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Chapter 4
Fundamentals of Subspaces

When does a linear system of equations, call it Ax = b, have
a solution x? When such a solution exists, is it unique? While we
pose these abstract questions, we keep in mind the equations we
derived for circuits and trusses in the last two chapters. In particular,
as computational scientists, the existence and uniqueness of solutions
can help us learn about our model, as when solutions to ATKAx = 0
revealed the instability in the tipsy table in Figure 3.2. To develop a
deep understanding of the Ax = b problem, we need the language
and tools of subspaces.

These notes draw heavily in spirit, details, and examples from the
texts of Gilbert Strang1 and Steve Cox2. 1 Gilbert Strang. Introduction to Applied

Mathematics. Wellesley-Cambridge
Press, Wellesley, MA, 1986
2 Steven J. Cox. Matrix Analysis in Situ.
Rice University, 2013

4.1 Subspaces

A fundamental skill of matrix theory is the ability to strategically
partition n dimensional space into subspaces that simplify (or even
trivialize) the problem we want to solve. Many such partitions are
possible; the motivating application dictates which is best for a given
situation. In the next few lectures we shall learn the first of several
such techniques, which enables the solution of general linear systems
of the form

Ax = b.

This decomposition of IRn will also make easy work of the least
squares problem

min
x2IRn

kb � Axk,

an essential tool for analyzing large data sets.

In data science, this least squares
problem is an example of regression.

To describe the partitioning we have in mind, we need a few basic
definitions and accompanying facts.

These facts are proved in basic linear
algebra courses; we shall not dwell on
all the proofs.

Definition 6 A nonempty set of vectors S ✓ IRn is a subspace provided
the following two conditions both hold:
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• if v, w 2 S, then v + w 2 S;

• if v 2 S and a 2 IR, then av 2 S.

Mathematicians summarize these
requirements by saying a subspace is
closed under vector addition and scalar
multiplication.

4.2 Subspaces: examples and counterexamples

Simple examples of subspaces include S = {0} (the set containing
only the zero vector) and S = IRn (the set containing all vectors in
IRn). The most interesting subspaces occur between these extremes.

4.3 The column space and span

We want to know when Ax = b has a solution. A special subspace
provides a nice way to think about this problem. The column space of
a matrix A is the set of all vectors that can be written in the form “A
times a vector.”

Definition 7 The column space (or range) of A 2 IRm⇥n is the set

R(A) = {Ax : x 2 IRn}.

Thus R(A) contains all vectors b that can be written as Ax for some
choice of x. In other words, if b is in the column space of A, then by
definition there must exist some vector x that solves Ax = b. On the other
hand, if b is not in R(A), then no vector x will give Ax = b.

Since A 2 IRm⇥n, the vector Ax is in IRm, and so the vectors that
make up R(A) all contain m entries: R(A) is a subset of IRm. Is it a
subspace? Yes. The proof of this fact illustrates the basic technique we
use to prove that a set of vectors is a subspace.

Theorem 3 The column space of any A 2 IRm⇥n is a subspace of IRm.

Proof. To show that R(A) is a subspace, we must show that the two
defining properties in Definition 6 hold. First, we must show that if
v, w 2 R(A), then v + w 2 R(A).

Suppose v, w 2 R(A). For this to be true, there must exist some
vectors x, y 2 IRn such that Ax = v and Ay = w. Now apply A to

We can write Ax = v and Ay = w for
some x and y because of the definition
of the column space: every vector
in R(A) can be written as “A times
a vector.” We give these vectors the
names x and y so we can easily work
with them; we could have called them
anything we liked.

x + y to get
A(x + y) = Ax + Ay = v + w.

We have showed that v + w can be written in the form of “A times a
vector,” and so conclude that v + w 2 R(A).

Now we must show that if v 2 R(A), then av is also in R(A) for
any scalar a 2 IR. As before, if v 2 R(A), then there exists x 2 IRn

such that Ax = v. Now for any a 2 IR, apply A to ax to get

A(ax) = a(Ax) = av,
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so av also has the form of “A times a vector,” hence it is in R(A).
We have proved that R(A) is closed under vector addition and

scalar multiplication, so it is a subspace.

For example, consider

A =

2

4
1 2
3 4
5 6

3

5 ,

so that

Ax =

2

4
1 2
3 4
5 6

3

5


x1
x2

�

= x1

2

4
1
3
5

3

5+ x2

2

4
2
4
6

3

5 .

So we see that R(A) is the set of all vectors Ax that can be arrived
at as a weighted sum of the columns of A; here the values x1 and x2

describe how much of each column to take. The formal term for this
“weighted sum” is linear combination.

Definition 8 Let x1, . . . , xn be any scalars. Then the vector

x1 a1 + x2 a2 + · · ·+ xn an

is a linear combination of the vectors a1, . . . , an.

x1 a1 + x2 a2 + · · ·+ xn an

The set of all linear combinations of a set of vectors is its span.

Definition 9 The span of the vectors a1, . . . , an is the set of all linear
combinations of these vectors:

span{a1, . . . , an} = {x1 a1 + · · ·+ xn an : x1, . . . , xn 2 IR}.

From these definitions we see that:

The column space is the span of the columns of a matrix

and

The span of a1, . . . , an is the column space of A = [a1 · · · an]:

span{a1, . . . , an} = R([a1 · · · an]).

