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Chapter 7
Inverse Problems and Regularization

At this stage we have developed all the tools we need to deeply
understand when Ax = b has a solution, and, when not, to compute
the next best thing, the minimizer of kb � Axk. We shall start this
chapter by drawing deep insight about these problems from the
singular value decomposition, but then make a startling observation:
for some important problems from applications, this optimal answer
might not be the one that is most physically revealing. We conclude
the course by seeing how the truncated singular value decomposition
and regularization lead us to superior solutions.

7.1 The pseudoinverse

At this point you must feel like we have already extracted every
possible insight from the equation Ax = b, but there is just a bit more
to learn that will tie the entire theory together. Now is a good time
to revisit our flowchart from Figure 4.2, extending it in Figure 7.1 to
now cover the case where Ax = b does not have a solution and we
must be content with the best approximation that comes from solving
the least squares problem

min
x2IRn

kb � Axk.

When N(A) contains nonzero vectors, the solution to Ax = b and
minx2IRn kb � Axk will not be unique. From the infinite set of so-
lutions we would like to pick out one particular vector that we can
designate as the best solution. One natural option is to minimize kxk,

min
x2IRn

Ax=b

kxk, min
x2IRn

x minimizes kb � Axk

kxk.

This criterion often has physical appeal, e.g., minimizing energy. The
point of this section is to find this norm-minimizing solution.
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Is b 2 R(A)?
Does

N(A) = {0}?
Ax = b has a

unique solution.

Ax = b has
no solution.

Find minimizer
of kb � Axk.

Ax = b has
infinitely many

solutions.

Does
N(A) = {0}?

min
x2IRn

kb � Axk
has infinitely

many solutions.

Among all the
solutions, find

the unique x that
minimizes kxk.

min
x2IRn

kb � Axk
has a unique

solution.
x = A+b.

yes

no

yes

no

no

yes

Figure 7.1: Revisiting the Ax = b
flowchart from Chapter 4, but now
adding in the least squares problem.
When infinite solutions exist, we pick
the unique one of minimal norm. We
shall see in the pages ahead that the
unique smallest norm solution can
always be written as x = A+x.

As we saw in Chapter 5, if N(A) 6= {0}, the solution to Ax = b or
minx2IRn kb � Axk will not be unique. By the Fundamental Theorem
of Linear Algebra, any such solution can be decomposed in the form

x = xR + xN ,

for xR 2 R(AT) and xN 2 N(A). This decomposition will be crucial to Recall that x 2 IRn = R(AT)�N(A),
and R(AT) ? N(A).finding the minimal norm solution.

Now suppose two vectors x and y 2 IRn satisfy

Ax = b, Ay = b.

What can be said of their difference, x � y? Notice that

A(x � y) = Ax � Ay = b � b = 0,

so the difference x � y must be contained in the null space of A:

x � y 2 N(A).
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From this we conclude that all solutions to Ax = b must have the
same component in R(AT), and so can be written in the form

x = x+ + xN ,

where x+ 2 R(AT) is a unique vector, and xN is any vector in N(A).

To see that the same argument applies to the least squares problem

min
x2IRn

kb � Axk,

suppose x and y 2 IRn both solve this minimization, with

kb � Axk = kb � Ayk.

Our discussion in Chapter 5 showed how to approach the least
squares problem: decompose b = bR + bN , where bR 2 R(A)

and bN 2 N(AT), and then pick x 2 IRn so that Ax = bR. Since y
is also a solution to the least squares problem, the same must apply:
Ay = bR. The difference of the solutions thus satisfies

A(x � y) = bR � bR = 0,

and again we have x � y 2 N(A). Just as above, we conclude that
x and y have the same component in R(AT); the only difference
between these vectors lies in N(A). Hence, all solutions of the mini-
mization problem also have the form

x = x+ + xN ,

where x+ 2 R(AT) is a unique vector, and xN is any vector in N(A).
Notice that x+ ? xN follows from R(AT) ? N(A), so the Pythagorean
Theorem gives

kxk2 = kx+k2 + kxNk2.

To make kxk as small as possible, there is but one choice: set xN = 0.

Any solution to Ax = b or minx2IRn kb � Axk has the form

x = x+ + xN ,

where x+ 2 R(A) and xN 2 N(AT). The vector x+ is unique.

A small example helps to reveal what is happening here.

