Stability and Transient Dynamics for Linearized Reduced Order Models

Mark Embree • Virginia Tech

Nonlinear Model Reduction for Control Blacksburg, Virginia

May 2023

Thanks to: US NSF DMS-0449973, DMS-1720257.

Prelude

On Monday, Boris Kramer mentioned the simple model cf. [Kawano \& Scherpen, 2017]

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-x_{2}(t)^{2} \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) .
$$

Prelude

On Monday, Boris Kramer mentioned the simple model cf. [Kawano \& Scherpen, 2017]

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-x_{2}(t)^{2} \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) .
$$

Move the nonlinearity to the second component, and adjust the off-diagonal, and drop the input:

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{rr}
-1 & \gamma \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
x_{1}(t)^{2}
\end{array}\right] .
$$

Note that $x=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is a fixed point.

> Is it stable?

Prelude

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{rr}
-1 & \gamma \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
x_{1}(t)^{2}
\end{array}\right] .
$$

Note that $\mathbf{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is a fixed point.
Is it stable?

Linear stability analysis: linearize about $\mathbf{x}=\mathbf{0}$ to get $\dot{\boldsymbol{\xi}}=\mathbf{A} \boldsymbol{\xi}$,

$$
\left[\begin{array}{l}
\dot{\xi}_{1}(t) \\
\dot{\xi}_{2}(t)
\end{array}\right]=\left[\begin{array}{rr}
-1 & \gamma \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
\xi_{1}(t) \\
\xi_{2}(t)
\end{array}\right]
$$

and note that \mathbf{A} has negative eigenvalues: therefore, $\mathbf{x}=\mathbf{0}$ is stable.

What is the basin of attraction? Does it depend on γ ?

Let's use numerical simulations to assess the stability....

Prelude

$$
\gamma=0
$$

blue: basin of attraction of stable fixed point $\mathbf{x}=\mathbf{0}$

Prelude

blue: basin of attraction of stable fixed point $\mathbf{x}=\mathbf{0}$

Prelude

blue: basin of attraction of stable fixed point $\mathbf{x}=\mathbf{0}$

Prelude

blue: basin of attraction of stable fixed point $\mathbf{x}=\mathbf{0}$

Prelude

blue: basin of attraction of stable fixed point $\mathbf{x}=\mathbf{0}$

Prelude

blue: basin of attraction of stable fixed point $\mathbf{x}=\mathbf{0}$

Prelude

blue: basin of attraction of stable fixed point $\mathbf{x}=\mathbf{0}$

Prelude

blue: basin of attraction of stable fixed point $\mathbf{x}=\mathbf{0}$

Prelude

blue: basin of attraction of stable fixed point $\mathbf{x}=\mathbf{0}$

Prelude

- initial condition $\mathbf{x}(0)=[0.2,0.2]^{T}$

transient growth of a linearized system

Prelude

linear transient growth feeds nonlinearity

- initial condition $\mathbf{x}(0)=[0.2,0.2]^{T}$

This transient linear + nonlinear coupling has been proposed as model for transition to turbulence in fluid mechanics.

See [Butler \& Farrell 1992], [Trefethen, Trefethen, Reddy, Driscoll 1993]; [Baggett, Driscoll, Trefethen 1995]; [Singler 2017, 2022].

Prelude

linear transient growth feeds nonlinearity

- initial condition $\mathbf{x}(0)=[0.2,0.2]^{T}$

This transient linear + nonlinear coupling has been proposed as model for transition to turbulence in fluid mechanics.

See [Butler \& Farrell 1992], [Trefethen, Trefethen, Reddy, Driscoll 1993]; [Baggett, Driscoll, Trefethen 1995]; [Singler 2017, 2022].

