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a talk in two parts ...

rational interpolation for nlevps

Rational / Loewner techniques for
nonlinear eigenvalue problems, motivated
by algorithms from model reduction.

> Structure Preserving Rational
Interpolation

» Data-Driven Rational Interpolation
Matrix Pencils

» Minimal Realization via Rational
Contour Integrals

transients for delay equations

Scalar delay equations: a case-study
for how one can apply pseudospectra
techniques to analyze the transient
behavior of a dynamical system.

» Finite dimensional nonlinear problem
= infinite dimensional linear problem

> Pseudospectral theory applies
to the linear problem, but the
choice of norm is important




nonlinear eigenvalue problems: the final frontier?

problem

typical
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nonlinear eigenvalue problems: the final frontier?

typical
problem # eigenvalues
standard eigenvalue problem (A - )\I)v =0 n
generalized eigenvalue problem (A - )\E)V =0 n
quadratic eigenvalue problem (K+ XD + )\2M)v =0 2n
polynomial eigenvalue problem (ZZ:O )\kAk)V =0 dn
nonlinear eigenvalue problem (ZZ:O fk()\)Ak)V =0 o0

nonlinear eigenvector problem F(A\v)=0 (%)



a basic nonlinear eigenvalue problem

Consider the simple scalar delay differential equation

x'(t) = —x(t — 1).

Substituting the ansatz x(t) = e** yields the nonlinear eigenvalue problem
T(A) =14 xe* =0.

32 (of infinitely many) eigenvalues of T for this scalar (n = 1) equation:
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eigenvalues determined
by the Lambert-W function

See, e.g., [Michiels & Niculescu 2007]



nonlinear eigenvalue problems: many resources

Nonlinear eigenvalue problems have classical roots, but now form a fast-moving
field with many excellent resources and new algorithms.

» Helpful surveys:
Mehrmann & Voss, GAMM, [2004]
Voss, Handbook of Linear Algebra, [2014]
Glittel & Tisseur, Acta Numerica survey [2017]

» Software:
NLEVP test collection [Betcke, Higham, Mehrmann, Schroder, Tisseur 2013]
SLEPC contains NLEVP algorithm implementations [Roman et al.]

» Many algorithms based on Newton's method, rational approximation,
linearization, contour integration, projection, etc.
Incomplete list of contributors: Asakura, Bai, Betcke, Beyn, Effenberger, Giittel,
lkegami, Jarlebring, Kimura, Kressner, Leitart, Meerbergen, Michiels, Niculescu,
Pérez, Sakurai, Tadano, Van Beeumen, Vandereycken, Voss, Yokota, ....

> Infinite dimensional nonlinear spectral problems are even more subtle:
[Appell, De Pascale, Vignoli 2004] give seven distinct definitions of the spectrum.



Rational Interpolation
Algorithms
for

Nonlinear Eigenvalue Problems



rational interpolation of functions and systems

Rational interpolation problem.

Given points {z}?"; C C and data {f = f(z)};,
find a rational function R(z) = p(z)/q(z) of type
(r—1,r — 1) such that

R(z) = f;.



rational interpolation of functions and systems

Rational interpolation problem.

Given points {z}?"; C C and data {f = f(z)};,
find a rational function R(z) = p(z)/q(z) of type
(r—1,r — 1) such that

R(z) = f;
Given Lagrange basis functions £;j(z) = H(z — z) and nodal polynomial ¢(z H(z — z),
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rational interpolation: barycentric perspective
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rational interpolation: barycentric perspective

Lagrange basis: ¢;(z) =

p(2)

R(z) = =

1@ Swee 3
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» Fix {8; = fijw;}j_; to interpolate at z, ..
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rational interpolation: barycentric perspective

r

Lagrange basis: ¢;(z) = [ [(z — z)
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» Fix {8; = fjw;}j_; to interpolate at z1,...,z: R(z) = f.
» Determine wi, ..., w, to interpolate at z,11,..., 22
r
fi wj
i " fiw, fi w;
R(Zk)zj,l = £ IR k Wj
\/Vj = zkfzj = zkfzj
Zk — Zj

Jj=1



rational interpolation: barycentric perspective

» Fix {8; = fiw;}/_; to interpolate at z,...,z: r(z) = f.
» Determine wi, ..., w, to interpolate at z,41,..., 2

r

few; fi — fi
R(z) = fi - / J - =0.
(@) =fi = sz_z sz_z = D —w=0

j=1




rational interpolation: barycentric perspective

» Fix {8; = fiw;}/_; to interpolate at z,...,z: r(z) = f.

» Determine wi, ..., w, to interpolate at z,41,..., 2

few;
R(ze) =fi = }:4_1-—§:a_2

FA—frn hHh—Ffpn . fr—Ff T ]
Z1 — Zr41 Z2 — Zr41 Zr — Zr41 w1
h—fio hHh—Ffpo . fr—fr w
Z1 — Zri2 22 — Zr42 Zr — Zry2 2
fL—f h—fh .. fr — b w,
Z1 — 22r Z2 — Z2r Zr— Z2r 1 L .

Loewner matrix, 1L

r
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w; = 0.



rational interpolation: barycentric perspective

» Fix {8; = fiw;}/_; to interpolate at z,...,z: r(z) = f.
» Determine wi, ..., w, to interpolate at z,41,..., 2
r r
fow; fi — f
R(z) = ik = E =y — = > Z w; = 0.
zi — zj Zk — Zj zi — 2
k = k j =1 - k
FA—frn hHh—Ffpn . fr—Ff T ] o
71— Zr41 22 — Zrf1 Zr — Zr41 w1 0
h—fio hHh—Ffpo . fr—fr w 0
Z1 — Zri2 22 — Zr42 Zr — Zry2 2
f]._f2r f2_f2r fr_er W, 0
Z1 — 22r Z2 — Z2r zZr—22r | L . L .

