
Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2019

Mark Embree

embree@vt.edu

Ax=b
version of 11 April 2019

Chapter 6
The Singular Value Decomposition

The singular value decomposition (SVD) is among the most
important and widely applicable matrix factorizations. It provides a
natural way to untangle a matrix into its four fundamental subspaces,
and reveals the relative importance of each direction within those
subspaces. Thus the singular value decomposition is a vital tool
for analyzing data, and it provides a slick way to understand (and
prove) many fundamental results in matrix theory. It is the perfect
tool for solving least squares problems, and provides the best way to
approximate a matrix with one of lower rank. These notes construct
the SVD in various forms, then describe a few of its most compelling
applications.

6.1 Eigenvalues and eigenvectors of symmetric matrices

To derive the singular value decomposition of a general (rectangu-
lar) matrix A 2 IRm⇥n, we shall rely on several special properties of
the square, symmetric matrix ATA. While this course assumes you
are well acquainted with eigenvalues and eigenvectors, we will re-
call some fundamental concepts, especially pertaining to symmetric
matrices.

6.1.1 A passing nod to complex numbers

Recall that even if a matrix has real number entries, it could have
eigenvalues that are complex numbers; the corresponding eigenvec-
tors will also have complex entries. Consider, for example, the matrix

S =

"
0 �1
1 0

#
.

73

To find the eigenvalues of S, form the characteristic polynomial

det(lI � S) = det

 "
l 1
�1 l

#!
= l2 + 1.

Factor this polynomial (e.g., using the quadratic formula) to get

det(lI � S) = l2 + 1 = (l � i)(l + i),

where i =
p
�1. Thus, we conclude that S (a matrix with real entries)

has the complex eigenvalues

l1 = i, l2 = �i

with corresponding eigenvectors

v1 =

"
i
1

#
, v2 =

"
�i
1

#
.

To find the eigenvector associated with
l1, we need to find some nonzero
v 2 N(l1I � S). To do so, solve the
consistent but underdetermined system


i 1
�1 i

� 
v1
v2

�
=


0
0

�
.

The first row requires

iv1 + v2 = 0,

while the second row requires

�v1 + iv2 = 0.

Multiply that last equation by �i and
you obtain the first equation: so if you
satisfy the second equation (v1 = iv2),
you satisfy them both. Thus let

v =


v1
v2

�
=


iv2
v2

�
.

The specific eigenvector v1 (given in the
main text) follows from picking v2 = 1.

Suppose we want to compute the norm of the eigenvector v1.
Using our usual method, we would have

kv1k2 = vT
1 v1 =

h
i 1

i "
i
1

#
= i2 + 1 = �1 + 1 = 0.

This result seems strange, no? How could the norm of a nonzero
vector be zero?

This example reveals a crucial shortcoming in our definition of the
norm, when applied to complex vectors. Instead of

kxk =
q

x2
1 + x2

2 + · · ·+ x2
n =

p
xTx,

we want
kxk =

q
|x1|2 + |x2|2 + · · ·+ |xn|2.

For real vectors x 2 IRn, both definitions are the same. For complex
vectors x 2 Cn they can be very different. Just as the norm of a real

If z = a + ib 2 C with a, b 2 IR,
then |z| =

p
a2 + b2. We call |z| then

magnitude of the complex number z.

vector has the compact notation kvk =
p

vTv, so too does the norm
of a complex vector:

kvk =
p

vTv,

where v denotes the complex conjugate of v. Now apply this defini-

The complex conjugate of z = a + ib is

z = a � ib,

allowing us to write

|z|2 = zz = (a � ib)(a + i)

= a2 � ib + ib + a2 = a2 + b2.tion of the norm to v1:

kv1k2 = v1
Tv1 =

h
�i 1

i "
i
1

#
= �i2 + 1 = 1 + 1 = 2,

a much more reasonable answer than we had before.
We will wrap up this complex interlude by proving that the real

symmetric matrices that will be our focus in this course can never
have complex eigenvalues.

74

6.1.2 The spectral theorem for symmetric matrices

Theorem 8 All eigenvalues of a real symmetric matrix are real.

Proof. Let S denote a symmetric matrix with real entries, so ST = S
(since S is symmetric) and S = S (since S is real).

Let (l, v) be an arbitrary eigenpair of S, so that Sv = lv. Without
loss of generality, we can assume that v is scaled so that kvk = 1, i.e.,
vTv = kvk2 = 1. Thus Since we do not yet know that v is

real-valued, we must use the norm
definition for complex vectors discussed
in the previous subsection.

l = lkvk2 = l(vTv) = vT(lv) = vT(Sv).

Since S is real and symmetric, S = ST , and so

vT(Sv) = vTSTv = (Sv)
T

v = (lv)
T

v = lvTv = lkvk2 = l.

We have shown that l = l, which is only possible if l is real.

If z = a + ib and z = z, then a + ib =
a � ib, i.e.,

b = �b,

which is only possible if b = 0.

It immediately follows that if l is an eigenvalue of the real sym-
metric matrix S, then we can always find a real-valued eigenvector v
of S corresponding to l, simply by finding a real-valued vector in the
null space

N(lI � S),

since lI � S is a real-valued matrix.
Crucially, the eigenvalues of a real symmetric matrix S associated

with distinct eigenvalues must be orthogonal.

Theorem 9 Eigenvectors of a real symmetric matrix associated with dis-
tinct eigenvalues are orthogonal.

Proof. Suppose l and g are distinct eigenvalues of a real symmetric
matrix S associated with eigenvectors v 2 IRn and w 2 IRn:

Sv = lv, Sw = gw

with l 6= g. Now consider

lwTv = wT(lv) = wT(Sv) = wTSTv,

where we have used the fact that S = ST . Now

wTSTv = (Sw)Tv = (gw)Tv = gwTv.

We have thus shown that

lwTv = gwTv.

Since l 6= g, this statement can only be true if wTv = 0, i.e., if v and
w are orthogonal.

What if the eigenvalues are not distinct?
Consider the simple 2 ⇥ 2 identity
matrix, I. Any nonzero x 2 IR2 is an
eigenvector of I associated with the
eigenvalue l = 1, since

Ix = 1x.

Thus we have many eigenvectors that
are not orthogonal. However, we can
always find vectors, like

v1 =


1
0

�
, v2 =


0
1

�

that are orthogonal.

We are ready to collect relevant facts in the Spectral Theorem.

75

Theorem 10 (Spectral Theorem) Suppose S 2 IRn⇥n is symmetric,
ST = S. Then there exist n (not necessarily distinct) eigenvalues l1, . . . , ln

and corresponding unit-length eigenvectors v1, . . . , vn such that

Svj = ljvj.

The eigenvectors form an orthonormal basis for IRn:

IRn = span{v1, . . . , vn}

and vT
j vk = 0 when j 6= k, and vT

j vj = kvjk2 = 1.

For example, when

S =


3 �1
�1 3

�
,

we have l1 = 4 and l2 = 2, with

v1 =

 p
2/2

�
p

2/2

�
, v2 =

p
2/2p
2/2

�
.

Note that these eigenvectors are unit
vectors, and they are orthogonal. We
can write

S = l1v1vT
1 ++l2v2vT

2

= 4


1/2 �1/2
�1/2 1/2

�
+ 2


1/2 1/2
1/2 1/2

�
.

As a consequence of the Spectral Theorem, we can write any sym-
metric matrix S 2 IRn⇥n in the form

S =
n

Â
j=1

ljvjv
T
j . (6.1)

This equation expresses S as the sum of the special rank-1 matrices
ljvjv

T
j . The singular value decomposition will provide a similar way

to tease apart a rectangular matrix.

For the example above,

xTSx =


x1
x2

�T  3 �1
�1 3

� 
x1
x2

�

= 3x2
1 � 2x1x2 + x2

2

= 2(x1 � x2)
2 + (x1 + x2)

2.

This last expression, the sum of squares,
is clearly positive for all nonzero x, so S
is positive definite.

Definition 21 A symmetric matrix S 2 IRn⇥n is positive definite pro-
vided xTSx > 0 for all nonzero x 2 IRn; if xTSx � 0 for all x 2 IRn, we say
S is positive semidefinite.

Theorem 11 All eigenvalues of a symmetric positive definite matrix are
positive; all eigenvalues of a symmetric positive semidefinite matrix are
nonnegative.

Proof. Let (lj, vj) denote an eigenpair of the symmetric positive
definite matrix S 2 IRn⇥n with kvjk2 = vT

j vj = 1. Since S is symmetric
, lj must be real. We conclude that

lj = ljv
T
j vj = vT

j (ljvj) = vT
j Svj,

which must be positive since S is positive definite and vj 6= 0.
The proof for positive semidefinite matrices is the same, except we

can only conclude that lj = vT
j Svj � 0.