The Mechanism Behind Transient Growth

Consider the (diagonalizable) example

$$
\mathbf{A}=\left[\begin{array}{rr}
-1 & 0 \\
100 & -2
\end{array}\right]
$$

with eigenvalues and (nearly aligned) eigenvectors

$$
\lambda_{1}=-1, \quad \mathbf{v}_{1}=\left[\begin{array}{c}
1 / 100 \\
1
\end{array}\right], \quad \lambda_{2}=-2, \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Expand the initial condition in this basis (much cancellation):

$$
\mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=100\left[\begin{array}{c}
1 / 100 \\
1
\end{array}\right]-99\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Now evolve the system in time:

$$
\mathbf{x}(t)=\mathrm{e}^{t \mathrm{~A}} \mathbf{x}(0)=100 \mathrm{e}^{-t}\left[\begin{array}{c}
1 / 100 \\
1
\end{array}\right]-99 \mathrm{e}^{-2 t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The exponentials decay at different rates, breaking the cancellation.

The Mechanism Behind Transient Growth

Seven snapshots of the state vector

$$
\mathbf{x}(t)=100 \mathrm{e}^{-t}\left[\begin{array}{c}
1 / 100 \\
1
\end{array}\right]-99 \mathrm{e}^{-2 t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$t=\frac{1}{4}$

$t=\frac{1}{2}$
$t=\frac{3}{4}$
$t=1$
$t=2$
$t=4$

The Mechanism Behind Transient Growth

For $\mathbf{A} \in \mathbb{C}^{n \times n}$, the numerical range is the set

$$
W(\mathbf{A})=\left\{\frac{\mathbf{x}^{*} \mathbf{A} \mathbf{x}}{\mathbf{x}^{*} \mathbf{x}}: \mathbf{x} \in \mathbb{C}^{n}\right\}
$$

- $W(\mathbf{A})$ is a closed, bounded, convex subset of \mathbb{C} that contains the origin.
- If \mathbf{A} is normal, $W(\mathbf{A})$ is the convex hull of the spectrum.
- If \mathbf{A} is Hermitian, $W(\mathbf{A})=\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right] \subset \mathbb{R}$.

The numerical abscissa is the rightmost point in $W(\mathbf{A})$:

$$
\omega(\mathbf{A})=\max _{z \in W(\mathbf{A})} \operatorname{Re}(z)=\lambda_{\max }\left(\frac{\mathbf{A}+\mathbf{A}^{*}}{2}\right)
$$

The Mechanism Behind Transient Growth

For $\mathbf{A} \in \mathbb{C}^{n \times n}$, the numerical range is the set

$$
W(\mathbf{A})=\left\{\frac{\mathbf{x}^{*} \mathbf{A} \mathbf{x}}{\mathbf{x}^{*} \mathbf{x}}: \mathbf{x} \in \mathbb{C}^{n}\right\}
$$

- $W(\mathbf{A})$ is a closed, bounded, convex subset of \mathbb{C} that contains the origin.
- If \mathbf{A} is normal, $W(\mathbf{A})$ is the convex hull of the spectrum.
- If \mathbf{A} is Hermitian, $W(\mathbf{A})=\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right] \subset \mathbb{R}$.

The numerical abscissa is the rightmost point in $W(\mathbf{A})$:

$$
\omega(\mathbf{A})=\max _{z \in W(\mathbf{A})} \operatorname{Re}(z)=\lambda_{\max }\left(\frac{\mathbf{A}+\mathbf{A}^{*}}{2}\right)
$$

Classical results from semigroup theory...
Theorem (see, e.g., Trefethen \& E. 2005, Part IV)

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\mathrm{e}^{t \mathbf{A}}\right\|\right|_{t=0}=\omega(\mathbf{A}), \quad\left\|\mathrm{e}^{t \mathbf{A}}\right\| \leq \mathrm{e}^{t \omega(\mathbf{A})}
$$

The Mechanism Behind Transient Growth

For $\mathbf{A} \in \mathbb{C}^{n \times n}$, the numerical range is the set

$$
W(\mathbf{A})=\left\{\frac{\mathbf{x}^{*} \mathbf{A} \mathbf{x}}{\mathbf{x}^{*} \mathbf{x}}: \mathbf{x} \in \mathbb{C}^{n}\right\}
$$