Loewner matrix, 1L

> Barycentric rational interpolation algorithm [Antoulas & Anderson [1986]
> AAA (Adaptive Antoulas—Anderson) Method [Nakatsukasa, Séte, Trefethen, 2016]



rational interpolation: state space perspective

The rational interpolant R(z) to f at zi,..., 2, can also be formulated in
state-space form using Loewner matrix techniques.

R(z) = c¢(Ls — zIL)"'b,

where ¢ = [fi1,...,f], b=[f,...,f]" and

z2f —zafn

zfr — zpp1frg f—fia . fr —fi1
Z1 — Zr41 Zr — Zr+1 Z1 — Zr41 Zr — Zr41
)
zify — 23,5 zfr — 23, o L —f fr— b
Z1 — 22r Zr — Z2r Z1 — 22r Zr — Z2r

shifted Loewner matrix, ILs Loewner matrix, 1L

> State space formulation proposed by Mayo & Antoulas [2007]
> Natural approach for handling tangential interpolation for vector data

> For details, applications, and extensions, see [Antoulas, Lefteriu, lonita 2017]



approach one: structure preserving rational interpolation

Scenario:  T(\) € C"™" has large dimension n.

Goal:  Reduce dimension of T(\) but maintain the nonlinear structure.
Smaller problem will be more amenable to dense nonlinear eigensolvers.

Method:  Rational tangential interpolation of T(\)™! at r points, directions.

Iteratively Corrected Rational Interpolation method
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» Pick r interpolation points {z;}]_; and interpolation directions {w;}_;.



approach one: structure preserving rational interpolation

Scenario:  T(\) € C"™" has large dimension n.

Goal:  Reduce dimension of T()) but maintain the nonlinear structure.
Smaller problem will be more amenable to dense nonlinear eigensolvers.

Method:  Rational tangential interpolation of T(\)~! at r points, directions.
Iteratively Corrected Rational Interpolation method
» Pick r interpolation points {z;}]_; and interpolation directions {w;}_;.

» Construct a basis for projection (cf. shift-invert Arnoldi):

U= Ol’th([T(Zl)71W1 T(ZQ)71W2 ce. T(z,)flw,] S Cnxr.



approach one: structure preserving rational interpolation

Scenario:  T(\) € C"™" has large dimension n.

Goal:  Reduce dimension of T(\) but maintain the nonlinear structure.
Smaller problem will be more amenable to dense nonlinear eigensolvers.

Method:  Rational tangential interpolation of T(\)~! at r points, directions.

Iteratively Corrected Rational Interpolation method
» Pick r interpolation points {z;}]_; and interpolation directions {w;}_;.
» Construct a basis for projection (cf. shift-invert Arnoldi):
U=orth([T(z1) ‘w1 T(z2) ‘w2 --- T(z) 'w,]eC™.
» Form the reduced-dimension nonlinear system:

T.(\) :=U'T(\)U € C™".



approach one: structure preserving rational interpolation

Scenario:  T(\) € C"™" has large dimension n.

Goal:  Reduce dimension of T(\) but maintain the nonlinear structure.
Smaller problem will be more amenable to dense nonlinear eigensolvers.

Method:  Rational tangential interpolation of T(\)™! at r points, directions.

Iteratively Corrected Rational Interpolation method
» Pick r interpolation points {z;}]_; and interpolation directions {w;}_;.
» Construct a basis for projection (cf. shift-invert Arnoldi):
U=orth([T(z1) ‘w1 T(z2) ‘w2 --- T(z) 'w,]eC™.
» Form the reduced-dimension nonlinear system:
T.(\) :=U'T(\)U € C™".

» Compute the spectrum of T,()\) and use its eigenvalues and eigenvectors
to update {z};_; and {w;};_;, and repeat.



approach one: structure preserving rational interpolation

The choice of projection subspace Ran(U) delivers the key interpolation property.

Interpolation Theorem.
Provided z; & o(T) Uo(T,) forall j=1,...,r,

T(z) 'w; = UT.(z) 'U"w;.

Inspiration: model reduction for nonlinear systems w/coprime factorizations
[Beattie & Gugercin 2009]; iteration like dominant pole algorithm [Martins, Lima,
Pinto 1996]; [Roomes & Martins 2006], IRKA [Gugercin, Antoulas, Beattie 2008].



approach one: structure preserving rational interpolation

The choice of projection subspace Ran(U) delivers the key interpolation property.

Interpolation Theorem.
Provided z; & o(T) Uo(T,) forall j=1,...,r,

T(z) 'w; = UT.(z) 'U"w;.

Inspiration: model reduction for nonlinear systems w/coprime factorizations
[Beattie & Gugercin 2009]; iteration like dominant pole algorithm [Martins, Lima,
Pinto 1996]; [Roomes & Martins 2006], IRKA [Gugercin, Antoulas, Beattie 2008].

lllustration. As for all orthogonal projection methods:
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approach one: structure preserving rational interpolation
The choice of projection subspace Ran(U) delivers the key interpolation property.

Interpolation Theorem.
Provided zj € o(T)Uo(T,) forall j=1,...,r,

T(z) 'w; = UT,(z) ‘U w;.

Inspiration: model reduction for nonlinear systems w/coprime factorizations
[Beattie & Gugercin 2009]; iteration like dominant pole algorithm [Martins, Lima,
Pinto 1996]; [Roomes & Martins 2006], IRKA [Gugercin, Antoulas, Beattie 2008].

lllustration. As for all orthogonal projection methods:
T = H(\) A +A(N) AL +60) A
fH(A) U AU + A (A) U*AU + H(A) UTAU

T.(A)

> The nonlinear functions f; remain intact: the structure is preserved.
> The coefficients A; € C"*" are compressed to U*A;U € C"*".