Consider the two vectors

a1 =


1
1

�
, a2 =


1
2

�
.

The span of the single vector a1 consists of all vectors of the form

x1 a1 = x1


1
1

�
=


x1
x1

�
.
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
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2

�

0

a1
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5a1 � 3a2

a1

Figure 4.1: The subspaces span{a1}
(left), span{a2} (middle), and
span{a1, a2} (right), shown in gray.
In the first two plots, the subspaces
are one-dimensional, consisting of all
vectors that fall on the lines specified by
a1 and a2. The last plot shows a two-
dimensional subspace: it contains all
points in the plane that can be written as
a linear combination of a1 and a2.

We write

span{a1} =

(
x1
x1

�
: x1 2 IR

)
.

Similarly, the span of the vector a2 consists of all vectors

x2 a2 = x2


1
2

�
=


x2

2x2

�
,

thus giving

span{a2} =

(
x2

2x2

�
: x2 2 IR

)
.

To visualize these spaces, plot them in IR2. As seen in Figure 4.1, as
we consider all possible choices of x1 and x2, these subspaces trace
out a line in two-dimensional space. We plot these subspaces within two-

dimensional space because the vectors
a1 and a2 each have two components:
a1, a2 2 IR2.

Now, consider the span of two vectors,

span{a1, a2} = x1a1 + x2a2.

This subspace consists of all vectors of the form

x1a1 + x2a2 = x1


1
1

�
+ x2


1
2

�
=


x1 + x2

x1 + 2x2

�
,

so we write

span{a1, a2} =

(
x1 + x2

x1 + 2x2

�
: x1, x2 2 IR

)
.

What vectors does this span contain? Suppose we want to know if
some vector

b =


b1
b2

�

is in span{a1, a2}. Since the span of the columns is just the column
space of the matrix of columns,

span{a1, a2} = R([a1, a2]),
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we can determine if b 2 span{a1, a2} by seeking x1 and x2 such that


a1 a2

� 
x1
x2

�
=


1 1
1 2

� 
x1
x2

�
=


b1
b2

�
. (4.1)

Notice that we can find x1 and x2 provided the equation (4.1) has a
solution for the specified values of b1 and b2. For our example we
always find a solution, because the matrix has an inverse:


x1
x2

�
=


1 1
1 2

��1  b1
b2

�
=


2 �1
�1 1

� 
b1
b2

�
.

For example, when

b =


�1
2

�
,

we compute


x1
x2

�
=


2 �1
�1 1

� 
�1
2

�
=


�4
3

�
,

and so 
�1
2

�
= �4


1
1

�
+ 3


1
2

�
.

This vector is shown as a linear combination of a1 and a2 in the right
plot of Figure 4.1. Similarly, this figure also shows


2
�1

�
= 5


1
1

�
� 3


1
2

�
.

In fact, because the matrix in (4.1) is invertible, for any vector b 2 IR2,
we can write b = x1a1 + x2a2 for some choice of x1 and x2. Hence, Just extract x1 and x2 from x = A�1b.

we say

span{a1, a2} =

(
x1 + x2

x1 + 2x2

�
: x1, x2 2 IR

)
= IR2.

We saw the span of each of the single vectors a1 and a2 was a line.
The span of the two vectors together is a plane.

student experiments

4.13. Is the span of two vectors always a plane? Suppose we intro-
duce the new vector

a3 =


�2
�2

�
.

Sketch out imitations of the plots in Figure 4.1 for span{a3} as well
as span{a1, a3} and span{a2, a3}. Are the subspaces span{a1, a3}
and span{a2, a3} both planes?
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4.4 Null Space

Let us return to the Ax = b problem. In the last section we obtained
a preliminary (true but incomplete) answer to the question: When
does a solution x exist?

The linear system Ax = b has a solution
if and only if b 2 R(A).

We turn now to the next critical question: Suppose for the moment
that Ax = b has a solution. When is that solution unique?

Suppose y and z both solve the equation, i.e.,

Ay = b and Az = b.

Then Ay = b = Az, so
A(y � z) = 0. (4.2)

We see the special role the equation Ax = 0 plays. If this equation
only admits the trivial solution x = 0, then the only possibility for y
and z that satisfy equation (4.2) is

y = z,

so any two solutions of Ax = b (like our y and z) must be identical:
the solution of Ax = b is unique. Recall that the instability in the tipsy

table was revealed by the infinitely
many solutions to ATKAx = 0 for the
trivial load. As happens with many
applications, the null space has a
natural physical interpretation.

Definition 10 The null space (or kernel) of a matrix A 2 IRm⇥n is

N(A) = {x 2 IRn : Ax = 0}.

In words, the null space of A is the set of all vectors x that solve the
equation Ax = 0. Since A0 = 0, we always have 0 2 N(A). The
null space is most interesting when it contains nonzero vectors. For
example, for the tipsy table in the last chapter,

N(ATKA) =

8
>><

>>:

2

664

0
g

0
g

3

775 : g 2 C

9
>>=

>>;
,

and ATKAx = f had infinitely many solutions (if f2 + f4 = 0) or no
solutions at all.

A solution to the linear system Ax = b is unique
if and only if N(A) = {0}.
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Is b 2 R(A)?
Does

N(A) = {0}?
Ax = b has a

unique solution

Ax = b has
no solution

Ax = b has
infinitely many

solutions

yes

no

yes

no

Figure 4.2: Decision process for ana-
lyzing if Ax = b has a solution x for a
given choice of A and b.

