
Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2019

Mark Embree

embree@vt.edu

Ax=b
version of 24 April 2019

Chapter 8
Iterations for large linear systems

The circuit and truss networks we investigated in the early
chapters of these notes resulted in linear systems ATKAx = f, where
the dimension of ATKA corresponds to the number of nodes in an
electrical network, or double the number of nodes in a 2d truss.
Industrial-scale circuits and trusses will yield matrices ATKA of
extremely large dimension. Moreover, since most nodes are only con-
nected to a few other nodes, the vast majority of the entries in this
matrix will be zero – so we call the matrix sparse. Figure 8.1 shows
the nonzero pattern of a matrix modeling a branched neuron, along
the lines of the example from Figure 2.4. This is still a small exam-
ple (just 52 ⇥ 52), but it suggests the structure that exists in much
larger matrices. In this chapter we seek modern algorithms that will
allow us to solve many such large, sparse systems faster than using
Gaussian elimination. As we shall see, the behavior of these methods
depends significantly on properties of the coefficient matrix, some-
times in quite subtle ways. The resulting tools are among the most
important techniques in modern high-performance scientific com-
puting. A quest for a deeper understanding of these vital algorithms
forms a major research frontier.

1 16 25 34 43 52

1

16

25

34

43

52

Figure 8.1: Location of nonzero en-
tries (the sparsity pattern) of ATKA
for a branched neuron model of the
kind illustrated in Figure 2.4, but with
16 compartments making up the left
trunk (instead of 2) and four branches
on the right, each comprising 8 com-
partments. The matrix has dimension
52 ⇥ 52, with only 154 of the 522 = 2704
entries nonzero.

8.1 Polynomials and Krylov subspaces

Consider the general linear system of equations

Ax = b,

for A 2 IRn⇥n, which we hope to solve for the unknown x 2 IRn.
Throughout this chapter we assume that A is invertible, allowing the
solution to be trivially expressed as

x = A�1b.

128

We shall also assume that A is diagonalizable:

A = VLV�1 =
n

Â
j=1

ljvjbv
⇤
j .

Note that the inverse of A has a very simple formula, in terms of the

Here vj is an eigenvector of A associ-
ated with the eigenvalue lj. (Do not
confuse vj with the singular vectors we
have been studying in the immediately
preceding chapters.) The row vector bv⇤

j
is the jth row of the matrix V�1; it is a
left eigenvector for lj, meaning

Avj = ljvj, bv⇤
j A = ljbv⇤

j .

Since V�1V = I, we have the bi-
orthogonality relationship

bv⇤
j vj = 1, bv⇤

j vk = 0 (j 6= k).

(We use the conjugate-transpose ⇤ here,
since lj and vj, bvj can have complex
entries, even when A 2 IRn⇥n.)

diagonalization:

A�1 = VL�1V�1 =
n

Â
j=1

1
lj

vjbv
⇤
j . (8.1)

We would never directly compute A�1 for a large matrix – that would
require far too much work (and, in many cases, a prohibitive amount
of storage). Instead, polynomials will provide a very convenient way

In many applications, a large n ⇥ n
matrix will only have O(n) nonzero
entries, but the entries in A�1 will have
O(n2) nonzero entries. For example,
n = 106, you would need about
7 terabytes to simply store A as a dense
matrix.

to approximate the inverse. First square the diagonalization above to
obtain:

A2 = VLV�1VLV�1 = VL2V�1 =
n

Â
j=1

l2
j vjbv

⇤
j .

Similarly, for any integer power p = 0, 1, 2, . . .,

Ap = VLpV�1 =
n

Â
j=1

l
p
j vjbv

⇤
j . (8.2)

Now consider the degree k � 1 polynomial

q(z) = c1 + c2 z + c3 z2 + · · ·+ ck zk�1.

To evaluation q(A), simply substitute Ap for each occurrence of zp.
Using the diagonalization form of Ap in (8.2), we can write

q(A) = c1I + c2 A + c3 A2 + · · ·+ ck Ak�1

= c1

n

Â
j=1

vjbv
⇤
j + c2

n

Â
j=1

ljvjbv
⇤
j + c3

n

Â
j=1

l2
j vjbv

⇤
j · · ·+ ck

n

Â
j=1

lk�1
j vjbv

⇤
j

=
n

Â
j=1

q(lj)vjbv
⇤
j .

