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Chapter 5
Orthogonality

We need one more tool from basic linear algebra to tackle the
applications that lie ahead. In the last chapter we saw that basis
vectors provide the most economical way to describe a subspace, but
not all bases are created equal. Clearly the following three pairs of
vectors all form bases for IR2:
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For example, the vector x = [1, 1]T can be written as a linear combi-
nation of all three sets of vectors. In the first two cases,
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the coefficients multiplying against the basis vectors are no bigger
than kxk =

p
2. In the third case,
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the coefficients �999 and 1000 are much bigger than kxk. Small
changes in x require significant swings in these coefficients. For ex-
ample, if we change the second entry of x from 1 to 0.9,
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the coefficients change by 100, which is 1000 times the change in x!
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The first two bases above are special, for the norm of each vector
is one, and the vectors are orthogonal. The vectors in the third basis
form a small angle. Indeed, all these bases are linearly independent,
but, extrapolating from Animal Farm, some bases are more linearly
independent than others.

This chapter is devoted to the art of orthogonalizing a set of lin-
early independent vectors. The main tool of this craft is the orthogo-
nal projector.

5.1 Projectors

Among the most fundamental operations in linear algebra is the
projection of a vector into a particular subspace. Such actions are
encoded in a special class of matrices.

Definition 18 A matrix P 2 IRn⇥n is a projector provided P2 = P. If
additionally P = PT, then P is called an orthogonal projector.

The simplest projectors send all vectors into a one-dimensional
subspace. Suppose that wTv = 1. Then

P := vwT

is a projector, since P2 = (vwT)(vwT) = v(wTv)wT = vwT = P. We
say that P projects onto span{v}, since

R(P) = span{v},

and along span{w}?, since

N(P) = span{w}?

= {x 2 IRn : xTw = 0}.

Example 1 Consider the vectors

v =


1
0

�
, w =


1
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�
.

Confirm that wTv = 1, so

P = vwT =


1 1
0 0

�

is a projector. It sends the vector

x =


2
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�
,
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to
Px =
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0 0
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which is contained in R(P) = span(v). The remainder,
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is indeed orthogonal to span(w).
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x � Px

The projector P sends the vector x
to Px 2 R(P) = span{v}, while
the remainder x � Px is in N(P) =
span{w}?, i.e., x � Px is orthogonal
to w.

The remainder x � Px plays a key role in our development. Notice
that P annihilates this vector,

P(x � Px) = Px � P2x = Px � Px = 0,

which means that
x � Px 2 N(P).

For the projector in the last example, P 6= PT , so we call P an oblique
projector. For such projectors, the remainder x � Px generally forms oblique = not 90�

an oblique angle with R(P). In this course we shall most often work
with orthogonal projectors, for which P = PT . Of course this implies
N(P) = N(PT), and so, the Fundamental Theorem of Linear Alge-
bra’s N(PT) ? R(P) becomes

N(P) ? R(P).

Since x � Px 2 N(P), the remainder is always orthogonal to R(P).
This explains why we call such a P an orthogonal projector.

To build an orthogonal projector onto a one-dimensional subspace,
we need only a single vector v. Set

P = vvT ,

and, to give P2 = P, require that vTv = kvk2 = 1, i.e., v must be a
unit vector. This P projects onto

R(P) = span{v},

and along span{v}, since

N(P) = span{v}?.

We illustrate these ideas in the following example.

The notation span{v}? denotes the set
of all vectors orthogonal to span{v}.

Example 2 Use the unit vector v from the last example to build

P = vvT =


1 0
0 0

�
,
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which projects vectors onto the “x axis”. For the same x used before, we
have

Px =


1 0
0 0

� 
2
1

�
=


2
0

�
.

Now observe the orthogonality of the remainder

x � Px =


0
1

�

with the projection subspace R(P) = span{v}.

v span{v}Px

xx � Px

The orthogonal projector P sends the
vector x to Px 2 R(P) = span{v},
while the remainder x � Px is contained
in N(P) = span{v}?, i.e., x � Px is
orthogonal to v and Px.Did you notice that, in contrast to the first example, the projection Px

has smaller norm than x, kPxk  kxk? Such reduction is a general
trait of orthogonal projectors.

Proposition 2 If P is an orthogonal projector, then kPxk  kxk for all
x 2 IRn.

Proof. Since P is an orthogonal projector, PT = P and P2 = P. Hence
Px is orthogonal to x � Px:

(Px)T(x � Px) = xTPTx � xTPTPx

= xTPx � xTP2x = xTPx � xPx = 0.