Theorem 4 The null space of any A 2 IRm⇥n is a subspace of IRn.

Proof. Recall that we must demonstrate two properties: (1) if x, y 2
N(A), then x+ y 2 N(A); (2) if x 2 N(A) and a 2 IR, then ax 2 N(A).

Both properties are easy to verify. If x, y 2 N(A), then Ax = 0 and
Ay = 0. Hence

A(x + y) = Ax + Ay = 0 + 0 = 0,

so x + y 2 N(A).
Now if x 2 N(A) and a 2 C, then

A(ax) = aAx = a0 = 0,

so ax 2 N(A).
Since N(A) is closed under vector addition and scalar multiplica-

tion, it is a subspace.

To analyze existence and uniqueness of solutions to Ax = b,
follow the flowchart in Figure 4.2. To use this procedure in practice,
though, we need some way of computing R(A) and N(A). That is
next on our agenda.

4.5 Linear independence, basis, dimension

Unless the subspace is trivial, it will contain infinitely many vectors.
We seek an economical way of describing all these vectors, avoiding
any redundancy.

Definition 11 A set of vectors {a1, . . . , an} ✓ IRm is linearly indepen-
dent provided no one of the vectors can be written as a linear combination of
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the others. Equivalently, the only choice of scalars x1, . . . , xn for which

x1a1 + x2a2 + · · · xnan = 0

is x1 = x2 = · · · = xn = 0.

Just as the column space has a close connection to the span of a
set of vectors, the null space informs our understanding of linear
independence. From the second part of the definition, we see that:

The vectors a1, . . . , an are linearly independent if and only if
the null space of A = [a1 · · · an] contains only the zero vector:

N([a1 · · · an]) = {0}.

Definition 12 A set of vectors {a1, . . . , an} is a basis for a subspace S
provided:

• span{a1, . . . , an} = S;

• the vectors {a1, . . . , an} are linearly independent.

A basis is the way we describe sub-
spaces in MATLAB.

Notice that a subspace can have many different bases. For example,
for S = IR2 (the space of all vectors of length two),

a1 =


1
0

�
, a2 =


0
1

�

is a basis; so too is

a1 =


1
1

�
, a2 =


1
�1

�
,

as also is
a1 =


1
0

�
, a2 =


�1
1

�
.

Figure 4.3 shows how a vector b can be written in all three of these

In a basic linear algebra course, one
shows that all bases for a given sub-
space S must contain the same number
of vectors.bases. In each case,

b = x1 a1 + x2 a2,

where the coefficients x1 and x2 can be determined by solving the
linear system of equations


a1 a2

� 
x1
x2

�
= b.

So long as b 2 R([a1 a2]) = span{a1, a2}, we can find the coefficients
x1 and x2, as shown in Figure 4.3.

student experiments
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b = 2a1 + a2

a1 =


1
0

�

a2 =


0
1

�

b = 3
2 a1 +

1
2 a2


1
1

�
= a1

a2 =


1
�1

�

b = 3a1 + a2

a1 =


1
0

�

a2 =


�1
1

�

Figure 4.3: The vector b = [2, 1]T is
written as the linear combination of
three different sets of basis vectors.4.14. When will the coefficients x1 and x2 be unique?

Definition 13 The number of elements in a basis for a subspace is called
the dimension of the subspace. We denote the dimension of the subspace S
by dim(S).

For example, if a1, . . . , an are linearly independent and

S = span{a1, . . . , an},

then dim(S) = n.

4.6 Row reduction gives an echelon form

In Chapter 2 we used row reduction to compute the solution to a
linear system of equations (from the circuit model). Here we describe
how the technique can be used to compute the column space R(A)

and the null space N(A).

Definition 14 A matrix is in echelon form under these conditions.

• The first nonzero entry in each row is called a pivot.

• All entries below a pivot must be zero.

• A pivot in row j must occur in column k � j.
(So pivots occur on or above the main diagonal of the matrix.)

• All zero rows occur at the bottom of the matrix.

These requirements are similar, but
less proscriptive, than the “reduced
row echelon form” (RREF) often en-
countered in linear algebra classes. The
RREF requires pivots to be equal to 1,
and allows no other nonzero entries
in any pivot column. Our use of the
echelon form does not need these extra
conditions. In any case, MATLAB’s
rref command will compute a perfectly
good echelon form.A row containing a pivot is called a pivot row; a column containing a pivot

is called a pivot column.

Any matrix A 2 IRm⇥n can be transformed into echelon form using
elementary row operations. For example, consider the matrix

A =

2

4
1 1 2
1 2 3
1 0 1

3

5 .
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Eliminate the (3, 1) entry with by subtracting the first row, which we
encode, as in Chapter 2, with the help of an elementary matrix:

L1A =

2

4
1 0 0
0 1 0
�1 0 1

3

5

2

4
1 1 2
1 2 3
1 0 1

3

5 =

2

4
1 1 2
1 2 3
0 �1 �1

3

5 .

Now subtract the first row from the second to zero out the (2, 1)
entry:

L2(L1A) =

2

4
1 0 0
�1 1 0
0 0 1

3

5

2

4
1 1 2
1 2 3
0 �1 �1

3

5 =

2

4
1 1 2
0 1 1
0 �1 �1

3

5 .