Now compare this last equation to (8.1). If

q(lj) =
1
lj

, j = 1, . . . , n,

then the formulas for q(A) and A�1 match, and

q(A) = A�1.

Think this idea through for a few small values of n. For n = 2 we
require

q(l1) =
1

l1
, q(l2) =

1
l2

, (8.3)

129

Figure 8.2: Approximations to 1/z
(gray) at eigenvalues (dots) 1, . . . , 5 by
quadratic (black line, left plot) and cu-
bic (black line, right plot) polynomials
q(z).

which can be satisfied by a linear polynomial q(z) = c1 + c2z where
the two equations in (8.3) specify the two free parameters c1 and c2 in
the equation for the line. If n = 3, we require

q(l1) =
1

l1
, q(l2) =

1
l2

, q(l3) =
1

l3
,

which can be satisfied by a quadratic polynomial q(z) = c1 + c2z +
c3z2: now we need three free parameters c1, c2, and c3 in the equa-
tion for the quadratic. The pattern generalizes: n distinct eigenvalues
impose n constraints q(lj) = 1/lj, which can be satisfied by ap-
propriately setting the n parameters c0, . . . , cn�1 in a degree n � 1
polynomial q. Hence we can write A�1 = q(A) for some degree n � 1
polynomial: a fact known as the Cayley–Hamilton Theorem.

Step back for a moment. Our ultimate goal is to approximate
x = A�1b as efficiently as possible. While q might need to have
degree n � 1 to give an exact match, q(A) = A�1, in many cases we
might be able to construct a low-degree polynomial q that only gives
q(A) ⇡ A�1, in the sense that

q(lj) ⇡
1
lj

, j = 1, . . . , n.

Two such polynomials are shown in in Figure 8.2, where the eigen-
values of A are {1, . . . , 5} and q has degree 2 and 3. Even for these
low-degree polynomials, the approximations are quite good.

There is yet one more refinement to make. Since we really care
about x = A�1b, consider the formulations

A�1b =
n

Â
j=1

1
lj

vj(bv
⇤
j b)

q(A)b =
n

Â
j=1

q(lj)vj(bv
⇤
j b).

The right-hand side b influences these formulas, in the sense that the
coefficients bv⇤

j b can be viewed as weights that reveal how important

130

it is for q(lj) ⇡ 1/lj. At the extreme, bv⇤
j b = 0 indicates that b has

no component in the vj eigenvector direction, and so lj does not play
a role in the problem, and can be ignored. We want to exploit these
weights when we design approximating polynomials q that give

q(A)b ⇡ A�1b.

The set of all such approximations q(A)b, where q can have degree
up to k � 1, has a special name.

Definition 25 For k � 1, the set of vectors

Kk(A, b) = {q(A)b : deg(q) < k}

is called the kth Krylov subspace generated by A and b. It can be equiva- The subspace is named for Aleksey
Krylov, a Russian naval architect.lently expressed as

Kk(A, b) = span{b, Ab, A2b, . . . , Ak�1b}.

Our goal should be to extract from Kk(A, b) the best approximation
to x = A�1b.

8.2 Minimum residual methods

The best approximation xk to x from Kk(A, b) would satisfy

kx � xkk = min
bx2Kk(A,b)

kx � bxk. (8.4)

While it would be very appealing to find this optimal vector xk, we
should temper our ambition: To compute the best approximation
to x, we would need to know x, the true solution. If we knew x, we
would be finished! The next best thing to solving (8.4) is to instead
minimize the misfit between b and Axk. This misfit is the residual
b � Axk. Minimizing the norm of this vector gives

kb � Axkk = min
bx2Kk(A,b)

kb � Abxk. (8.5)

Since we know b and A, we can access the residual without knowing
the solution x. We shall see that we can solve (8.5) by formulating the
minimization as the kind of least squares problem we addressed in
Section 4.10 and Chapter 7. To do so, define the Krylov matrix

Kk = [b Ab · · · Ak�1b] 2 IRn⇥k,

and note that

R(Kk) = span{b, Ab, A2b, . . . , Ak�1b}

= Kk(A, b).

