CMDA 3606 · MATHEMATICAL MODELING II

Problem Set 1

Posted 23 January 2019. Due at 5pm on Thursday, 31 January 2019.

Please submit your problem set either in class, or directly to the instructor's office

Be sure to include your MATLAB code for all exercises.

Basic guidelines: Students may discuss the problems on this assignment, but each student must submit his or her individual writeup and code. (In particular, you *must write up your own individual MATLAB code.*) Students may consult the class notes and other online resources, but the use of solutions from previous classes is forbidden and will be regarded as a violation of the Honor Code.

1. [8 points: 2 points per part] Compute (by hand) the matrix-vector product Ax for

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & -6 & 6 \\ -2 & 4 & 0 \end{bmatrix}$$

and the column vectors

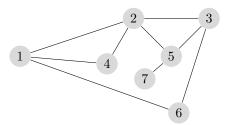
$$\mathbf{x} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}.$$

2. [12 points: 3 points per part] Consider the matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}.$$

- (a) Compute (by hand) $2\mathbf{A} 3\mathbf{B}$.
- (b) Compute (by hand) **AB**, **BA**, $(\mathbf{AB})^T$, $\mathbf{A}^T \mathbf{B}^T$, and $\mathbf{B}^T \mathbf{A}^T$.
- (c) From the calculations in part (b): does AB = BA?
- (d) From the calculations in part (b): does $(\mathbf{AB})^T = \mathbf{A}^T \mathbf{B}^T$ or does $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$?
- 3. [40 points: 10 points per part] This problem is designed to warm up your matrix creation and multiplication skills in MATLAB, and to introduce you to a fun application in network theory. The technique involves a slick way to count paths in graphs. (With this method you can analyze, for example, genetic networks or social networks.)

A graph is a collection of nodes connected by edges. The graph below has 7 nodes (gray circles) connected by 9 edges (straight lines).



How "close" are two nodes in this network? One way to assess closeness is to count the number of *paths* that go from one node to another. For example, there is 1 path of length 2 from node 1 to node 5 (1-2-5) and 3 paths of length 3 (1-4-2-5, 1-2-3-5, and 1-6-3-5), but no paths of length 2 from node 1 to node 7.

As the paths get longer, there are more routing options between nodes and they get much harder to count. For example, there are already 14 paths of length 4 between nodes 2 and 6 (allowing for multiple visits to a node); it is hard to correctly count them all by hand. (Try it, if you like.) Matrices come to the rescue!

With each graph, we associate an *adjacency matrix* that encodes the edges. A graph with n nodes gives an $n \times n$ adjacency matrix, **A**. The entries in **A** are all zero, except that the (j, k) entry of **A** is 1 if there is an edge from node j to node k:

$$a_{j,k} = \begin{cases} 1, & \text{there is an edge connecting node } j \text{ to node } k; \\ 0, & \text{otherwise.} \end{cases}$$

For the graph above, the first row of the adjacency matrix is

since node 1 is connected to nodes 2, 4, and 6, but not to nodes 1, 3, 5, and 7. (By convention, nodes are not connected to themselves, so the diagonal of **A** is all zero.)

Neat fact: (proved using the formula for matrix-matrix multiplication at the end of the assignment) The number of paths of length p between node j and node k is given by the (j,k) entry of the pth matrix power of the adjacency matrix: \mathbf{A}^p :

$$\mathbf{A}^p = \underbrace{\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{p \text{ times}}.$$

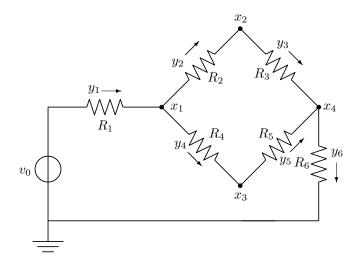
Use MATLAB to answer the following questions.

- (a) Write down the 7×7 adjacency matrix **A** for the graph shown above and enter it in MATLAB.
- (b) Compute A^2 and list the number of paths of length 2 between every pair of nodes.
- (c) How many paths of length 10 are there between nodes 1 and 5?

You can associate the "importance" of node j in the graph by looking at the magnitude of the (j, j) entry of \mathbf{A}^p . Note that this reveals the number of paths of length p from node j returning back to itself. For example, the (1, 1) entry of \mathbf{A}^2 is 3, since there are 3 paths of length 2 that go from node 1 back to node 1. (These are 1–2–1, 1–4–1, and 1–6–1.)