The (1, 1) entry of the matrix on the right is a pivot; below it we only
have zeros. The (2, 2) entry will also be a pivot, but we must remove
the (3, 2) entry beneath it. To do so, add the second row to the last,

L3(L2L1A) =

2

4
1 0 0
0 1 0
0 1 1

3

5

2

4
1 1 2
0 1 1
0 �1 �1

3

5 =

2

4
1 1 2
0 1 1
0 0 0

3

5 ,

zeroing out the entire last row. This last matrix is in echelon form. While that zero row is disaster for
Gaussian elimination, it will not inter-
fere with our determination of R(A)
and N(A).

We call it

Ared =

2

4
1 1 2
0 1 1
0 0 0

3

5 .

We have emphasized that the elementary row operations that trans-
form A to Ared can be encoded as matrix-matrix multiplication:

(L3L2L1)A = Ared.

As with Gaussian elimination, these elementary row operations are
all reversible, meaning that these elementary matrices Lj are invertible.
Thus

A = (L�1
1 L�1

2 L�1
3 )Ared

= LAred,

where L = L�1
1 L�1

2 L�1
3 . While we have just worked this out for

a 3 ⇥ 3 example, you can see that the same principles will hold in
general:

A = LAred, (4.3)

with L invertible.

4.7 Computing the column space

With the echelon form in hand, we are ready to compute R(A). The
most efficient way to describe a subspace is with a basis, so we seek a
set of basis vectors for the column space.
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Start with the echelon form Ared of A, such as

Ared =

2

4
1 1 2
0 1 1
0 0 0

3

5 .

Suppose for a moment that we want the column space of Ared (rather
than A). The pivot structure makes R(A) very easy to characterize.
Start with the first pivot column. It is a nonzero vector (since it con-
tains the pivot, which must be nonzero). Moreover, it must be in
R(Ared). In the example,

2

4
1 1 2
0 1 1
0 0 0

3

5

2

4
1
0
0

3

5 =

2

4
1
0
0

3

5 .

Thus we can use this pivot column as the first vector in a basis for
R(Ared). Now look at the next pivot column, which also will be
nonzero and in R(Ared), e.g.,

2

4
1 1 2
0 1 1
0 0 0

3

5

2

4
0
1
0

3

5 =

2

4
1
1
0

3

5 .

Now here is the key point: This second pivot column must be linearly
independent of the first pivot column. Since the first pivot column
has zero entries below the pivot, the pivot in the second column must
occur in a row in which the first pivot column had a zero.

2

4
1
0
0

3

5

2

4
1
1
0

3

5
first pivot

zero beneath pivot second pivot

The pivot structure ensures that the second pivot column is no multi-
ple of the first: the two vectors are linearly independent.

The same argument applies to each remaining pivot column: re-
gardless of the specific values in these vectors, the locations of the
nonzero pivots ensures linear independence.

We have established the linear independence of the pivot columns.
What about the non-pivot columns? By the structure of the pivots,
each of the non-pivot columns can be written as linear combinations of
the pivot columns, since these non-pivot columns only have nonzero
entries in the pivot rows. Perhaps an example is helpful. For the
matrix we have been analyzing,

2

4
2
1
0

3

5 =

2

4
1
0
0

3

5+

2

4
1
1
0

3

5 ,
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so the one non-pivot column is the sum of the two pivot columns,
and hence is in their span.

Suppose Ared has r pivot columns, which we denote by

ba1, . . . ,bar.

Since we have established that these pivot columns are linearly inde-
pendent, and that any non-pivot column can be written as a linear
combination of the pivot columns, we conclude that these vectors
form a basis for R(Ared), and

R(Ared) = span{ba1, . . . ,bar}.

This result is nice, but how does it relate to our main interest, R(A)?

• Any vector in R(A) can be written as Ax for some x 2 IRn.

• Since A = LAred as in (4.3), we have Ax = LAredx.

• Any vector Aredx is in R(Ared), and so there exist constants
g1, . . . , gr such that

Aredx =
r

Â
j=1

gjbaj

since R(Ared) = span{ba1, . . . ,bar}.

• Thus any vector Ax in R(A) can be written as

Ax = LAredx =
r

Â
j=1

gj(Lbaj).

We conclude that

R(A) = span{Lba1, . . . , Lbar}.

• Thus the vectors Lba1, . . . , Lbar span R(A). Are they linearly inde-
pendent, as required of a basis? Yes: For suppose there is some
vector y 2 IRn for which

[ Lba1 · · · Lbar ] y = 0.

Then
L [ba1 · · · bar ] y = 0,

and, since L is invertible,

[ba1 · · · bar ] y = L�10 = 0.

The only solution y to this last equation is y = 0, since ba1, . . . ,bar

are linearly independent. Thus Lba1, . . . , Lbar are linearly indepen-
dent, and so form a basis for R(A).
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• Finally, we seek to better understand the vectors Lba1, . . . , Lbar.

Let k1, . . . , kr be the indices of the pivot columns, and let e` 2 IRn In the example, k1 = 1 and k2 = 2.

denote the vector that is zero in all entries, except for a 1 in the `th
position. Then

ba` = Aredek`

plucks out the `th pivot column from Ared. Thus

Lba` = LAredek` = Aek` = ak` ,

where ak` is the k`th column of A.

This is all summarized more clearly in words than symbols.

To obtain a basis for R(A):

• Compute an echelon form Ared.