131

Any vector in Kk(A, b) can thus be written as Kkc for some c 2 IRk.
The minimization problem thus becomes

min
bx2Kk(A,b)

kb � Abxk = min
c2IRk

kb � AKkck, (8.6)

where the problem on the right is a simple least squares problem
involving the matrix AKk. As discussed in Section 4.10, the optimal c
can thus be found as the solution of the linear system

(AKk)
T(AKk)c = (AKk)

Tb,

where (AKk)
T(AKk) is a k ⇥ k matrix. In general, we will have

k ⌧ n, and so this system will be much smaller than the original
n-dimensional system Ax = b. The residual-minimizing approxima-

In practice, we might have n = 106 and
k = 50 or 100.

tion xk can then be expressed as

xk = Kkc = Kk
�
(AKk)

T(AKk)
��1

(AKk)
Tb. (8.7)

As we increase k, the subspace Kk(A, b) from which we extract the
optimal approximation xk grows ever larger, containing the previous
subspaces:

K1(A, b) ✓ K2(A, b) ✓ K3(A, b) ✓ · · · .

The nested structure of these subspaces ensures that the quality of
our approximation never gets worse as k increases.

Theorem 16 The iterates xk produced by the minimum residual method (8.7)
produce residuals rk = b � Axk that are monotonically decreasing in norm:

krk+1k  krkk  · · ·  kr1k  kr0k = kbk.

In theory, the formula (8.7) will deliver a fine approximation:
the mathematics ensures that xk in (8.7) is the unique residual-
minimizing approximation from the kth Krylov subspace. There is
one vital but subtle wrinkle. The columns of

AKk = [Ab A2b · · ·Akb]

are exactly the iterates of the power method for computing the eigen-
vector of A associated with the largest magnitude eigenvalue. Using
the formula (8.2) for the diagonalization of matrix powers, these
columns have the form

Apb =
n

Â
j=1

l
p
j vj(bv

⇤
j b),

which will increasingly align with the eigenvector v` associated with
the eigenvalue l` having largest magnitude, |l`| > |lj| for j 6= `.

132

This observation has nasty implications for any computer code,
like the one in Figure ??), that seeks to find xk using the least squares
process described above. When the columns of AKk are nearly
aligned with each other, the singular values of AKk will decay
rapidly, making the least squares formulation in (8.7) disastrously
ill-posed.

Based on your experience in Chapter 7, you might think to instead
use regularization to tackle the least-squares problem in (8.12). That
is not a bad instinct, but it turns out there is a better way to formu-
late (8.12) that mostly avoids this ill-posedness.

tol = 1e-10; % convergence tolerance
maxit = 20; % max number of iterations
k = 1;
rk = b;
K = [b];
while (norm(rk)/norm(b) < tol) && (k <= maxit)

AK = A*K;
c = AK\b; % solve least squares problem
xk = K*c; % construct iterate x_k
rk = b - A*xk; % compute residual vector
K = [AK b]; % update basis for K_{k+1}(A,b)
k = k+1; % increment index

end

Figure 8.3: A naive implementation of
the minimum residual method (8.7) in
MATLAB. This algorithm is badly unstable
and should never be used in practice!

To appreciate the peril of this procedure, consider

A = diag(1, 1.1, 1.2, . . . , 10), (8.8)

a diagonal matrix of dimension n = 91. The result of running the

Of course, since A is diagonal we could
immediately write down the answer
to Ax = b by inspection: xj = bj/aj,j.
Since iterative methods do not take any
advantage of this diagonal structure,
and it is easy to see the eigenvalues of
such matrices, they make convenient
examples.

algorithm in Figure 8.3 on A with b = [1, 1, . . . , 1]T is shown in
Figure 8.4. For the first dozen iterations, convergence proceeds in
a steady fashion: the norm of the kth residual gets steadily smaller.
At iteration k = 13, however, something goes terribly wrong, for
kr13k � kr12k, in violation of the monotonic convergence guaranteed
by Theorem 16. This performance is typical of the algorithm given in
Figure 8.3, which should never be used for practical computations.
At fault is the poor basis {b, Ab, . . . , Ak�1b} used for Kk(A, b). The method in (8.7) was first proposed

by I. M. Khabaza in 1963, and received
no attention in the scientific literature
at the time. Khabaza imagined that
one would restrict k to a small number,
which would avoid the worst of the
instabilities seen here.