> Contrast: [Lietaert, Pérez, Vandereycken, Meerbergen 2018+]
apply AAA approximation to f;()), leave coefficient matrices intact.



approach one: structure preserving rational interpolation

Example 1. T(A\) =M — A —e™*I,

where A is symmetric with n = 1000; eigenvalues of A = {—1,—-2,..., —n}.
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r = 16 used at each cycle (new points = real eigenvalues of T,(\))

initial {z;} uniformly distributed on [—10i, 10i], {w;} selected randomly
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Example 1. T(\) =M — A —e™*I,
where A is symmetric with n = 1000; eigenvalues of A = {—1,—-2,..., —n}.
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approach one: structure preserving rational interpolation

Example 1. T(\) =M — A —e™*I,

where A is symmetric with n = 1000; eigenvalues of A = {—1,—-2,..., —n}.
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approach one: structure preserving rational interpolation

Example 1. T(\) =M — A —e™*I,

where A is symmetric with n = 1000; eigenvalues of A = {—1,—-2,..., —n}.
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approach one: structure preserving rational interpolation

Example 1. T(\) =M — A —e™*I,
where A is symmetric with n = 1000; eigenvalues of A = {—1,—-2,..., —n}.
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approach one: structure preserving rational interpolation

Example 2. T(A\) =M — A —e™ I,
A is symmetric with n = 1000; eigenvalues of A = {—1/n,—4/n, ..., —n}.
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initial {z;} uniformly distributed on [—10i, 10i], {w;} selected randomly



approach one: structure preserving rational interpolation

Example 2. T(A\) =M — A —e™ I,

A is symmetric with n = 1000; eigenvalues of A = {—1/n,—4/n, ..., —n}.
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o Eigenvalues of reduced T,(\) at the final cycle
o Final interpolation points {z;}
r =16 used at each cycle (new points = real eigenvalues of T,()\))

initial {z;} uniformly distributed on [—10i, 10i], {w;} selected randomly



approach two: data-driven rational interpolation

Scenario:  T(X\) € C©"*" has large dimension n.

Goal:  Obtain a small /inear matrix pencil that interpolates the nonlinear
eigenvalue problem. Smaller problem requires no further linearization.

Method:  Data-driven rational interpolation of T(\)™.

Data-Driven Rational Interpolation Matrix Pencil method



approach two: data-driven rational interpolation

Scenario:  T(X\) € C©"*" has large dimension n.

Goal:  Obtain a small /inear matrix pencil that interpolates the nonlinear
eigenvalue problem. Smaller problem requires no further linearization.
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approach two: data-driven rational interpolation

Scenario:  T(X\) € C©"*" has large dimension n.

Goal:  Obtain a small /inear matrix pencil that interpolates the nonlinear
eigenvalue problem. Smaller problem requires no further linearization.

Method:  Data-driven rational interpolation of T(\)™.

Data-Driven Rational Interpolation Matrix Pencil method

» Specify interpolation data:

left points, directions: z1,...,2 € C, wi,...,w, € C"
right points, directions:  zy41,...,22r € C,  Wep1,...,Wp € C”

» Construct T,(\)~* := C,(A, — AE,)"'B, to tangentially interpolate T()\)™*.
Tangential Interpolation Theorem. Provided z; & o(T) U o(T,),

w/T(z) P =w/T(z) ", ji=1...,n

T(z) twj = Tr(z) tw, j=r+1,...,2r.



approach two: data-driven rational interpolation

Given left points, directions: z1,...,z2 € C, wi,...,w, €C"
right points, directions: Zri1, ..., 220 € C, Wity ..., W € C"
Define left interpolation data: fi = T(zl)fTwl7 e, fr= T(z,)fTw,

right interpolation data: fi1= T(Zr+1)_lwr+17 O T(Z2r)_1W2r
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approach two: data-driven rational interpolation

Given left points, directions: z1,...,z2 € C, wi,...,w, €C"
right points, directions: Zri1, ..., 220 € C, Wity ..., W € C"
Define left interpolation data: fi = T(zl)fTwl7 e, fr= T(z,)fTw,
right interpolation data: fi1= T(Zr+1)_lwr+17 O T(Z2r)_1W2r

Order-r (linear) model: T,(z)™' = C,(A, — zE,)"'B,

C = [fr+17---7f2r]
r T T T T
affwrp —zepawy frn 0 zZf we —zepaw, g
Z1 — Zr+1 Zr — Zr41 5w
>
. o =.
Ar - § -
: : S®
T T T T °
z1f] war — zo,wy o, o zf, wo, — 2w, for =
L Z] — 2Z2r Zr — Z2p
roeT T T T
frwer—wifrr fowe —w frg
Z1 — Zri1 Zr — Zr1 Ny
@
E, = 2
' 3
T T T T
fl wor —wy for L f wo —w, o S
L Z1 — 22r Zr — 22r
T
Br = [flz"'vfr]



approach two: data-driven rational interpolation

Given  left points, directions:
right points, directions:
Define left interpolation data:

right interpolation data:

wi,...,w, €C"
~7W2r€®n

zi,...,z € C,

-y 22r GC, Wril, ..
f,=T(z) "w,

for = T(Z2r)_lw2r

Zri1, -
_ -7
fi =T(z1)” "wy, el

f,+1 = T(ZH_l)_lWH_l, ey

Rank-r (linear) model: T,(z)_1 =C,(Ar — zE,)_lB,

T(z)_1 ~

eg., (Ao+h(2)A1+h(2)Ar) 7!