Can you prove the converse of this
theorem? (A symmetric matrix with
positive eigenvalues is positive defi-
nite.) Hint: use the Spectral Theorem.
With this result, we can check if S is
positive definite by just looking at its
eigenvalues, rather than working out a
formula for xTSx, as done above.

6.2 Derivation of the singular value decomposition: Full rank case

We seek to derive the singular value decomposition of a general rect-
angular matrix. To simplify our initial derivation, we shall assume
that A 2 IRm⇥n with m � n, and that rank(A) is as large as possible,
i.e.,

rank(A) = n.

76

First, form ATA, which is an n ⇥ n matrix. Notice that ATA is always
AT

A
= ATAsymmetric, since

(ATA)T = AT(AT)T = ATA.

Furthermore, this matrix is positive definite: notice that

xTATAx = (Ax)T(Ax) = kAxk2 � 0.

Since rank(A) = n, notice that Keep this in mind: If rank(A) < n, then
dim(N(A)) > 0, so there exist x 6= 0 for
which xTATAx = kAxk2 = 0. Hence
ATA will only be positive semidefinite
in this case.

dim(N(A)) = n � rank(A) = 0.

Since the null space of A is trivial, Ax 6= 0 whenever x 6= 0, so

xTATAx = kAxk2 > 0

for all nonzero x. Hence ATA is positive definite.

We are now ready to construct our first version of the singular
value decomposition. We shall construct the pieces one at a time,
then assemble them into the desired decomposition.

Step 1. Compute the eigenvalues and eigenvectors of ATA.

As a consequence of results about symmetric matrices presented
above, we can find n eigenpairs {(lj, vj)}n

j=1 of S = ATA with
unit eigenvectors (vT

j vj = kvjk2 = 1) that are orthogonal to one
another (vT

j vk = 0 when j 6= k). We are free to pick any conve-
nient indexing for these eigenpairs; we shall label them so that the
eigenvalues are decreasing in size, l1 � l2 � · · · � ln > 0. It is

Even if A is a square matrix, be sure to
compute the eigenvalues and eigenvec-
tors of ATA.

Since ATA is positive definite, all its
eigenvalues are positive.helpful to emphasize that v1, . . . , vn 2 IRn.

Step 2. Define sj = kAvjk =
q

lj, j = 1, . . . , n.

Note that s2
j = kAvjk2

2 = vT
j ATAvj = lj. Since the eigenvalues

l1, . . . , ln are decreasing in size, so too are the sj values:

s1 � s2 � · · · � sn > 0.

Step 3. Define uj = Avj/sj for j = 1, . . . , n.

Notice that u1, . . . , un 2 IRm. Because sj = kAvjk, we ensure that

The assumption that rank(A) = n
helped us out here, by ensuring that
sj > 0 for all j: hence we can safely
divide by sj in the definition of uj.

kujk =
���

1
sj

Avj

��� =
kAvjk

sj
= 1.

Furthermore, these uj vectors are orthogonal. To see this, write

uT
j uk =

1
sjsk

(Avj)
T(Avk) =

1
sjsk

vT
j ATAvk.

77

Since vk is an eigenvector of ATA corresponding to eigenvalue lk,

1
sjsk

vT
j ATAvk =

1
sjsk

vT
j (lkvk) =

lj

sjsk
vT

j vk.

Since the eigenvectors of the symmetric matrix ATA are orthogo-
nal, vT

j vk = 0 when j 6= k, so the uj vectors inherit the orthogonal-
ity of the vj vectors:

uT
j uk = 0, j 6= k.

Step 4. Put the pieces together.

For all j = 1, . . . , n,
Avj = sjuj,

regardless of whether sj = 0 or not. We can stack these n vector

Av1 · · ·Avn = s1u1 · · · snun
equations as columns of a single matrix equation,

2

64
| | |

Av1 Av2 · · · Avn

| | |

3

75 =

2

64
| | |

s1u1 s2u2 · · · snun

| | |

3

75 .

Note that both matrices in this equation can be factored into the
product of simpler matrices:

A

2

64
| | |

v1 v2 · · · vn

| | |

3

75 =

2

64
| | |

u1 u2 · · · un

| | |

3

75

2

66664

s1
s2

. . .
sn

3

77775
.

Denote these matrices as

A

v1 · · · vn

= u1 · · · un

s1

. . .

sn

AV = bUbS, (6.2)

where A 2 IRm⇥n, V 2 IRn⇥n, bU 2 IRm⇥n, and bS 2 IRn⇥n.

We now have all the ingredients for various forms of the sin-
gular value decomposition. Since the eigenvectors vj of the symmet-
ric matrix ATA are orthonormal, the square matrix V has orthonor-
mal columns. This means that

VTV = I,

since the (j, k) entry of VTV is simply vT
j vk. Since V is square, the

equation VTV = I implies that VT = V�1. Thus, in addition to VTV,

The inverse of a square matrix is
unique: since VT does what the inverse
of V is supposed to do, i.e., VTV = I, it
must be the unique matrix V�1.

we also have
VVT = VV�1 = I.

78

Thus multiplying both sides of equation (6.2) on the right by VT

gives
A = bUbSVT . (6.3)

This factorization is the reduced (or skinny) singular value decomposi-

A = bU

bS VT

tion of A. It can be obtained via the MATLAB command

[Uhat, Sighat, V] = svd(A,0).

What can be said of the matrix bU 2 IRm⇥n? Recall that its columns,
the vectors u1, . . . , un, are orthonormal. However, in contrast to V, we
cannot conclude that bUbUT = I when m > n. Why not? Because when
m > n, bUT 2 IRn⇥m has a nontrivial null space, and hence cannot be
invertible.

When m > n, there must exist
some nonzero z 2 IRm such that
z ? u1, . . . , un, which implies bUTz = 0.
Hence bUbUTz = 0, so we cannot have
bUbUT = I. However, bUbUT 2 IRm⇥m

is a projector onto the n-dimensional
subspace span{u1, . . . , un} of IRm.

We wish to augment the matrix bU with m � n additional column
vectors, to give a full set of m orthonormal vectors in IRm. Here is the
recipe to find these extra vectors: For j = n + 1, . . . , m, pick

uj ? span{u1, . . . , uj�1}

with uT
j uj = 1. Then define

U =

2

64
| | | |

u1 · · · un un+1 · · · um

| | | |

3

75 2 IRm⇥m. (6.4)

We have constructed u1, . . . , um to be orthonormal vectors, so

UTU = I.

However, since U 2 IRm⇥m, this orthogonality also implies U�1 = UT .

bU

bS =
U S

Now we are ready to replace the rectangular matrix bU 2 IRm⇥n in
the reduced SVD (6.3) with the square matrix U 2 IRm⇥m. To do so,
we also need to replace bS 2 IRn⇥n by some S 2 IRm⇥n in such a way
that

bUbS = US.

The simplest approach is to obtain S by appending zeros to the end
of bS, thus ensuring there is no contribution when the new entries of
U multiply against the new entries of S:

S =

"
bS
0

#
2 IRm⇥n. (6.5)

Finally, we arrive at the main result, the full singular value decomposi-

bU

bS =
bU eU

bS

0

A = U S

VT

tion, for the case where rank(A) = n.

79

Theorem 12 (Singular value decomposition, provisional version)
Suppose A 2 IRm⇥n has rank(A) = n, with m � n. Then we can write

A = USVT ,

where the columns of U 2 IRm⇥m and V 2 IRn⇥n are orthonormal,

UTU = I 2 IRm⇥m, VTV = I 2 IRn⇥n,

and S 2 IRm⇥n is zero everywhere except for entries on the main diagonal,
where the (j, j) entry is sj, for j = 1, . . . , n and

s1 � s2 � · · · � sn > 0.

The full SVD is obtained via the MATLAB command

[U,S,V] = svd(A).

Definition 22 Let A = USVT be a full singular value decomposition. The
diagonal entries of S, denoted s1 � s2 � · · · � sn, are called the singular
values of A. The columns u1, . . . , um of U are the left singular vectors;
the columns v1, . . . , vm of V are the right singular vectors.

6.3 The dyadic form of the SVD

We are now prepared to develop an analogue of the formula (6.1) for
rectangular matrices. Consider the reduced SVD,

A = bUbSVT ,

and multiply bUbS to obtain

2

64
| | |

u1 u2 · · · un

| | |

3

75

2

66664

s1
s2

. . .
sn

3

77775
=

2

64
| | |

s1u1 s1u2 · · · snun

| | |

3

75 .

Now notice that you can write A = (bUbS)VT as
2

66664
s1u1 s1u2 · · · snun

3

77775

2

66664

vT
1

vT
2
...

vT
n

3

77775
=

n

Â
j=1

sjujv
T
j ,

which parallels the form (6.1) we had for symmetric matrices:

A =
n

Â
j=1

sjujv
T
j . (6.6)

This expression is called the dyadic form of the SVD. Because we have

A =
n

Â
j=1

sj uj

vjT

=
n

Â
j=1

sj ujv
T
j

ordered s1 � s2 � · · · � sn, the leading terms in this sum dominate
the others. This fact plays a crucial role in applications where we
want to approximate a matrix with its leading low-rank part.