(In fact, MATLAB often issues a warning message when trying to
solve the least squares problem in the line c = AK\b, suggesting that
something might be wrong with our algorithm.) The fast initial con-
vergence seen in Figure 8.4 suggests that if we can fix this problem
with the basis, we could have a very powerful method.

8.3 Arnoldi process

From our studies in Chapter 5, you might already have a good
idea for addressing the problem: construct an orthonormal basis for

133

Figure 8.4: Convergence history for the
bad implementation of the minimum
residual method given in (8.3) applied
to the matrix A in (8.8). The portion
of the convergence curve shown in
red must be a computational error,
since it violates the monotonicity of the
residual norms given in Theorem 16.

Kk(A, b). This is a good idea, but it turns out that much has already
gone wrong simply in constructing the basis vectors {b, Ab, . . . , Ak�1b}
to which we would apply the Gram–Schmidt method: the errors are
already rampant. A more clever – and subtle – approach is needed.

The first two steps of the refined procedure will look much like
the first two steps of the Gram–Schmidt process applied to b and Ab.
(They are two steps of Gram–Schmidt applied to b and Ab/kbk.)

1. Define u1 := b/kbk.

2. Define bu2 := Au1 � u1uT
1 (Au1) = (I � u1uT

1)(Au1).
Normalize: u2 := bu2/kbu2k.

Notice that u1 and u2 are orthonormal vectors with

span{u1, u2} = span{b, Au1} = span{b, Ab} = K2(A, b).

The next step is the pivotal one:

problematic approach: orthogonalize A2b against u1 and u2;

more stable approach: orthogonalize Au2 against u1 and u2.

These two different choices span the same space, K3(A, b), since

Au2 =
Abu2
kbu2k

=
A(I � u1uT

1)Au1

kbu2k
= e

A2u1 � (uT
1 Au1)Au1

kbu2k

=
1

kbkkbu2k
A2b �

u⇤
1Au1

kbkkbu2k
Ab

2 span{Ab, A2b}.

However, we will usually find that A2b forms a smaller angle with
K2(A, b) than does Au2:

6 (A2b,K2(A, b)) ⌧ 6 (Au2,K2(A, b)).

134

Perhaps a small example will help illustrate this point. Let

A =

2

4
1 0 0

1/4 1/4 0
0 1/2 1/2

3

5 , b =

2

4
1
0
0

3

5 .

Then

u1 =
b

kbk =

2

4
1
0
0

3

5 ,

and

cu2 =

2

4
0

1/4
0

3

5 , u2 =

2

4
0
1
0

3

5 .

Now at the third step, we must orthogonalize either A2b or Au2

against u1 and u2. Note that

A2b =

2

4
1

5/16
1/8

3

5 , Au2 =

2

4
0

1/4
1/2

3

5 .

These two vectors are shown in Figure 8.5, where it is evident that
A2b forms a small angle with K2(A, b) = span{u1, u2}, while Au2

makes a much larger angle with this space. When A2b is orthogonal-
ized against K2(A, b), one obtains

bu3 =

2

4
0
0

1/8

3

5 , u3 =

2

4
0
0
1

3

5 ,

while when Au2 is orthogonalized against K2(A, b), we have

bu3 =

2

4
0
0

1/2

3

5 , u3 =

2

4
0
0
1

3

5 .

Both procedures result (in exact arithmetic) in the same vector u3, but
when we subtracted the u1 and u2 components from A2b, a much
smaller bu3 vector was left over than when we removed the same com-
ponents from Au2. In both cases MATLAB will make small rounding
errors when computing bu3; when bu3 has small entries, those round-
ing errors will be more influential than they will be when bu3 is big.
Hence, we often get a much more robust procedure by orthogonaliz- Small changes to a vector with small

entries can change its direction sub-
stantially; small changes to a vector
with large entries will not change its
direction very much.

ing Auk against Kk(A, b) to get uk+1, rather than Akb.