The numerical abscissa is the rightmost point in $W(\mathbf{A})$:

$$
\omega(\mathbf{A})=\max _{z \in W(\mathbf{A})} \operatorname{Re}(z)=\lambda_{\max }\left(\frac{\mathbf{A}+\mathbf{A}^{*}}{2}\right) .
$$

Classical results from semigroup theory...
Theorem (see, e.g., Trefethen \& E. 2005, Part IV)

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\mathrm{e}^{t \mathbf{A}}\right\|\right|_{t=0}=\omega(\mathbf{A}), \quad\left\|\mathrm{e}^{t \mathbf{A}}\right\| \leq \mathrm{e}^{t \omega(\mathbf{A})}
$$

- Solutions $\mathrm{e}^{t \mathbf{A}} \mathbf{x}(0)$ to $\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)$ can transiently grow only if $\omega(\mathbf{A})>0$.
- Potentially $\omega(\mathbf{A})>0$ even if all eigenvalues of \mathbf{A} are in the left-half plane.

Projection Methods for Model Reduction

Let $\mathbf{V} \in \mathbb{C}^{n \times r}$ have orthonormal columns, $\mathbf{V}^{*} \mathbf{V}=\mathbf{I}$.
To compute eigenvalues and to reduce models, we can restrict

$$
\mathbf{A} \in \mathbb{C}^{n \times n} \quad \text { down to } \quad \mathbf{V}^{*} \mathbf{A} \mathbf{V} \in \mathbb{C}^{r \times r}
$$

For the bulk of this talk we focus on Galerkin projection of a SISO system

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{b} u(t) \\
y(t) & =\mathbf{c}^{*} \mathbf{x}(t)
\end{aligned}
$$

e.g., as generated by the Arnoldi process applied to (A, b), or POD:

$$
\begin{aligned}
\dot{\mathbf{x}}_{r}(t) & =\left(\mathbf{V}^{*} \mathbf{A} \mathbf{V}\right) \mathbf{x}_{r}(t)+\left(\mathbf{V}^{*} \mathbf{b}\right) u(t) \\
y_{r}(t) & =\left(\mathbf{c}^{*} \mathbf{V}\right) \mathbf{x}_{r}(t)
\end{aligned}
$$

- The eigenvalues of $\mathbf{V}^{*} \mathbf{A} \mathbf{V}$ are in the numerical range $W(\mathbf{A})$:

$$
\left(\mathbf{V}^{*} \mathbf{A} \mathbf{V}\right) \boldsymbol{\xi}=\theta \boldsymbol{\xi} \quad \Longrightarrow \quad \frac{(\mathbf{V} \boldsymbol{\xi})^{*} \mathbf{A}(\mathbf{V} \boldsymbol{\xi})}{(\mathbf{V} \boldsymbol{\xi})^{*}(\mathbf{V} \boldsymbol{\xi})}=\theta
$$

- When $\mathbf{A}=\mathbf{A}^{*}$, the Cauchy Interlacing Theorem describes precisely how the eigenvalues of $\mathbf{V}^{*} \mathbf{A} \mathbf{V}$ distribute amongst the eigenvalues of \mathbf{A}.
- For nonnormal \mathbf{A}, very little is understood about the eigenvalues of $\mathbf{V}^{*} \mathbf{A} \mathbf{V}$.

Eigenvalues of Galerkin Projections for Non-Hermitian Matrices

Does there exist some notion of "interlacing" for non-Hermitian matrices?

Consider an extreme example:

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Repeat the following experiment many times:

- Generate random two dimensional subspaces, $\mathcal{V}=\operatorname{Ran} \mathbf{V}$, where $\mathbf{V}^{*} \mathbf{V}=\mathbf{I}$.
- Form $\mathbf{V}^{*} \mathbf{A} \mathbf{V} \in \mathbb{C}^{2 \times 2}$ and compute its eigenvalues: θ_{1}, θ_{2}.
- Sort by real part: $\operatorname{Re} \theta_{1} \geq \operatorname{Re} \theta_{2}$.
- Since \mathbf{A} has eigenvalues $\lambda_{1}=\lambda_{2}=0$, "interlacing" is meaningless here....

