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setting for the talk

> Let A € C"" be a large square matrix, potentially non-Hermitian (A # A*).
» Computing all eigenvalues of A is too expensive (and usually not needed).

» Thus we seek m < n distinguished eigenvalues relevant to our application
(largest, smallest, rightmost, etc.)
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setting for the talk

> Let A € C"" be a large square matrix, potentially non-Hermitian (A # A*).
» Computing all eigenvalues of A is too expensive (and usually not needed).

» Thus we seek m < n distinguished eigenvalues relevant to our application
(largest, smallest, rightmost, etc.)

» Projection Methods
V C C" = k-dimensional subspace of C", the projection subspace for A
The columns of V € C"* for an orthonormal basis for V:

V'V =1 VAV e C**

We hope some eigenvalues of VAV ¢(V*AV) = {64,..., 0k}

approximate some eigenvalues of A. o(A) ={A1,..., \n}

For example, O~ N\, ... On=An for some 1 < m < k.

» This talk mainly describes established results for the deterministic case,
with some thoughts from a RandNLA perspective along the way.



why consider A = A* ?

While Hermitian problems are common (SVD, quantum mechanics, etc.),
many important applications lead to non-Hermitian problems — and subtler
issues of spectral perturbation theory. Many examples: [Trefethen, E. 2005].
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projection-based eigensolvers

V C C" = k-dimensional subspace of C", the projection subspace for A.

The columns of V € C"** form an orthonormal basis for V:

V'V =1 VAVeC*
We hope some eigenvalues of V*AV o(V*AV) = {6y,...,6k}
approximate some eigenvalues of A. a(A)={\1,..., A}

For example, b ~A, ... On=An for some 1 < m < k.



projection-based eigensolvers

V C C" = k-dimensional subspace of C", the projection subspace for A.

The columns of V € C™** form an orthonormal basis for V:
V'V=I  VAVeC*
We hope some eigenvalues of V*AV o(V*AV) = {6y,...,6k}
approximate some eigenvalues of A. a(A)={\1,..., A}

For example, b ~A, ... On=An for some 1 < m < k.

Power method (minimal storage, easy to implement, can be slow)

V = span{APx}

Subspace iteration  (more storage, subtler to implement, computes repeated eigs)
V = Range(APX) for X € C"™**
[Halko, Martinsson, Tropp 2011] et al.



projection-based eigensolvers: krylov methods

Power method (minimal storage, easy to implement, can be slow)

V = span{APx}

Subspace iteration  (more storage, subtler to implement, computes multiple eigs)

V = Range(APX) for X € C"™**

Krylov subspace methods (growing subspace dimension; higher powers of A)
V = span{x, Ax, A%, ..., A" 1x}

Block Krylov methods (subspace dimension grows quickly: dim(V) < kb)
V = Range([X AX A2X ... A*7X]) for X € C"**
SVD: [Musco & Musco 2015], [Drineas et al. 2018]

Must balance benefit of large k with block size b, storage.



projection-based eigensolvers: krylov methods (extensions)

Krylov subspace methods (growing subspace dimension; higher powers of A)
V = span{x, Ax, A’x, ..., A*"Ix}

Restarted Krylov (used in eigs: filter ¢ improves starting vector)
V = span{u(A), Au(A), A%0(A)x. .. A 5(A)x)

Polynomial Preconditioned Krylov (very high degree polys, care needed)
V = span{x, 7(A)x, 7(A)*x, ..., m(A)*'x}

Shift-Invert Krylov (used in eigs: ideal for eigenvalues near p)
V = span{x, (A — ) 71)x, (A = pl) 2%, .., (A= pl) "¢ x}

Rational Krylov (helps for finding eigenvalues in a region)
V= span{x, (A - /’Ll)ilxa (A - N’2)7lxv LR (A - N’k—ll)ilx}



preliminaries: spectral structure of A

v

Distinct eigenvalues of A: A1, A2, ..., A5

v

Spectral projectors P; and invariant subspaces U;:
1 -1
Pi:=— [ (21— A) " dz, U, := Range(P;),
27i r
[; is a contour in C containing \; but no other distinct eigenvalues.