80

6.4 A small example

Consider the matrix

A =

2

4
1 1
0 0p
2 �

p
2

3

5 ,

for which ATA is the symmetric matrix used as an example earlier in
these notes:

ATA =


3 �1
�1 3

�
.

This matrix has rank(A) = 2 = n, so we can apply the analysis
described above.

Step 1. Compute the eigenvalues and eigenvectors of ATA.

We have already seen that, for this matrix, l1 = 4 and l2 = 2, with

v1 =

 p
2/2

�
p

2/2

�
, v2 =

p
2/2p
2/2

�
,

with l1 � l2, the required order. The vectors v1 and v2 will be the
right singular vectors of A.

Step 2. Define sj = kAvjk =
q

lj, j = 1, . . . , n.

In this case, we compute

s1 =
p

l1 = 2, s2 =
p

l2 =
p

2.

Alternatively, we could have computed the singular values from

Av1 =

2

4
1 1
0 0p
2 �

p
2

3

5
 p

2/2
�
p

2/2

�
=

2

4
0
0
2

3

5

Av2 =

2

4
1 1
0 0p
2 �

p
2

3

5
p

2/2p
2/2

�
=

2

4

p
2

0
0

3

5 ,

with s1 = kAv1k = 2 and s2 = kAv2k =
p

2.

Step 3. Define uj = Avj/sj, j = 1, . . . , n.

We use the vectors Av1 and Av2 computed at the last step:

u1 =
1
s1

Av1 =
1
2

2

4
0
0
2

3

5 =

2

4
0
0
1

3

5 , u2 =
1
s2

Av2 =
1p
2

2

4

p
2

0
0

3

5 =

2

4
1
0
0

3

5 .

Step 4. Put the pieces together.

81

We immediately have the reduced SVD A = bUbSVT :
2

4
1 1
0 0p
2 �

p
2

3

5 =

2

4
0 1
0 0
1 0

3

5


2 0
0

p
2

� p
2/2 �

p
2/2p

2/2
p

2/2

�
.

To get the full SVD, we need a unit vector u3 that is orthogonal to
u1 and u2. In this case, such a vector is easy to spot:

u3 =

2

4
0
1
0

3

5 .

Thus we can write the full SVD A = USVT :
2

4
1 1
0 0p
2 �

p
2

3

5 =

2

4
0 1 0
0 0 1
1 0 0

3

5

2

4
2 0
0

p
2

0 0

3

5
p

2/2 �
p

2/2p
2/2

p
2/2

�
.

Finally, we write the dyadic form of the SVD, A = Â2
j=1 sjujv

T
j :

2

4
1 1
0 0p
2 �

p
2

3

5 = 2

2

4
0
0
1

3

5 [
p

2/2 �
p

2/2] +
p

2

2

4
1
0
0

3

5 [
p

2/2
p

2/2]

=

2

4
0 0
0 0p
2 �

p
2

3

5+

2

4
1 1
0 0
0 0

3

5 .

6.5 Derivation of the singular value decomposition: Rank defi-
cient case

Having computed the singular value decomposition of a matrix A 2
IRm⇥n with rank(A) = n, we must now consider the adjustments
necessary when rank(A) = r < n, still with m � n.

Recall that the dimension of the null space of A is given by

dim(N(A)) = n � rank(A) = n � r.

How do the null spaces of A and ATA compare?

Lemma 1 For any matrix A 2 IRm⇥n, N(ATA) = N(A).

Proof. First we show that N(A) is contained in N(ATA). If x 2 N(A),
then Ax = 0. Premultiplying by AT gives ATAx = 0, so x 2 N(ATA).

Now we show that N(ATA) is contained in N(A). If x 2 N(ATA),
then ATAx = 0. Premultiplying by xT gives

0 = xTATAx = (Ax)T(Ax) = kAxk2.

82

Since kAxk = 0, we conclude that Ax = 0, and so x 2 N(A).
Since the spaces N(A) and N(ATA) each contain the other, we

conclude that N(A) = N(ATA).

Can you construct a 2 ⇥ 2 matrix A
whose only eigenvalue is zero, but
dim(N(A)) = 1? What is the multiplic-
ity of the zero eigenvalue of ATA?

Now we can make a crucial insight: the dimension of N(A) tells
us how many zero eigenvalues ATA has. In particular, suppose
x1, . . . , xn�r is a basis for N(A). Then Axj = 0 implies

ATAxj = 0, j = 1, . . . , n � r

= 0xj,

and so l = 0 is an eigenvalue of ATA of multiplicity n � r.

How do these zero eigenvalues of ATA affect the singular value
decomposition? To begin, perform Steps 1 and 2 of the SVD proce-
dure just as before.

Step 1. Compute the eigenvalues and eigenvectors of ATA.

Since we order the eigenvalues of ATA so that l1 � · · · � ln � 0,
and we have just seen that zero is an eigenvalue of ATA of multi-
plicity n � r, we must have

l1 � l2 � · · · � lr > 0, lr+1 = · · · = ln = 0.

The corresponding orthonormal eigenvectors are v1, . . . , vn, with
the last n � r of these vectors in N(ATA) = N(A), i.e., Avj = 0.

Step 2. Define sj = kAvjk =
q

lj, j = 1, . . . , n.

This step proceeds without any alterations, though now we have

s1 � s2 � · · · � sr > 0, sr+1 = · · · = sn = 0.

The third step of the SVD construction needs alteration, since we can
only define the left singular vectors via uj = Avj/sj when sj > 0, that
is, for j = 1, . . . , r. Any choice for the remaining vectors, ur+1, . . . , un,
will trivially satisfy the equation Avj = sjuj, since Avj = 0 and
sj = 0 for j = r + 1, . . . , n. Since we are building bU 2 IRm⇥n (and
eventually U 2 IRm⇥m) to have orthonormal, we will simply build out
ur+1, . . . , un so that all the vectors u1, . . . , un are orthonormal.

Step 3a. Define uj = Avj/sj for j = 1, . . . , r.

Step 3b. Construct orthonormal vectors ur+1, . . . , un.

For each j = r + 1, . . . , n, construct a unit vector uj such that

uj ? span{u1, . . . , uj�1}.

This procedure is exactly the same as used above to construct the
vectors un+1, . . . , um to extend the reduced SVD with bU 2 IRm⇥n to
the full SVD with U 2 IRm⇥m.

If r = 0 (which implies the trivial case
A = 0), just set u1 to be any unit vector.

83

Step 4. Put the pieces together.

This step proceeds exactly as before. Now we define

bU =

2

64
| | | |

u1 · · · ur ur+1 · · · un

| | | |

3

75 2 IRm⇥n,

bS =

2

6666666664

s1
. . .

sr

sr+1
. . .

sn

3

7777777775

=

2

6666666664

s1
. . .

sr

0
. . .

0

3

7777777775

2 IRn⇥n,

and

V =

2

64
| | | |

v1 · · · vr vr+1 · · · vn

| | | |

3

75 2 IRn⇥n.

Notice that V is still a square matrix with orthonormal columns, so
VTV = I and V�1 = VT . Since Avj = sjuj holds for j = 1, . . . , n,
we again have the reduced singular value decomposition

A = bUbSVT .

As before, bU 2 IRm⇥n can be enlarged to give U 2 IRn⇥n by
supplying extra orthogonal unit vectors that complete a basis for
IRm:

uj ? span{u1, . . . , uj�1}, kujk = 1, j = n + 1, . . . , m.

Constructing U 2 IRm⇥m as in (6.4) and S 2 IRm⇥n as in (6.5), we
have the full singular value decomposition

A = USVT .

The dyadic decomposition could still be written as

A =
n

Â
j=1

sjujv
T
j ,

but we get more insight if we crop the trivial terms from this sum.
Since sr+1 = · · · = sn = 0, we can truncate the decomposition to
its first r terms in the sum:

A =
r

Â
j=1

sjujv
T
j .

We will see that this form of A is especially useful for understand-
ing the four fundamental subspaces.

84

6.6 The connection to AAT

Our derivation of the SVD relied heavily on an eigenvalue decompo-
sition of ATA. How does the SVD relate to AAT? Consider forming

AAT = (USVT)(USVT)T

= USVTVSTUT

= USSTUT . (6.7)

Notice that SST is a diagonal m ⇥ m matrix:

SST =

 bS
0

� ⇥ bST 0
⇤
=

 bS2 0
0 0

�
,

where we have used the fact that bS is a diagonal matrix. Indeed,

bS2
=

2

64

s2
1

. . .
s2

n

3

75 =

2

64
l1

. . .
ln

3

75 ,

where the lj values still denote the eigenvalues of ATA. Thus equa-
tion (6.7) becomes

AAT = U


L 0
0 0

�
UT ,

which is a diagonalization of AAT . Postmultiplying this equation by
U, we have

(AAT)U = U


L 0
0 0

�
;

the first n columns of this equation give

AATuj = ljuj, j = 1, . . . , n,

while the last m � n columns give

AATuj = 0uj, j = n + 1, . . . , m.