Two Dimensional Reduction of a Three-Dimensional Jordan Block

Eigenvalues of $\mathbf{V}^{*} \mathbf{A V}$

leftmost eigenvalue

rightmost eigenvalue

Eigenvalues of $\mathbf{V}^{*} \mathbf{A V}$ for random (complex) two dimensional subspaces
Black circle shows boundary of $W(\mathbf{A})=\{z \in \mathbb{C}:|z| \leq \sqrt{2} / 2\}$

Eigenvalues of Galerkin Projections (Sorted by Real Part)

Denote the eigenvalues of the Hermitian part $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$, labeled

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}
$$

Theorem (Carden)

Let $\theta_{1}, \ldots, \theta_{r}$ denote the eigenvalues of $\mathbf{V}^{*} \mathbf{A} \mathbf{V} \in \mathbb{C}^{r \times r}$ for an $r<n$ dimensional subspace $\operatorname{Range}(\mathbf{V})$, labeled by decreasing real part: $\operatorname{Re} \theta_{1} \geq \cdots \geq \operatorname{Re} \theta_{r}$.
Then for $k=1, \ldots, r$,

$$
\frac{\mu_{n-r+k}+\cdots+\mu_{n}}{r-k+1} \leq \operatorname{Re} \theta_{k} \leq \frac{\mu_{1}+\cdots+\mu_{k}}{k}
$$

- Ky Fan similarly bounded the real parts of the eigenvalues of \mathbf{A} [Fan 1950].
- The fact that $\theta_{j} \in W(\mathbf{A})$ gives the well-known bound

$$
\mu_{n} \leq \operatorname{Re} \theta_{j} \leq \mu_{1}, \quad j=1, \ldots, r
$$

The theorem provides sharper bounds for interior eigenvalues of $\mathbf{V}^{*} \mathbf{A} \mathbf{V}$.

Eigenvalues of Galerkin Projections (Sorted by Real Part)

Denote the eigenvalues of the Hermitian part $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$, labeled

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}
$$

Theorem (Carden)

Let $\theta_{1}, \ldots, \theta_{r}$ denote the eigenvalues of $\mathbf{V}^{*} \mathbf{A} \mathbf{V} \in \mathbb{C}^{r \times r}$ for an $r<n$ dimensional subspace $\operatorname{Range}(\mathbf{V})$, labeled by decreasing real part: $\operatorname{Re} \theta_{1} \geq \cdots \geq \operatorname{Re} \theta_{r}$.
Then for $k=1, \ldots, r$,

$$
\frac{\mu_{n-r+k}+\cdots+\mu_{n}}{r-k+1} \leq \operatorname{Re} \theta_{k} \leq \frac{\mu_{1}+\cdots+\mu_{k}}{k}
$$

Corollary (for Galerkin Model Reduction)

If for some $1 \leq k \leq r$,

$$
\mu_{1}+\cdots+\mu_{k}<0
$$

then $\mathbf{V}^{*} \mathbf{A V}$ has no more than $k-1$ eigenvalues in the right-half plane.

Bounds on the Number of Unstable Modes: Example

$$
\mathbf{A}=\frac{1}{8}\left[\begin{array}{ccccc}
-10 & 32 \varrho & & & \\
1 & -10 & 32 \varrho^{2} & & \\
& 1 & \ddots & \ddots & \\
& & \ddots & \begin{array}{c}
-10 \\
32 \varrho^{n-1} \\
\\
\end{array} &
\end{array} \begin{array}{l}
-10
\end{array}\right], \quad \begin{aligned}
& \varrho=3 / 4 \\
& n=128
\end{aligned}
$$

\mathbf{A} is stable, but $W(\mathbf{A})$ extends into the RHP.

How many unstable modes can $\mathbf{V}^{*} \mathbf{A V}$ have?

Bounds on the Number of Unstable Modes: Example

The containment regions for θ_{k} for $r=8$ guarantee that $\mathbf{V}_{r}^{*} \mathbf{A} \mathbf{V}_{r}$ has at most two unstable modes.