> If A= A" and ); is simple with unit eigenvector uj, then P; = u;u;.

v

P; is a projector onto the invariant subspace U;,
but P; need not be an orthogonal projector when A # A*.
A
» The spectral projectors give a resolution of the identity: Z P, =1
j=1



preliminaries: spectral structure of A

v

Distinct eigenvalues of A: A1, A2, ..., A5
Spectral projectors P; and invariant subspaces U;:
1 -1
Pi:=— [ (21— A) " dz, U, := Range(P;),
27i r
[; is a contour in C containing \; but no other distinct eigenvalues.
If A= A" and ); is simple with unit eigenvector uj, then P; = u;u;.

P; is a projector onto the invariant subspace U;,
but P; need not be an orthogonal projector when A # A*.

n
The spectral projectors give a resolution of the identity: Z P, =1
j=1

Py =P+ - +Ps U, := Range(Py), m = dim(Uyg).

Py, :=1— Py, U, := Range(Py), dim(Uy) = n— m.



preliminaries: angles between subspaces

» 'V = approximating subspace.
For our problems, V = &K (A, x) := span{x, Ax, A’x, ..., A" 1x}.

» U, = desired invariant subspace

» Measure convergence via the containment gap:

6(Ug, V) = maxsinZ(u,V) = max min
ucUy

min |ju — v||
vev

v

» We will monitor how 6(Ug, Ik (A, x)) develops as k increases.



example convergence behavior, A # A*

5(Ug, Kk (A, x))

k < m warm-up

sublinear convergence
(starting vector bias)
(nonorthogonal eigenvectors)
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subspace dimension, k

cf. GMRES convergence model of [Nevanlinna 1993]
example adapted from [Beattie, E., Rossi 2004]



basic convergence model

Building on [Saad 1980, 1983], [Jia 1995], [Sorensen 2002], [Beattie, E., Rossi 2004],
and others....

Theorem [Beattie, E., Sorensen 2005].

Suppose Uy is reachable from the Krylov space K (A, x).
Then for k > 2m,

0(Ug, Ki(A,x)) < GG . min  max |1 — «a(z)¢(z)].

EPr o ZEQD

» (G = Gi(A,x) = measure of starting vector bias.
> G = G(A, Q) = measure of eigenvector departure from orthogonality.
» Py_»m = set of polynomials of degree k — 2m or less.

> Q, C C contains the undesired eigenvalues.

> a(z)=(z— 1) (2= Am).



Invariant Subspaces
reachable by

Krylov Subspaces



reachable invariant subspaces

> If x € C" lacks a component in the desired eigenvector, e.g.,
P1X = 0,

the desired eigenvalue/eigenvector is invisible to Krylov methods
(in exact arithmetic). For example, in the power method

APx = D> MNPix = 0+ NPy,
j=1 j=2

the eigenvalue A1 has no influence. (We will address this more later.)

» A different problem arises when A has repeated eigenvalues with linearly
indpendent eigenvectors (derogatory eigenvalues).

A simple example: A =1 (identity matrix).
K (A, x) = span{x, Ax, ..., A*"'x} = span{x}.

The Krylov method converges in one step (happy breakdown),
exactly finding one copy of the eigenvalue A = 1 and eigenvector x.



reachable invariant subspaces

A more perplexing example from Chris Beattie [Beattie, E., Rossi 2004]:

1 1

1 1 c

A= 1 , x= |1
1 1 1

1 1 1

By taking c large, we bias x toward the eigenvector [0,1,0,0,0]".

For any c¢ the Krylov method breaks down (happily) at iteration k = 3,
discovering the Jordan block and invariant subspace

100
V'AV=S|1 1 0 |SH, Range
01 1

== =0
= =)
= O OO o

The Krylov method finds the 3 x 3 Jordan block with eigenvector [0,0,0,0,1]".

Only a set of measure zero x can discover [0,1,0,0,0]".



reachable invariant subspaces

» Unlucky choices of x € C" can (in principle) prevent the Krylov method
from seeing a desired (simple) eigenvector.

This behavior is fragile to numerical computations, since infinitesimal
perturbations to x will add a small component in the desired eigenvector.

» Single-vector Krylov methods can (in principle) find one Jordan block
associated with each eigenvalue.