Thus the columns u1, . . . , un are eigenvectors of AAT . Notice then
that AAT and ATA have the same eigenvalues, except that AAT has
m � n extra zero eigenvalues.

This suggests a different way to com-
pute the U matrix: form AAT and
compute all its eigenvectors, giving
u1, . . . , um all at once. Thus we avoid
the need for a special procedure to
construct unit vectors orthogonal to
u1, . . . , ur .6.7 Modification for the case of m < n

How does the singular value decomposition change if A has more
columns than rows, n > m? The answer is easy: write the SVD of
AT (which has more rows than columns) using the procedure above,
then take the transpose of each term in the SVD. If this makes good

85

sense, skip ahead to the next section. If you prefer the gory details,
read on.

We will formally adapt the steps described above to handle the
case n > m. Let r = rank(A)  m.

Step 1. Compute the eigenvalues and eigenvectors of AAT .

Label the eigenvalues of AAT 2 IRm⇥m as

l1 � l2 � · · · � lm

and corresponding orthonormal eigenvectors as

u1, u2, · · · , um

Step 2. Define sj = kATujk =
q

lj, j = 1, . . . , m.

Step 3a. Define vj = ATuj/sj for j = 1, . . . , r.

Step 3b. Construct orthonormal vectors vr+1, . . . , vm.

Notice that these vectors only arise in the rank-deficient case,
when r < m.

Steps 3a and 3b construct a matrix
bV 2 IRn⇥m with orthonormal columns.

Step 3c. Construct orthonormal vectors vm+1, . . . , vn.

Following the same procedure as step 3b, we construct the extra
vectors needed to obtain a full orthonormal basis for IRn.

Step 4. Put the pieces together.

First, defining

bU =

2

64
| |

u1 · · · um

| |

3

75 2 IRm⇥m, bV =

2

64
| |

v1 · · · vm

| |

3

75 2 IRn⇥m,

with diagonal matrix

bS = diag(s1, . . . , sm) 2 IRm⇥m,

we have the reduced SVD

A = UbSbVT .

A

= U bS bVT

To obtain the full SVD, we extend bV to obtain

V =

2

64
| | | |

v1 · · · vm vm+1 · · · vn

| | | |

3

75 2 IRn⇥n,

and similarly extend bS,

S =
h
bS 0

i
2 IRm⇥n.

86

where we have now added extra zero columns, in contrast to the
extra zero rows added in the m > n case in (6.5). We thus arrive at
the full SVD,

A = USVT .

A

= U S

VT

6.8 General statement of the singular value decomposition

We now can state the singular value decomposition in its fullest
generality.

Theorem 13 (Singular value decomposition) Suppose A 2 IRm⇥n has
rank(A) = r. Then we can write

A = USVT ,

where the columns of U 2 IRm⇥m and V 2 IRn⇥n are orthonormal,

UTU = I 2 IRm⇥m, VTV = I 2 IRn⇥n,

and S 2 IRm⇥n is zero everywhere except for entries on the main diagonal,
where the (j, j) entry is sj, for j = 1, . . . , min{m, n} and

s1 � s2 � · · · � sr > sr+1 = · · · = smin{m,n} = 0.

Denoting the columns of U and V as u1, . . . , um and v1, . . . , vm, we can
write

A =
r

Â
j=1

sjujv
T
j . (6.8)

Of course, when r = 0 all the singular
values are zero; when r = min{m, n},
all the singular values are positive.

6.9 Connection to the four fundamental subspaces

Having labored to develop the singular value decomposition in its
complete generality, we are ready to reap its many rewards. We begin
by establishing the connection between the singular vectors and the
‘four fundamental subspaces,’ i.e., the column space

R(A) = {Ax : x 2 IRn} ✓ IRm,

the row space
R(AT) = {ATy : y 2 IRm} ✓ IRn,

the null space

N(A) = {x 2 IRn : Ax = 0} ✓ IRn,

and the left null space

N(AT) = {y 2 IRm : ATy = 0} ✓ IRm.

87

We shall explore these spaces using the dyadic form of the
SVD (6.8). To characterize the column space, apply A to a generic
vector x 2 IRn:

Ax =
⇣ r

Â
j=1

sjujvT
j

⌘
x =

r

Â
j=1

�
sjujvT

j x
�
=

r

Â
j=1

�
sjv

T
j x
�
uj, (6.9)

where in the last step we have switched the order of the scalar vT
j x

and the vector uj. We see that Ax is a weighted sum of the vectors
u1, . . . , ur. Since this must hold for all x 2 IRn, we conclude that

R(A) ✓ span{u1, . . . , ur}.

Can we conclude the converse? We know that R(A) is a subspace, so
if we can show that each of the vectors u1, . . . , ur is in R(A), then we
will know that

span{u1, . . . , ur} ✓ R(A). (6.10)

To show that uk 2 R(A), we must find some x such that Ax = uk.
Inspect equation (6.9). We can make Ax = uk if all the coefficients
sjvT

j x are zero when j 6= k, and skvT
k x = 1. Can you see how to use

orthogonality of the right singular vectors v1, . . . , vr to achieve this?
Setting

x =
1
sk

vk,

we have Ax = uk. Thus uk 2 R(A), and we can conclude that (6.10)
holds. Since R(A) and span{u1, . . . , ur} contain one another, we
conclude that

R(A) = span{u1, . . . , ur}.

We can characterize the row space in exactly the same way, using
the dyadic form

AT =
⇣ r

Â
j=1

sjujvT
j

⌘T
=

r

Â
j=1

⇣
sjujvT

j

⌘T
=

r

Â
j=1

sjvjuT
j .

Adapting the argument we have just made leads to

R(AT) = span{v1, . . . , vr}.

Equation (6.9) for Ax is also the key that unlocks the null space
N(A). For what x 2 IRn does Ax = 0? Let us consider

Notice that vT
j x = (vT

j x)T = xTvj

because vT
j x is a real-valued scalar

number.

kAxk2 = (Ax)T(Ax) =
⇣ r

Â
j=1

�
sjv

T
j x
�
uj

⌘T⇣ r

Â
k=1

�
skvT

k x
�
uk

⌘

=
⇣ r

Â
j=1

�
sjx

Tvj
�
uT

j

⌘⇣ r

Â
k=1

�
skvT

k x
�
uk

⌘

=
r

Â
j=1

r

Â
k=1

⇣�
sjx

Tvj
��

skvT
k x
�
uT

j uk

⌘
.

88

Since the left singular vectors are orthogonal, uT
j uk = 0 for j 6= k, this

double-sum collapses: only the terms with j = k make a nontrivial
contribution:

kAxk2 =
r

Â
j=1

�
sjx

Tvj
��

sjv
T
j x
�
uT

j uj =
r

Â
j=1

s2
j |vT

j x|2, (6.11)

since uT
j uj = 1 and (xTvj)(vT

j x) = |vT
j x|2.

Since sj > 0, the right-hand side of (6.11) is the sum of nonnega-
tive numbers. To have kAxk = 0, all the coefficients in this sum must
be zero. The only way for that to happen is for

vT
j x = 0, j = 1, . . . , r,

i.e., Ax = 0 if and only if x is orthogonal to v1, . . . , vr. We already
have a characterization of such vectors from the singular value de-
composition:

x 2 span{vr+1, . . . , vn}.

Thus we conclude

N(A) = span{vr+1, . . . , vn}. If r = n, then this span is vacuous, and
we just have N(A) = 0.

To compute N(AT), we can repeat the same argument based on
kATyk2 to obtain

N(AT) = span{ur+1, . . . , um}.

Putting these results together, we arrive at a beautiful elaboration
of the Fundamental Theorem of Linear Algebra1. 1 Gilbert Strang. The Fundamental

Theorem of Linear Algebra. Amer. Math.
Monthly, 100:848–855, 1993Theorem 14 (Fundamental Theorem of Linear Algebra, SVD Version)

Suppose A 2 IRm⇥n has rank(A) = r, with left singular vectors
{u1, . . . , um} and right singular vectors {v1, . . . , vn}. Then

R(A) = span{u1, . . . , ur}

N(AT) = span{ur+1, . . . , um}

R(AT) = span{v1, . . . , vr}

N(A) = span{vr+1, . . . , vn},

which implies

R(A)�N(AT) = span{u1, . . . , um} = IRm

R(AT)�N(A) = span{v1, . . . , vn} = IRn,

and
R(A) ? N(AT), R(AT) ? N(A).