• Identify the pivot columns in Ared.

• Take the columns of A corresponding to
these pivot columns as a basis for R(A).

x1

x2

x3

Figure 4.4: For this example, the col-
umn space R(A) is a two dimensional
subspace (a plane). The blue arrows
show the span of the individual basis
vectors.

For the example above, the first two columns of Ared are the pivot
columns, so the first two columns of A form a basis for R(A):

R(A) = span

8
<

:

2

4
1
1
1

3

5 ,

2

4
1
2
0

3

5

9
=

; ,

shown in Figure 4.4. Notice: the first two columns of Ared do not form
a basis for R(A). Beware of making this common mistake!

This is easy to see: the pivot columns of
Ared both have zeros in their third en-
tries, but the third row of A is nonzero,
so R(A) contains vectors with nonzero
third entries.

4.8 Computing the null space

Next we seek a procedure for constructing a basis for N(A). We
describe the algorithm, give some examples, then explain why the
procedure works.

First note that N(Ared) = N(A), so it suffices to find N(Ared)

(which is simpler, since Ared is in echelon form).
To see this, note that Ax = 0 means
LAredx = 0, so Aredx = L�10 = 0.
Similarly, Aredx = 0 implies LAredx =
Ax = 0.
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To obtain a basis for N(A) = N(Ared):

• Identify the non-pivot columns, which we will call free columns.
If Ared has r pivots, then it has n � r free columns.

• Suppose the free columns have indices k1, . . . , kn�r. Then in the
equation Aredx = 0, we regard the entries xk1 , . . . , xkn�r as
free variables.

• To obtain n � r basis vectors for N(Ared), for each ` = 1, . . . , n � r,
set the free variable xk` = 1, while setting all other free variables
to zero. Then solve Aredx` = 0 to get the basis vector x`.

In MATLAB null(A) returns a matrix
whose columns give a basis for N(A).
These basis vectors are scaled to be
unit vectors. For a more cosmetically
appealing basis, try null(A,’r’).

This procedure is best illustrated with examples. The 3 ⇥ 3 matrix
we have been studying has n � r = 3 � 2 = 1 free variable, x3. In this
case, we will have only n � r = 1 basis vectors for N(A). To compute
this vector, we set x3 = 1 and solve

Aredx =

2

4
1 1 2
0 1 1
0 0 0

3

5

2

4
x1
x2

1

3

5 =

2

4
0
0
0

3

5 ,

which equates to the conditions

x1 + x2 + 2 = 0

x2 + 1 = 0

0 = 0.

The echelon form of Ared gives these equations triangular structure
that allows us to find the unknown values x1 and x2 by back substitu-
tion, giving

x1 = �1, x2 = �1.

Thus, the single basis vector for N(A) is
2

4
�1
�1
1

3

5 .

That last example was easy, because Ared only gave one free vari-
able. To illustrate how to handle multiple free variables, we splice a
new column into the 3 ⇥ 3 matrix above to give

A =

2

4
1 2 1 2
1 2 2 3
1 2 0 1

3

5 , Ared =

2

4
1 2 1 2
0 0 1 1
0 0 0 0

3

5 .

Now columns 1 and 3 are pivot columns, while columns 2 and 4 are
the free columns. Thus we have n � r = 4 � 2 = 2 free variables, x2

and x4. Construct the two basis vectors for N(A) one at a time:
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• Set x2 = 1 and x4 = 0, and then solve Aredx = 0:
2

4
1 2 1 2
0 0 1 1
0 0 0 0

3

5

2

664

x1
1
x3

0

3

775
=

2

664

0
0
0
0

3

775
,

whose solution gives

x1 = �2, x3 = 0

and hence the vector
2

664

�2
1
0
0

3

775 2 N(Ared) = N(A).

• Set x2 = 0 and x4 = 1, and then solve Aredx = 0:
2

4
1 2 1 2
0 0 1 1
0 0 0 0

3

5

2

664

x1
0
x3

1

3

775
=

2

664

0
0
0
0

3

775
,

whose solution gives

x1 = �1, x3 = �1

and hence the vector
2

664

�1
0
�1
1

3

775 2 N(Ared) = N(A).

The 0-1 structure of the free variables ensures that the two vectors we
have found in N(A) are linearly independent, and we have

N(A) = span

8
>><

>>:

2

664

�2
0
0
1

3

775 ,

2

664

�1
0
�1
1

3

775

9
>>=

>>;
.

student experiments

4.15. Compute the column space and null space for

A =

2

664

1 2 1 2 1
1 2 2 3 2
1 2 2 3 3
1 2 2 3 3

3

775 .
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Why does the procedure described above work? The explanation is
simpler if we focus on a special case. Suppose the r pivots in Ared
occur in columns 1, . . . , r, so that we have pivots in positions (1, 1) to
(r, r) of Ared. Thus we can partition Ared as

Ared =


T N
0 0

�
,

where T is an r ⇥ r upper triangular matrix with the pivots on the
main diagonal, N is a r ⇥ (n � r) matrix, and the zero blocks have
m � r rows. To find a basis for N(Ared), we seek linearly independent
vectors for which 

T N
0 0

� 
y
z

�
=


0
0

�
,

which breaks into the two equations

Ty + Nz = 0

0 = 0.

Only the first of these equations is useful; it implies

y = �T�1Nz.