Now apply the Pythagorean Theorem to the orthogonal pieces Px 2
R(P) and x � Px 2 N(P),

kxk2 = kPx + (x � Px)k2 = kPxk2 + kx � Pxk2,

and conclude the result by noting that kx � Pxk � 0.

student experiments

5.18. To get an appreciation for projectors, in matlab construct the
orthogonal projector P onto

span
⇢

2
1

��
.

Now construct 500 random vectors x = randn(2, 1). Produce a
figure showing all 500 of these vectors in the plane (plotted as blue
dots), then superimpose on the plot the values of Px (plotted as
red dots). Use axis equals to scale the axes in the same manner.

Repeat the experiment, but now in three dimensions, with P the
orthogonal projector onto
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8
<

:
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4
1
2
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9
=

; .

Use matlab’s plot3 command plot x and Px in three dimensional
space.
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5.2 Orthogonalization

Now we arrive at the main point of this chapter: the transformation
of basis into an orthonormal basis for the same set.

Definition 19 A basis {q1, . . . , qn} is orthonormal provided

• qT
j qk = 0 for all j 6= k (the vectors are orthogonal);

• kqjk = 1 for j = 1, . . . , n (the vectors are normalized).

We can summarize orthonormality quite neatly if we arrange the
basis in the matrix

Q = [ q1 q2 · · · qn ] .

Then QTQ contains all possible inner products between qj and qk:

QTQ =

2

6664

qT
1 q1 qT

1 q2 · · · qT
1 qn

qT
2 q1 qT

2 q2 · · · qT
2 qn

...
...

. . .
...

qT
n q1 qT

n q2 · · · qT
n qn

3

7775
= I,

since qT
j qj = kqjk2 = 1.

Definition 20 A matrix Q 2 IRn⇥n is unitary if QTQ = I.
If Q 2 IRm⇥n with m > n and QTQ = I, then Q is subunitary.

student experiments

5.19. Suppose Q 2 IRm⇥n with m < n. Is it possible that QTQ = I?
Explain.

5.20. Suppose that Q 2 IRm⇥n is subunitary. Show that QQT is a
projector. What is R(Q) in terms of q1, . . . , qn?

span{a1}

span{a2}

a1

a2
a2 � P1a2

The setting: basis vectors a1 and a2 that
are neither unit length, nor orthogonal.

We are now prepared to orthogonalize a set of vectors. Suppose
we have a basis a1, . . . , an for a subspace S ⇢ Cm. We seek an or-
thonormal basis q1, . . . , qn for the same subspace, which we shall
build one vector at a time. The goal is to first construct unit vector q1
so that

span{q1} = span{a1}
and then to build unit vector q2 orthogonal to q1 so that

span{q1, q2} = span{a1, a2}
and then unit vector q3 orthogonal to q1 and q2 so that

span{q1, q2, q3} = span{a1, a2, a3}
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and so on, one qj vector at a time, until we have the whole new basis:

span{q1, q2, . . . , qn} = span{a1, a2, . . . , an} = S.

span{a1}

span{a2}

a1

a2

q1

a2 � P1a2

First normalize a1 to obtain q1 with
span{q1} = span{a1}.

The first of these steps is easy, for we get q1 by normalizing a1:

q1 =
1

ka1k
a1.

span{a1}

span{a2}

a1

a2

q1 P1a2

a2 � P1a2

Compute cq2 = a2 � P1a2, the portion of
a2 that is orthogonal to q1.

The next step is decisive, and here we use insight gained from our
quick study of orthogonal projectors. Figuratively speaking, we must
remove the part of a2 in the direction q1, leaving the portion of a2

orthogonal to q1. Since q1 is a unit vector,

P1 := q1qT
1

is an orthogonal projector onto span{q1} = span{a1}, so

P1a2 = q1qT
1 a2

is the part of a2 in the direction q1. Remove that from a2 to get

bq2 := a2 � P1a2.

And since
P1bq2 = P1(a2 � P1a2) = 0,

spot that bq2 2 N(P1), which is orthogonal to R(P1) = span{q1}, so
bq2 ? q1. If you prefer a less high-falutin’ explanation, just compute

qT
1 bq2 = qT

1 a2 � qT
1 q1qT

1 a2 = qT
1 a2 � qT

1 a2 = 0.