This behavior is fragile to numerical computations, since infinitesimal
perturbations split multiple eigenvalues.

> Block Krylov methods (with block size b, X € C"*?)
K (A, X) = Range([X AX A’X ... A*'X]),

can find b linearly independent eigenvectors for a single eigenvalue.



How does the
starting vector x

affect convergence ?



effect of starting vector on convergence

Henceforth assume the desired invariant subspace W is reachable from x:
U, C Kn(A,x).

How does x influence convergence?
For a single eigenpair (A1, u1) with spectral projector P1, Saad [1980] gives
1
sin Z(u1, Kk(A, x)) < min ||(1 — Py)y(A)]],

- HPIXH PEPK_1
d(A1)=1

The leading constant grows as the orientation of x toward uy diminishes.



effect of starting vector on convergence

Henceforth assume the desired invariant subspace W is reachable from x:
U, C Kn(A,x).

How does x influence convergence?

For a single eigenpair (A1, u1) with spectral projector P1, Saad [1980] gives

1
sin Z(u1, K (A, x)) < min |- P A)ll,
! ( 1 k( )) HPle </>€Plk—1 H( 1)1/)( )H
d(A1)=1

The leading constant grows as the orientation of x toward uy diminishes.

For m-dimensional invariant subspaces Ug, our bounds replace 1/||Pix|| with

[9(A)Pox|| [[Pov]|

G = X = X ,
P wekn s [O(APx] T vekin(An [Py

the ratio of the bad to the good component in the worst approximation to Uy
from the m-dimensional Krylov space.



effect of starting vector on convergence

A = symmetric matrix (n = 128) with
8 desired eigenvalues in [1,2];
120 undesired eigenvalues in [—1,0].

0 = Z(x,Us), the angle between x and its best approximation in Us.
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effect of starting vector on convergence

A = symmetric matrix (n = 128) with
8 desired eigenvalues in [1,2];
120 undesired eigenvalues in [—1,0].

0 = Z(x,Us), the angle between x and its best approximation in Us.
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How do the
eigenvalues of A

affect convergence ?



asymptotic convergence rate determined by eigenvalues

. -
ppin - max 11— a(z)¢(2)]

» Py_»m = set of polynomials of degree k — 2m or less.

» Q, C C contains the undesired eigenvalues.

> a(z)=(z—X1) (2= An).
The polynomial approximation problem gives convergence like C ~* for some
constant C and rate 7.

» When A = A", Q, = [Am+1, An], and use Chebyshev polynomials to
compute the convergence rate ~.

» When €2} is a simply connected open subset of C, use conformal mapping
to approach the approximation problem.



potential theoretic determination of the convergence rate

Step 1: Begin by identifying undesired (-) and desired (x) eigenvalues.




potential theoretic determination of the convergence rate

Step 2: Bound bad eigenvalues with Q.




potential theoretic determination of the convergence rate

Step 3: Conformally map C \ Q to the exterior of the unit disk.

ok




potential theoretic determination of the convergence rate

H

Step 4: Find the lowest level curve of the Green's function intersecting
a good eigenvalues.




potential theoretic determination of the convergence rate

H

=\

Step 5: Invert map to obtain curves of constant convergence rate in the
original domain.

Black circles on final figure are Fejér points, asymptotically optimal interpolation points for ¢.



convergence rate: and granularity of the spectrum

If convergence is very slow, perhaps you are solving the wrong problem.



convergence rate: and granularity of the spectrum

If convergence is very slow, perhaps you are solving the wrong problem.
Consider m = 1, where we can use the elementary bound [Saad 1980]
1 .
min [|(I = P1)p(A)].

IPix|| Py,
d(A1)=1

sin Z(u1, Kk (A, x)) <

Suppose A = A™ and we seek leftmost eigenvalue A1, where

A< A << A

The error bound suggests the progress made at each iteration is like

VE—1 An— A1

= h = .
Yy \/E+17 where K Mo — A

When A is a discretization of an unbounded operator, we expect
An = ||A]| = 0o as n — co. The convergence rate goes to one as n — oo.