So, for any value of z 2 IRn�r, we can determine a unique corre-

We know T is invertible since it is a
square upper triangular matrix with no
zeros on the main diagonal.

sponding value of y 2 IRr. (Here the components of z are the free
variables.) How many different ways can we choose z 2 IRn�r to give
solutions

x =


y
z

�

to Aredx = 0 that are linearly independent? Since z can be any vector
of length n � r, there are thus n � r linearly independent choices for
z. The simplest choice successively takes z to be the various columns
of the (n � r) ⇥ (n � r) identity matrix. This makes it easy to write
down all the choices for z at once: we seeks solutions to


T N
0 0

� 
Y
I

�
=


0
0

�
,

which implies that Y = �T�1N. Hence the columns of

X =


�T�1N

I

�
2 IRn⇥(n�r)

form a basis for N(Ared) = N(A). The columns of X are precisely the

In the 3 ⇥ 3 example above, we have

T =


1 2
0 �1

�
, N =


3
�1

�
,

giving the single basis vector

x =


�T�1N

1

�
=

2

4
�1
�1
1

3

5 .

basis vectors constructed by the procedure described at the start of
this section.

To arrive at this result, we assumed that the r pivots occurred in
the first r columns of A. If this is not the case, the argument above
get a little more intricate, but the same principles apply.

student experiments
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4.16. Suppose the pivots do not fall in the first r columns of Ared.
Explain how you can take construct a matrix P 2 IRn⇥n whose
rows are the same as the identity matrix, but in a scrambled order,
so that

AredP =


T N
0 0

�

has the form described above, with T 2 IRr⇥r containing the
r pivots on the main diagonal. Now explain how to adjust the
argument above to construct X 2 IRn⇥(n�r) such that AredX = 0.

4.9 The Fundamental Theorem of Linear Algebra

The chore of computing column spaces and null spaces has a payoff,
for we shall see in this section how these spaces partition IRm and IRn

in a way that will help us solve important application problems.
To set the stage, recall from Chapter 1 that the angle between two

vectors v, w 2 IR` is defined via the inner product (dot product) to be

6 (v, w) = cos�1
✓

|vTw|
kvkkwk

◆
.

Two vectors are orthogonal when they meet at a right angle, i.e.,

vTw = 0.

We often indicate orthogonality with the ? notation: Pronounce ? as “perp”.

v ? w.

We can also talk about orthogonality of entire subspaces. If all the
vectors in the subspace S1 are orthogonal those in the subspace S2,
we write S1 ? S2. Keep these ideas in mind as we proceed.

Alongside the column space R(A), we also have the row space.

Definition 15 The row space of a matrix A 2 IRm⇥n is the set

R(AT) = {ATy : y 2 IRm}.

Notice that while R(A) contains vectors of length n, R(AT) contains
vectors of length m:

R(AT) ✓ IRn.

If you have already computed an echelon form Ared of A, then it
is easy to compute a basis for the row space: you simply take the
transpose of the pivot rows from Ared. We emphasize: you take rows
from Ared, not A, as justified in the margin to the right. Above in (4.3) we saw that A = LAred.

If c 2 R(AT), then ATy = c for some
y 2 IRm. But

c = ATy = (LAred)
Ty

= AT
redLTy = AT

red(L
Ty),

so c 2 R(AT
red), hence R(AT) ✓ R(AT

red).
With a similar argument one can show
R(AT

red) ✓ R(AT), so R(AT) = R(AT
red).

Now the echelon structure of Ared, with
zeros in all entries before a pivot, and
only one pivot per column, ensures that
the pivot rows give a basis for R(AT

red),
and hence for R(AT).
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To obtain a basis for R(AT):

• Compute an echelon form Ared;

• Identify the pivot rows in Ared;

• Take the transpose of the pivot rows of Ared
as your basis for R(AT).

For our running 3 ⇥ 3 example,

A =

2

4
1 1 2
1 2 3
1 0 1

3

5 , Ared =

2

4
1 1 2
0 1 1
0 0 0

3

5 ,

where the first two rows of Ared are the pivot rows, we thus obtain

R(AT) = span

8
<

:

2

4
1
1
2

3

5 ,

2

4
0
1
1

3

5

9
=

; . (4.4)

In the procedure described above and justified in the margin, we
obtain the same number of basis vectors for the row space R(AT) as
we had for the column space R(A): both are equal to the number of
pivots, r. This important quantity is called the rank of A.

Definition 16 The number of pivots in an echelon form of A 2 IRm⇥n is
called the rank of A, denoted rank(A).

We summarize as follows:

dim(R(A)) = dim(R(AT)) = rank(A).

Now we are ready to observe a fascinating relationship between
the row space and the null space. Both R(AT) and N(A) are sub-
spaces of IRn. Take a vector in each of these spaces, x 2 N(A) and
c 2 R(AT). Since c 2 R(AT), there exists some y such that c = ATy.
Thus

cTx = (ATy)Tx = yT(AT)Tx = yTAx = yT(Ax),

but since x 2 N(A), we must have Ax = 0, so

cTx = yT0 = 0,

the c and x are orthogonal. Since c = ATy 2 R(AT) and x 2 N(A)

represent arbitrary vectors in these subspaces, we must conclude that
every vector in R(AT) is orthogonal to every vector in N(A), and vice
versa. Thus, the entire subspaces are orthogonal to one another.
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The row space R(AT) is orthogonal to the null space
N(A):

R(AT) ? N(A).