A, —zE)? B,

linear
matrix
pencil




approach two: data-driven rational interpolation

Example. T(A\) =M — A —e™*I,

where A is symmetric with n = 1000; eigenvalues of A = {—1,—-2,..., —n}.
80 T T T T T T T 250 T T T T T T
—) °
ﬂ 150
0 ———e o
A 100
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0 P> SR O] of O
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Eigenvalues of full T(\)
O Eigenvalues of reduced matrix pencil A, — zE,
r = 40 interpolation points used, uniform in interval [—80i, 80i]
Hermite interpolation variant that only uses r distinct interpolation points.

interpolation directions from smallest singular values of T(z).



approach three: Loewner realization via contour integration

Scenario:  Seek all eigenvalues of T(\) € C"*" in a prescribed region Q2 of C.
Goal:  Use Keldysh’'s Theorem to isolate interesting part of T(\) in €.

Method:  Contour integration of T(\) against rational test functions.
Loewner matrix will reveal number of eigenvalues in Q.

Theorem [Keldysh 1951]. Suppose T(z) has m eigenvalues A1, ..., A\m
(counting multiplicity) in the region Q C C, all semi-simple. Then

T(z) ' =V(zl - N)'U" + R(2),

oV = [Vl . vm]' U = [u1 . Um], A= diag()\l, .. .,)\m), UfT/()\j)Vj = 1;
e R(z) is analytic in Q.



approach three: Loewner realization via contour integration

Scenario:  Seek all eigenvalues of T(\) € C"*" in a prescribed region Q2 of C.
Goal:  Use Keldysh’'s Theorem to isolate interesting part of T(\) in €.

Method:  Contour integration of T(\) against rational test functions.
Loewner matrix will reveal number of eigenvalues in Q.

Theorem [Keldysh 1951]. Suppose T(z) has m eigenvalues A1, ..., A\m
(counting multiplicity) in the region Q C C, all semi-simple. Then

T(z) ' =V(zl - N)'U" + R(2),

eV=[vi - v, U=[u; -+ un], A=diag(A1,..., Am), i T'(N)v; = 1;
e R(z) is analytic in Q.

T(2)" = H(2) +R(2)

where H(z) := V(zl — A)"*U* is a transfer function for a linear system.



approach three: Loewner approximation via contour integration

Theorem [Keldysh 1951]. Suppose T(z) has m eigenvalues Ay, ..., A\m
(counting multiplicity) in the region Q C C, all semi-simple. Then

T(z) ' =V(zl - N)7'U* +R(2),
oV = [Vl e Vm], U= [Ul e Um], A= diag(A:h. . .,Am), UjT’()\J)vJ = 1'
e R(z) is analytic in Q.

(z1—N)? u*

H(z) := V(zl — N)~lu*
n x n linear system, order m:
m poles in Q

nonlinear system,
but nice in Q



approach three: Loewner realization via contour integration

T(z) 7" = H(2) + R(2)

where H(z) : V(zI — A)~*U" is a transfer function for a linear system.

A family of algorithms use the fact that, by the Cauchy integral formula,

1

o f(z)T(z)"'dz = VF(N)U";
™ Joa

see [Asakura, Sakurai, Tadano, lkegami, Kimura 2009], [Beyn 2012], [Yokota &
Sakurai 2013], etc., building upon contour integral eigensolvers for matrix pencils
[Sakurai & Sugiura 2003], [Polizzi 2009], etc.

These algorithms use f(z) = z* for k = 0,1,... to produce Hankel matrix pencils.



approach three: Loewner realization via contour integration

T(z) 7" = H(2) + R(2)

where H(z) : V(zI — A)~*U" is a transfer function for a linear system.

A family of algorithms use the fact that, by the Cauchy integral formula,

1

o f(z)T(z)"'dz = VF(N)U";
™ Joq

see [Asakura, Sakurai, Tadano, lkegami, Kimura 2009], [Beyn 2012], [Yokota &
Sakurai 2013], etc., building upon contour integral eigensolvers for matrix pencils
[Sakurai & Sugiura 2003], [Polizzi 2009], etc.

These algorithms use f(z) = z* for k = 0,1,... to produce Hankel matrix pencils.
Key observation: If we use (z) = 1/(zj — z) for z; exterior to €2, we obtain

1 1
27 Joqzi — 2

T(z) 'dz = V(z1 — N) " 'U* = H(z).

Contour integrals yield measurements of the linear system
with the desired eigenvalues.



approach three: Loewner realization via contour integration

Minimal Realization via Rational Contour Integrals for m eigenvalues

» Let r > m, and select interpolation points and directions:
left points, directions: z2,...,22 € C\ Q, wi,...,w, € C"
right points, directions: Zri1,y .., 220 € C\ Q Writ,...,wWp € C”
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Minimal Realization via Rational Contour Integrals for m eigenvalues

» Let r > m, and select interpolation points and directions:
left points, directions: z2,...,22 € C\ Q, wi,...,w, € C"
right points, directions: Zri1,y .., 220 € C\ Q Writ,...,wWp € C”

» Use contour integrals to compute the left and right interpolation data:

left interpolation data: fi = H(zl)Twl, o, f= H(z,)Tw,
right interpolation data: fri1 = H(Zr41)Wirg, coey For = H(z2r W2,
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» Construct Loewner and shifted Loewner matrices from this data, just as in
the Data-Driven Rational Interpolation method:

Cr= [frin,... Fr] B, = [f1,....f]"

A, = shifted Loewner matrix E, = Loewner matrix



approach three: Loewner realization via contour integration

Minimal Realization via Rational Contour Integrals for m eigenvalues

» Let r > m, and select interpolation points and directions:
left points, directions: z2,...,22 € C\ Q, wi,...,w, € C"
right points, directions: Zri1,y .., 220 € C\ Q Writ,...,wWp € C”

» Use contour integrals to compute the left and right interpolation data:

left interpolation data: fi = H(zl)Twl, o, f= H(z,)Tw,
right interpolation data: fri1 = H(Zr41)Wirg, coey For = H(z2r W2,
H(z)w; = — L T(z)twdz.