Two Matrices with Identical W(A)

Compute $r=4$ eigenvalues of $\mathbf{V}^{*} \mathbf{A V}$ for these 8×8 matrices \mathbf{A} :

$$
\left[\begin{array}{llllllll}
0 & 1 & & & & & & \\
& 0 & & & & & & \\
& & 0 & 1 & & & & \\
& & & 0 & & & & \\
& & & & 0 & 1 & & \\
& & & & & 0 & & \\
& & & & & & 0 & 1 \\
& & & & & & & 0
\end{array}\right]
$$

$$
\gamma\left[\begin{array}{cccccccc}
0 & \varrho^{1} & & & & & & \\
& 0 & \varrho^{2} & & & & & \\
& & 0 & \varrho^{3} & & & & \\
& & & 0 & \varrho^{4} & & & \\
& & & & 0 & \varrho^{5} & & \\
& & & & & 0 & \\
& & & & & & \varrho^{6} & \\
& & & & & & 0 & \varrho^{7} \\
& & & & & & & 0
\end{array}\right]
$$

(Choose γ to give the same $W(\mathbf{A})$ for both examples; $\varrho=1 / 8$.)

Smallest magnitude eigenvalue of $\mathbf{V}^{*} \mathbf{A V}, 10,000$ random complex subspaces.

Eigenvalues of Galerkin Projections (Sorted by Magnitude)

Now sort the eigenvalues of $\mathbf{V}^{*} \mathbf{A V}$ by magnitude: $\left|\theta_{1}\right| \geq\left|\theta_{2}\right| \geq \cdots \geq\left|\theta_{r}\right|$.

- For any $\mathbf{A} \in \mathbb{C}^{n \times n}$, the product of eigenvalues is log-majorized by the product of singular values; see, e.g., [Marshall, Olkin, Arnold 2011]. Sort the eigenvalues and singular values of \mathbf{A} by magnitude, $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$. Then

$$
\prod_{j=1}^{k}\left|\lambda_{j}\right| \leq \prod_{j=1}^{k} \sigma_{j}
$$

Theorem (Carden)

Let $\theta_{1}, \ldots, \theta_{r}$ denote the eigenvalues of $\mathbf{V}^{*} \mathbf{A} \mathbf{V} \in \mathbb{C}^{r \times r}$ for an $r<n$ dimensional subspace Range(V), labeled by decreasing magnitude: $\left|\theta_{1}\right| \geq \cdots \geq\left|\theta_{r}\right|$. Then for $k=1, \ldots, r$,

$$
\left|\theta_{k}\right| \leq\left(\sigma_{1} \cdots \sigma_{k}\right)^{1 / k}
$$

where $\sigma_{1} \geq \cdots \geq \sigma_{n}$ are the singular values of \mathbf{A}.

Eigenvalues of Galerkin Projections (Sorted by Magnitude)

Now sort the eigenvalues of $\mathbf{V}^{*} \mathbf{A V}$ by magnitude: $\left|\theta_{1}\right| \geq\left|\theta_{2}\right| \geq \cdots \geq\left|\theta_{r}\right|$.

Theorem (Carden)

Let $\theta_{1}, \ldots, \theta_{r}$ denote the eigenvalues of $\mathbf{V}^{*} \mathbf{A} \mathbf{V} \in \mathbb{C}^{r \times r}$ for an $r<n$ dimensional subspace Range(V), labeled by decreasing magnitude: $\left|\theta_{1}\right| \geq \cdots \geq\left|\theta_{r}\right|$.
Then for $k=1, \ldots, r$,

$$
\left|\theta_{k}\right| \leq\left(\sigma_{1} \cdots \sigma_{k}\right)^{1 / k}
$$

where $\sigma_{1} \geq \cdots \geq \sigma_{n}$ are the singular values of \mathbf{A}.

Corollary (for Galerkin Model Reduction)

If for some $1 \leq k \leq r$,

$$
\sigma_{1} \cdots \sigma_{k}<1
$$

then $\mathbf{V}^{*} \mathbf{A} \mathbf{V}$ has no more than $k-1$ eigenvalues outside the unit disk.