Now assemble the three following facts.

• A basis for R(AT) contains r vectors, since dim(R(AT)) = r;
call these basis vectors r1, . . . , rr.

• A basis for N(A) contains n � r vectors, since dim(N(A)) = n � r;
call these basis vectors n1, . . . , nn�r.

• The only vector in both R(AT) and N(A) is the zero vector,
so the bases for R(AT) and N(A) have no vectors in common.

So, the r basis vectors for R(AT) ✓ IRn and the n � r basis vectors
for N(A) ✓ IRn altogether give n linearly independent vectors in IRn.
Since IRn is an n-dimensional space, these n vectors form a basis for IRn:

IRn = span{r1, . . . , rr, n1, . . . , nn�r}.

This fact has enormous consequences! For example, any vector x 2
IRn can be written uniquely as a linear combination of these basis
vectors:

x =
r

Â
j=1

gjrj +
n�r

Â
k=1

gr+knk.

Write these sums individually as

xR =
r

Â
j=1

gjrj, xN =
n�r

Â
k=1

gr+knk,

and notice that these pieces are orthogonal, since

xT
RxN =

✓ r

Â
j=1

gjrj

◆T✓ n�r

Â
k=1

gr+knk

◆

=
r

Â
j=1

n�r

Â
k=1

gjgr+krT
j nk =

r

Â
j=1

n�r

Â
k=1

gjgr+k 0 = 0,

where we have used the fact that rT
j nk = 0 since R(AT) ? N(A).

Any vector x 2 IRn can be written uniquely as x = xR +

xN , with xR 2 R(AT) and xN 2 N(A).

The components xR and xN are orthogonal: xR ? xN .
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Mathematicians use a short-hand notation for the idea that any vector
in IRn can be decomposed uniquely as the sum of a vector in R(AT)

and a vector in N(A):

IRn = R(AT)�N(A). Were this decomposition not unique, we
would only write IRn = R(AT) +N(A).

Our running 3 ⇥ 3 example has the row space

R(AT) = span

8
<

:

2

4
1
1
2

3

5 ,

2

4
0
1
1

3

5

9
=

;

and null space

N(A) = span

8
<

:

2

4
�1
�1
1

3

5

9
=

; .

Verify that the basis vectors for R(AT) are orthogonal to the basis
vector for N(A). This orthogonality is evident in the plot of three
dimensional space in Figure 4.5.

x1

x2

x3

Figure 4.5: Illustration of the one-
dimensional null space N(A) (red
line) and the two-dimensional row
space R(AT) (blue plane) for the 3 ⇥ 3
example. The blue arrows show the
span of the basis vectors for R(AT).

The row and null spaces decompose IRn. Of course, a similar
decomposition teases IRm apart. To see this, simply apply the argu-
ments above to AT in place of A. The row space of AT is R(A), the
column space of A whose computation we detailed above. We have a
special name for the null space of AT .

Definition 17 The left null space of a matrix A 2 IRm⇥n is the set

N(AT) = {y 2 IRm : ATy = 0}. The space N(AT) is called the left null
space of A because if y 2 N(AT), then
yTA = 0.Again, we have N(A) ✓ IRn, but

N(AT) ✓ IRm.

As rank(A) = rank(AT) = r, the left null space has dimension m � r:

dim(N(AT)) = m � rank(A).

There is no quick route to a basis for N(AT), beyond row-reducing
AT to echelon form (AT)red (which is not the same as (Ared)

T), and
solving (AT)redy = 0 for m � rank(A) linearly independent vectors y.

Applying the above arguments to AT , we have the following.

The column space R(A) is orthogonal to the left null space N(AT):

R(A) ? N(AT).
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Similarly, the r basis vectors for R(A) and the m � r basis vectors for
N(AT) together decompose IRm. We write this as

IRm = R(A)�N(AT).

Any vector y 2 IRm can be written uniquely as y = yR + yN ,
with yR 2 R(A) and yN 2 N(AT).

The components yR and yN are orthogonal: yR ? yN .

Finally, we can collect these results in one major theorem.
While it might look quite abstract, it provides a key that unlocks
many problems from practical applications, like least-squares approx-
imation. Hence Gil Strang calls this the Fundamental Theorem of Linear
Algebra,3 which we shall abbreviate from time to time as FTLA. 3 Gilbert Strang. The Fundamental

Theorem of Linear Algebra. Amer. Math.
Monthly, 100:848–855, 1993Theorem 5 The column space R(A) is orthogonal to the left null space

N(AT), and
R(A)�N(AT) = IRm. (4.5)

The row space R(AT) is orthogonal to the null space N(A), and

R(AT)�N(A) = IRn. (4.6)

The plot in Figure 4.5 gives an impression of the orthogonality of
these spaces, but the result is easier to visualize in two dimensions.
Consider the matrix

A =


1 2
3 6

�
, Ared =


1 2
0 0

�
.

Using the techniques described above, you can determine:

R(A) = span
⇢

1
3

��
, N(AT) = span

⇢
�3
1

��
,

R(AT) = span
⇢

1
2

��
, N(A) = span

⇢
�2
1

��
.

Figure 4.6 shows the orthogonality of the fundamental subspaces.