Thus Krylov subspace methods often perform poorly for PDE eigenvalue
problems — unless the set-up is modified.



convergence slows as the discretization improves

Apply the Krylov method to discretizations of the Laplacian in one dimension.

How does the convergence rate change as the discretization improves?

10°

n = 256
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convergence slows as the discretization improves

Apply the Krylov method to discretizations of the Laplacian in one dimension.

How does the convergence rate change as the discretization improves?

10°

n = 4096
n = 2048
n = 1024

n =512

n = 256




Convergence of Krylov Subspace Projection
The problem becomes immediately apparent if we attempt to run Krylov
subspace projection on the operator itself,
Ki(L, f) =span{f,Lf, ... LK'f}.
For Lu = —u" with Dirichlet boundary conditions, u(0) = u(1) =1,
take some starting vector f € Dom(L), i.e.,
f(0)=f(1)=0.
In general Lf ¢ Dom(L), so we cannot build the next Krylov direction L*f = L(Lf).
The Krylov algorithm breaks down at the third step.



Convergence of Krylov Subspace Projection

The problem becomes immediately apparent if we attempt to run Krylov
subspace projection on the operator itself,

Ki(L, f) =span{f,Lf, ... LK'f}.
For Lu = —u" with Dirichlet boundary conditions, u(0) = u(1) =1,
take some starting vector f € Dom(L), i.e.,

f(0)=f(1)=0.

In general Lf ¢ Dom(L), so we cannot build the next Krylov direction L*f = L(Lf).
The Krylov algorithm breaks down at the third step.

The operator setting suggests that we instead apply Krylov to L™
Ki(L™Y F) = span{f, L7, ... L= Df}
In this case, L™ is a beautiful compact operator:
(L'F)(x) = //f + G+ Gix,
where we choose Cy and C; so that

(L7*F)(0) = (L7'F)(1) = 0.



krylov projection applied to the operator

We run the Krylov method on L™! exactly in Mathematica.
Denote the eigenvalue estimates at the kth iteration as 95“) < ng) <. < 9\

k
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Observe superlinear convergence as k increases.

For CG and GMRES applied to operators, see [Winther 1980], [Nevanlinna 1993], [Moret 1997],
[Olver 2009], [Kirby 2010]. For “superlinear” convergence in finite dimensional settings, see [van
der Sluis, van der Vorst, 1986], [van der Vorst, Vuik, 1992], [Beattie, E., Rossi 2004], [Simoncini,
Szyld 2005].



krylov projection applied to the operator

We run the Krylov method on L™! exactly in Mathematica.
Denote the eigenvalue estimates at the kth iteration as 95") < ng) <. < 9\

k
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__ 10°f
)
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|
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=
>
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10—12

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
k

Observe superlinear convergence as k increases.

For CG and GMRES applied to operators, see [Winther 1980], [Nevanlinna 1993], [Moret 1997],

[Olver 2009], [Kirby 2010]. For “superlinear” convergence in finite dimensional settings, see [van
der Sluis, van der Vorst, 1986], [van der Vorst, Vuik, 1992], [Beattie, E., Rossi 2004], [Simoncini,
Szyld 2005].

This mode of computation is preferred for discretization matrices as well:
the shift-invert Arnoldi method uses JKi((A — ul)™%, x).




polynomial preconditioning: a cheap spectral transformation

Replace the conventional Krylov space
K«(A,x) = span{x, Ax, A, ..., Akilx}
with the polynomial preconditioned transformation

K (m(A),x) = span{x, 7(A)x, 7(A)’x, ..., w(A)'x}.

[Thornquist 2006], [E., Loe, Morgan arXiv:1806.08020]

Use the polynomial 7 to separate the interesting eigenvalues.

Often increases matvecs, but decreases iterations (hence orthogonalization).

For example, with Hermitian A, take 7 to be the degree-d MINRES residual
polynomial [Paige & Saunders 1975], which attains

min [|p(A)b].
PEPy
p(0)=1

This polynomial tends to separate smallest-magnitude eigenvalues.



polynomial preconditioning: a cheap spectral transformation

Polynomial preconditioning: Hermitian A, MINRES polynomial.
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How do the
eigenvectors of A

affect convergence ?



bounding functions of a matrix
If A'is normal (A*A = AA™), eigenvectors are orthogonal. For f analytic on o(A),

f(A)|| = f(N)].
IF(A)] = max [F(3)

For nonnormal A, the situation is considerably more complicated.

