
Two Examples of Solving −u′′(x) = f(x)

We wish to solve −u′′(x) = f(x) with homogeneous Dirichlet boundary conditions u(0) =
u(1) = 0 for three different choices of f . The key idea here is that the smoothness of f will
vary in these three examples, which will be reflected in the decay rates of the inner products
(ψn, f).

Let L : C2
D[0, 1]→ C[0, 1] be given by Lu = −u′′.

In what follows, denote the nth eigenvalue and eigenfunction of L by

λn = n2π2, ψn(x) =
√

2 sin(nπx).

Notice that the leading
√

2 factor in ψn ensures that (ψn, ψn) = 1, i.e., it makes ψn a unit
vector.

1. Solve −u′′(x) = 1, u(0) = u(1) = 0.

We can find the exact solution by just integrating twice and using the boundary pa-
rameters to determine the constants of integration. This gives u(x) = (x− x2)/2.

However (anticipating time dependent problems to come, like ut = uxx), we will solve
this by eigenfunction expansion. First we will consider expansions of f (i.e., the limits
of best approximations):

1 = f(x) =
∞∑
n=1

(ψn, f)

(ψn, ψn)
ψn(x)

and the solution

u(x) =
∞∑
n=1

1

λn

(ψn, f)

(ψn, ψn)
ψn(x).

For both we must compute

(ψn, f) = (
√

2 sin(nπx), 1) =
∫ 1

0

√
2 sin(nπx) · 1 dx =

√
2(1− (−1)n)

nπ
.

The first few values are:

(ψ1, f) =
2
√

2

π
, (ψ2, f) = 0, (ψ3, f) =

2
√

2

3π
, (ψ4, f) = 0, (ψ5, f) =

2
√

2

5π
.

Thus we might want to write

1 = f(x) =
∞∑
n=1

(ψn, f)

(ψn, ψn)
ψn(x) =

∞∑
n=1

√
2(1− (−1)n)

nπ
(
√

2 sin(nπx))

=
∞∑
n=1

2(1− (−1)n)

nπ
sin(nπx).
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The right-hand side looks like an absurd way to write f(x) = 1, but you can see that
it seems to work. Run lapex1.m.

We can also write the solution as

x− x2

2
= u(x) =

∞∑
n=1

1

λn

(ψn, f)

(ψn, ψn)
ψn(x) =

∞∑
n=1

1

n2π2

√
2(1− (−1)n)

nπ
(
√

2 sin(nπx))

=
∞∑
n=1

2(1− (−1)n)

n3π3
sin(nπx).

Notice in lapex1.m that the series for u converges so much faster than the series for
f ! Why? First, note that u satisfies the boundary conditions, but f doesn’t (and
there is no need for it to do so) – hence the eigenfunctions (which must obey the
boundary conditions) can approximate u better than f . Secondly, notice that dividing
by λn = n2π2 makes the coefficients in the series decay like 1/n3 in the series for u,
instead of 1/n as in the series for f . Faster decay of the coefficients means faster
convergence.

2. Solve −u′′(x) = f(x), u(0) = u(1) = 0, where

f(x) =

{
x, x ∈ [0, 1/2];

1− x, x ∈ [1/2, 1].

Notice that this function f is in C[0, 1] but not C1[0, 1], because the derivative of f is
discontinuous at 1/2. However, f(0) = f(1) = 0, so you might have some hope that
the eigenfunctions will do a better job of approximating f , since ψn(0) = ψn(1) = 0.

Can you find the solution exactly? (Integrate twice on each half of the domain; you
will have four constants (two on each domain). Use the boundary conditions to set
two of the integration constants; enforce continuity of u(1/2) and u′(1/2) to find the
other two.

One can now compute

(ψn, f) =
∫ 1

0
ψn(x)f(x) dx =

8
√

2 cos(nπ/4) sin3(nπ/4)

n2π2
.

The first few values are:

(ψ1, f) =
2
√

2

π2
, (ψ2, f) = 0, (ψ3, f) = −2

√
2

9π2
, (ψ4, f) = 0, (ψ5, f) =

2
√

2

25π2
.

Now the solution is

u(x) =
∞∑
n=1

1

λn

(ψn, f)

(ψn, ψn)
ψn(x) =

∞∑
n=1

16 cos(nπ/4) sin3(nπ/4)

n4π4
sin(nπx),

which converges even faster than in the last case, because the series for f converged
even faster. Notice (by running lapex2.m) that f ′ is not continuous as x = 1/2, but
the solution u indeed appears smooth.

2


