
CMDA 4604 · INTERMEDIATE TOPICS IN MATHEMATICAL MODELING

Problem Set 3

Posted Wednesday 23 September 2015. Due Monday 5 October 2015, 5pm.

All of the problems on this set use the inner product

(u, v) =

∫ 1

0

u(x)v(x) dx.

Complete any four of these five problems. (Only four will be counted for credit.)

1. [25 points]

Consider the function f(x) =

{
1, 0 ≤ x < 1/2;
0, 1/2 < x ≤ 1.

(a) Let ψn(x) =
√

2 sin(nπx). Work out a formula for (ψn, f) (as a function of n).

(b) Write a MATLAB/Chebfun code to plot the best approximation to f from span{ψ1, . . . , ψn}:

fN =

N∑
n=1

(ψn, f)

(ψn, ψn)
ψn.

Plot fN (x) for x ∈ [0, 1] for N = 4, 16, 64.

N.B. You can implement f in Chebfun via the command
f = chebfun({1,0},[0 .5 1],’splitting’,’on’)

(c) Since fN (0) = 0 but f(0) = 1, we cannot have fN (x)→ f(x) for all x ∈ [0, 1] as N →∞. We wish
to study another kind of convergence here. Produce a loglog plot showing N = 2, 4, 8, 16, 32, 64
(or larger, if you like) on the horizontal axis, and ‖f − fN‖ on the vertical axis. (Note that you
can compute ‖f − fN‖ in Chebfun using the norm command.)

(d) Now we seek to solve −u′′(x) = f(x) with u(0) = u(1) = 0. Use the spectral method discussed in
class to construct best approximations uN to u from span{ψ1, . . . , ψN}. (Do not worry about the
fact that f is not continuous, and hence not in C[0, 1]. Forge ahead and see if you get a reasonable
solution.) Plot the solutions uN for a few values of N to show convergence.

2. [25 points]
Consider the linear operator L : C2

b [0, 1]→ C[0, 1] defined by

Lu = −d
2u

dx2
,

where

C2
b [0, 1] =

{
u ∈ C2[0, 1] :

du

dx
(0) = u(1) = 0

}
.

(a) Is L symmetric?

(b) Find the eigenvalues λn and eigenfunctions ψn of L.

For each of the following two subproblems, write down the solution uN , which will involve a sum of
N terms involving a best approximation from span{ψ1, . . . , ψN} (possibly with a correction term to
account for boundary conditions). Plot the approximate solutions uN for several values of N (e.g.,
N = 2, 4, 8). (You may use Chebfun.)



(c) −d
2u

dx2
(x) = 10x,

du

dx
(0) = u(1) = 0.

(d) −d
2u

dx2
(x) = 10x,

du

dx
(0) = u(1) = 1.

(e) −d
2u

dx2
(x) = xex sin(20x),

du

dx
(0) = u(1) = 0. (Take N large enough to show convergence.)

3. [25 points]

(a) Suppose A ∈ RN×N is a symmetric matrix with eigenvalues λj and associated eigenvectors vj 6= 0:

Avj = λjvj , j = 1, . . . , N.

Show that the vectors v1, . . . ,vN are also eigenvectors of the matrix B = A + βI for any fixed
β ∈ R. What are the corresponding eigenvalues µ1, . . . , µN of B?

For the rest of this problem, consider the linear operator L : C2
D[0, 1]→ C[0, 1], where

Lu = − d2

dx2
u+ 7u

and C2
D[0, 1] = {u ∈ C2[0, 1] : u(0) = u(1) = 0} as usual.

(b) Prove that L is symmetric.

(c) Using part (a) or otherwise, determine the eigenvalues and eigenfunctions of L.

(d) Use the spectral method to determine the solution to the differential equation

− d2

dx2
u+ 7u = 1, u(0) = u(1) = 0.

That is, write down the formula for uN , the best approximation to u from span{ψ1, . . . , ψN}.
(e) Using MATLAB/Chebfun, plot your solutions uN (x) for several values of N to show convergence.

4. [25 points]
For the problems we have considered thus far, the eigenvalues have always satisfied nice formulas that
are fairly easy to compute. This problem illustrates that this is not always the case.