Illustration for a Fluid Dynamics Problem

Lid driven cavity fluid stability problem from IFISS [Elman, Ramage Silvester]. Q2-Q1 elements, 32×32 mesh, viscosity $\nu=0.01$, dimension $n=2178$.

We seek the rightmost eigenvalue of a generalized eigenvalue problem.
Compute eigenvalues via shift-invert Arnoldi: $\mathbf{A}_{\gamma}:=(\mathbf{A}-\gamma \mathbf{B})^{-1} \mathbf{B}$. We now seek the largest magnitude eigenvalue of \mathbf{A}_{γ}.

finite eigenvalues of $\mathbf{A}-\lambda \mathbf{B}$

By the theorem, at least $r-1$ eigenvalues of \mathbf{V} *AV are located in the blue disk

How many unstable modes can $\mathrm{V}^{*} \mathrm{AV}$ have when A is stable?

Theorem (Duintjer Tebbens \& Meurant 2012)

Specify the following complex scalars:

- $\lambda_{1}, \ldots, \lambda_{n}$;
- $\theta_{1}^{(1)}$;
- $\theta_{1}^{(2)}, \theta_{2}^{(2)}$;

IMPORTANT NOTE:

This construction allows you to specify the eigenvalues of A, but you cannot specify $W(\mathbf{A})$.
$-\theta_{1}^{(n-1)}, \theta_{2}^{(n-1)}, \ldots, \theta_{n-1}^{(n-1)}$.
There exists $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{b} \in \mathbb{C}^{n}$ such that

- A has the specified eigenvalues: $\lambda_{1}, \ldots, \lambda_{n}$;
- $\mathbf{V}_{r}^{*} \mathbf{A} \mathbf{V}_{r}$ has the specified eigenvalues: for $r=1, \ldots, n-1$,

$$
\text { eigenvalues of } \mathbf{V}_{r}^{*} \mathbf{A} \mathbf{V}_{r}=\left\{\theta_{1}^{(r)}, \ldots, \theta_{r}^{(r)}\right\}
$$

when the columns of \mathbf{V}_{r} are an orthonormal basis for the Krylov subspace

$$
\mathcal{K}_{r}(\mathbf{A}, \mathbf{b})=\operatorname{span}\left\{\mathbf{b}, \mathbf{A} \mathbf{b}, \ldots, \mathbf{A}^{r-1} \mathbf{b}\right\}
$$

Adversarial Construction for Galerkin Reduction

$$
\mathbf{A}=\left[\begin{array}{lllrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & -362880 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & -1451520 \\
& 1 & 3 & 0 & 0 & 0 & 0 & -1693440 \\
& & 1 & 4 & 0 & 0 & 0 & -846720 \\
& & & 1 & 5 & 0 & 0 & -211680 \\
& & & & 1 & 6 & 0 & -28224 \\
& & & & & 1 & 7 & -2016 \\
& & & & & & 1 & -64
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

All modes of $\mathbf{V}_{r}^{*} \mathbf{A} \mathbf{V}_{r}$ are unstable for $1 \leq r<n$.

Petrov-Galerkin Projection

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{b} u(t) \\
y(t) & =\mathbf{c}^{*} \mathbf{x}(t)
\end{aligned}
$$

Thus far we have focused on Galerkin projection, $\mathbf{V}_{r}^{*} \mathbf{A} \mathbf{V}_{r}$ with $\mathbf{V}_{r}^{*} \mathbf{V}_{r}=\mathbf{I}$, e.g., as generated by the Arnoldi process applied to (A, b).

The resulting model will match r moments of the transfer function at $z=\infty$:

$$
\begin{aligned}
\dot{\mathbf{x}}_{r}(t) & =\left(\mathbf{V}_{r}^{*} \mathbf{A} \mathbf{V}_{r}\right) \mathbf{x}_{r}(t)+\left(\mathbf{V}_{r}^{*} \mathbf{b}\right) u(t) \\
y_{r}(t) & =\left(\mathbf{c}^{*} \mathbf{V}_{r}\right) \mathbf{x}_{r}(t)
\end{aligned}
$$

We briefly consider Petrov-Galerkin projection, $\mathbf{W}_{r}^{*} \mathbf{A} \mathbf{V}_{r}$ with $\mathbf{W}_{r}^{*} \mathbf{V}_{r}=\mathbf{I}$, e.g., as generated by the bi-Lanczos process applied to (A,b,c).