8.3.1 The Arnoldi algorithm

Given the preceding justification, we now develop an algorithm that
will build an orthonormal basis for Kk(A, b) by successively orthogo-
nalizing Auj against u1, . . . , uj for j = 1, . . . , k. At its most basic level,
the algorithm is just an instance of the Gram–Schmidt procedure:

135

v1

v2
A2b

K2(A, b)

v1

v2

Av2
K2(A, b)

Figure 8.5: Constructing the third
basis vector of a Krylov subspace:
on the left, A2b forms a small angle
with K2(A, b), while on the right, Au2
forms a larger angle with K2(A, b). In
general, orthogonalizing Auk against
Kk(A, b) is more computationally
robust than orthogonalizing Akb.

u1 := b/kbk

bu2 := (I � u1uT
1)Au1

= Au1 � (uT
1 Au1)u1

u2 := bu2/kbu2k

bu3 := (I � u1uT
1 � u2uT

2)Au2

= Au2 � (uT
1 Au2)u1 � (uT

2 Au2)u2

u3 := bu3/kbu3k

bu4 := (I � u1uT
1 � u2uT

2 � u3uT
3)Au3

= Au3 � (uT
1 Au3)u1 � (uT

2 Au3)u2 � (uT
3 Au3)u3

u4 := bu4/kbu4k

...

Notice that each new vector u`+1 takes more work to construct than
did the one before it: just as in the Gram–Schmidt process, with each
new basis vector we get one more direction we must orthogonalize
future vectors against. As ` grows, this process gets quite expensive.

In Chapter 5 we found it convenient to organize the Gram–Schmidt
process as a QR factorization of the matrix whose columns were the
basis vectors that we orthogonalized. We would like to do the same
thing now, but since the vectors we orthogonalize, b, Au1, Au2, . . . ,
Auk, involve the orthogonalized basis vectors u1, . . . , uk, a special
structure emerges. Label the Gram–Schmidt coefficients as

hj,` := uT
j Au`, 1  j  `  k,

with the normalizing factors given by

h`+1,` := kbu`k, 1  `  k.

Thus a generic step of the Gram–Schmidt process becomes

h`+1,`u`+1 = Au` � h1,`u1 � h2,`u2 � · · ·� h`,`u`

136

for ` = 1, . . . , k, which we immediately rearrange to the form

Au` = h1,`u1 + h2,`u2 + · · ·+ h`,`u` + h`+1,`u`+1. (8.9)

Now we will obtain a QR-like factorization by collecting equa-
tion (8.9) for ` = 1, . . . , k. First write (8.9) as

Au` =

2

64 u1 · · · u` u`+1

3

75

2

6664

h1,`
...

h`,`
h`+1,`

3

7775

=

2

64 u1 · · · u` u`+1 u`+2 · · · uk+1

3

75

2

666666666664

h1,`
...

h`,`
h`+1,`

0
...
0

3

777777777775

.

Stacking these equations side-by-side for ` = 1, . . . , k gives

A

2

64 u1 · · · uk

3

75 =

2

64 u1 u2 · · · uk uk+1

3

75

2

6666664

h1,1 h1,2 · · · h1,k
h2,1 h2,2 · · · h2,k

. . .
...

hk,k�1 hk,k
hk+1,k

3

7777775

,

which we summarize as

AUk = Uk+1 eHk , (8.10)

where the matrix

eHk =

2

6666664

h1,1 h1,2 · · · h1,k
h2,1 h2,2 · · · h2,k

. . .
...

hk,k�1 hk,k
hk+1,k

3

7777775
2 IR(k+1)⇥k

is zero in all entries below the first subdiagonal. (This structure is called
upper Hessenberg.) Since the columns of Uk 2 IRn⇥k and Uk+1 2
IRn⇥(k+1) are orthonormal, we have

UT
k AUk = Hk , (8.11)

where Hk is the square upper Hessenberg matrix

Hk =

2

6664

h1,1 h1,2 · · · h1,k
h2,1 h2,2 · · · h2,k

. . .
...

hk,k�1 hk,k

3

7775
2 IRk⇥k.

137

8.3.2 Lucky breakdown

We must address one subtle point: the Arnoldi process constructs
uk+1 by normalizing buk+1,

uk+1 =
1

kbuk+1k
buk+1 =

1
hk+1,k

bvk+1.

Is there a chance of dividing by zero here?

8.4 GMRES

We are ready to develop a robust alternative to the algorithm in
Figure 8.3 that approximates the solution x to Ax = b with the
iterate from Kk(A, b) that minimizes the residual:

krkk = kb � Axkk = min
bx2Kk(A,b)

kb � Abxk.

Since R(Uk) = Kk(A, b), any vector bx 2 Kk(A, b) can be written as
Ukc for some c 2 IRk. Hence

krkk = min
bx2Kk(A,b)

kb � Abxk = min
c2IRk

kb � AUkck.