Example 3 Consider the equation


1 1
0 0

� 
x1
x2

�
=


2
0

�
.
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The first equation gives x1 + x2 = 2, while the second is vacuous, 0+ 0 = 0.
Since b 2 R(A), there exist solutions to Ax = b, and since N(A) contains
nonzero vectors, there are infinitely many of them. Each solution takes the
general form

x =


1
1

�
+ g


1
�1

�
,

where
x+ =


1
1

�
2 R(AT) = span

⇢ 
1
1

� �

and
g


1
�1

�
2 N(A) = span

⇢ 
1
�1

� �
.

Since the norm of the solution satisfies

x+

0

x =


1
1

�
+ g


1
�1

�

The black arrow denotes the set of all
solutions x to Ax = b. Among these
vectors, x+ 2 R(AT) is the unique
solution that has smallest norm, i.e., is
closest to 0.

kxk2 =

����


1
1

� ����
2
+ |g|2

����


1
�1

� ����
2
,

the solution with smallest norm requires g = 0, yielding x = x+.

You might visualize how the picture accompanying the last exam-
ple would generalize to three dimensions. If dim(N(A)) = 2, then
the black arrow of solutions would become a plane, and there would
still be a single point on that plane that was closest to 0. This closet
point is x+ 2 R(AT).

How do we find the minimum norm solution x+ 2 R(AT)? Sup-
pose A has rank r and singular value decomposition

A =
r

Â
j=1

sjujv
T
j .

Recall from the last chapter’s SVD interpretation of the Fundamental
Theorem that

R(AT) = span{v1, . . . , vr}.

Thus we can always write x+ 2 R(AT) as

x+ = c1v1 + · · ·+ crvr.

To find x+, we need only find the coefficients c1, . . . , cr. If x+ is a
solution to Ax = b, then we want find the coefficients that satisfy
Ax+ = b. Substitute the SVD for A to find

b = Ax+ =

✓ r

Â
j=1

sjujv
T
j

◆✓ r

Â
k=1

ckvk

◆

=
r

Â
j=1

r

Â
k=1

sjckujv
T
j vk
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Using the orthonormality of the right singular vectors,

vT
j vk =

(
1, j = k;
0, j 6= k,

we can collapse the double sum down to a single sum, finding

b =
r

Â
j=1

sjcjuj.

Now to find the value of ck, premultiply this last equation by uT
k and

use the orthonormality of the left singular vectors,

uT
k uj =

(
1, k = j;
0, k 6= j,

to find

uT
k b =

r

Â
j=1

sjcju
T
k uj = skck.

Solve this last expression for ck to obtain

ck =
uT

k b
sk

,

from which we can build the norm-minimizing solution

x+ =
r

Â
k=1

✓
uT

k b
sk

◆
vk.

It is helpful to think about x+ in the rearranged form

x+ =

✓ r

Â
k=1

1
sk

vkuT
k

◆
b. (7.1)

We have thus found the minimum norm solution x+ for all cases
where it is possible to satisfy Ax = b. What about the case where
b 62 R(A), where we can only solve the least squares problem

min
x2IRn

kb � Axk ?

Recall that all solutions to this problem satisfy Ax = bR, where
b = bR + bN is a decomposition of b into its components in R(A)

and N(AT). Since the left singular vectors u1, . . . , ur, ur+1, . . . , um

form an orthonormal basis for IRm, we can write

b =

✓ m

Â
j=1

uju
T
j

◆
b =

r

Â
j=1

(uT
j b)uj +

m

Â
j=r+1

(uT
j b)uj,

where

Recall I = UUT =
m

Â
j=1

uju
T
j .
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bR =
r

Â
j=1

(uT
j b)uj 2 R(A), bN =

m

Â
j=r+1

(uT
j b)uj 2 N(AT),

since

R(A) = span{u1, . . . , ur}, N(AT) = span{ur+1, . . . , um}.

We seek the minimum norm solution x 2 R(AT) that solves Ax = bR.
Apply the same ideas that led to (7.1) for the Ax = b case to get

x+ =

✓ r

Â
k=1

1
sk

vkuT
k

◆
bR =

✓ r

Â
k=1

1
sk

vkuT
k

◆✓ r

Â
j=1

(uT
j b)uj

◆

=
r

Â
k=1

r

Â
j=1

uT
j b

sk
vkuT

k uj

=
r

Â
k=1

uT
k b
sk

vk, (7.2)

where we have used the orthonormality of the left singular vectors
for the last step.