(d) Look at the diagonal entries of \mathbf{A}^p for various values of p. Based on this data, which node do you think is most important? (Show some data, but do not report all the \mathbf{A}^p matrices that you compute. Be judicious.) Explain why the "importance" of a node might reasonably be evaluated in this way.

4. [40 points: 10 points per part] Consider the following circuit with six resistors.



- (a) Work through the first three steps of our circuit modeling procedure:
 - (1) compute the drops in potential, $\mathbf{e} = \mathbf{v} \mathbf{A}\mathbf{x}$;
 - (2) compute the current through each resistor, $\mathbf{y} = \mathbf{Ke}$;
 - (3) apply Kirchhoff's current law, $\mathbf{0} = \mathbf{A}^T \mathbf{y}$.

At each step, write out the individual scalar equations (e.g., $e_1 = v_0 - x_1$), and then the matrixvector form that collects those scalar equations together. In particular, specify the entries of \mathbf{x} , \mathbf{y} , \mathbf{v} , \mathbf{e} , and \mathbf{A} .

- (b) Now assume $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 1 \Omega^{\dagger}$. Work out the entries of the matrix $\mathbf{S} = \mathbf{A}^T \mathbf{K} \mathbf{A}$.
- (c) Under the conditions of part (b), use Gaussian elimination (by hand, not MATLAB) to solve the system $(\mathbf{A}^T \mathbf{K} \mathbf{A}) \mathbf{x} = \mathbf{A}^T \mathbf{K} \mathbf{v}$ for the unknown potential vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

(Since the vector **v** contains the reference voltage v_0 , your answer **x** should also contain the quantity v_0 , as in equation (2.12) in the course notes. Here is a quick check on your answer: notice that the structure of the circuit and the fact that all resistances are equal ensures that $x_2 = x_3$. Does your answer agree?)

The circuit described here is a *Wheatstone bridge*, which finds use in instrumentation and measurement applications where one has a sensor that responds via a change in electrical resistance to a change in a particular feature in its environment; a variety of sensors measure key quantities in this way, such as salinity, temperature (e.g., via *thermisters*) or curvature (e.g., via *strain gauges*). A Wheatstone bridge allows one to convert small changes in resistance into easily measurable voltage differences.

(d) In the above circuit, suppose that $R_1 = R_2 = R_4 = R_5 = R_6 = 1 \Omega$ as before but now the value of R_3 is variable and dependent on a sensor whose nominal state produces a resistance of $R_3 = 1 \Omega$, but when perturbed it will produce resistance values $R_3 = s \Omega$ for $s \in [0.2, 5]$. We noted above

[†]One "Ohm" (Ω) is the unit of resistance that would allow one Ampere ("Amp", A) of current to flow when there is a one Volt (V) drop in potential across the resistor.

that when $R_3 = 1 \ \Omega$ then $x_2 = x_3$, and so the voltage difference $x_2 - x_3$ might be usable as a measure of how far the sensor has been perturbed from its nominal state $s = 1 \ \Omega$: Assuming a reference voltage $v_0 = 1 \ V$, plot the voltage difference $x_2 - x_3$ as a function of $R_3 = s\Omega$ for $s \in [0.2, 5]$. Observe that $x_2 - x_3$ is a monotone increasing (and so, invertible) function of s and $x_2 - x_3 = 0$ if and only if the sensor is in its nominal state, $s = 1\Omega$. Thus, a measured voltage drop $x_2 - x_3$ determines uniquely the state of the sensor, s. Remarkably, the voltage level at x_3 itself is independent of s! Check this. (For the resistance values given here, you should be finding voltage differences $x_2 - x_3$ roughly in the range of $\pm 100 \ \text{mV.}$)

You can fill out the following skeletal MATLAB commands for this problem, if you like.

```
svec = linspace(0.2, 5, 50); % create vector (length 50) of values between 0.2 and 5
vdiff = zeros(size(svec)); % create a vector to store voltage differences at x2 and x3
for j=1:length(svec)
    % create the matrix AtKA = A'*K*A, which depends on svec(j)
    % solve for x
    vdiff(j) = x(2)-x(3);
end
figure
plot(svec, vdiff, '-','linewidth',2)
xlabel('label your axes! (include units)')
ylabel('label your axes! (include units)')
```

