
CMDA 3606 · MATHEMATICAL MODELING II

Problem Set 10

Posted 17 April 2019. Due at 5pm on Thursday, 25 April 2019.

Basic guidelines: Students may discuss the problems on this assignment, but each student must submit his
or her individual writeup and code. (In particular, you must write up your own individual MATLAB code.)
Students may consult class notes and other online resources for general information; cite all your sources
and list those with whom you have discussed the problems.

1. [36 points: 6 points per part]

For this problem suppose A ∈ IRn×n is a symmetric positive definite matrix, meaning that AT = A
(symmetric) and vTAv > 0 for any nonzero v ∈ IRn (positive definite).

Consider the function φ : IRn → IR defined by

φ(x) =
1

2
xTAx− xTb.

(a) Show that φ(x) can be expressed as

φ(x) =
1

2

n∑
j=1

n∑
k=1

aj,kxjxk −
n∑

j=1

xjbj .

(b) Compute ∂φ(x)/∂x` (the partial derivative of φ with respect to the `th component of x), and
then use this expression to compute the gradient of φ:

∇φ(x) = Ax− b.

(c) What value x? ∈ IRn minimizes φ(x), and what is the corresponding minimal value φ(x?)?

Suppose we have some estimate xk of the minimizer x?, which we seek to improve by adjusting xk in
the direction in which φ(xk) most rapidly decreases: the negative gradient of φ at xk.
The corresponding update has the form

xk+1 = xk + αk(−∇φ(xk))

= xk + αkrk,

where rk = b−Axk denotes the residual vector and αk denotes how far we wish to go in the direction
of the negative gradient to improve the estimate xk. (This iteration looks like Richardson’s method
on Problem 2 of Problem Set 9, but that had the fixed constant “c” in place of “αk” here, which can
change with each iteration k.) One naturally wonders, how should we choose αk to give the fastest
convergence? Let αk be the value the makes φ(xk+1) as small as possible, i.e., αk should minimize

φ(xk + αrk)

over all choices α ∈ IR.

(d) Show that

αk =
rTk rk
rTkArk

minimizes φ(xk + αrk) over all α ∈ IR. Is this αk value always well defined (i.e., no division by
zero) for this A ?



(e) Run this simple method on the matrix A and vector b you used on Problem 2(d)–(f) of Problem
Set 9: start with x0 = 0 and iterate for k = 0, . . . , 30. Produce a semilogy plot showing ‖rk‖
(vertical axis) versus k (horizontal axis) for this method.

How does this result compare to the convergence plot you obtained for Richardson’s method with
the optimal c value in Problem 2(d) of Problem Set 9?

How do the αk values generated by this simple iteration compare to the optimal c value in
Richardson’s method in Problem 2(d) of Problem Set 9?

(f) Now change your matrix to be

A = diag([.01 linspace(1,2,499)]);

Like the matrix in part (e), this matrix has eigenvalues throughout the interval [1, 2], except this
A has one small eigenvalue: λ1 = 0.01.

Run the iteration for k = 0, . . . , 30 on this matrix, again starting from x0 = 0. Produce a
semilogy plot as in part (e).

How does the convergence behavior change?

2. [32 points: 8 points per part]

Thus far our problems have considered very simple iterations – Richardson’s method and the “steepest
descent” method from the last problem. This problem will walk you through some simple calcula-
tions related a more robust and sophisticated algorithm called the GMRES (“Generalized Minimum
Residual”) method.

We seek to solve the linear system Ax = b, where A ∈ IRn×n is a large nonsingular matrix.

At its first step, the GMRES method will approximate the solution x ∈ IRn with a vector of the form

x1 = c1b,

where the constant c1 ∈ IR is selected to minimize the residual norm:

min
c1∈IR

‖b−Ax1‖ = min
c1∈IR

‖b− c1Ab‖.

Notice that we can find this c1 by solving the standard least squares problem

min
c∈IR1

‖b− Sc‖,

where c = [c1] ∈ IR1 and S = [Ab] ∈ IRn×1. (For emphasis: notice that Ab ∈ IRn×1 is a single vector.)
Of course, we can find this c by solving c = S+b.

(a) Find the optimal c1 ∈ IR as discussed above for each of the following three matrices:

A =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 , A =


−2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 2

 , A =


−1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 ,
in each case using b = [1, 1, 1, 1]T .

Specify both the value of c1 and the resulting x1 = c1b for all cases.

(b) At step k, the GMRES algorithm uses the approximation

xk = c1b + c2Ab + c3A
2b + · · ·+ ckA

k−1b,



where the real parameters c1, . . . , ck are determined together to minimize the residual norm:

min
c1,...,ck∈IR

‖b−Axk‖ = min
c1,...,ck∈IR

‖b−A(c1b + c2Ab + · · ·+ ckA
k−1b)‖.

Show how you can determine c1, . . . , ck by solving a single least squares problem of the form

min
c∈IRk

‖b− Sc‖.

Be sure to describe the entries in the matrix S and c.

