CMDA 4604 - INTERMEDIATE TOPICS IN MATHEMATICAL MODELING
End-of-Term Project

. Declare the topic of your project by meeting with the instructor by Friday November 13.

. Final write-ups are due (by email) by Wednesday, December 9 at the latest.

No late submissions will be accepted on this assignment.

. Type your report (using IWTEX or your favorite word processor).
. The report should be at least four pages, potentially including graphics.

. You may work alone, or with one other student.

(Two students are expected to produce a more extensive project than single students.)

. The project will count double the weight of a normal 100-point problem set.

. 80% of the project grade will be based on mathematical/scientific content.

20% will be based on the quality of the exposition.

. Ezperimental projects should carefully describe (a) the mathematical questions being investigated;

(b) the experimental apparatus; (c) the data collected; (d) how the data fits mathematical expectations;
(e) sources of error; (f) how more accurate results might be obtained.

. Theoretical/computational projects should (a) tackle a topic beyond the scope of the lectures; (b) refer

to at least one source in the literature (papers/books); (c) clearly describe the theoretical setting and
assumptions; (d) provide illustrations (e.g., MATLAB plots, movies, etc.) of the concept in action.

Students are welcome to select one of the project ideas described below, or propose a different topic of their
own design having similar scope. The instructor expects to interact with each student to provide additional
background information and tips for interesting avenues to explore that align with their interest.

Ezxperimental projects

El.

E2.

Quantitative experiments with Chladni plates

Experiment further with the instructor’s Chladni plate hardware. Conduct careful measurements of
the resonant frequencies (square roots of eigenvalues) of a given plate. Measure how these eigenvalues
change with the thickness of the plate, size of the plate, and flaws in the plate. (A variety of plates
are available for your study.)

Martin J. Gander and Felix Kwok, “Chladni Figures and the Tacoma Bridge: Motivating PDE Eigen-
value Problems via Vibrating Plates,” SIAM Review 54 (2012) 573-596.
http://dx.doi.org/10.1137/10081931X

Implement a discrete heat equation in a resistor-capacitor circuit.

The equations describing resistor-capacitor circuits (of the proper arrangement) lead to equations of
the form a’(t) = Ka(t), here K is the stiffness matrix from the finite element method. Thus, circuits
can be used to simulate the heat equation. (Indeed such circuits were used in the oil industry in the
1950s as efficient computational devices for simulating the heat equation!) Implement such a circuit
and conduct conduct careful measurements. How does the output compare to the expected solution of
the heat equation?

For basics of resistor circuit modeling, see Chapter 2 of the CMDA 3606 notes.
http://www.math.vt.edu/people/embree/cmda3606/chapter?2.pdf

A. F. Robertson and Daniel Gross, “An Electrical-Analog Method for Transient Heat Flow Analysis,”
J. Res. Nat. Bureau Standards 61 (1958) 105-115.
http://nvlpubs.nist.gov/nistpubs/jres/61/jresv61n2p105_Alb.pdf


http://dx.doi.org/10.1137/10081931X
http://www.math.vt.edu/people/embree/cmda3606/chapter2.pdf
http://nvlpubs.nist.gov/nistpubs/jres/61/jresv61n2p105_A1b.pdf

E3.

E4.

E5.

Implement a damped wave equation in a resistor-inductor-capacitor circuit.

A simple RLC (resistor-inductor-capacitor) circuit gives a second order linear differential equation
that obeys the equation of damped simple harmonic motion (z”(t) = —kz(t) — 2d2’(t)). Implement
this circuit and conduct basic experiments with the damping constant d to illustrate weakly damped,
critically damped, and over-damped systems. Then attempt to aggregate several such circuits to
simulate the damped wave equation.

Careful laboratory studies of steady-state heat distribution.

We would like to develop some experimental data from the heat equation to drive our uncertainty
quantification studies. Attempt to reproduce the results of Smith’s Example 3.5 measuring the tem-
perature u(z) at various points x along the length of bars made of aluminum and copper (or other
metals). In this experiment, the temperature at one end of the bar is fixed, while the heat flux is set
at the other end of the bar.

Ralph C. Smith, Uncertainty Quantification: Theory, Implementation, and Algorithms, SIAM, Philadel-
phia, 2014. http://www4.ncsu.edu/~rsmith/UQ_TIA/

Uncertainty quantification for a mass-spring-damper system.

Construct a simple mass-spring-damper system. For a given spring, estimate the spring constant using
Hooke’s law based on loading the spring with different masses, then collect displacement-versus-time
data for a vibrating system. Use least squares to recover values of the spring constant and damping
parameter. Does the spring constant agree with what you measured using Hooke’s Law?

Ralph C. Smith, Uncertainty Quantification: Theory, Implementation, and Algorithms, STAM, Philadel-
phia, 2014. http://www4.ncsu.edu/~rsmith/UQ_TIA/

Theoretical/numerical projects

TI1.

T2.

T3.

Vibrations of piano wires strings.

Stiff strings, like those made out of wire used in pianos, obey a fourth order version of the wave equation
having the form uy; = —QUgppe + BUzs +YUgzet — Uy, Which we write as uyy = Lu, with hinged boundary
conditions. Compute the spectrum of the L when the parameters «, (3, -, § are constant. Conduct
simulations of these vibrations in Chebfun. How do they compare to solutions of the conventional wave
equation? Do they sound different? Address the finite element modeling for this fourth-order problem.