This last expression was built from bR, but we would really prefer
to work directly with b itself. Toward that end, notice that by the
orthogonality of the left singular vectors,

✓ r

Â
k=1

1
sk

vkuT
k

◆
b =

✓ r

Â
k=1

1
sk

vkuT
k

◆✓ m

Â
j=1

(uT
j b)uj

◆

=
r

Â
k=1

m

Â
j=1

uT
j b

sk
vkuT

k uj

=
r

Â
k=1

uT
k b
sk

vk,

which is exactly the same as the expression (7.2) for x+. Hence, we
can directly compute

x+ =

✓ r

Â
k=1

1
sk

vkuT
k

◆
b, (7.3)

which does not require us to first find bR.

These tedious calculations have placed us on the verge of a
major epiphany. Did you notice that the formula for the minimum
norm solution to Ax = b given in (7.1) agrees perfectly with the
formula for the minimum norm solution to minx2IRn kb � Axk given
in (7.3) ? In both cases, one distinguished matrix,

r

Â
k=1

1
sk

vkuT
k 2 IRn⇥m (7.4)
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plays the same role as A�1 in the x = A�1b solution to Ax = b,
expect this new matrix (7.4) works for any matrix: A can have any
rank, and any dimension. We give this distinguished matrix (7.4) a
special name: the pseudoinverse.

Definition 24 Let A = Âr
j=1 sjujv

T
j 2 IRm⇥n be a rank-r matrix, written

in its singular value decomposition. Then the pseudoinverse of A is

A+ =
r

Â
j=1

1
sj

vju
T
j 2 IRn⇥m.

Example 4 Let us revisit Example 3, where

A =


1 1
0 0

�

has rank r = 1 and full singular value decomposition

A = USVT =


1 0
0 1

� p
2 0

0 0

�  p
2/2

p
2/2

�
p

2/2
p

2/2

�
.

The pseudoinverse is given by

A+ =
1
s1

v1uT
1 =

1p
2

p
2/2p
2/2

�
[ 1 0 ] =


1/2 0
1/2 0

�
, (7.5)

and so we compute

x+ = A+b =


1/2 0
1/2 0

� 
2
0

�
=


1
1

�
,

just as we found in Example 4.

Let us summarize our major finding of this section.

Consider the linear system Ax = b or the least squares problem
minx2IRn kb � Axk. Of all the (possibly infinite) solutions x, the
unique solution that minimizes kxk is given by

x+ = A+b,

where A+ is the pseudoinverse,

A+ =
r

Â
j=1

1
sj

vju
T
j .

7.2 Ill-posed problems

The pseudoinverse gives us the ultimate solution to linear systems
and least squares problems. But just before we begin to rest on our
laurels, we should look at one last example.
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Example 5 Suppose we make a small modification to Examples 3 and 4,
giving 

1 1
0 0.01

� 
x1
x2

�
=


2
0

�
.

This small change to the (2, 2) entry makes A an invertible matrix, and so

A+ = A�1 =


1 �100
0 100

�
,

quite different from the earlier pseudoinverse in (7.5). The unique solution to
the new linear system is thus

x+ = A�1b =


1 �100
0 100

� 
2
0

�
=


2
0

�
.

Normally we would just solve this problem and move on, but the previous
examples should make us pause. The small change to one entry of A has
moved x+ from the old solution [1, 1]T to the new solution [2, 0]T, a major
change! Moreover, the new solution has much bigger norm, for

����


1
1

����� =
p

2,
����


2
0

����� = 2.

There was nothing special about the value 0.01 in the (2,2) position: any
x+

old x+

0

The solution x+ to the new, slightly
perturbed problem is quite different
from the original solution found in
Example 3 (and larger in norm).

nonzero value has the same effect. For any # 6= 0, the problem


1 1
0 #

� 
x1
x2

�
=


2
0

�

has the unique solution

x+ = A�1b =


1 �1/#

0 1/#

� 
2
0

�
=


2
0

�
.