So we have constructed a vector bq2 orthogonal to q1 such that

span{a1}

span{a2}

a1

a2

q1 P1a2

a2 � P1a2

q2

Normalize q2 = cq2/kcq2k to get a unit
vector in the cq2 direction.

span{q1, bq2} = span{a1, a2}.

Since we want not just an orthogonal basis, but an orthonormal basis,
we adjust bq2 by scaling it to become the unit vector

q2 :=
1

kbq2k
bq2.

The orthogonalization process for subsequent vectors follows the
same template. To construct q3, we first remove from a3 its compo-
nents in the q1 and q2 directions:

bq3 := a3 � P1a3 � P2a3,

where P2 = q2qT
2 , where for j = 1, 2,

qT
j bq3 = qT

j a3 � qT
j q1qT

1 a3 � qT
j q2qT

2 a3

= qT
j a3 � qT

j a3 = 0,
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using the orthonormality of q1 and q2. Normalize bq3 to get

q3 :=
1

kbq3k
bq3.

Now the general pattern should be evident. For future vectors,
construct

bqk+1 = ak+1 �
k

Â
j=1

Pj ak+1, with Pj := qjq
T
j ,

then normalize
qk+1 =

1
kbqk+1k

bqk+1,

giving
qk+1 ? span{q1, . . . , qk}

which extends the orthonormal basis in one more direction:

span{q1, . . . , qk, qk+1} = span{a1, . . . , ak, ak+1}.

This algorithm is known as the Gram–Schmidt process.

student experiments

5.21. Under what circumstances will this procedure break down?
That is, will you ever divide by zero when trying to construct
qk+1 = bqk+1/kbqk+1k?

5.22. Show that Pk = P1 + · · ·+ Pk is an orthogonal projector. With
this notation, explain how we can compactly summarize each
Gram–Schmidt step as

qk+1 =
(I � Pk)ak+1

k(I � Pk)ak+1k
.

5.3 Gram–Schmidt is QR factorization

The Gram–Schmidt process is a classical way to orthogonalize a
basis, and you can execute the process by hand when the vectors are
short (m is small) and there are few of them (n is small). As with
Gaussian elimination, we want to automate the process for larger
problems – and just as Gaussian elimination gave us the A = LU
factorization of a square matrix, so Gram–Schmidt will lead to a
factorization of a general rectangular matrix.

Let us work through the arithmetic behind the orthogonalization
of three linearly independent vectors a1, a2, and a3, and along the
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way define some quantities rj,k that arise in the process:

bq1 := a1

q1 :=
1

kbq1k
bq1 =

1
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bq1

bq2 := a2 � q1qT
1 a2

= a2 � r1,2 q1

q2 :=
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kbq2k
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bq3 := a3 � q1qT
1 a3 � q2qT

2 a3

= a3 � r1,3 q1 � r2,3 q2

q3 :=
1
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1
r3,3

bq3.

To summarize, we have defined

rj,k =

8
>><

>>:

qT
j ak, j < k;

kbqjk, j = k;

0, j > k.

With this notation, three steps of the Gram–Schmidt process become:

r1,1q1 = a1

r2,2q2 = a2 � r1,2q1

r3,3q3 = a3 � r1,3q1 � r2,3q2,

or, collecting the aj vectors on the left hand side:

a1 = r1,1q1 + 0q2 + 0q3

a2 = r1,2q1 + r2,2q2 + 0q3

a3 = r1,3q1 + r2,3q2 + r3,3q3.

Stack the orthonormal basis vectors as the columns of the subunitary
matrix Q 2 IRm⇥n

Q = [ q1 q2 q3 ] ,

and note that

a1 =

2

4 q1 q2 q3

3

5

2

4
r1,1
0
0

3

5

a2 =

2

4 q1 q2 q3

3

5

2

4
r1,2
r2,2

0

3

5



69

a3 =

2

4 q1 q2 q3

3
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r2,3

r3,3

3

5 ,

which we organize in matrix form as
2

4 a1 a2 a3

3
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4 q1 q2 q3
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r1,1 r1,2 r1,3
0 r2,2 r2,3

0 0 r3,3

3

5 .

We summarize the entire process as:

A = QR,

where Q 2 IRm⇥n is subunitary and R 2 IRn⇥n is upper triangular.
Now change your perspective: let A 2 IRm⇥n be any matrix with

linearly independent columns, m � n. Performing the Gram–Schmidt
process on those columns yields the decomposition A = QR, which
is known as the QR factorization.