> If A is diagonalizable, A = UAUL, then
f(A)| < |u|l|u? ().
I < U max [FO)

» For the numerical range (field of values) W(A) = {v*Av : |v|] = 1},
< .
IR < (1+v2)  max [f(2)]

» For the e-pseudospectrum o.(A) = {z € o(A + E) for some ||E|| < €},

L.
= max_|f(z)],
27e z€as(A)| @)

(Al <

where L. is the boundary length of o.(A).



constant to account for nonnormality
G = G(A, Q) comes from bounding ||f (Al )|, f(z) =1 — a(z)¢(2).

Theorem [Beattie, E., Sorensen 2005].

Suppose Uy is reachable from the Krylov space JCk(A, x).
Then for k > 2m,

0(Ug, Ki(A,x)) < GG . min  max |1 — a(z)¢(z)|.

Px_om zEQ,

> If Q, = o(Ay,) (no defective eigenvalues), then G, = ||U,]| ||U}
where the columns of U, € C™*("=™ are eigenvectors of Aly,.

|\

> If Qp = W(Aly,) then G =1+ V2.
> If Qp = 0-(Aly,) then G = L./(2me).

Tension: balance C; > 1 verses size of €.



transient behavior of the power method
Large coefficients in the expansion of xq in the eigenvector basis can lead to
cancellation effects in x, = A¥xq.
Example: here different choices of o and (3 affect eigenvalue conditioning,

1 « 0 1

—4a 8a3/21
A= 0 3/4 ﬂ N u; = 0 , U = 1 , Uz = —25/3
0 0 -—3/4 0 0 1

a=10,8=0

[Trefethen & E. 2005]



restarting
krylov suspace

methods

an essential tool for controlling subspace dimension



restarting krylov methods

restarted Arnoldi algorithm (eigs)

To compute m < k eigenvalues of A € C"*",
Arnoldi methods restrict A to act on the
k-dimensional Krylov subspace

Ran(V) = span{x, Ax, ..., A“"1x}.

Compute eigenvalues of V*AV (Ritz values),
and order them by relevance; e.g., if seeking
the rightmost eigenvalue of A, let

Ref; > Refy > --- > Rely.

Exact shifts [Sorensen 1992] restart the
method, attempting to improve v with a
polynomial filter having the “unwanted” Ritz
values as roots:

Xt = (A= Ompil) -+ - (A = Okl)x.
To understand convergence, one must

understand how the Ritz values are
distributed over o(A).

-0.5

15

o desired
eigenvalues
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restarting krylov methods

restarted Arnoldi algorithm (eigs)

To compute m < k eigenvalues of A € C"*",
Arnoldi methods restrict A to act on the
k-dimensional Krylov subspace

Ran(V) = span{x, Ax, ..., A“"1x}.

Compute eigenvalues of V*AV (Ritz values),
and order them by relevance; e.g., if seeking
the rightmost eigenvalue of A, let

Ref; > Refy > --- > Rely.

Exact shifts [Sorensen 1992] restart the
method, attempting to improve v with a
polynomial filter having the “unwanted” Ritz
values as roots:

Xt = (A= Ompil) -+ - (A = Okl)x.
To understand convergence, one must

understand how the Ritz values are
distributed over o(A).
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restarting krylov methods

15

restarted Arnoldi algorithm (eigs)

To compute m < k eigenvalues of A € C"*",
Arnoldi methods restrict A to act on the
k-dimensional Krylov subspace

Ran(V) = span{x, Ax, ..., A" Ix}. °r o
Compute eigenvalues of V*AV (Ritz values), s *
and order them by relevance; e.g., if seeking 12

the rightmost eigenvalue of A, let E

Ref; > Refr > --- > Ref.

-15
-15 -1 -0.5 0 05 1 15
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Exact shifts [Sorensen 1992] restart the Shade ~ log,o(magnitude of filter polynomial)
method, attempting to improve v with a

polynomial filter having the “unwanted” Ritz

values as roots:

xi = (A= 0Omiil)- - (A —OD)x.