2mi Joq zj — 2

» Construct Loewner and shifted Loewner matrices from this data, just as in
the Data-Driven Rational Interpolation method:

Cr = [fra1,..., ] B, = [fl,...,f,]T
A, = shifted Loewner matrix E, = Loewner matrix
> If r = m, then V(zl — A)"'U* = C,(A, — zE,) 'B,: compute eigenvalues!

If r > m, use SVD truncation / minimum realization techniques to reduce
dimension; cf. [Mayo & Antoulas 2007].



approach three: Loewner realization via contour integration

Example. T(\) = Al — A —e™*I,
where A is symmetric with n = 1000; eigenvalues of A = {—1,—-2,..., —n}.
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; § zoom, N = 25
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+ Eigenvalues of full T(\)
X 20 interpolation points in 2 + [—61, 6/]
O Eigenvalues of minimal (m = 4) matrix pencil
— Contour of integration (circle)
Trapezoid rule uses N = 25, 50, 100, and 200 interpolation points



approach three: Loewner realization via contour integration

jth singular value of IL

Example. T(\) = Al — A —e™*I,

where A is symmetric with n = 1000; eigenvalues of A = {—1,—-2,..., —n}.
10° — 107
- N=25 = -\
N =50 =~ X
1 N =100 < a0 X3
10° —— N = 200 _I —-—)\
=< w0t
-
1010 g 108
o]
g 1010
-15 =
b g 12
10
@
.50
102 O e .
1 2 3 4 5 6 7 8 9 10 25 50 100 200
T J !

4 eigenvalues in Q

= rank(L) =4
Cf. [Beyn 2012], [Giittel & Tisseur 2017] for f(z) = z .

For rank detection for Loewner matrices, see [Hokanson 2018+].



Transient Dynamics
for
Dynamical Systems

with Delays

a case study of pseudospectral analysis



introduction to transient dynamics

We often care about eigenvalues
because we seek insight about dynamics.



introduction to transient dynamics

We often care about eigenvalues
because we seek insight about dynamics.

Start with the simple scalar system
X () = ax(t),

with solution
x(t) = emx(O).

If Rear < 0, then |x(t)| — 0 monotonically as t — oo.

osl x(8)] ]




introduction to transient dynamics

We often care about eigenvalues
because we seek insight about dynamics.

Now consider the n-dimensional system
x'(t) = Ax(t)

with solution
x(t) = e™x(0).

If Re XA < 0 for all A € o(A), then ||x(t)|| — O asymptotically as t — oo,




introduction to transient dynamics

We often care about eigenvalues
because we seek insight about dynamics.

Now consider the n-dimensional system
x'(t) = Ax(t)

with solution
x(t) = e™x(0).

If Re XA < 0 for all A € o(A), then ||x(t)|| — O asymptotically as t — oo,
but it is possible that ||x(t.)]| > ||x(0)|| for some t. € (0, c0).




why transients matter

» Often the linear dynamical system x'(t) = Ax(t) arises from
linear stability analysis for a fixed point of a nonlinear system

y'(t) = F(y(t), t).

For example,

y'(t) = Ay(t) + 5 y(t)*.

50

-1 0
A= [100 —2] 1

20

lIx(t)l

10

> In this example, linear transient growth feeds the nonlinearity.
Such behavior can provide a mechanism for transition to turbulence
in fluid flows; see, e.g., [Butler & Farrell 1992], [Trefethen et al. 1993].



detecting the potential for transient growth

One can draw insight about transient growth from the numerical range (field of
values) and e-pseudospectra of A:

o-(A) = {zeC:|(z2l =AY > 1/}
= {z€C:z€o(A+E) for some E € C"™*" with ||E|| < ¢}

For upper and lower bounds on ||x(t)||, see [Trefethen & E. 2005], e.g.,

" Re z If o2 (A) extends
suplle”]| > sup ——. more than e across
t>0 z€o-(A) € the imaginary axis,

|let”|| grows transiently.



detecting the potential for transient growth

One can draw insight about transient growth from the numerical range (field of
values) and e-pseudospectra of A:

o-(A) {zeC: (2t =AY >1/e}

{ze C:zeco(A+E) for some E € C"™" with ||E|| < ¢}

For upper and lower bounds on ||x(t)||, see [Trefethen & E. 2005], e.g.,
If o2 (A) extends

tA Re z
suplle”]| > sup ——. more than e across
t20 z€o-(A) € the imaginary axis,
|let”|| grows transiently.
=1 50
o:(A)
L. oF i
sor lletA|l lower bound on sup,~q ||e™|| i

from o-(A) with e = 1/10

20

10

A b N B o kN ow b
N

el -3 0 L L L
-4 2 0 2 logyge 0 1 2 3 4

Pseudospectra can guarantee that some x(0) induce transient growth.



two ways to look at pseudospectra
Two equivalent definitions give two distinct perspectives.

perturbed eigenvalues norms of resolvents

o:(A) = {zeC:z€o(A+E) for oc(A)={zeC:|(z1 —A)Y > 1/e}
some E € C"*" with ||E|| < e}
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> o.(A) contains the eigenvalues of
all matrices with distance € of A.

> l|deal for assessing asymptotic
stability of uncertain systems:

Is some matrix near A unstable?