Julien Bensa, Stefan Bilbao, Richard Kronland-Martinet, and Julius O. Smith ITI, “The simulation of
piano string vibration: from physical models to finite difference schemes and digital waveguides,” J.
Acoustical Soc. America 114 (2003) 1095-1107.

Vibrations of spider webs.

Spider webs can be modeled as strings that obey the wave equation, but have a special boundary
condition where strings meet to enforce continuity of the network (the vibrating web does not become
disconnected at the junctions between strings) and a force balance. Study the solution to the wave
equation for simple webs and/or implement the finite element method to conduct mathematical models
of more complicated vibrating structures.

E. J. P. Georg Schmidt, “On the modelling and exact controllability of networks of vibrating strings,”
SIAM J. Control Optimization 30 (229-245) 1992.
http://dx.doi.org/10.1137/0330015

For background, see the work of Fritz Vollraths’s “Oxford Silk Group” in the Department of Zoology
at Oxford University: http://users.ox.ac.uk/~abrg/spider_site

(If you are interested in this project, I can provide you with a more gentle introduction to simple
problems than you will find in Schmidt’s more general analysis.)

Optimal damping for vibrating strings.
We have studied some elementary questions about the optimal constant § to damp solutions to the
wave equation g = Uz, — 20u;. If you allow § to vary, can you beat the optimal constant, § = «7


http://www4.ncsu.edu/~rsmith/UQ_TIA/
http://www4.ncsu.edu/~rsmith/UQ_TIA/
http://dx.doi.org/10.1137/0330015
http://users.ox.ac.uk/~abrg/spider_site

T4.

T5.

T6.

This question was open for some time before better damping parameters were found. Explore this
question and conduct numerical experiments with spatially-varying damping. (Except for a few very
special values of §, you cannot compute the eigenvalues and eigenfunctions exactly.) How do you handle
spatially-varying § in the finite element method?

Steven J. Cox and Michael L. Overton, “Perturbing the critically damped wave equation,” SIAM
J. Appl. Math. 56 (1996) 1353-1362.
http://dx.doi.org/10.1137/S0036139994277403

Pedro Freitas, “Optimizing the rate of decay of solutions of the wave equation using genetic algorithms:
a counterexample to the constant damping conjecture,” SIAM J. Control Optim. 37 (1998) 376-387.
http://dx.doi.org/10.1137/S0363012997329445

Carlos Castro and Steven J. Cox, “Achieving arbitrarily large decay in the damped wave equation,”
SIAM J. Control Optim. 39 (2001) 1748-1755.
http://dx.doi.org/10.1137/50363012900370971

Finite element methods for the advection—diffusion equation.

The advection diffusion equation —u” + cu’ = f has appeared on several problem sets. The underlying
operator L defined by Lu = —u” + cu’ is non-symmetric, which complicates the use of the spectral
method; it also raises some issues for the finite element method. Study how to solve this equation
using the standard Galerkin finite element method. How does the quality of the approximation relate
to the mesh parameter NV and the constant c?

B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, “On parameter choice and iterative con-
vergence for stabilised discretizations of advection-diffusion problems,” Comp. Methods Appl. Mech.
Eng. 179 (1999) 179-195.

http://dx.doi.org/10.1016/S0045-7825(99)00037-7

Spectral stability of the advection—diffusion operator.

A hint of the challenge raised by the advection—diffusion operator (Lu = —u" + cu) comes from the
sensitivity of the eigenvalues to small perturbations in the operator. One way to investigate this
phenomenon comes from the pseudospectra of L, which consist of sets in the complex plane containing
the eigenvalues of L and all “nearby” operators. Learn about pseudospectra of matrices and operators,
describe the finite element discretization of the advection—diffusion eigenvalue problem, —u" +cu = Au,
and compute some pseudospectra of these discretizations.

Lloyd N. Trefethen and Mark Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Ma-
trices and Operators, Princeton University Press, Princeton, 2005. (See especially Chapters 2, 5, 12.)
http://pup.princeton.edu/titles/8113.html

EigTool (MATLAB software for computing pseudospectra): https://github.com/eigtool/eigtool

Galerkin eigenvalue approximation.

This semester we have focused on symmetric linear operators with constant coefficients, e.g., Lou = —u
or, more generally, the shifted operator L.u = —u" + cu. How can one approximate the eigenvalues
of an operator with variable coefficients, like Lu = —u” + w(z)u? The theory of Galerkin eigenvalue
approximation addresses this issue. Apply the Galerkin method to the eigenvalue equation Lu = Au;
your stiffness matrix will now have entries that depend on the variable coefficient w(x); its entries can
still be computed easily using Chebfun. You can show that the eigenvalues of the finite-dimensional
Galerkin problem provide upper bounds on the exact eigenvalues. Compare the results you get from
using hat functions in the Galerkin method, to using the exact eigenfunctions v, (x) = v/2sin(nmx)
for the constant coefficient problem. How do your results change as the number of basis functions N
in the Galerkin approximation increases?

Hans F. Weinberger. Variational Methods for Eigenvalue Approzimation, STAM, Philadelphia, 1974.
http://dx.doi.org/10.1137/1.9781611970531
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