The resulting model will match $2 r$ moments of the transfer function at $z=\infty$:

$$
\begin{aligned}
& \dot{\mathbf{x}}_{r}(t)=\left(\mathbf{W}_{r}^{*} \mathbf{A} \mathbf{V}_{r}\right) \mathbf{x}_{r}(t)+\left(\mathbf{W}_{r}^{*} \mathbf{b}\right) u(t) \\
& y_{r}(t)=\left(\mathbf{c}^{*} \mathbf{V}_{r}\right) \mathbf{x}_{r}(t)
\end{aligned}
$$

What are the stability properties of this Petrov-Galerkin reduced order model?

Can W*AV have unstable modes when \mathbf{A} is stable?

Theorem (Greenbaum 1998)

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and suppose $1 \leq r \leq n / 2$. Specify:

- $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{C}$ and $\beta_{1}, \ldots, \beta_{r-1} \in \mathbb{C}$;
- nonzero starting vector, $\mathbf{b} \in \mathbb{C}^{n}$ with $\mathbf{v}_{1}:=\mathbf{b} /\|\mathbf{b}\|$;
- vectors $\mathbf{v}_{2}, \ldots, \mathbf{v}_{r+1}$ and scalars $\gamma_{1}, \ldots, \gamma_{r-1} \in \mathbb{C}$ generated by:

$$
\begin{aligned}
\widehat{\mathbf{v}}_{j+1} & :=\mathbf{A v}_{j}-\alpha_{j} \mathbf{v}_{j}-\beta_{j-1} \mathbf{v}_{j-1} \\
\gamma_{j} & :=\left\|\widehat{\mathbf{v}}_{j+1}\right\| \\
\mathbf{v}_{j+1} & ;=\widehat{\mathbf{v}}_{j+1} / \gamma_{j}
\end{aligned}
$$

- vector $\mathbf{c} \perp \operatorname{span}\left\{\mathbf{v}_{2}, \ldots, \mathbf{v}_{r+1}, \mathbf{A} \mathbf{v}_{r+1}, \ldots, \mathbf{A}^{r-1} \mathbf{v}_{r+1}\right\}$.

Then r steps of the bi-Lanczos process applied to ($\mathbf{A}, \mathbf{b}, \mathbf{c}$) either breaks down, or generates

$$
\mathbf{W}_{r}^{*} \mathbf{A} \mathbf{V}_{r}=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & \\
\gamma_{1} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{r-1} \\
& & \gamma_{r-1} & \alpha_{r}
\end{array}\right]
$$

Adversarial Construction for Petrov-Galerkin Reduction

Consider the Hermitian matrix \mathbf{A} and the Greenbaum construction:

$$
\mathbf{A}=\left[\begin{array}{cccccccc}
-2 & 1 & & & & & \\
1 & -2 & 1 & & & & \\
& 1 & -2 & 1 & & & \\
& & 1 & -2 & \ddots & & & \\
& & & \ddots & \ddots & 1 & & \\
& & & & 1 & -2 & 1 & \\
& & & & & 1 & -2 & 1 \\
& & & & & & 1 & -2
\end{array}\right] \in \mathbb{C}^{16 \times 16}, \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
0
\end{array}\right] \in \mathbb{C}^{16}
$$

- $\mathbf{A}=\mathbf{A}^{*}$ has eigenvalues $\lambda_{j}=-2+\cos (j \pi / 17)$ in the left-half plane.
- $W(\mathbf{A})=\left[\lambda_{n}, \lambda_{1}\right]$ is also contained in the left-half plane.
- Any Galerkin projection of A will produce a stable reduced order model.