» Why consider all E € C"*"?
Structured pseudospectra further
restrict E (real, Toeplitz, etc.).
[Hinrichsen & Pritchard], [Karow], [Rump]
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o:(A) = {zeC:z€o(A+E) for oc(A)={zeC:|(z1 —A)Y > 1/e}
some E € C"*" with ||E|| < e}

> o.(A) contains the eigenvalues of > 0-(A) is bounded by 1/ level
all matrices with distance € of A. sets of the resolvent norm.

> l|deal for assessing asymptotic > l|deal for assessing transient
stability of uncertain systems: behavior of stable systems:
Is some matrix near A unstable? le® || > 1 or ||A¥|| > 17

» Why consider all E € C"*"? » Rooted in semigroup theory:
Structured pseudospectra further based on the solution operator
restrict E (real, Toeplitz, etc.). for the dynamical system;

[Hinrichsen & Pritchard], [Karow], [Rump] structure of A plays no role.



two ways to look at pseudospectra
Two equivalent definitions give two distinct perspectives.

perturbed eigenvalues norms of resolvents

o:(A) = {zeC:z€o(A+E) for
some E € C"*" with ||E|| < e}

oc(A)={zeC: (21 — A7 >1/e}

> o.(A) contains the eigenvalues of > 0-(A) is bounded by 1/ level

all matrices with distance ¢ of A.

Ideal for assessing asymptotic
stability of uncertain systems:

Is some matrix near A unstable?

» Why consider all E € C"*"?

Structured pseudospectra further
restrict E (real, Toeplitz, etc.).
[Hinrichsen & Pritchard], [Karow], [Rump]

sets of the resolvent norm.

> l|deal for assessing transient
behavior of stable systems:

le® || > 1 or ||A¥|| > 17

> Rooted in semigroup theory:
based on the solution operator
for the dynamical system;
structure of A plays no role.

These perspective match for x'(t) = Ax(t), but not for more complicated systems.



scalar delay equations and the nonlinear eigenvalue problem

We shall apply these ideas to explore the potential for
transient growth in solutions to stable delay differential equations.

Solutions of scalar systems x’(t) = ax(t) behave monotonically:
Ix(t)] = e*R¥|x(0)|. What about scalar delay equations?

x'(t) = ax(t) + Bx(t — 1) ‘

Using the techniques seen earlier, we associate this system with the NLEVP

with infinitely many eigenvalues given by branches of the Lambert-W function:

‘ A =+ Wk(ﬂef‘)). ‘




scalar delay equations and the nonlinear eigenvalue problem

We shall apply these ideas to explore the potential for
transient growth in solutions to stable delay differential equations.

Solutions of scalar systems x’(t) = ax(t) behave monotonically:
Ix(t)] = e*R¥|x(0)|. What about scalar delay equations?
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scalar delay equations and the nonlinear eigenvalue problem

We shall apply these ideas to explore the potential for
transient growth in solutions to stable delay differential equations.

Solutions of scalar systems x’(t) = ax(t) behave monotonically:
Ix(t)] = e*R¥|x(0)|. What about scalar delay equations?
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stability chart for two-parameter delay equation

Conventional eigenvalue-based stability analysis reveals the (a, 8) combinations
that yield asymptotically stable solutions.

2

unstable («, ) pairs 1

B8 05 stable (o, B) pairs

Such stability charts are standard tools for studying stability
of parameter-dependent delay systems.



pseudospectra for nonlinear eigenvalue problems

Green & Wagenknecht [2006] and Michiels, Green, Wagenknecht, & Niculescu [2006]
define pseudospectra for nonlinear eigenvalue problems, and apply them to
delay differential equations.

See [Cullum, Ruehli 2001], [Wagenknecht, Michiels, Green 2008], [Bindel, Hood 2013].

Consider the nonlinear eigenvalue problem T(A)v = 0 with

T = i fi(A) A

j=1
For p,q € [1,00] and weights wi, ..., wn € (0, 0], define the norm
w1 ||Exllq
(G T ,
Wm||Eml[q

P
Given this way of measuring a perturbation to T(A), [MGWN 2006] define

m

f(A) (A; + Ej)> for some
1

o:(T) = {ZE@ZZE()'(-:

Ei,....En € C"™" with H(El7 ey Em)”p«,q < 5}.




pseudospectra for the scalar delay equation

x'(t) = ax(t) + Bx(t — 1)

T\ =X—a—fe .

—==— 2 15
== —— |
= S— 1 e
——
= e 1 05 S—
——g

— > frme{ 0.5 0 -
=
—=> o 0.5 =
—
= f=1-0.5 1 e
=
| ——— [ -15 [
5 0 5 ‘15 1 05 0 0.5 1 15

MGWN e-pseudospectra for o« = % and 5 = —1,
with perturbation norm given by g € [1,00] and p = 00, and wi = wo = 1.
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pseudospectra for the scalar delay equation

X'(t) = —x(t) + 0x(t — 1)

T\ =A+1 T(A)=A+1-0e"
4 == log1o 3 4 [ log1 3
3 3
2 2
1 p— 0g( 2 1 p— |Og( 2
0 0
1 -1
2 2
3 3
4 fmn| log 1 1 4 fme| l0g 1 1
5 4 3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3

MGWN e-pseudospectra with p = co: structure affects pseudospectra.



the solution operator

To better understand transient behavior, just integrate the differential equation:

x'(t) = ax(t) + Bx(t — 1)

history: X(t - 1) = U(t) for t € [0, 1].




the solution operator

To better understand transient behavior, just integrate the differential equation:
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e“u(1) +ﬁ/ =)y (s) ds.
0



the solution operator

To better understand transient behavior, just integrate the differential equation:

x'(t) = ax(t) + Bx(t — 1)

history: X(t - 1) = U(t) for t € [0, 1].

