
CMDA 3606 · MATHEMATICAL MODELING II

Problem Set 9

Posted 12 April 2018. Due at 5pm on Thursday, 18 April 2019.

Basic guidelines: Students may discuss the problems on this assignment, but each student must submit his
or her individual writeup and code. (In particular, you must write up your own individual MATLAB code.)
Students may consult class notes and other online resources for general information; cite all your sources
and list those with whom you have discussed the problems.

1. [25 points: 5 points per part]

At some point in your past, you learned that the dot product describes the angle between two vectors:
For nonzero x,y ∈ IRn,

xTy = cos 6 (x,y)‖x‖‖y‖,

which can be regrouped as

cos 6 (x,y) =

(
x

‖x‖

)T(
y

‖y‖

)
. (∗)

Here we explore how to generalize this idea to understand the angles between two subspaces.

(a) Consider the two 2-dimensional subspaces

X = span


 1

0
0

 ,
 0

1
0

 , Y = span


 0

0
1

 ,
 1

0
0

 .

Each of these subspaces can be visualized as a plane in IR3. What is their intersection? Describe,
in geometrical language (e.g., in terms of the “x, y, and z axes”), how these planes are arranged
relative to one another.

We define the angles between two d-dimensional subspaces X and Y of IRn as follows:

• Construct a matrix QX ∈ IRn×d whose columns form an orthonormal basis for X;

• Construct a matrix QY ∈ IRn×d whose columns form an orthonormal basis for Y;

• Form the matrix A = QT
XQY;

• Compute the singular values σ1 ≥ σ2 ≥ · · · ≥ σd of A.

• We define the jth smallest angle θj(X,Y) between X and Y to be

cos θj(X,Y) = σj .

(b) Explain how this formula reduces to (∗) for the case d = 1.

(c) Compute θ1(X,Y) and θ2(X,Y) for the subspaces X and Y in part (a).
Does this answer make sense, compared to your geometric description in part (a)?

(d) Compute θ1(X,Z) and θ2(X,Z), where X is again from part (a) and

Z = span


 0√

2/2√
2/2

 ,
 1

0
0

 .

(e) Now suppose X and Y are general d-dimensional subspaces, and let uj and vj denote the jth left
and right singular vectors of A. Using the definition (∗), what is the angle between the vectors
QXuj (which is in X) and QYvj (which is in Y)?

(f) Suppose the first p singular values of QT
XQY are equal to one, σ1 = · · · = σp = 1.

Describe the vectors at the intersection of X and Y.



2. [38 points: 7 points each for (a),(b),(d),(e); 10 point each for (c)]

At its kth step, an iterative method for solving Ax = b constructs an approximate solution xk. With
this iterate we associate the residual vector

rk = b−Axk.

A successful method for solving Ax = b will drive rk → 0 as quickly as possible.

Lewis Fry Richardson proposed that xk be constructed as follows Let x0 = 0 so that r0 = b. Then for
a fixed constant c, define

xk+1 = xk + crk.

(a) Show that you can write rk = (I− cA)kb.

(b) Suppose that A is diagonalizable, A = VΛV−1 =
∑n

j=1 λjvjv̂
∗
j .

Show that I− cA has the same eigenvectors as A. What are the eigenvalues of I− cA?

(c) Suppose further that all eigenvalues λ of A satisfy 1 ≤ λ ≤ 2.
To ensure that rk → 0, all eigenvalues of I− cA must have absolute value less than one.
For what real numbers c will rk → 0?
What optimal choice of c will drive rk → 0 most rapidly (making the largest absolute value of
the eigenvalues of I− cA as small as possible, knowing only that 1 ≤ λ ≤ 2)?

For the rest of the problem, consider this 500× 500 matrix A and accompanying right-hand side:

A =
1

4


6 1

1 6
. . .

. . .
. . . 1
1 6

 , b =


1
1
...
1

 ,
where the unspecified entries of A are zero. The eigenvalues of this matrix satisfy 1 ≤ λ ≤ 2. (You
do not need to prove this, but you could do so by recognizing this matrix as a modification of one you
studied on Problem Set 5.)

(d) Produce a semilogy plot showing ‖rk‖ (vertical axis) versus k (horizontal axis) for the optimal c
you determined in part (c).

(e) The polynomial ψk(z) = (1 − cz)k should be small on the interval 1 ≤ z ≤ 2, and satisfy
ψk(0) = 1. Confirm these properties by producing a plot showing ψk(z) (vertical axis) versus z
(horizontal axis) for −1 ≤ z ≤ 3 for k = 1, 2, 3, 4, 5. (Show all five graphs on the same plot.) Use
axis([-3 3 -.5 1.5]) to crop the axes to the most relevant region.

3. [37 points: 7 points each for (a),(b),(c); 16 points for (d); +5 bonus for (e)]

The barcode example on Problem Set 8 studied image blurring in one dimension. On this problem,
we explore the two-dimensional version of this problem. (To be sure, the approach we set up here is
rather idealistic; indeed books are written about image deblurring. This problem is meant to give you
a taste for a much larger area, and to help you see how large the problems quickly become.)

As discussed in class, we regard a square image as a function of two variables, f(t(1), t(2)), where
t(1), t(2) ∈ [0, 1]: the value of f(t(1), t(2)) represents the intensity of gray value at the vertical point t(1)

and the horizontal point t(2) in the image.

When we acquire the image through a camera, the device effectively blurs the true image, which is
modeled by a convolution. The (s(1), s(2)) point in our blurred image b is given by

b(s(1), s(2)) =

∫ 1

0

∫ 1

0

K

([
s(1)

s(2)

]
,

[
t(1)

t(2)

])
f(t(1), t(2)) dt(1) dt(2).