89

6.10 Matrix norms

How ‘large’ is a matrix? We do not mean dimension – but how large,
in aggregate, are its entries? One can imagine a multitude of ways to
measure the entries; perhaps most natural is to sum the squares of
the entries, then take the square root. This idea is useful, but we pre-
fer a more subtle alternative that is of more universal utility through-
out mathematics: we shall gauge the size A 2 IRm⇥n by the maximum
amount it can stretch a vector, x 2 IRn. That is, we will measure kAk
by the largest that kAxk can be. Of course, we can inflate kAxk as
much as we like simply by making kxk larger, which we avoid by
imposing a normalization: kxk = 1. We arrive at the definition

kAk = max
kxk=1

kAxk.

To study kAxk, we could appeal to the formula (6.11); however, we
will take a slightly different approach. First, suppose that Q is some
matrix with orthonormal columns, so that QTQ = I. Then

kQxk2 = (Qx)T(Qx) = xTQTQx = xTx = kxk2,

so premultiplying by Q does not alter the norm of x. Now substitute
the full SVD A = USVT for A:

kAxk = kUSVTxk = kSVTxk,

where we have used the orthonormality of the columns of U. Now
define a new variable y = VTx (which means Vy = x), and notice
that kxk = kVTxk = kyk, since V is a square matrix with orthonor-
mal columns (and hence orthonormal rows). Now we can compute The fact that V is square and has

orthonormal columns implies that both
VTV = I and VVT = I. This means that
kVTxk2 = xTVVTx = xTx = kxk2.

the matrix norm:

kAk = max
kxk=1

kAxk = max
kxk=1

kSVTxk = max
kVyk=1

kSyk = max
kyk=1

kSyk

So the norm of A is the same as the norm of S. We now must figure
out how to pick the unit vector y to maximize kSyk. This is easy: we
want to optimize

kSyk2 = s2
1 |y1|2 + · · ·+ s2

r |yr|2

subject to 1 = kyk2 � |y1|2 + · · ·+ |yr|2. Since s1 � · · · � sr, Alternatively, you could compute kSk
by maximizing f (y) = kSyk subject to
kyk = 1 using the Lagrange multiplier
technique from vector calculus.

kSyk2 = s2
1 |y1|2 + · · ·+ s2

r |yr|2

 s2
1

⇣
|y1|2 + · · ·+ |yr|2)  s2

1 kyk2 = s2
1 ,

resulting in the upper bound

kSk = max
kyk=1

kSyk  s1. (6.12)

90

Will any unit vector y attain this upper bound? That is, can we find
such a vector so that kSyk = s1? Sure: just take y = [1, 0, · · · , 0]T to
be the first column of the identity matrix. For this special vector,

kSyk2 = s2
1 |y1|2 + · · ·+ s2

r |yr|2 = s2
1 .

Since |Syk can be no larger than s1 for any y, and since kSyk = s1
for at least one choice of y, we conclude

kSk = max
kyk=1

kSyk = s1,

and hence the norm of a matrix is its largest singular value:

kAk = s1.

Consider the matrix

A =


1/2 1
�1/2 1

�
=

 p
2

2


1 1
1 �1

�! p
2 0

0
p

2/2

� 
0 1
1 0

�T
.

We see from this SVD that kAk = s1 =
p

2. For this example the
vector Ax has the form

Ax = s1(vT
1 x)u1 + s2(vT

2 x)u2

=
p

2 x2 u1 +

p
2

2
x1 u2,

so Ax is a blend of some expansion in the u1 direction and some con-
traction in the u2 direction. We maximize the size of Ax by picking
an x for which Ax is maximally rich in u1, i.e., x = v1.

�1 1

�1

1

x1

x2

Every unit vector x in IR2 is a point
where kxk2 = x2

1 + x2
2 = 1, so the set

of all such vectors traces out the unit
circle shown in black in the plot above.
We highlight two distinguished vectors:
x = v1 (blue) and x = v2 (red).

�1 1

�1

1

(Ax)1

(Ax)2

The plot above shows Ax for all unit
vectors x, which traces out an ellipse
in IR2. The vector x = v1 is mapped to
Ax = s1u1 (blue), and this is the most
A stretches any unit vector; x = v2 is
mapped to Ax = s2u2 (red), which
gives the smallest value of kAxk.
(Plots like this can be traced out with
MATLAB’s eigshow command.)

6.11 Low-rank approximation

Perhaps the most important property of the singular value decompo-
sition is its ability to immediately deliver optimal low-rank approxi-
mations to a matrix. The dyadic form

A =
r

Â
j=1

sjujv
T
j

writes the rank-r matrix A as the sum of the r rank-1 matrices

sjujv
T
j .

Since s1 � s2 � · · · � sr > 0, we might hope that the partial sum

k

Â
j=1

sjujv
T
j

91

will give a good approximation to A for some value of k that is much
smaller than r (mathematicians write k ⌧ r for emphasis). This is
especially true in situations where A models some low-rank phe-
nomenon, but some noise (such as random sampling errors, when
the entries of A are measured from some physical process) causes A
to have much larger rank. If the noise is small relative to the “true”
data in A, we expect A to have a number of very small singular val-
ues that we might wish to neglect as we work with A. We will see
examples of this kind of behavior in the next chapter.

For square diagonalizable matrices,

A = WLW�1,

the eigenvalue decomposition can also lead to an expression for A as
the sum of rank-1 matrices:

A =
n

Â
j=1

ljwj bw
T
j ,

where bwT
j denotes the jth row of W, and we have used the conjugate-

transpose because the eigenvector might have complex entries, even
when A only has real entries. Note that if A has real entries, then

the SVD will only have real entries.
This is not generally the case for the
eigenvalue decomposition when A is a
nonsymmetric matrix.

Three key distinctions make the singular value decomposition a
better tool for developing low-rank approximations to A.

1. The SVD holds for all matrices, while the eigenvalue decomposi-
tion only holds for square matrices that are diagonalizable.

2. The singular values are nonnegative real numbers whose ordering

s1 � s2 � · · · � sr > 0

gives a natural way to understand how much the rank-1 matrices
sjujv

T
j contribute to A. In contrast, the eigenvalues will generally

be complex numbers, and thus do not have the same natural order;
it is harder to understand the significance of each rank-1 matrix
ljwj bw

T
j .

3. The eigenvectors are not generally orthogonal, and this can skew
the rank-1 matrices ljwj bw

T
j away from giving good approxima-

tions to A. In particular, we can find that kwj bw
T
j k � 1, whereas

the matrices ujv
T
j from the SVD always satisfy kujv

T
j k = 1.

This last point is subtle, so let us investigate it with an example.
Consider

A =


2 100
0 1

�

92

with eigenvalues l1 = 2 and l2 = 1 and eigenvalue decomposition

A = WLW�1 =


1 1
0 �1/100

� 
2 0
0 1

� 
1 100
0 �100

�

= l1w1 bw
T
1 + l2w2 bwT

2

= 2


1
0

�
[1 100]

+ 1


1
�1/100

�
[0 �100]

= 2


1 100
0 0

�
+ 1


0 �100
0 1

�
.

Let us inspect individually the two rank-1 matrices that appear in the
eigendecomposition:

l1w1 bw
T
1 =


2 200
0 0

�
, l2w2 bwT

2 =


0 �100
0 1

�
.

Neither matrix individually gives a good approximation to A:

A � l1w1 bw
T
1 =


0 �100
0 1

�
, A � l2w2 bwT

2 =


2 200
0 0

�
.

Both rank-1 “approximations” to A leave large errors!

Contrast this situation with the rank-1 approximation s1u1vT
1

given by the SVD for this A. To five decimal digits, we have

A = USVT =


0.99995 �0.01000
0.01000 0.99995

� 
100.025 0

0 0.020

� 
0.01999 0.99980
�0.99980 0.01999

�

= s1u1vT
1 + +s2u2vT

2

= 100.025


0.99995
0.01000

�
[0.01999 0.99980]

+ 0.020

�0.01000
0.99995

�
[�0.99980 0.01999]

= 100.025


0.01999 0.99975
0.00020 00.00999

�
+ 0.020


0.00999 �0.00020
�.99975 0.01999

�
.

Like the eigendecomposition, the SVD breaks A into two rank-1
pieces:

s1u1vT
1 =


1.99980 100.00000
0.01999 0.99960

�
, s2u2vT

2 =


0.00020 0.00000
�0.01999 0.00040

�
.

The first of these, the dominant term in the SVD, gives an excellent
approximation to A:

A � s1u1vT
1 =


0.00020 0.00000
�0.01999 0.00040

�
.

The key factor making this approximation so good is that s1 � s2.
What is more remarkable is that the dominant part of the singular
value decomposition is actually the best low-rank approximation for
all matrices.

93

Definition 23 Let A = Âr
j=1 sjujv

T
j be a rank-r matrix, written in terms

of its singular value decomposition. Then for any k  r, the truncated
singular value of rank-k is the partial sum

Ak =
k

Â
j=1

sjujv
T
j .

