hold for all symmetric string configurations, and they hint at a key fact:

The N eigenvalues of a symmetric beaded string fixed at both ends exactly match the
N/2 fixed-fixed and N/2 fixed-flat eigenvalues associated with half of the string.

More precisely, consider the string of length ` = L/2 loaded with n = N/2 beads with masses

mj = Mj , j = 1, . . . , n

separated by lengths

`j = Lj , j = 0, . . . , n− 1

`n = Ln/2.

81

The odd eigenvalues for the symmetric string match the eigenvalues for the fixed-flat half string,

λ̂j = Λ2j−1, j = 1, . . . , n

while the even eigenvalues for the symmetric string match the eigenvalues for the fixed-fixed half
string,

λj = Λ2j , j = 1, . . . , n.

Figure 10.4 shows eigenvectors for the half-string corresponding to the symmetric string in Fig-
ure 10.2. The fixed-flat eigenvectors are shown in the left column; they correspond to the left
halves of the eigenvectors show on the left of Figure 10.3, and the eigenvalues match Λ1, Λ3, and
Λ5 exactly. Similarly, the fixed-fixed eigenvectors on the half-string, shown on the right of Fig-
ure 10.4, equal the left halves of the eigenvectors on the right of Figure 10.3, and the eigenvalues
match Λ2, Λ4, and Λ6.

λ̂1 = 0.17863 . . . λ1 = 0.55759 . . .

λ̂2 = 1.77777 . . . λ2 = 2.15076 . . .

λ̂3 = 2.48803 . . . λ3 = 3.51386 . . .

Figure 10.4: Eigenvectors for the half-string corresponding to the symmetric configuration in Fig-
ure 10.2. The eigenvectors on the left satisfy the fixed-flat conditions; those on the right satisfy
fixed-fixed conditions. Compare to the eigenvectors for the symmetric string if Figure 10.3.

We have arrived at a method for obtaining the data required for the inversion procedure de-
scribed in the last section, provided our string has symmetrically arranged beads.

1. Pluck the symmetric string and record the N = 2n eigenvalues Λ1, . . . ,Λ2n.

2. Relabel these eigenvalues for the corresponding half-string: λj = Λ2j and λ̂j = Λ2j−1 for
j = 1, . . . , n.

82

3. Apply the inversion method to half-string eigenvalues to obtain `0, . . . , `n and m1, . . . ,mn.

4. Recover the parameters for the original symmetric string:

L0 = LN = `0, . . . Ln−1 = Ln+1 = `n−1, Ln = 2`n;

M1 = MN = m1, . . . Mn = Mn+1 = mn.

Finally, we are prepared to attempt this procedure on some real data.

I Lab Instructions

1. For n = 1 and n = 3 beads, work out the form of the continued fraction expansion of pn/qn
involving ξ1, . . . , xn and γ0, . . . , γn (analogous to equation (10.15)), and give formulas for
`0, . . . , `n and m1, . . . ,mn.

2. Collect data for a string with two symmetrically arranged beads, and use the n = 1 formulas
to determine the bead positions and masses. How well do these agree with the true values?

3. Repeat the last experiment with four symmetrically arranged beads, now using the n = 2
formulas given above.

Optional, but strongly recommended:

4. Develop a MATLAB script that will implement the inversion procedure for a general value
of n. Generate synthetic eigenvalues for a symmetric string using the code you developed for
the last lab, and use these eigenvalues to test your inversion algorithm. How robust the the
process to small changes in the eigenvalues? How reliable is your method for larger values
of n?

83