So, an infinitesimal change to A causes a significant change to the solution.
The situation gets even worse if we also make a small change to b as well.
For example, for any # 6= 0,


1 1
0 #

� 
x1
x2

�
=


2p

#

�

has the unique solution

x+ = A�1b =


1 �1/#

0 1/#

� 
2p

#

�
=


2 � 1/

p
#

1/
p

#

�
.

When # is a small nonzero number, we have made a very minor change to
A and b that results in a solution x+ with enormous entries. For example,
when # = 0.01 as above, this equation with perturbed b gives

x+ =


�8
10

�
.
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Reduce the size of the perturbation even more, to # = 0.0001 = 10�4. Now

x+ =


�98
100

�
.

This is a strange thing! As # gets smaller, A and b get closer and closer
to their unperturbed counterparts in Example 3, yet the solution x+ gets
farther and farther from the unperturbed solution [1, 1]T.

Here is a crucial observation: in all these cases, the new solution x+ is
actually in that larger space of all solutions for the unperturbed problem
from Example 3,


2 � 1/
p

#

1/
p

#

�
=


1
1

�
+(1+ 1/

p
#)


1
�1

�
2
⇢ 

1
1

�
+g


1
�1

�
: g 2 C

�
,

even though the new solution x+ is far from the old solution of minimal
norm. This is a particularly clean outcome due to the structure of our exam-
ple, but the general pattern is seen in more sophisticated settings.

7.2.1 Application: deblurring

7.3 Truncated SVD solutions

Look back to Example 5. Small perturbations # to A and b caused
the solution x+ to change by large amounts. To resolve this difficulty,
your natural reaction might be: “Can’t we just ignore the # entries
in A and b?” This shows good instinct, but we would like a more
systematic way to identify and neglect the “small” entries in a sys-
tem. Thankfully the singular value decomposition provides just the
right tool for the job. The basic idea is simple: instead of using all the
terms in the SVD to compute the pseudoinverse,

A+ =
r

Â
j=1

1
sj

vju
T
j ,

simply leave out the terms with small sj (and hence large 1/sj):

A+
k =

k

Â
j=1

1
sj

vju
T
j

for some k < r. Let us explain why this might be a good idea.

All we did here was change the upper
limit on the sum from r to k.

Recall that in Section 8.11, we computed optimal rank-k approxi-
mations to the rank-r matrix

A =
r

Â
j=1

sjujv
T
j

by truncating the singular value decomposition to the first k terms in
the sum,

Ak =
k

Â
j=1

sjujv
T
j , k  r.
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As we saw in Chapter 8, the accuracy of this approximation is con-
trolled by the first neglected singular value:

kA � Akk =

����
r

Â
j=k+1

sjujv
T
j

���� = sk+1.

Suppose we wish to solve the least squares problem

min
x2IRn

kb � Axk, (7.6)

where A has some very small singular values that make the pseu-
doinverse solution derived in Section 7.1,

x+ = A+b =
r

Â
j=1

1
sj

vju
T
j b,

very large in norm. In fact, using the orthonormality of the right
singular vectors and the Pythagorean Theorem, we can compute

kx+k2 =
r

Â
j=1

1
s2

j
|uT

j b|2. (7.7)

Now if we replace A in the least squares problem (7.6) with the trun-
cated SVD Ak,

min
x2IRn

kb � Akxk, (7.8)

the solution changes to

xk = A+
k b =

k

Â
j=1

1
sj

vju
T
j b

having smaller norm, since

kxkk2 =
k

Â
j=1

1
s2

j
|uT

j b|2. (7.9)

By picking k so that sk is not too small, we can prevent kxkk from
being offensively large. But how well does xk satisfy the original least
squares problem we really want to solve? With the help of the SVD,
we can readily check:

Recall that b =
n

Â
j=1

uju
T
j b.

kb � Axkk =

����b �
⇣ r

Â
j=1

sjujv
T
j

⌘⇣ k

Ầ
=1

1
s`

v`u
T
` b

⌘����

=

����b �
r

Â
j=1

k

Ầ
=1

sj

s`
ujv

T
j v`u

T
` b

����

=

����b �
k

Â
j=1

uju
T
j b

����

=

����
m

Â
j=k+1

uju
T
j b

����.
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Compare this to the error from the least squares problem when the
pseudoinverse solution is used:

kb � Ax+k =

����
m

Â
j=r+1

uju
T
j b

����.

The residual kb � Axkk is larger, but perhaps not by all that much:

kb � Axkk2 � kb � Ax+k2 =
r

Â
j=k+1

|uT
j b|2.