To understand convergence, one must
understand how the Ritz values are
distributed over a(A).



restarting krylov methods

restarted Arnoldi algorithm (eigs)

To compute m < k eigenvalues of A € C"*",
Arnoldi methods restrict A to act on the
k-dimensional Krylov subspace

Ran(V) = span{x, Ax, ..., A" Ix}. °r o
Compute eigenvalues of V*AV (Ritz values), s *
and order them by relevance; e.g., if seeking 12

the rightmost eigenvalue of A, let E

Ref; > Refr > --- > Ref.
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Exact shifts [Sorensen 1992] restart the Shade ~ log,o(magnitude of filter polynomial)
method, attempting to improve v with a
polynomial filter having the “unwanted” Ritz
values as roots:
Xt = (A= Ompil) -+ - (A = Okl)x. Pushing the language Haim Avron used the pre-
vious talk, a standard Krylov method (fixed k)
To understand convergence, one must is a sketch-and-solve method, while restarted
understand how the Ritz values are Krylov methods sketch-to-precondition.

distributed over o(A).



restarting krylov methods

15

restarted Arnoldi algorithm (eigs)

To compute m < k eigenvalues of A € C"*",
Arnoldi methods restrict A to act on the
k-dimensional Krylov subspace

Ran(V) = span{x, Ax, ..., A" Ix}. °r o
Compute eigenvalues of V*AV (Ritz values), s *
and order them by relevance; e.g., if seeking 12

the rightmost eigenvalue of A, let E

Ref; > Refr > --- > Ref.
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Exact shifts [Sorensen 1992] restart the Shade ~ log,o(magnitude of filter polynomial)
method, attempting to improve v with a

polynomial filter having the “unwanted” Ritz

values as roots: » [Sorensen 1992] proved convergence for

A=A".
Xt = (A= Omial) - (A= O)x.

e

P The process fails for some A # A*

To understand convergence, one must [E. 2009], [Duintjer Tebbens, Meurant
e 2012].
understand how the Ritz values are
distributed over o‘(A). P Stringent sufficient conditions are known

[Carden 2011].



Do nonsymmetric matrices
enjoy any kind of

interlacing ?



interlacing is a key to convergence theory for A = A*

Cauchy’s interlacing theorem assures us that Ritz values cannot bunch up at
the ends of the spectrum.
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eigenvalues (red lines) and Ritz values (black dots)



interlacing does not hold for A = A*

The absence of interlacing for non-Hermitian problems is the major impediment
to a full convergence theory — and is the mechanism that allows the method to
fail (in theory).
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eigenvalues (red lines) and Ritz values (black dots = real parts)



a pathologically terrible example

A monster, built using the construction of [Duintjer Tebbens, Meurant 2012]:
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eigenvalues of A
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eigenvalues of VLAV

arXiv:1801.00234



ritz value localization for non-hermitian matrices

Do non-Hermitian matrices obey any kind of “interlacing” theorem?

Ritz values must be contained within the numerical range
W(A) = {vAv: v =1},

a closed, convex subset of C that contains o(A).



ritz value localization for non-hermitian matrices

Do non-Hermitian matrices obey any kind of “interlacing” theorem?

Ritz values must be contained within the numerical range
W(A) = {vAv: v =1},

a closed, convex subset of C that contains o(A).

Consider an extreme example:

0 1 0
A=|0 0 1 |, W(A):{ZEC:\Z|§
0 0 O

Repeat the following experiment many times:

» Generate random two dimensional subspaces, V = RanV, where V*V = I.
> Form V*AV € C**? and compute Ritz values {01,6>} = o(V*AV).
» |dentify the leftmost and rightmost Ritz values.