Integrate
X (t) = ax(t) + Bu(t)
to get, for t € [0, 1],

x(t) = e"“x(0) +/6'/Ote(t75)au(s) ds

t
e“u(1) +ﬁ/ =)y (s) ds.
0

This operation maps the history u to the solution x for t € [0, 1]:

ue C([0,1]) ~— xe C([0,1]).



the solution operator

Define the solution operator K : C[0,1] — CJ[0, 1] via

x(t) = (Ku)(t) = e"u(1) + 5/Ote<f*5>“u(s)ds, t € [0,1].



the solution operator

Define the solution operator K : C[0,1] — CJ[0, 1] via
t
x(t) = (Ku)(t) = e"“u(1) +5/ e =9y(s)ds, te[0,1].
0

Xm = X(t)|t€[m—1,m]

define:  x :=u t € [-1,0]
to advance t by 1 unit, apply K: xW = Kx© t €[0,1]

to advance t by 2 units, apply K% x® := Kx®M = K2x(©® tcL,2]

to advance t by m units, apply K™ x(™ := Kx(m=1) = Kmx(©) te[m—1,m]



the solution operator

Define the solution operator K : C[0,1] — CJ[0, 1] via
t
x(t) = (Ku)(t) = e"“u(1) +5/ e =9y(s)ds, te[0,1].
0

Xm = X(t)|t€[m—1,m]

define:  x :=u t € [-1,0]
to advance t by 1 unit, apply K: xW = Kx© t €[0,1]

to advance t by 2 units, apply K% x® := Kx®M = K2x(©® tcL,2]
to advance t by m units, apply K™ x(™ := Kx(m=1) = Kmx(©) te[m—1,m]

View the delay system as a discrete-time dynamical
system over 1-unit time intervals:

x(M = Kmx(©),



discretizing the solution operator

We discretize the solution operator using a Chebyshev pseudospectral method
based on [Trefethen 2000]; see [Bueler 2007], [Jarlebring 2008].

N "
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discretizing the solution operator

We discretize the solution operator using a Chebyshev pseudospectral method
based on [Trefethen 2000]; see [Bueler 2007], [Jarlebring 2008].

N

£
x(tj) = x; = e%up + E Bw;j kU, Wi k ::/ 9%, (s) ds

k=0 0

X0 e 0 ... 0 ) wo,0 Woa1 ot WoN up

X1 et 0 ... 0 uy wio Wil o W uy

= L . .| t8
XN et’\’” 0 e 0 upy WNA,O WN,I e WN. N uy
En(a) Wy ()

Ky = EN(Oz) I BWN(Oz)
X(l) = KN u

m): m



approaches to transient analysis of delay equations

> Jacob Stroh [2006], in a master’s thesis advised by Ed Bueler, computes
L2-pseudospectra of Chebyshev discretizations of the compact solution
operator and considers nonnormality as a function of a time-varying
coefficient in the delay term: our approach follows closely.

> Green & Wagenknecht [2006], in their paper about perturbation-based
pseudospectra for delay equations, describe computing the pseudospectra
of the generator for the solution semigroup as a way of gauging transient
behavior; for relevant semigroup theory, see, e.g., [Engel & Nagel 2000].

» Hood & Bindel [2016+] apply Laplace transform/pseudospectral techniques
to the solution operator for delay differential equations for upper/lower
bounds on transient behavior. See also the Lyapunov approach to
analyzing transient behavior in the 2005 Ph.D. thesis of Elmar Plischke.

» Solution operator approach converts a finite dimensional nonlinear problem
into an infinite dimensional linear problem, akin to the infinite Arnoldi
algorithm [Jarlebring, Meerbergen, Michiels 2010, 2012, 2014].



convergence of the eigenvalues of the solution operator

To study convergence, consider « =0, 8 = —1: x/(t) = —x(t — 1).

,uj(.N): the jth largest magnitude eigenvalue of Ky

eN: )\ is the jth rightmost eigenvalue of the NLEVP

100 T T T T T T T
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5
5 1051 ——7 |-
t I —0—9
v < ~0—11
v @ ——13
3 | 1010 —— 15|
g = ——17
(S 19
g = ——21
ko) 10715 + —0—23| |
J
10720 L L L L L L L

4 8 16 32 64 128 256

N

We generally use N = 64 for our computations throughout what follows.



nonconvergence of the L2 pseudospectra of the solution operator

Eigenvalues converge, but the L2[0, 1] pseudospectra of Ky do not:
the departure from normality increases with N !

°
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the problem with the L2 norm

Problem: The [?(0,1) norm does not measure transient growth of |x(t)|.

One can easily find u(x) such that ||ul| 201 < 1 but [|x|| 203 > 1.

Leta=0 8=-1: X (t)=-—x(t—1) = x(t)=u(l)- /Ot u(s)ds.

Ol _Jv

alb 4

L
initial
condition

u(t? = exp(lQO(t -1))
1 2 3 4 . 5 6

t

a0
initial
condition



the problem with the L2 norm

Problem: The [?(0,1) norm does not measure transient growth of |x(t)|.

One can easily find u(x) such that ||ul| 201 < 1 but [|x|| 203 > 1.

Leta=0 8=-1: X (t)=-—x(t—1) = x(t)=u(l)- /Ot u(s)ds.