Theorem 15 (Schmidt–Mirsky–Eckart–Young) Let A 2 IRm⇥n. Then
for all k  rank(A), the truncated singular value decomposition

Ak =
k

Â
j=1

sjujv
T
j

is a best rank-k approximation to A, in the sense that

kA � Akk = min
rank(X)k

kA � Xk = sk+1.

It is easy to see that this Ak gives the approximation error sk+1, since

A � Ak =
r

Â
j=1

sjujv
T
j �

k

Â
j=1

sjujv
T
j =

r

Â
j=k+1

sjujv
T
j ,

and this last expression is an SVD for the error in the approximation
A � Ak. As described in Section 6.10, the norm of a matrix equals its
largest singular value, so

kA � Akk =

����
r

Â
j=k+1

sjujv
T
k

���� = sk+1.

To complete the proof, one needs to show that no other rank-k matrix
can come closer to A than Ak. This pretty argument is a bit too intri-
cate for this course, but we include it in the margin for those that are
interested.

Let X 2 IRm⇥n be any rank-k matrix.
The Fundamental Theorem of Linear
Algebra gives IRn = R(XT) � N(X).
Since rank(XT) = rank(X) = k, notice
that dim(N(X)) = n � k. From the
singular value decomposition of A
extract v1, . . . , vk+1, a basis for some
k + 1 dimensional subspace of IRn. Since
N(X) ✓ IRn has dimension n � k, it
must be that the intersection

N(X) \ span{v1, . . . , vk+1}

has dimension at least one. (Otherwise,
N(X) � span{v1, . . . , vk+1} would be
an n + 1 dimensional subspace of IRn:
impossible!) Let z be some unit vector
in that intersection: kzk = 1 and

z 2 N(X) \ span{v1, . . . , vk+1}.

Expand z = g1v1 + · · ·+ gk+1vk+1, so
that kzk = 1 implies

1 = zTz =

✓ k+1

Â
j=1

gjvj

◆⇤✓ k+1

Â
j=1

gjvj

◆
=

k+1

Â
j=1

|gj|2.

Since z 2 N(X), we have

kA � Xk � k(A � X)zk = kAzk,

and then

kAzk =

����
k+1

Â
j=1

sjujv
T
j z
���� =

����
k+1

Â
j=1

sjgjuj

����.

Since sk+1  sk  · · ·  s1 and the uj
vectors are orthogonal,
����

k+1

Â
j=1

sjgjuj

����
2
� sk+1

����
k+1

Â
j=1

gjuj

����
2
.

But notice that
����

k+1

Â
j=1

gjuj

����
2

2
=

k+1

Â
j=1

|gj|2 = 1,

where the last equality was derived
above from the fact that kzk2 = 1. In
conclusion, for any rank-k matrix X,

kA � Xk2 � sk+1

����
k+1

Â
j=1

gjuj

����
2
= sk+1.

(This proof is adapted from §3.2.3 of
Demmel’s text.)

6.11.1 Compressing images with low rank approximations

Image compression provides the most visually appealing application
of the low-rank matrix factorization ideas we have just described. An
image can be represented as a matrix. For example, typical grayscale
images consist of a rectangular array of pixels, m in the vertical direc-
tion, n in the horizontal direction. The color of each of those pixels
is denoted by a single number, an integer between 0 (black) and 255
(white). (This gives 28 = 256 different shades of gray for each pixel.
Color images are represented by three such matrices: one for red, one
for green, and one for blue. Thus each pixel in a typical color image
takes (28)3 = 224 = 16, 777, 216 shades.)

94

matlab has many built-in routines for processing images. The
imread command reads in image files. For example, if you want to
load the file snapshot.jpg into matlab, you would use the com-
mand:

A = double(imread(’snapshot.jpg’));

The double command converts the entries of the image into floating
point numbers. If your file contains a grayscale image, A will typi-

To conserve memory, MATLAB’s
default is to save the entries of an
image as integers, but MATLAB’s linear
algebra routines like svd only work
with floating point matrices.cally contain the m ⇥ n matrix containing the gray colors of your im-

age; however, you might need to extract this level from an m ⇥ n ⇥ 3
tensor:

A= A(:,:,1);

If you have a color image, then A will be an m ⇥ n ⇥ 3 tensor,
with each slice describing the intensity of one of the primary colors.
Extract these red, green, and blue color matrices in an extra step:

Ared = A(:,:,1); Agreen = A(:,:,2); Ablue = A(:,:,3); You might be wondering: Could we just
take the SVD of the m ⇥ n ⇥ 3 tensor
directly? This fascinating topic of low-
rank tensor approximation has received
much research attention over the past
twenty years. For details, see: Tamara
G. Kolda and Brett W. Bader, “Tensor
decompositions and applications,”
SIAM Review 51 (2009) 455–500.

Finally, to visualize an image in MATLAB, use
imagesc(A)

and, if the image is grayscale, follow this with
colormap(gray)

The imagesc command is a useful tool for visualizing any matrix of
data; it does not require that the entries in A be integers. (However,
for color images stored in m ⇥ n ⇥ 3 floating point matrices, you
need to use imagesc(uint8(A)) to convert A back to positive integer
values.)

Images are ripe for data compression: Often they contain broad
regions of similar colors, and in many areas of the image adjacent
rows (or columns) will look quite similar. If the image stored in A
can be represented well by a rank-k matrix, then one can approximate
A by storing only the leading k singular values and vectors. To build
this approximation

Ak =
k

Â
j=1

sjujv
T
j ,

one need only store k(1 + m + n) values. When k(1 + m + n) ⌧ mn,
there will be a significant savings in storage, thus giving an effective
compression of A.

Let us look at an example to see how effective this image com-
pression can be. For convenience we shall use an image built into
matlab,

load gatlin, A = X;

imagesc(A), colormap(gray)

which shows some of the key developers of the numerical linear alge-
bra algorithms we have studied this semester, gathered in Gatlinburg,
Tennessee, for an important early conference in the field. The image

95

original uncompressed image, rank = 480 Figure 6.1: A sample image: the
founders of numerical linear algebra
at an early Gatlinburg Symposium.
From left to right: Jim Wilkinson,
Wallace Givens, George Forsythe,
Alston Householder, Peter Henrici, and
Friedrich Bauer.

is of size 480 ⇥ 640, so rank(A)  480. We shall compress this image
with truncated singular value decompositions. Figures 6.3 and 6.4
show compressions of A for dimensions ranging from k = 200 down
to k = 1. For k = 200 and 100, the compression Ak provides an ex-
cellent proxy for the full image A. For k = 50, 25 and 10, the quality
degrades a bit, but even for k = 10 you can still tell that the image
shows six men in suits standing on a patterned floor. For k  5 we
lose much of the quality, but isn’t it remarkable how much structure
is still apparent even when k = 5? The last image is interesting as
a visualization of a rank-1 matrix: each row is a multiple of all the
other rows, and each column is a multiple of all the other columns.

We gain an understanding of the quality of this compression by
looking at the singular values of A, shown in Figure 6.2. The first sin-

Figure 6.2: Singular values of the 480 ⇥
640 Gatlinburg image matrix. The first
few singular values are much larger
than the rest, suggesting the potential
for accurate low-rank approximation
(compression).

96

truncated SVD, rank k = 200 truncated SVD, rank k = 100

truncated SVD, rank k = 50 truncated SVD, rank k = 25

Figure 6.3: Compressions of the Gatlin-
burg image in Figure 6.1 using trun-
cated SVDs Ak = Âk

j=1 sjujv
T
j . Each

of these images can be stored with less
memory than the original full image.
The rank-25 image could be be useful
as a “thumbnail” sketch of the image
(e.g., an icon on a computer desktop).

gular value s1 is a about an order of magnitude larger than the rest,
and the singular values decay quite rapidly. (Notice the logarithmic
vertical axis.) We have s1 ⇡ 15, 462, while s50 ⇡ 204.48. When we
truncate the singular value decomposition at k = 50, the neglected
terms in the singular value decomposition do not make a major con-
tribution to the image.

97

truncated SVD, rank k = 10 truncated SVD, rank k = 5

truncated SVD, rank k = 2 truncated SVD, rank k = 1

Figure 6.4: Continuation of Figure 6.4,
showing compressions of rank 10, 5, 2,
and 1. Note the striping characteristic
of low-rank structure.To investigate this low-rank approximation a little more deeply,

let us introduce another image, a carved grotesque, shown in Fig-
ure 6.5. This grayscale image comprises 644 ⇥ 500 pixels, suggesting
that rank(A) = 500. Figure 6.6 shows that singular values decay
much like those for the Gatlinburg matrix (Figure 6.2); indeed, the
grotesque’s first singular value is at least ten times larger than all the
others, with s1 ⇡ 8.84 ⇥ 104 while s2 ⇡ 7.91 ⇥ 103.