- 5. [Optional challenge problem: 6 bonus points: 2 points for (a); 4 points for (b)]
 - (a) Perform the modeling steps for the branched circuit with 16 resistors in Figure 2.4 of the class notes, a primitive model of a branched neuron. Implement the model in MATLAB (with $R_j = 1 \Omega$ for all j and $v_0 = 1$ V). Show the values you obtain for x_1, \ldots, x_8 .
 - (b) Neurons have a more sophisticated branching structure than the model in part (a). (See https://en.wikipedia.org/wiki/Neuron for illustrations.)

Develop a MATLAB code that will implement a model like the example in Figure 2.4, but now with these more general features.

- Let the left "trunk" of the circuit (before the branch) contain N "compartments" (assemblies of one horizontal and one vertical resistor). (Figure 2.4 has 2 compartments in this trunk; Figure 2.1 has three compartments.) This unit will define nodes x_1, \ldots, x_N , and models the neuron's long *axon*.
- At x_N , fork into b > 1 branches, modeling the neuron's synapses. (Figure 2.4 has b = 2 branches.)
- Let each branch have M compartments. (Figure 2.4 has M = 2 compartments per branch.) Notice the additional vertical resistors at the start of each branch (resistors R_6 and R_{12} in Figure 2.4.) These branches will define nodes

```
branch 1: x_{N+1}, \dots, x_{N+M+1}

\vdots \vdots

branch b: x_{N+b(M+1)-M}, \dots, x_{N+b(M+1)}.
```

Test your model with N = 32, b = 4, M = 16 (with $v_0 = 1$ V and $R_j = 1$ Ω).

- Display the nonzero pattern of $\mathbf{S} = \mathbf{A}^T \mathbf{K} \mathbf{A}$ by producing a "spy plot" using the spy(S) command in MATLAB.
- Produce plots showing x_1, \ldots, x_N (for the axon) and $x_{N+1}, \ldots, x_{N+M+1}$ (for the first branch).

Appendix. Proof that $(\mathbf{A}^p)_{j,k}$ counts the paths of length p between nodes j and k in a graph. (See Problem 3). Let \mathbf{A} denote the adjacency matrix for a graph with n nodes, so that

$$a_{j,k} = \begin{cases} 1, & \text{there is an edge connecting node } j \text{ to node } k; \\ 0, & \text{otherwise.} \end{cases}$$

The proof will use induction. Notice that $a_{j,k}$ counts the number of paths of length 1 between nodes j and k. Thus the base case (p = 1) for the induction holds.

Now make the inductive assumption that $(\mathbf{A}^p)_{j,k}$ counts the paths of length p between nodes j and k. We will prove that (\mathbf{A}^{p+1}) counts the paths of length p+1 between nodes j and k.

Any path of length p + 1 from node j to node k can be broken into two subpaths:

path of length p + 1 from j to $k = (any path of length 1 from j to \ell) \cup (any path of length p from \ell to k)$

for some node $\ell \in \{1, ..., n\}$. To count all paths of length p + 1, sum up over all the possible intermediate nodes ℓ , and using the facts that:

- $(\mathbf{A})_{j,\ell}$ counts the paths of length 1 from j to ℓ (base case);
- $(\mathbf{A}^p)_{\ell,k}$ counts the paths of length p from ℓ to k (inductive assumption).

Thus, we can calculate

of paths of length p+1 from j to k

$$= \sum_{\ell=1}^{n} (\# \text{ of paths of length 1 from } j \text{ to } \ell) \times (\# \text{ of paths of length } p \text{ from } \ell \text{ to } k)$$
$$= \sum_{\ell=1}^{n} (\mathbf{A})_{j,\ell} (\mathbf{A}^{p})_{\ell,k},$$

but this last formula is simply the matrix-matrix multiplication formula for the (j, k) entry of $\mathbf{A}\mathbf{A}^p = \mathbf{A}^{p+1}$: the number of paths of length p + 1 from node j to node k is $(\mathbf{A}^{p+1})_{j,k}$.

Thus, by induction, we have proved that the number of paths of length p between nodes j and k is $(\mathbf{A}^p)_{j,k}$.