15

—e—u(t) = exp(10(t — 1)) ‘
—e—u(t) = exp(100(t — 1))

10
Hx(m) ||L2[o,1]

I ”HL2[0,1]

10 11 12



pseudospectra and transient growth of matrix powers

Since we care about the largest value |x(t)| can take, we should really study

™ oo,

and thus the e-pseudospectrum o-(Ky) defined using the co-norm:

[z (2~ Kn) Yoo > 1/2}
= {z€e C:z € o(Ky+E) for some E € C"™" with ||E||c < &}

o (Kn)



pseudospectra and transient growth of matrix powers

Since we care about the largest value |x(t)| can take, we should really study

™ oo,

and thus the e-pseudospectrum o-(Ky) defined using the co-norm:

o-(Kn) {zeC: (2l = Kn) Moo > 1/}

= {z€e C:z € o(Ky+E) for some E € C"™" with ||E||c < &}

Even in Banach spaces, pseudospectra give lower bounds on transient growth;
see, e.g., [Trefethen & E., 2005].

If 0<(K) extends

|z| — 1 more than € outside
the unit disk,

sup [[K”]| > sup
m>0 .
- ||[K™|| grows transiently.

z€o.(K)

Limitations: [Greenbaum & Trefethen 1994], [Ransford et al. 2007, 2009, 2011]



stability versus solution operator norm

x'(t) = ax(t) + Bx(t — 1)

unstable («, B) pairs

8 050 stable (c, B) pairs

Stable choices of the («, 3) parameters



stability versus solution operator norm

x'(t) = ax(t) + Bx(t — 1)

Level sets: p(K) =0.1,0.2,...,1.0



stability versus solution operator norm

x'(t) = ax(t) + Bx(t — 1)
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Level sets: ||K|| =0.5,1.0,...,4.5



stability versus solution operator norm

x'(t) = ax(t) + Bx(t — 1)

Superimposed level sets for p(K) and ||K]||



stability versus solution operator norm

x'(t) = ax(t) + Bx(t — 1)

e
// // sweet spot for
2 }’ transient growth
25 // / 1
i . . .

Superimposed level sets for p(K) and ||K]||



pseudospectra on the stability frontier

Animation of pseudospectra can be viewed using Adobe Acrobat.

o = —2.000, 8 = 2.000
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solution matrix pseudospectra (co-norm)
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x'(t) = ax(t) + Bx(t — 1)
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solution matrix pseudospectra (co-norm)
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x'(t) = ax(t) + Bx(t — 1)
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solution matrix pseudospectra (co-norm)

05
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x'(t) = ax(t) + Bx(t — 1)
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solution matrix pseudospectra (co-norm)

x'(t) = ax(t) + Bx(t — 1)

o5 075 1 125 15 o5 075 1 125 15

o= 0.98995 p(K) = 0.99000 o= 0.98995 p(K) = 0.90000
8 = —0.99000 K|l = 4.38204 8 = —0.90000 |K||o = 3.90135



solution operator: transient growth

X'(t) = ax(t) + Bx(t — 1)

initial
condition

p(K)=0.99

initial
condition



solution operator: transient growth

x'(t) = ax(t) + Bx(t — 1)

104 T T T T T
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As a1 1 and 8 | —1, solutions exhibit arbitrary transient growth, but slowly.



can scalar equations exhibit stronger transients?

Is faster transient growth possible in a scalar equation if we allow
multiple synchronized delays?

X'(t) = cox(t) +ax(t—1)+cox(t —2)+ -+ ca x(t — d).



can scalar equations exhibit stronger transients?

Is faster transient growth possible in a scalar equation if we allow
multiple synchronized delays?

X'(t) = cox(t) +ax(t—1)+cox(t —2)+ -+ ca x(t — d).

Key: Look for solutions of the form x(t) = t%e™.



can scalar equations exhibit stronger transients?

Is faster transient growth possible in a scalar equation if we allow
multiple synchronized delays?

X'(t) = cox(t) +ax(t—1)+cox(t —2)+ -+ ca x(t — d).

Key: Look for solutions of the form x(t) = t%e™.

One can show that x(t) = t?e** is a solution if and only if co, ci,

..., Cd
solve the Vandermonde linear system
11 1 - 1 e A
01 2 d a -1
01 d? e o | _ 0
0o 1 2 d? e ey 0



commensurate delays can give much larger pseudospectra

X'(t) = cox(t) + ax(t — 1)+ - 4 cax(t — d)

05 o

p(K)=0.934




commensurate delays can induce strong transients

X(t)=cox(t) +ax(t—1)+cax(t—2)+ -+ cix(t —d)

Initial data:
x(t) = —1 + 2™t
fort <0

d=1
d=2
d=3

15

10

<o
1

Co
1
(=]

<o
1
(&)
3

<o
1
2
(&)
Ca

0.8946
—0.9000

1.3946
—1.8000
0.4050

1.7280
—2.7000
1.2150
—0.2430

1.9780
—3.9600
2.4300
—0.9720
0.1640



commensurate delays can induce strong transients

x'(t) = cox(t) + ax(t — 1) + -+ + cax(t — d)

x(2)]

10°

With commensurate delays, solutions to scalar equations can exhibit
significant transient growth very quickly in time.



summary

rational interpolation for nlevps transients for delay equations

Solutions to scalar delay equations
can exhibit strong transient growth.

Rational / Loewner techniques motivated
by algorithms from model reduction

» Structure Preserving Rational > Finite dimensional nonlinear

Interpolation: iteratively improve
projection subspaces via
interpolation points and directions.

Data-Driven Rational Interpolation
Matrix Pencils: reduce nonlinear
problem to linear matrix pencil with
tangential interpolation property.

Minimal Realization via Rational
Contour Integrals: isolates a
transfer function for a linear system,
recover via Loewner minimal
realization techniques.

problem =- infinite dimensional
linear problem

> Pseudospectral theory applies
to the linear problem, but the
choice of norm is important.

> Chebyshev collocation keeps the
discretization matrix size small.

> Adding commensurate delays
enables a faster rate of initial
transient growth.
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