Figure 6.5: A grotesque carved in a
door of the 16th century Church of
Santa Croce, Riva San Vitale, Switzer-
land.

Based on these singular values, we expect a strong low-rank ap-
proximation. Figure 6.7 shows rank-k truncated SVD approximations
for eight values of k. Indeed, given the dominant size of s1, we see
the major structure of the frame and border evident even in the k = 1
compression.

To emphasize how the individual components sjujv
T contribute to

98

j

sj

Figure 6.6: Singular values of the
644 ⇥ 500 Santa Croce grotesque. The
first singular value is ten times or more
larger than the others.

k = 128 k = 64 k = 32 k = 16

k = 8 k = 4 k = 2 k = 1

Figure 6.7: Rank-k truncated SVD
compressed versions of the Santa Croce
grotesque. (Close examination of the
original image shows numerous worm
holes, especially in the lower left of the
panel. Notice how these are reduced
when k = 128 and essentially disappear
when k = 64.)

the sum

A =
r

Â
j=1

sjujv
T , (6.13)

we shall take a closer look at the image in Figure 6.5. To make this
point as clearly as possible, we introduce a new color map that shows

99

positive values in blue and negative values in red, as illustrated in
Figure 6.8. (The image A has integer entries between [0, 255], but the
truncated SVDs Ak need not have integer entries, and the individual
terms sjujv

T
j can have negative entries.)

-255

-128

0

128

255

Figure 6.8: The Santa Croce grotesque
with an extended color map to high-
light negative values (red).

Figure 6.9 shows how this image is assembled from the individual
terms in the dyadic form of the singular value decomposition (6.13).
Since s1 ⇡ 8.84 ⇥ 104 is so much larger than s2 ⇡ 7.91 ⇥ 103, the
first term dominates (hence the dark blue color): the interior frame
around the face is already evident. The subsequent matrices sjujv

T
j

for j � 2 add more modest corrections that fill in details of the image.
Some of these effects can be readily picked out: for example, s3u3vT

3
adjusts for the row of carving at the top of the image; s5u5vT

5 fills in
the grotesque’s nose. Since the singular values sj are decreasing as j
grows, these terms make smaller and smaller contributions.

A s1u1vT
1 s2u2vT

2 s3u3vT
3

= + +

s4u4vT
4 s5u5vT

5 s6u6vT
6

+ + +

+ · · · Figure 6.9: Construction of the image
A from the individual terms sjujv

T
j .

The first term makes a major contri-
bution; each subsequent term makes
a small adjustment, and these adjust-
ments diminish in significance as j
increases.

100

6.12 Principal Component Analysis

Linear algebra enables the analysis of the volumes of data that now
so commonly arise from applications ranging from basic science to
public policy. Such measured data often depends on many factors,
and we seek to identify those that are most critical. Within this realm
of multivariate statistics, principal component analysis (PCA) is a funda-
mental tool.

Linear algebraists often say, “PCA is the SVD” – in this section, we
will explain what this means, and some of the subtleties involved.

6.12.1 Variance and covariance

To understand principal component analysis, we need some basic
notions from statistics, described in any basic textbook. For a general
description of PCA along with numerous applications, see the text by
Jolliffe 2, whose presentation shaped parts of our discussion here. 2

The expected value, or mean, of a random variable X is denoted
E[X]. The expected value is a linear function, so for any constants
a, b 2 IR, E[aX + b] = aE[X] + b.

The variance of X describes how much X is expected to deviate
from its mean,

Var(X) = E[(X � E[X])2],

which, using linearity of the expected value, takes the equivalent
form

Var(X) = E[X2]� E[X]2.

The covariance between two (potentially correlated) random variables
X and Y is

Cov(X, Y) = E[(X � E[X])(Y � E[Y])]

= E[XY]� E[X]E[Y].

with Cov(X, X) = Var(X). These definitions of variance and co-
variance are the bedrock concepts underneath PCA, for with them
we can understand the variance present in a linear combination of
several random variables.

Suppose we have a set of real-valued random variables X1, . . . , Xn

in which we suspect there may be some redundancy. Perhaps some
of these variables can be expressed as linear combinations of the oth-
ers – either exactly, or nearly so. At the other extreme, there may be
some way to combine X1, . . . , Xn that captures much of the variance
in one (or a few) aggregate random variables. In particular, we shall
seek scalars g1, . . . , gn such that

n

Â
j=1

gjXj

101

has the largest possible variance. The definitions of variance and
covariance, along with the linearity of the expected value, lead to a
formula for the variance of a linear combination of random variables:

Var
⇣ n

Â
j=1

gjXj

⌘
=

n

Â
j=1

n

Â
k=1

gjgk Cov(Xj, Xk). (6.14)

You have seen double sums like this before. If we define the covari-
ance matrix C 2 IRn⇥n having (j, k) entry

cj,k = Cov(Xj, Xk),

and let v = [g1, . . . , gn]T , then the variance of the combined variable
is just a Rayleigh quotient:

Var
⇣ n

Â
j=1

gjXj

⌘
= vTCv.

Since the covariance function is symmetric: Cov(X, Y) = Cov(Y, X),
the matrix C is symmetric; it is also positive semidefinite. Why?
Variance, by its definition as the expected value of the square of a
real random variable, is always nonnegative. Thus the formula (6.14),
which derives from the linearity of the expected value, ensures that
vTCv � 0. (Under what circumstances can this quantity be zero?)

We can write C in another convenient way. Collect the random
variables into the vector

X =

2

64
X1
...

Xn

3

75 .

Then the (j, k) entry of E[XXT]� E[X]E[X]T is

E[XjXk]� E[Xj]E[Xk] = Cov(Xj, Xk) = cj,k,

and so
C = E[XXT]� E[X]E[X]T .

6.12.2 Derived variables that maximize variance

Return now to the problem of maximizing the variance of vTCv. With-
out constraint on v, this quantity can be arbitrarily large (assuming
C is nonzero); thus we shall require that Âk

j=1 g2
j = kvk2 = 1. With

this normalization, you immediately see how to maximize the vari-
ance vTCv: v should be a unit eigenvector associated with the largest
magnitude eigenvalue of C; call this vector v1. The associated vari-
ance, of course, is the largest eigenvalue of C; call it

l1 = vT
1 Cv1 = max

v2C n

vTCv
vTv

.

102

The eigenvector v1 encodes the way to combine X1, . . . , Xn to
maximize variance. The new variable – the leading principal component
– is

vT
1 X =

n

Â
j=1

gjXj.

You are already suspecting that a unit eigenvector associated with
the second largest eigenvalue, v2 with l2 = vT

2 Cv2, must encode the
second-largest way to maximize variance.

Let us explore this intuition. To find the second-best way to com-
bine the variables, we should insist that the next new variable, for
now call it wTX, should be uncorrelated with the first, i.e.,

Cov(vT
1 X, wTX) = 0.

However, using linearity of expectation and the fact that, e.g., wTX =

XTw for real vectors,

Cov(vT
1 X, wTX) = E[(vT

1 X)(wTX)]� E[vT
1 X]E[wTX]

= E[(vT
1 XXTw]� E[vT

1 X]E[XTw]

= vT
1 E[XXT]w � vT

1 E[X]E[X
T]w

= vT
1
�
E[XXT]� E[X]E[XT]

�
w

= vT
1 Cw = l1vT

1 w.

Hence (assuming l1 6= 0), for the combined variables vT
1 X and wTX

to be uncorrelated, the vectors v1 and w must be orthogonal, perfectly
confirming your intuition: the second-best way to combine the vari-
ables is to pick w to be a unit eigenvector v2 of C corresponding to
the second largest eigenvalue. Since the eigenvectors of a symmetric
matrix are orthogonal, we optimize over all vectors orthogonal to u1.
The associated variance of vT

2 X is thus

l2 = max
w?span{v1}

wTCw
wTw

.

Of course, in general, the kth best way to combine the variables is
given by the eigenvector vk of C associated with the kth largest eigen-
value.

We learn much about our variables from the relative size of the
variances (eigenvalues)

l1 � l2 � · · · � ln � 0.

If some of the latter eigenvalues are very small, that indicates that
the set of n random variables can be well approximated by a fewer
number of aggregate variables. These aggregate variables are the
principal components of X1, . . . , Xn.

103

6.12.3 Approximate PCA from empirical data

In practical situations, one often seeks to analyze empirical data
drawn from some unknown distribution: the expected values and
covariances are not available. Instead, we will estimate these from the
measured data.

Suppose, as before, that we are considering n random variables,
X1, . . . , Xn, with m samples of each:

xj,k, k = 1, . . . , m,

i.e., xj,k is the kth sample of the random variable Xj. The expected
value has the familiar unbiased estimate

µj =
1
m

m

Â
k=1

xj,k.

Similarly, we can approximate the covariance

Cov(Xj, Xk) = E[(Xj � E[Xj])(Xk � E[Xk)].