» Since o(A) = {0}, “interlacing” is meaningless here. ..



ritz values of a jordan block

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2
-0.4 -0.4
—06 -06
-0.8 -0.81
-08 -06 -04 -02 0 0.2 0.4 0.6 08 -08 -06 -04 -02 0 0.2 0.4 0.6 08
leftmost Ritz value rightmost Ritz value

W(A):{ze@:h\g?}



ritz values of a jordan block

leftmost Ritz value rightmost Ritz value

10,000 random (complex) two dimensional subspaces



three matrices with identical W(A)

Compute k = 4 Ritz values for these 8 x 8 matrices.
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(71 and 73 set to give same W/(A) for all examples; o = 1/8.)
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three matrices with identical W(A)

Compute k = 4 Ritz values for these 8 x 8 matrices.
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Smallest magnitude of k = 4 Ritz values, 10,000 random complex subspaces.



ritz value localization, sorted by real part

Using Schur's eigenvalue majorization theorem for Hermitian matrices,
we can establish an interlacing-type result.

Theorem (Carden & E. 2012)

Let 01, ...,0x denote the Ritz values of A € C"*" drawn from a k < n
dimensional subspace, labeled by decreasing real part: Ref; > - -- > Re 0.
Then for j =1,... Kk,

ﬂn—k+1++,uln§Re9‘,S,ul++,uj
k—j+1 j

)

where 11 > -+ > pi, are the eigenvalues of (A + A*).



ritz value localization, sorted by real part

Using Schur's eigenvalue majorization theorem for Hermitian matrices,
we can establish an interlacing-type result.

Theorem (Carden & E. 2012)

Let 01, ...,0x denote the Ritz values of A € C"*" drawn from a k < n
dimensional subspace, labeled by decreasing real part: Ref; > - -- > Re 0.
Then for j =1,... Kk,

ﬂn—k+1++,uln§Re9‘,S,ul++,uj
k—j+1 j

)

where 11 > -+ > pi, are the eigenvalues of (A + A*).

> The fact that §; € W(A) gives the well-known bound
w1 < Rel; < pip, j=1,... k.
The theorem provides sharper bounds for interior Ritz values.

> The interior eigenvalues of 1(A -+ A*) give additional insight;
cf. eigenvalue inclusion regions of [Psarrakos & Tsatsomeros, 2012].

» Theorem applies to any subspace Range(V): Krylov, block Krylov, etc.



three matrices with identical W(A)

Three matrices with the same W(A), different interior structure; 2000 trials.
For k = 4, numbers on right indicate max Ritz values in each region.
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ritz value localization, sorted by magnitude

The log-majorization of products of eigenvalues by products of singular values
[Marshall, Olkin, Arnold 2011] leads to a limit on Ritz value magnitudes.

Theorem (Carden & E., 2012)

Let 01, ...,0x denote the Ritz values of A € C"*" drawn from a k < n
dimensional subspace, labeled by decreasing magnitude: 61| > --- > |0k].
Then for j =1,...,k, _

61 < (s1--- )",

where s; > - -+ > s, are the singular values of A.



ritz value localization, sorted by magnitude

The log-majorization of products of eigenvalues by products of singular values
[Marshall, Olkin, Arnold 2011] leads to a limit on Ritz value magnitudes.

Theorem (Carden & E., 2012)

Let 01, ...,0x denote the Ritz values of A € C"*" drawn from a k < n
dimensional subspace, labeled by decreasing magnitude: 61| > --- > |0k].
Then for j =1,...,k, _

61 < (s1--- )",

where s; > - -+ > s, are the singular values of A.

Related results:

Zvonimir Bujanovic [2011] studies Ritz values of normal matrices from Krylov
subspaces in his Ph.D. thesis (Zagreb).

Jakeniah Christiansen [2012] studies real Ritz values for n = 3 (SIURO).



some closing thoughts

Krylov methods can further develop as a prominent tool for RandNLA.

» Polynomials are better than powers!
Krylov methods have great advantages over power/subspace iteration.

» Block methods hold promise but additional subtleties.
Large subspaces can be built rapidly; must maintain linear independence.

» Restarting is crucial in engineering computations, but analysis is tricky.
Restarting controls the subspace dimension, refines the starting vector.

> Spectral transformations (shift-invert) can vastly accelerate convergence.
You are not entirely constrained by the eigenvalue distribution of A.

» Non-Hermitian problems are solved everyday.
The theory is incomplete and monsters are easy to construct,
but the Krylov method (as implemented in eigs/ARPACK) works well.

» Can Random Matrix Theory shed light on Ritz value locations?
What is the probability that A is stable if VAV is stable?