We could now make a small modification to the code in Figure 8.3 to
replace the poor Krylov basis matrix Kk with the orthonormal basis
Uk. This would lead to a solid, robust algorithm, but it would still be
quite expensive. Instead of the least squares problem (8.6), at each step
we now solve (8.12). Since the matrix AUk has dimension n ⇥ k, and
we are most interested in the case of very large n, this will still be
very costly. It turns out that there is a slick trick that solves this least
squares problem by working only with a (k + 1)⇥ k matrix in place
of the n ⇥ k matrix: an enormous savings.

This major reduction in work follows from a slick use of the
Arnoldi relationship AUk = Uk+1 eHk. Substitute the right-hand
side in place of AUk in (8.12) to get

krkk = min
c2IRk

kb � Uk+1 eHkck. (8.12)

Recall now that the first column of Uk+1 is the normalized starting
vector, U1 = b/kbk. Hence we can write b in (8.12) as

b = kbkU1 = kbkUk+1e1,

where e1 is the first column of the (k + 1) ⇥ (k + 1) identity. This
looks like a complication, but it allows for a key simplification

138

in (8.12). First recast (8.12) as

krkk = min
c2IRk

���kbkUk+1e1 � Uk+1 eHkc
���

= min
c2IRk

���Uk+1

⇣
kbke1 � eHkc

⌘���. (8.13)

Now notice this neat implication of the orthonormality of the columns
of Uk+1: for any vector y 2 IRk+1,

kUk+1yk2 = yTUT
k+1Uk+1y = yTIy = kyk2.

Applying this observation to (8.13) with y = kbke1 � Uk+1 eHkc gives

krkk = min
c2IRk

���kbke1 � eHkc
���, (8.14)

which is a small least squares problem involving only the (k + 1)⇥ k
matrix eHk: beyond the work of constructing the orthonormal Arnoldi
basis for Kk(A, b), there is no work with n-dimensional objects. If we
denote by ck the optimal c in (8.14), then

krkk =
���kbke1 � eHkck

���.

This formula allows us to compute krkk without actually constructing
xk and rk = b � Axk: thus we can monitor the size of krkk as we
iterate through increasing values of k until krkk  tolerance, and
then compute xk and declare victory.

8.5 Convergence theory

8.6 Related algorithms

8.6.1 Suboptimal but (potentially) fast iterations

Restarted GMRES, BiCGSTAB, QMR, etc.

8.6.2 Optimal, fast iterations for symmetric matrices

Many applications lead to symmetric matrices, AT = A. In this case,
the Arnoldi relationship (8.11) has a fascinating implication:

HT
k = (UT

k AUk)
T = UT

k ATUk = UT
k AUk = Hk,

so Hk is also symmetric. But all entries of Hk below the first subdi-
agonal are always zero by construction: hj,` = 0 if j > ` + 1. The
symmetry of Hk then also implies that

h`,j = 0, j > `+ 1.

139

This means that
uT
` Auj = 0, j > `+ 1,

and Hk is a tridiagonal matrix:

Hk =

2

66664

h1,1 h1,2

h2,1 h2,2
. . .

. hk�1,k
hk,k�1 hk,k

3

77775
2 IRk⇥k.

This observation has an enormous implication for the Arnoldi pro-
cess: we know, without performing any computation, that Au` has
no component in the uj direction when j < `� 1:

uju
T
j Au` = (uT

j Au`)uj = 0, j < `� 1.

Since we know these terms are zero, we need not bother to compute them.
This observation greatly expedites the Arnoldi process, for it means
that we can construct each new vector u`+1 with the same amount of
work, as ` increases.

MINRES and the conjugate gradient method for symmetric (posti-
tive definite) A.

8.7 Preconditioning

8.8 Sparse direct methods

While iterative methods play an important role in scientific comput-
ing, especially for large-scale models (e.g., in three physical dimen-
sions, or incorporating multiple physical phenomena), we should
take note of the important class of sparse direct methods. These algo-
rithms are variants of traditional Gaussian elimination (LU factoriza-
tion) that seek to exploit the sparse structure of A. MATLAB includes
such methods via the built-in UMFPACK (unsymmetric multi-frontal
package) software suite.