Consider the equation
−u′′(x) = f(x), x ∈ [0, 1]

with a homogeneous Robin condition on the left,

u(0)− u′(0) = 0

and a homogeneous Dirichlet boundary condition on the right,

u(1) = 0.

Define the linear operator L : V→ C[0, 1] via Lu = −u′′ with

V = {u ∈ C2[0, 1] : u(0)− u′(0) = u(1) = 0}.

(a) Prove that L is symmetric.



(b) Is zero an eigenvalue of L? That is, does there exist a nontrivial solution to −u′′(x) = 0 with
these boundary conditions?

(c) Compute the eigenfunctions of L associated with nonzero eigenvalues, and show that these eigen-
values λ must satisfy the equation √

λ = − tan(
√
λ).

(d) In MATLAB, create a plot of g(x) = − tan(x) for x ∈ [0, 5π] and superimpose (hold on) a plot
of h(x) = x. By hand, mark the points where these two functions intersect on your plot.

(e) Use your plot in (d) to argue that L has infinitely many eigenvalues,
with (n− 1

2 )2π2 < λn < (n+ 1
2 )2π2. To what value does λn tend as n becomes large?

(f) Estimate the first four eigenvalues to at least six digits of accuracy.
You will need to find the points of intersection you marked in part (d).
Please don’t just try to ‘eyeball’ these by zooming in on your plot!
Instead, either use MATLAB’s fzero function, or write your own implementation of a root-finding
algorithm (Newton’s method, bisection, etc.). Alternatively, you can use the roots command with
Chebfun, but you need to be delicate with the domain over which you define your chebfuns. . . .

5. [25 points]

Many fluid dynamics problems lead to advection–diffusion equations, the simplest example of which is

−u′′(x) + cu′(x) = f(x),

for x ∈ [0, 1] with u(0) = u(1) = 0. (The −u′′ term describes diffusion of a fluid; the constant c
describes the strength with which the fluid advects across the domain through the cu′ term. Think
of a drop of dye on the surface of water, with wind blowing across: the dye spreads out slowly in all
directions due to diffusion; at the same time the dye advects across the water in the wind’s direction.)

Define the linear operator L : C2
D[0, 1]→ C[0, 1] by Lu = −u′′ + cu′.

(a) Show that the functions

ψn(x) = ecx/2 sin(nπx), n = 1, 2, . . .

are eigenfunctions of L. What are the corresponding eigenvalues, λn?
Are the eigenfunctions orthogonal? Explain.

(b) This operator is not symmetric. To construct solutions for this case, we must introduce the notion
of the adjoint, which generalizes the transpose of a matrix. An operator L∗ : V→W is the adjoint
of L : V→W with V ⊆W provided (Lu, v) = (u, L∗v) for all u, v ∈ V.

Show that the adjoint L∗ : C2
D[0, 1]→ C[0, 1] of L is given by

L∗u = −u′′ − cu′.

That is, show that this definition of L∗ gives (Lu, v) = (u, L∗v) for all u, v ∈ C2
D[0, 1].

(c) Show that L∗ has the same eigenvalues λn as L. What are the corresponding eigenfunctions of

L∗? Denote the eigenfunctions of L∗ by ψ̂n.

(d) Show that (ψm, ψ̂n) = 0 if m 6= n.
(This means that the eigenvectors of L and L∗ are biorthogonal.)



(e) Suppose we seek an approximate solution of the form

uN (x) =

N∑
n=1

γnψn(x).

The best approximation approach we used to find uN when L was symmetric no longer holds.
Instead, impose the orthogonality condition on the eigenvectors of L∗:

(u− uN , w) = 0 for all w ∈ span{ψ̂1, . . . , ψ̂N}.

Use this condition to derive a formula for each γn, n = 1, . . . , N , and hence for the approximate
solution uN .

(f) Plot the approximate solution uN to −u′′(x)+u′(x) = 1 with u(0) = u(1) = 0 using the technique
you designed in part (e) for several values of N . Do you obtain convergence? Does the performance
of your method change if you increase c from c = 1 to c = 10 or c = 100?


