CMDA 4604 - INTERMEDIATE TOPICS IN MATHEMATICAL MODELING
Problem Set 5

Posted Wednesday 21 October 2015. Du Wednesday 28 October 2015, 5pm.

Solve problems 1 and 2, and either 3 or 4 (to make a total of 100 points).

1. [45 points]
This problem considers the heat equation with homogeneous Neumann boundary conditions.
1, z€]0,1/2];
(a) Consider the function ug(z) =< 0, z € (1/2,2/3);
1, ze(2/3,1].

Recall that the eigenvalues of the operator L : C%[0,1] — C]0, 1],
Lu=—u"
are \, = n?z? for n =0, 1,... with associated (normalized) eigenfunctions o (x) = 1 and

Y (x) = \/icos(mrx), n=12....

We wish to write ug(z) as a series of the form
UO(*T) = Zan(0)¢n(x)a
n=0

where a,,(0) = (ug, ¥n).

e Compute formulas for these inner products a,(0) = (ug, ) (by hand, Mathematica, etc.;
don’t leave in integral form).

e For m =0,1,2,4,80, plot the partial sums
UO,m(m) = Z an(o)wn(x)
n=0

(You may superimpose these on one single, well-labeled plot if you like.)

(b) Write down a series solution to the homogeneous heat equation
up(x,t) = ugy(x,t), 0<z<1, t>0
with Neumann boundary conditions
ug(0,1) = uz(1,8) =0

for the initial condition u(z,0) = ug(x) given in part (a).

Plot the solution at times ¢ = 0,0.002,0.05,0.1.

You will need to truncate your infinite series to show this plot.
Include enough terms for your plots to appear converged.

(¢) Describe the behavior of your solution as ¢ — oo.
(To do so, write down a formula for the solution in the limit ¢ — oo, if such a limit exists.)



(d)

Now consider the inhomogeneous heat equation
up(x,t) = uge(x,t) + 1, 0<z<1, t>0
with Neumann boundary conditions
ug(0,8) = uz(1,8) = 0.

Work out the solution u(z, ) to this equation with forcing function f(x,t) = 1.

Plot the solution at times ¢ = 0,0.002,0.05,0.1,0.5 (one time more than in part (b)).
Does your solution tend to a steady state?

2. [25 points]

(a)

Describe how to solve the heat equation
up(z,t) = ugy(z,t) + f(2,1), O<zx<l, t>0
with inhomogeneous Neumann boundary conditions
ug(0,t) = a, ug(1,t) = 8

and initial condition u(x,0) = ug(z).
(Hint: you are permitted to alter f and ug if that is helpful....)

Consider the inhomogeneous heat equation from Problem 1(d): u;(z,t) = uze(z,t) + f(x,t) with
f(z,t) =1 and u(z,0) = up(x) as specified in Problem 1. In place of the homogeneous Neumann
conditions u,(0,t) = u,(1,t) = 0, we now want to use

ug(0,t) = a = —1, ug(1,t) = B =2.

Using your solution to Problem 2(a), repeat Problem 1(d) with these inhomogeneous Neumann
boundary conditions. (You may use Chebfun to compute all inner products you need.)

3. [30 points: do either Problem 3 or 4]
Consider the fourth order partial differential equation

Ut (J}, t) = Uy (xa t) — Ugzzx (QZ‘, t)

with hinged boundary conditions

w(0,1) = Uz (0,8) = u(1,t) = uge(1,8) =0

and initial condition (that should satisfy the boundary conditions)

u(x,0) = up(x).

(This equation is related to a model that arises in the study of thin films.)
To solve this PDE, we introduce the linear operator L : C4[0,1] — C[0, 1], where

and

1 "
Lu=—u"+u

C%[0,1] = {u € C*[0,1],u(0) = v (0) = u(1) = v’ (1) = 0}

is the set of C* functions that satisfy the hinged boundary conditions.



(a) The operator L has eigenfunctions
V() = V2sin(nmz), n=12....
Use this fact to compute a formula for the eigenvalues A\,,, n =1,2,....

(b) Suppose the initial condition ug(z) is expanded in the form

o0

uo(z) =Y an(0)n(2).

n=1
Briefly describe how one can write the solution to the PDE u; = gy — Uzzze as an infinite sum.
(¢) Suppose the initial data is given by
ug(z) = (x — 2?) sin(3rx)?,
with associated coefficients

4321/2(n* — 18n? + 216)
a,(0) = (36n — n3)373 ’
0, n even.

n odd;

Use Chebfun to compute the solution you describe in part (b) up to seven terms in the infinite
sum. At each time ¢t = 0; 107%; 2 x 107°; 4 x 107°, produce a plot comparing the sum of
the first 1, 5, and 7 terms of the series. For example, at time ¢t = 0, your plot should appear
as shown below. (Alternatively, you can produce attractive 3-dimensional plots over the time
interval ¢ € [0,4 x 107°] using 1, 5, and 7 terms in the series.)

time = 0
0.3 T T T T

=1 term
5 terms

—7 term

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4. [30 points: do either Problem 3 or 4]
Recall the advection—diffusion equation from Problem Set 3. We now wish to solve the time-dependent
version of this important equation in physics and engineering:

up(x,t) = ugg(x,t) — cuy(z,t)

for z € [0, 1] with u(0,t) = u(1,¢) = 0 and initial condition u(z,0) = ug(x). (The —uy, term describes
diffusion of a fluid; the constant ¢ describes the strength with which the fluid advects across the



domain through the cu, term.) You might review the solution to question 5 on Problem Set 3 before
proceeding.

Define the linear operator L : C%[0,1] — C[0,1] by Lu = —u” + cu/. The eigenvalues of L are

)\n:n27r2—|—cz, n=12...

with corresponding eigenfunctions

Recall that L is not symmetric, but has an adjoint L* : C3[0,1] — C[0, 1] given by L*u = —u" — cu/.

VY (z) = e/ 2 sin(nrx), n=12,....

This adjoint has the same eigenvalues as L, but its eigenfunctions are instead

Un(z) = e~ ?sin(nrx), n=1,2,....

Notice that the eigenfunctions of L and L* are biorthogonal:

(wna ’(Zm) = 0> n 7& m.

In particular, when expanding a function f in the eigenfunctions {,}, the coefficients will involve
eigenfunctions of both L and L*:

(a)

=3 (%& ().

Adapt our strategy for solving the heat equation to now solve
u(z,t) = Uge (2, 1) — cug(z,t)
with u(0,t) = u(1,t) = 0 with some generic initial condition u(x,0) = ug(z). More specifically,
write down a series solution for u(z,t) in the eigenfunctions {v,}.
Use Chebfun to plot solutions to the advection diffusion equation with initial condition

ug(z) = z(1 — ).
and advection parameter ¢ = 1. (You can use Chebfun to compute the inner products needed to
expand wug.) Show your solution at times ¢ = 0,0.01,0.02,...,0.10. Take enough terms in your
series so that the solution appears converged at all these times.

Repeat part (b), but now with parameter ¢ = 5. You should now see your initial condition clearly
advect across the domain, from left to right, as time increases.

In part (c): at what time (roughly) does max,efo 1] |u(x,t)| take its maximum value? How does
this contrast to what you are accustomed to seeing for the heat equation?