One might naturally estimate this as

1
m

m

Ầ
=1
(xj,` � µj)(xk,` � µk).

However, replacing the true expected values E[Xj] and E[Xk] with
the empirical estimates µj and µk introduces some slight bias into
this estimate. This bias can be removed by scaling, replacing 1/m by
1/(m � 1) to get the unbiased estimate

sj,k =
1

m � 1

m

Ầ
=1
(xj,` � µj)(xk,` � µk), j, k = 1, . . . , n.

If we let

xj =

2

64

xj,1
...

xj,m

3

75 , j = 1, . . . , n,

then each covariance estimate is just an inner product

sj,k =
1

m � 1
(xj � µj)

T(xk � µk).

Thus, if we center the samples of each variable about its empirical

Here the notation xj � µj means:
subtract the scalar µj from all entries of
the vector xj.

mean, we can write the empirical covariance matrix S = [sj,k] as a
matrix product. Let

X := [(x1 � µ1) (x2 � µ2) · · · (xn � µn)] 2 IRm⇥n,

so that
S =

1
m � 1

XTX. (6.15)

104

Now conduct principal component analysis just as before, but with
the empirical covariance matrix S replacing the true covariance ma-
trix C. The eigenvectors of S now lead to sample principal components.

Where is the connection to the singular value decomposition?
Notice how we formed the sample covariance matrix S in equa-
tion (6.15). Aside from the scaling 1/(m � 1), this structure recalls
the first step in our construction of the singular value decomposition
earlier in the chapter. We can thus arrive at the sample principal com-

To compute the singular value decom-
position of some matrix A 2 IRm⇥n,
start by computing the eigenvalues and
eigenvectors of ATA. In our setting, the
eigenvectors of S are the right singular
vectors of X.

ponents by computing the singular value decomposition of the data
matrix X. This is why some say, “PCA is just the SVD.” We summa-
rize the details step-by-step.

1. Collect m samples of each of n random variables, xj,k for j =

1, . . . , n and k = 1, . . . , m. (We need m > 1; typically m � n.)

2. Compute the empirical means of each column, µk = (Âm
k=1 xj,k)/m.

3. Stacking the samples of the kth variable in the vector xk 2 IRm,
construct the mean-centered data matrix

X = [(x1 � µ1) (x2 � µ2) · · · (xn � µn)] 2 IRm⇥n.

4. Compute the (skinny) singular value decomposition X = USVT ,
with U 2 IRm⇥n, S = diag(s1, . . . , sn) 2 IRn⇥n, and V =

[v1 · · · vn] 2 IRn⇥n.

5. The kth sample principal component is given by vT
k X, where X =

[X1, . . . , Xn]T is the vector of random variables.

6. You can assess the importance of the various principal compo-
nents via the eigenvalues of S, given by lk = s2

k /(m � 1). If these
eigenvalues decay rapidly as k increases, that is a sign that your
data can be well-represented by the first few principal compo-
nents.

A word of caution: when conducting principal component anal-
ysis, the scale of each column matters. For example, if the random
variables sampled in each column of X are measurements of physical
quantities, they can differ considerably in magnitude depending on
the units of measurement. By changing units of measurement, you
can significantly alter the principal components.

6.12.4 Clustering via PCA

PCA can be used to cluster data. To illustrate, we turn to a data set
comprising of chemical properties of Italian wines. The data set in-
cludes measurements of 13 different properties for 178 wines, giving

105

a data matrix X of dimension 178 ⇥ 13. (The properties include: alco-
hol content, malic acid, ash, alcalinity of the ash, etc.) You can download the “Wine Data Set”

from the UCI Machine Learning Repos-
itory, https://archive.ics.uci.edu/
ml/datasets/wine. For more details
on this data set and the application of
eigenvector-based clustering to it, see:
M. Forina, C. Armanino, M. Castino,
and M. Ubigli. “Multivariate data anal-
ysis as a discriminating method of the
origin of wines,” Vitis 25 (1986) 189–201.

Each of these 178 wines comes from one of three grape varieties:
Barolo (nebbiolo grape), Grignolino, or Barbera. Now a bottle of
Barolo typically costs quite a bit more than the other two wines, so
it would be interesting to know if these high-end wines really can be
distinguished, chemically, from the others.

When working with a real data set, we must begin by preparing
the data. Since variables may be measured in different units, we be-
gin by computing the empirical mean of each variable, and dividing
by the mean (so that each variable now has mean 1). If you do not normalize your variables,

you risk having an extremely large
principal component dominated by one
single variable that happens to have
very large values.

With this normalization complete, conduct PCA as described
above: form the data matrix X and compute its dominant singular
values and singular vectors. Figure 6.10 shows the singular values of
X, suggesting that the first two or three principal components will
dominate the others. Using lk = s2

k /(m � 1), we have

l1 ⇡ 0.608, l2 ⇡ 0.289,

l3 ⇡ 0.161, l4 ⇡ 0.089.

How can we use principal components to cluster the data? Con-
sider the kth sample of data, described by the variables

x1,k, x2,k, , . . . , , x13,k.

Denote the first right singular vector of X 2 IR178⇥13 by

v1 = [g1, . . . , g13]
T .

Then the variance-maximizing combination of the 13 variables is
given by

xk :=
13

Â
j=1

gjxj,k.

Similarly, writing the second right singular vector of X as

v2 = [w, . . . , w13]
T ,

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

k

sk

Figure 6.10: Singular values of the
178 ⇥ 13 wine data matrix X (with
normalized columns).

106

define the second-best variance maximizing combination as

hk :=
13

Â
j=1

wjxj,k.

Here is the key idea: we have squeezed as much variance as possi-
ble from our 13 variables into 2 variables. Can we actually reduce the
dimension of our data set from those 13 variables down into the two
new variables?

�
x1,k, x2,k, . . . , x13,k

�
=)

�
xk, hk)

If l3 = l4 = · · · = l13 = 0, then this would be a perfect compres-
sion of the variables. Of course in practice, the reduction is only ap-
proximate, but hopefully we have distilled the essential distinguish-
ing features of the 13 variables into those 2 consolidated variables xk
and hk. We can view (xk, hk) as a projection of the 13 dimensional data
onto a two-dimensional space. Many other projections are possible
(just take any two of the given variables), but the one from PCA is
optimal (in the sense of maximizing variance). Figure 6.11 shows the
(xk, hk) projection for these 178 data points.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

xk

hk

Figure 6.11: Projection of the wine data
set into the two variables defined by the
leading two principal components.

Recall that our goal is to identify if each of these samples is Barolo,
Grignolino, or Barbera. Can you see any clusters in Figure 6.11?
To help, we apply the k-means algorithm with k = 3 to this data. We used MATLAB’s kmeans imple-

mentation, running from 10 starting
configurations and keeping the best
clustering that results.

Figure 6.12 shows the results.
Conveniently enough, we have labeled data in this case, so we can

check if the clustering in Figure 6.12 did a good job of identifying the
three wine varieties. Figure 6.13 shows the results.

First of all, we notice that the three wine varieties really do look
quite distinct, when projected into the two-dimensional (xk, hk) PCA

107

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

xk

hk

Figure 6.12: Results of k-means cluster-
ing of the results in Figure 6.11.

coordinates. Even better, the k-means results match these pretty well:
k-means made a few mistakes, especially at the frontier between
Barolo and Grignolino, but overall it looks like we could do a de- Indeed, k-means draws a cleaner

boundary between these wines than we
see in reality.

cent job of identifying wine through the combined efforts of PCA
and k-means. (Whether, for this application, data science yields an
improvement over the traditional manner of careful testing with a
well-trained palate, I will let you be the judge. . . .)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

xk

hk

Figure 6.13: Repetition of Figure 6.11,
but now color-coded according to the
wine variety specified in the data set.

The derivation above suggests that the PCA-derived variables
(xk, hk) should exhibit greater variance than we would find from just
picking a pair of the variables (say, (x1,k, x2,k). Figure 6.14 verifies this
intuition, projecting the 13-dimensional data onto just two coordi-
nates (we picked (1,2), (3,4), and (5,6)). (The color-coding refers to the

108

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
0

0.5

1

1.5

2

2.5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.6

0.8

1

1.2

1.4

1.6

0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x1,k (alcohol)

x 2
,k

(m
al

ic
ac

id
)

x3,k (ash)

x 4
,k

(a
lk

al
in

ity
of

as
h)

x5,k (magnesium)

x 6
,k

(t
ot

al
ph

en
ol

s)

Figure 6.14: These three plots each
project the 13-dimensional wine data
set into two dimensions, just using
the given variables instead of the
derived variables from PCA. We see
that the given variables do a poor job
of distinguishing the three classes of
wines.

true wine varieties, as in Figure 6.13.)

6.13 Afterword

The singular value decomposition was developed in its initial form
by Eugenio Beltrami (1873) and, independently, by Camille Jor-
dan (1874).3 3