Of course, you know that digital images are not functions of continuous variables, but rather are stored
as discrete n×n arrays of pixels, which we regard as a matrix: fj,k = f(tj , tk) is the value of the (j, k)
pixel, corresponding to

tj =
j − 1/2

n
, tk =

k − 1/2

n
.

For a grayscale image, fj,k will be an integer between 0 (black) and 255 (white).

Given that we only know f(t(1), t(2)) at discrete values of t(1) and t(2), we naturally discretize the
double integral for b(s(1), s(2)) using two applications of the same midpoint rule we used for the barcode
example in Problem Set 8:

b`,m =
1

n2

n∑
j=1

n∑
k=1

K

([
s`
sm

]
,

[
tj
tk

])
fj,k

for

sj =
j − 1/2

n
, sk =

k − 1/2

n
.

To do linear algebra, we arrange this in matrix form. For example, for n = 3 we have

b1,1
b2,1
b3,1
b1,2
b2,2
b3,2
b1,3
b2,3
b3,3


=



K1,1,1,1 K2,1,1,1 K3,1,1,1 K1,2,1,1 K2,2,1,1 K3,2,1,1 K1,3,1,1 K2,3,1,1 K3,3,1,1

K1,1,2,1 K2,1,2,1 K3,1,2,1 K1,2,2,1 K2,2,2,1 K3,2,2,1 K1,3,2,1 K2,3,2,1 K3,3,2,1

K1,1,3,1 K2,1,3,1 K3,1,3,1 K1,2,3,1 K2,2,3,1 K3,2,3,1 K1,3,3,1 K2,3,3,1 K3,3,3,1

K1,1,1,2 K2,1,1,2 K3,1,1,2 K1,2,1,2 K2,2,1,2 K3,2,1,2 K1,3,1,2 K2,3,1,2 K3,3,1,2

K1,1,2,2 K2,1,2,2 K3,1,2,2 K1,2,2,2 K2,2,2,2 K3,2,2,2 K1,3,2,2 K2,3,2,2 K3,3,2,2

K1,1,3,2 K2,1,3,2 K3,1,3,2 K1,2,3,2 K2,2,3,2 K3,2,3,2 K1,3,3,2 K2,3,3,2 K3,3,3,2

K1,1,1,3 K2,1,1,3 K3,1,1,3 K1,2,1,3 K2,2,1,3 K3,2,1,3 K1,3,1,3 K2,3,1,3 K3,3,1,3

K1,1,2,3 K2,1,2,3 K3,1,2,3 K1,2,2,3 K2,2,2,3 K3,2,2,3 K1,3,2,3 K2,3,2,3 K3,3,2,3

K1,1,3,3 K2,1,3,3 K3,1,3,3 K1,2,3,3 K2,2,3,3 K3,2,3,3 K1,3,3,3 K2,3,3,3 K3,3,3,3





f1,1
f2,1
f3,1
f1,2
f2,2
f3,2
f1,3
f2,3
f3,3


,

where

Kj,k,`,m =
1

n2
K

([
s`
sm

]
,

[
tj
tk

])
.

We can abbreviate this as b = Kf .

Let us discuss how to work with images in MATLAB. Suppose we have an n × n matrix stored in F.
You can visualize this image via:

imagesc(F)

colormap gray

axis equal, axis([1 n 1 n])

To go from an image matrix F ∈ IRn×n to the vectorized version f ∈ IRn2×1, use:

f = reshape(F,n*n,1);

Now you can operate on f now using matrix computations. To apply the blurred version b:

b = K * f;

Use reshape again to transform b ∈ IRn2×1 into an image B ∈ IRn×n:

B = reshape(b,n,n);

This MATLAB code runs the forward problem: if we know F, this would blur the image to get B. We
are faced with the much harder inverse problem: our hardware acquires the blurred image B (potentially
polluted with noise), and we want to find the unblurred image F.

To help with this problem, download three files from the class website: blur2d.m, hokiebird.mat,
mystery_plate.mat. The first of these functions creates the matrix K for the Gaussian blurring kernel

Kj,k,`,m =
1

n2
e−
(
(s`−tj)2+(sm−tk)2

)
/z

πz



(with the tails truncated to add zeros to the blurring matrix). The examples below use n = 60, so
K ∈ IR3600×3600. Your computations will likely be a bit slow.

(a) Set n = 60 and z = 0.01, and generate K = blur2d(60,0.01);

Produce a semilogy plot of the singular values of K.

(b) Run load hokiebird.mat, which contains the original image F and a noisy, blurred image. Use
the imagesc command, as illustrated above, to visualize both F and B.

(c) Use frec = K\b to attempt to recover the original image from the noisy, blurred version
b = reshape(B,n*n,1). Produce an imagesc plot of the recovered version Frec = reshape(frec,n,n).

(d) To get a better result, apply Tikhonov regularization (or the truncated SVD) to the blurred vector
b = reshape(B,n*n,1). Do your best to recover something like the original image F. Describe
your experiments and include a plot or two. (You do not need to produce an L-curve: each
experiment will likely take a few seconds of computation.)

(e) +5 bonus points: A mysterious vehicle has spotted in the vicinity of the CMDA Collaboration
Center, but we only have a blurry image of the license plate: load mystery_plate.mat will load
the image into the variable B. This image was acquired using the same blur matrix in (a), plus
some pollution from noise. Can you use regularization to recover the correct license plate?

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60