In summary, using the truncated SVD can greatly reduce kxkk in (7.7)
by omitting the uT

j b/sj terms for small sj, but the increase in the
norm of the residual, kb � Axkk is comparatively modest, only
adding terms like uT

j b.

Compare the pseudoinverse solution

x+ =
r

Â
j=1

1
sj

vju
T
j b (7.10)

to the truncated SVD approximation

xk =
k

Â
j=1

1
sj

vju
T
j b (7.11)

for the least squares problem minx2IRn kb � Axk:

• The norm of the truncated SVD solution is smaller:

kxkk2 = kx+k2 �
r

Â
j=k+1

1
s2

j
|uT

j b|2.

• The norm of the truncated SVD residual is larger:

kb � Axkk2 = kb � Ax+k2 +
r

Â
j=k+1

|uT
j b|2.

In applications where sk+1, . . . , sr are small, the reduction in the
norm of the solution can yield much more physically realistic answer
by removing the artificial but overwhelming effects of noisy data,
while the modest increase in the residual is not such a big concern.

7.4 Regularization

The truncated SVD has great appeal: one must appreciate the sim-
plicity and potency of this approach. However, it requires us to first
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compute the singular value decomposition of A. When A is a large
matrix (often “sparse,” meaning most entries are zero), one cannot af-
ford to compute the SVD of A. Another approach is equally intuitive
but computationally more appealing: regularization.

The boxed paragraph at the end of the last section highlights the
two conflicting tensions that arise when solving ill-posed problems:
we seek to make the least-squares residual kb � Axk as small as
possible, while also controlling the size of the solution kxk. The fun-
damental problem is that the x that minimizes kb � Axk often gives
large kxk. We are willing to acccept a suboptimal x that gives a slightly
larger kb � Axk but a much smaller kxk.

Why not combine these two goals into one optimization problem?
Replace the usual least squares problem

min
x2IRn

kb � Axk

with the penalized problem

min
x2IRn

kb � Axk2 + l2kxk2 (7.12)

for some choice of the regularization parameter l. Two fundamental
questions arise:

• How should one choose l?

• How does one find the optimal x in (7.12)?

We shall tackle these questions in reverse order.

7.4.1 Solving regularized least squares problems

Suppose A 2 IRm⇥n with m � n, and consider the alternative least
squares problem

min
x2IRn

����


b
0

�
�


A
lI

�
x
���� (7.13)

involving the (m + n)⇥ n matrix

Al =


A
lI

�
.

Equation (7.13) has a neat property. Square the norm of the residual:
����


b
0

�
�


A
lI

�
x
����

2
=

✓ 
b
0

�
�


A
lI

�
x
◆T✓ 

b
0

�
�


A
lI

�
x
◆

= [ bT 0 ]


b
0

�
� xT [AT lI ]


b
0

�
� [ bT 0 ]


A
lI

�
x + xT [AT lI ]


A
lI

�
x

= bTb � xTATb � bTAx + xT(ATA + l2I)x
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=
�
b � Ax

�T�b � Ax
�
+ l2xTx

= kb � Axk2 + l2kxk2.

Thus, remarkably, we can solve the penalized problem (7.12) by solv-
ing the standard least squares problem (7.13):

min
x2IRn

kb � Axk2 + l2kxk2 = min
x2IRn

����


b
0

�
�


A
lI

�
x
����.

If one of these problems has a unique solution, the other does as
well. We shall compute that solution xl using the conventional least
squares problem (7.13).

Take a few moments to think about Al. To understand if (7.13) has
a unique solution, we need to understand the rank and null space of
Al. What is rank(Al)? You can determine the rank in several ways.

Consider the m = 3, n = 2 case:

A =

2

4
a1,1 a1,2
a2,1 a2,2

a3,1 a3,2

3

5 , Al =


A
lI

�
=

2

666664

a1,1 a1,2
a2,1 a2,2

a3,1 a3,2

l 0
0 l

3

777775
.