But wait, there’s more! Suppose b 2 R(A), so there exists some
x 2 IRn such that Ax = b. Substitute the QR factorization to obtain
QRx = b. Since we have written b = Q(Rx), we see that b 2 R(Q):
since b was any vector in the column space of A, we conclude that
R(A) ⇢ R(Q). Similarly, if b 2 R(Q), then there exists x 2 IRn such
that Qx = b. Since R is invertible, splice I = RR�1 into this last
equation to obtain QR(R�1x) = b: so A(R�1x) = b, hence b 2 R(A),
and R(Q) ⇢ R(A). Since R(Q) and R(A) each contain the other, they
must be equal.

Finally, notice that P = QQT 2 IRm⇥m is an orthogonal projector:

P2 = QQTQQT = QQT = P,

since the columns of Q are orthonormal, QTQ = I, and (QQT)T =

(QT)TQT = QQT . In fact, one can confirm that

QQT =

2

64 q1 · · · qn

3

75
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qT
1
...

qT
n

3

75 = q1qT
1 + · · · qnqT

n .

Notice that R(P) = R(Q), so P projects onto R(Q) = R(A).

Theorem 7 Let A = QR be a QR factorization of a matrix A 2 IRm⇥n

with linearly independent columns, with Q 2 IRm⇥n and R 2 IRn⇥n. Then
R(Q) = R(A) and QQT is an orthogonal projector onto R(A).

5.4 QR solves systems

Suppose we wish to solve Ax = b for a square matrix A with lin-
early independent columns. The linear independence implies that
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A is invertible. Rather than perform Gaussian elimination, we could
alternatively replace A with its QR factorization,

QRx = b.

Since Q is subunitary, QTQ = I, so the Q term on the left can be
cleared by premultiplying by QT :

Rx = QTb. (5.1)

Since R is upper triangular, this Rx = QTb system can be solved for
x by back-substitution, just as with the last step in Gaussian elimina-
tion. We can formally write the solution as

In general, the R factor in a QR fac-
torization will be different from the U
factor in an LU factorization, though
both are upper triangular matrices.x = R�1QTb.

But is R invertible? Yes: since the columns of A are linearly inde-
pendent, the diagonal entries of R obtained via the Gram–Schmidt
process are always nonzero.

student experiments

5.23. The discussion above assumed A was a square matrix. Suppose
A 2 IRm⇥n with m > n, and A has n linearly independent columns.
If b 2 R(A), write down a solution x to Ax = b in terms of the QR
factorization of A. Is this solution unique?

5.5 Least squares, take two

Suppose that, instead of solving Ax = b, we instead wish to find x to
minimize

min
x2C n

kb � Axk,

the least squares problem discussed in the last chapter. We saw there
that x minimized the misfit b � Ax when ATAx = ATb, and that this
x was unique provided N(A) = {0}.

Throughout this chapter we have assumed that a1, . . . , an are lin-
early independent, giving the matrix

A = [ a1 a2 · · · an ]

linearly independent columns: hence N(A) = {0}, and the least
squares solution is the unique x that satisfies

ATAx = ATb.

Substitute A = QR for A to get

(QR)T(QR)x = (QR)Tb
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which is equivalent to

RTQTQRx = RTQTb.

Since Q is subunitary (its columns are orthogonal),

QTQ = I,

so our x solves
RTRx = RTQTb. (5.2)

Note that RT is a lower-triangular matrix with nonzero entries on
the main diagonal, so it is invertible. Multiply both sides of (5.2) by
(R⇤)�1 to obtain

Rx = QTb, (5.3)

which, remarkably enough, is the same equation we obtained in (5.1)
for solving Ax = b when b 2 R(A).

matlab captures this idea in its ‘back-
slash’ command, \. When you type
A\b, you will obtain x = A�1b when
A is a square invertible matrix, and
the x that minimizes kb � Axk when
A 2 IRm⇥n with m > n having linearly
independent columns.

But is the agreement of equations (5.1) and (5.3) really so remark-
able? Insert I = QTQ on the right-hand side of (5.1) to obtain

Rx = QTQQTb

= QT(QQT)b

= QTbR,

noting that QQT is the orthogonal projector onto R(A), and bR =

QQTb is the vector given by the FTLA decomposition:

b = (QQTb) + (I � QQT)b

= bR + bN .

So implicitly, equation (5.1) projects b 2 IRn to bR, to give an equa-
tion Rx = QTbR that has a solution x.