(c) Repeat part (a), but now finding the optimal vectors xk for all three A matrices. Feel free to use
MATLAB. (Note that your cj values will change from one step to the next.)

(i) For k = 2, specify the optimal c1, c2, and x2 = c1b + c2Ab.

(ii) For k = 3, specify the optimal c1, c2, c3, and x3 = c1b + c2Ab + c3A
2b.

(iii) For k = 4, specify the optimal c1, c2, c3, c4, and x4 = c1b + c2Ab + c3A
2b + c4A

3b.

(d) Notice that one can write the residual vector as

rk = b−Axk

= (I− c1A− c2A2 − · · · − ckAk)b

= pk(A)b,

where pk is the degree-k polynomial pk(z) = 1− c1z − c2z2 − · · · − ckzk.

(i) The first matrix in part (a) has the eigenvalues 1, 2, 3, 4. Draw four plots showing p1(z),
p2(z), p3(z), and p4(z) for z ∈ [−1, 5]. (You can sketch these by hand, or draw them in
MATLAB, as you prefer.) Mark the points z = 1, z = 2, z = 3, and z = 4, to denote the
eigenvalues of A. (Pay attention to how these polynomials relate to the eigenvalues.)

(ii) Repeat this exercise for the second matrix in part (a), now showing z ∈ [−3, 3] and marking
z = −2, z = −1, z = 1, and z = 2, corresponding to the eigenvalues of this A.

3. [32 points: 8 points per part]

For iterative methods, the matrix on Problem 2 of the last problem set was till quite small (even though
n = 1000 might seem pretty large, compared to the matrices you see in a basic linear algebra course).
Iterative methods show their advantage when applied to larger matrices. To appreciate the challenges
of solving large systems, consider this example.

Tim Davis (Texas A&M University) maintains a large collection of test matrices. We will experiment
with one of them, a FEMLAB model of the Navier–Stokes equations in a 3 dimensional domain. This
model is still relatively small (the matrix has dimension n = 20, 414); this size is large enough to be
interesting, but small enough to conduct experiments in MATLAB. For details about the matrix, see:
http://www.cise.ufl.edu/research/sparse/matrices/FEMLAB/ns3Da.html

important note: To time MATLAB commands, use the tic and toc commands like this:

tic, insert_your_commands, toc

If you are running MATLAB in interactive mode at the command prompt, you must put
the tic and toc on the same line as your command: otherwise, MATLAB will be recording
the time it takes you to type your commands, in addition to the runtime. If you are running your
commands in a script (program), you can put the tic and toc on separate lines.

(a) Download the matrix from ns3Da.mat from this link:
http://www.cise.ufl.edu/research/sparse/mat/FEMLAB/ns3Da.mat

Load this file into MATLAB (load ns3Da).
Extract the matrix A and right-hand b: (A = Problem.A; b = Problem.b).
What percentage of the entries in A are nonzero? (nnz(A) counts the nonzero entries.)



(b) Solve this system using MATLAB’s version of the GMRES method described in the last problem.
Use tolerance 1e-10, and set the maximum number of iterations to 2000.
(Type help gmres to learn about the arguments the gmres command takes.)
Produce a semilogy plot showing ‖rk‖ versus k.
Use the tic and toc commands to time how long GMRES takes to run.
This command might take a couple minutes to run, and use considerable memory.

GMRES uses quite a bit of memory to store the basis vectors for the Krylov subspace. An alternative
algorithm, restarted GMRES, restricts the subspace dimension. For example, GMRES(10) computes
10 iterations of GMRES to build the iterate x10, the best iterate from a 10-dimensional subspace.
If ‖b − Ax10‖ is not sufficiently small, then use x10 as an initial guess, and run 10 new steps of
GMRES. (We seek to solve Ax = b. Let x = x10 + y. Then solving Ax = b is equivalent to solving
Ay = b −Ax10. We hope that ‖b −Ax10‖ is quite a bit smaller than ‖b‖.) Restarted GMRES is
built into MATLAB; for example, to run GMRES(m) for a maximum of 2000 iterations:

[x,flag,relres,iter,resvec] = gmres(A,b,m,1e-10,2000);

This method must take more iterations than standard GMRES (which is optimal), but it can be faster
because, on average, the iterations take less time to execute. We shall explore this idea.

(c) Solve Ax = b using GMRES(10), GMRES(20), GMRES(50), and GMRES(100) using MATLAB’s
gmres command.
For each of these methods, plot ‖rk‖ versus k on the same plot you generated for part (b).
Use tic and toc to record the run times for each of these algorithms.
Produce a table comparing these times to the run time of standard GMRES in part (b).

(d) Replace GMRES with the alternative (suboptimal) methods:
[x,flag,relres,iter,resvec] = bicgstab(A,b,1e-10,2000);

[x,flag,relres,iter,resvec] = bicgstabl(A,b,1e-10,2000);

Produce a plot showing ‖rk‖ for each of these methods, and report their execution times.