Use Greenbaum's Theorem to construct

$$
\mathbf{W}_{r}^{*} \mathbf{A} \mathbf{V}_{r}=\left[\begin{array}{cccc}
+2 & 1 & & \\
\gamma_{1} & +2 & \ddots & \\
& \ddots & \ddots & 1 \\
& & \gamma_{r-1} & +2
\end{array}\right] \in \mathbb{C}^{r \times r}
$$

Adversarial Construction for Petrov-Galerkin Reduction

$$
\mathbf{A}=\left[\begin{array}{cccc}
-2 & 1 & & \\
1 & -2 & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & -2
\end{array}\right] \in \mathbb{C}^{16 \times 16} \quad \mathbf{W}_{r}^{*} \mathbf{A} \mathbf{V}_{r}=\left[\begin{array}{cccc}
+2 & 1 & & \\
\gamma_{1} & +2 & \ddots & \\
& \ddots & \ddots & 1 \\
& & \gamma_{r-1} & +2
\end{array}\right] \in \mathbb{C}^{r \times r}
$$

All modes of $\mathbf{W}_{r}^{*} \mathbf{A} \mathbf{V}_{r}$ are unstable for $1 \leq r \leq n / 2$ here, despite the fact that \mathbf{A} is a stable Hermitian matrix.

What Can We Learn From an Unstable ROM?

Unstable ROMs for stable systems are distasteful. One might go to lengths to suppress the instability; see, e.g., [Grimme, Sorensen, van Dooren 1995].
However, an unstable ROM might better capture transient dynamics than a stabilized version.

Boeing 767 example: stable linear system, $n=55$; reduce to dimension $r=20$ [Anderson, Ly, Liu 1990; Burke, Lewis, Overton 2003]

What Can We Learn From an Unstable ROM?

On the domain $x \in(0, \ell), t>0$, consider the nonlinear heat equation

$$
u_{t}(x, t)=u_{x x}(x, t)+u_{x}(x, t)+\frac{1}{8} u(x, t)+u(x, t)^{3},
$$

with Dirichlet boundary conditions: $u(0, t)=u(\ell, t)=0$.
[Sandsted \& Scheel, 2005], [Galkowski, 2012] consider stability of this equation with small initial data, as a function of ℓ.
We take $\ell=30$ and $u_{0}(x)=10^{-5} x(x-\ell)(x-\ell / 2)$ and reduce to $r=40$.

Concluding Thoughts

- The interplay of linear transient growth and nonlinearity requires care.
- Reduction methods that preserve structure, nonlinearity, energy provide a major step in the right direction.
- Use a physically relevant inner product / norm.

Eigenvalues (and the transfer function) are independent of the state-space representation, but $W(\mathbf{A})$ depends highly only the choice of coordinates. It is possible that $W(\mathbf{A})$ extends into the right-half plane in the Euclidean (vector) inner product, but not in the "energy inner product" motivated by the application.

- We still have much to learn about the eigenvalues of $\mathbf{V}^{*} \mathbf{A V}$.

Insight about these eigenvalues informs both model reduction and algorithms for solving large-scale eigenvalue problems.

References

- Russell Carden. "Ritz Values and Arnoldi Convergence for Non-Hermitian Matrices." PhD thesis, Rice University, 2011.
- Russell L. Carden and Mark Embree. "Ritz value localization for non-Hermitian matrices," SIAM J. Matrix Anal. Appl. 33 (2012) 1320-1338.
- Mark Embree. "Unstable modes in projection-based reduced-order models: How many can there be, and what do they tell you?" Systems Control Lett. 124 (2019) 49-59.
- Jurjen Duintjer Tebbens and Gérard Meurant. "Any Ritz value behavior is possible for Arnoldi and for GMRES," SIAM J. Matrix Anal. Appl. 33 (2012) 958-978.
- Anne Greenbaum. "On the role of the left starting vector in the two-sided Lanczos algorithm and nonsymmetric linear system solvers," Numerical Analysis 1997, D.F. Griffiths, D.J. Higham, and G.A. Watson, eds. Addison Wesley Longman, Harlow, UK, 1998.