Regardless of A, the n = 2 columns of Al must be linearly indepen-
dent due to the bottom 2 ⇥ 2 block lI, for all l 6= 0. Thus the column This is true even if A = 0!

space R(A) must have dimension n = 2, so rank(A) = 2. Since

dim(N(Al)) = n � dim(R(AT
l))

= n � rank(Al),

we conclude that dim(N(Al)) = 0, and so N(Al) = {0}. The same
holds for general A 2 IRm⇥n. Since dim(N(Al)) = {0}, as we see in

You might also study the rank of Al by
computing its singular values. Recall
that the singular values are square roots
of the eigenvalues of AT

l Al. Since

AT
l Al = ATA + l2I,

you can see that the eigenvalues of
AT

l Al are just the eigenvalues of ATA,
plus l2: for if

ATAvj = s2
j vj,

then

AT
l Alvj = (ATA+l2I)vj = (s2

j +l2)vj.

Thus we see that for any nonzero l,

jth singular value of Al =
q

sj + l2 > 0,

even if sj = 0. Since Al has n nonzero
singular values, its rank must be n. The
right singular vectors vj of Al are also
the right singular vectors of A.

the flowchart in Figure 7.1, the least squares problem (7.13) will have
a unique solution, and thus too our problem of interest (7.12). Let us
summarize where we now stand.
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For any A 2 IRm⇥n and l 6= 0, the regularized matrix Al satisfies

rank(Al) = n

and hence N(Al) = {0}. Thus the least squares problem (7.13)
has the unique solution

xl = (AT
lAl)

�1AT
l


b
0

�

= (ATA + l2I)�1ATb,

which is also the unique solution to the regularized problem

min
x2IRn

����


A
lI

�
x �


b
0

� ����.

In this last box we have the formula for the solution

xl = (ATA + l2I)�1ATb.

In terms of the SVD of A (setting sj = 0 for j > r), we have

ATA + l2I =
n

Â
j=1

s2
j vjv

T
j + l2

n

Â
j=1

vjv
T
j =

n

Â
j=1

(s2
j + l2)vjv

T
j ,

which can be readily inverted:

(ATA + l2I)�1 =
n

Â
j=1

1
s2

j + l2 vjv
T
j .

From this we can compute

xl = (ATA + l2I)�1ATb

=

✓ n

Â
j=1

1
s2

j + l2 vjv
T
j

◆✓ r

Ầ
=1

s`v`u
T
`

◆
b

=
r

Â
j=1

sj

s2
j + l2 vju

T
j b,

using orthogonality of the singular vectors, as usual. We summarize:

The unique solution to the regularized least squares problem

min
x2IRn

kb � Axk2 + l2kxk2

is given by

xl =
r

Â
j=1

sj

s2
j + l2 vju

T
j b. (7.14)
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Contrast three formulas:

pseudoinverse solution x+ =
r

Â
j=1

1
sj

vju
T
j b

truncated SVD solution xk =
k

Â
j=1

1
sj

vju
T
j b

regularized solution xl =
r

Â
j=1

sj

s2
j + l2 vju

T
j b

All three of these “solutions” involve the terms vju
T
j b, but dif-

ferent weight is put on them by the different formulas. When the
regularization term is small (or zero), the l2kxk2 term does not much
influence the least squares problem, and xl will be quite close to the
pseudoinverse solution x+. Large l values place much greater in-
fluence on the l2kxk2 term, and in the limit as l ! • we see that
xl ! 0.

7.4.2 Selecting the regularization parameter

How then should one select the regularization parameter l to yield
the best results? One seeks to strike a perfect balance between keep-
ing kxlk at a moderate size while making kb � Axlk as small as
possible. One way to select l is to create a plot with log kb � Axlk
on the horizontal axis, and log kxlk on the vertical axis, sampled

pick l to get here
�
� 

Figure 7.2: An illustration of the
relationship between kb � Axlk and
kxlk as l changes over orders of
magnitude. (In this particular plot, from
a UPC barcode recovery problem, l
varies from roughly 10�8 (top left) to
100 (bottom right).) To make kxlk as
small as possible without increasing
kb � Axlk too much, choose a l value
that corresponds to a (kb � Axlk, kxlk)
pair at the corner of the “L.”
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over a wide range of l values (varying over orders of magnitude).
Often this plot shows a distinct bend, as seen in one example in Fig-
ure 7.2. For many applications, the best choice for l will yield values
of kb � Axlk and kxlk that land at the sharp bend in this “L curve.”

For many more details of regularization problem, ranging from
applications to algorithms, we recommend the excellent introductory
book by Hansen.1 1