4.10 Least squares, take one

We know now that Ax = b has a solution only when b 2 R(A).
When b 62 R(A), we might relax our search for an exact solution, and
instead be content with the best approximate solution we can find. In
other words, we seek the vector x 2 IRn that minimizes the misfit

kb � Axk,
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R(A)

N(A⇤)

R(A⇤)

N(A)

Figure 4.6: The four fundamental
subspaces of the 2 ⇥ 2 matrix A. Notice
the orthogonality of the subspaces
described in the FTLA. In each plot,
notice that any vector in the plane can
be expressed as the linear combination
of the basis vectors for the fundamental
subspaces (shown as the darker lines).

or, equivalently, the squared misfit

kb � Axk2 =
m

Â
j=1

���bj �
n

Â
k=1

aj,kxk

���
2
;

This latter form explains why this approximation is called a least
squares problem.

Some applications suggest other char-
acterizations of optimality, aside from
least squares. For example, the problem
of finding x to minimize

m

Â
j=1

���bj �
n

Â
k=1

aj,kxk

���,

arises in signal processing, often associ-
ated with the field of compressive sensing
or sparse approximation.

The FTLA provides the key to unlock these least squares problems.
Start by decomposing

b = bR + bN , bR 2 R(A), bN 2 N(AT).

Now for any x 2 IRn,

b � Ax = bR + bN � Ax

= (bR � Ax) + bN ,

where we have grouped terms strategically: By its form we must
have Ax 2 R(A), and since R(A) is a subspace, the sum of two R(A)

vectors is also in R(A). The FTLA tells us that R(A) ? N(AT), so we
can apply the Pythagorean Theorem to obtain

kb � Axk2 = kbR � Axk2 + kbNk2 (4.7)

for any x. To solve the least squares problem, to get the best approx-
imate solution to Ax = b, we need to pick x to minimize the ex-
pression (4.7). No choice of x can reach the kbNk2 term; on the other
hand, we can pick x to reach any vector Ax in R(A). In particular, we
can pick x so that Ax = bR, and with this choice

We seek x that solves Ax = bR. As
emphasized in Figure 4.2, this equation
always has a solution since bR 2 R(A).

kb � Axk2 = kbR � Axk2 + kbNk2

= kbR � bR|2 + kbNk2

= kbNk2,

and this choice must be optimal, since kbR � Axk2 � 0 for all x.
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The approximation problem

min
x2IRn

kb � Axk

is solved by any x 2 IRn such that Ax = bR.

student experiments

4.17. State conditions in which the solution x to the least squares
problem

min
x2IRn

kb � Axk

is unique. In other words, when does the equation Ax = bR have a
unique solution?

One last problem remains: How do we solve Ax = bR, when A is
a rectangular matrix? In particular, we would ideally solve the least
squares problem without explicitly constructing bR. Notice that for
an optimal choice of x that solves Ax = bR, we have

b � Ax = (bR � Ax) + bN = 0 + bN .

Premultiply this equation by AT and recall that bN 2 N(AT) to obtain

AT(b � Ax) = ATbN

= 0,

and so we rearrange to find

ATAx = ATb. (4.8)

The optimal x that solves the least squares problem also solves the
linear system (4.8). This system is called the normal equations. Notice

AT

A

n

m n

m

x = AT

b

ATA x =

ATb

that ATA 2 IRn⇥n. In many applications, the columns of A corre-
spond to variables we are trying to fit, while the rows of A represent
observations (or the results of experiments) that provide the data for
the fit. We can often collect many more observations than we have
variables, so m � n. Yet the system ATAx = ATb only requires that
we solve a small n ⇥ n system to find the best fit x.

When does ATAx = ATb have a unique solution? It is easy to
see that N(A) ⇢ N(ATA): for if x 2 N(A), then Ax = 0, and so
ATAx = AT0 = 0; hence x 2 N(ATA). If we can also show that
N(ATA) ⇢ N(A), then we can conclude that N(ATA) = N(A).

Suppose x 2 N(ATA), so that ATAx = 0. Premultiply this equation
by xT to get

xTATAx = 0.

But since 0 = xTATAx = kAxk2, we must have Ax = 0. Thus
x 2 N(A), and hence N(ATA) ⇢ N(A).
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Theorem 6 The normal equations ATAx = ATb have a unique solution
provided N(A) = {0}.

4.11 The Fredholm Alternative

As a coda, we return to the problem of solving Ax = b, and recover
a famous result that is often invoked but too seldom explained. There
are various formulations. (Citation for this one – Wikipedia?). The Fredholm Alternative becomes

more interesting when applied to
integral equations, which can be inter-
preted as infinite-dimensional matrices.
For details, see Ramm:

A. G. Ramm. A simple proof of the
Fredholm alternative and a characteri-
zation of the Fredholm operators. Amer.
Math. Monthly, 108:855–860, 2001

Suppose Ax = b has no solution. From above we know that this
means b 62 R(A), so that when, via the FTLA, we decompose b as

b = bR + bN , bR 2 R(A), bN 2 N(AT),

we must have bN 6= 0. Hence

bT
Nb = bT

NbR + bT
NbN = 0 + kbNk2 6= 0,

and ATbN = 0.

Proposition 1 (Fredholm Alternative) For every matrix A 2 IRm⇥n and
vector b 2 IRm, exactly one of the following is true:

• Either Ax = b has a solution x 2 IRn;

• Or there exists some nonzero y 2 IRm such that ATy = 0 and yTb 6= 0.


