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Chapter 3
Simple Structures at Equilibrium

Simple mechanical structures may seem a far cry from the
circuits discussed in the last lecture, but the underlying mathematical
models are strikingly similar. Here we illustrate how this different
physical scenario gives rise to the same ATKAx = b equation we
studied earlier. This observation shows the great merit of developing
a mathematical understanding of general systems having this form:
in mastering the underlying theory, we develop tools for handling a
diversity of applications.

These notes draw heavily in spirit, details, and examples from the
texts of Gilbert Strang1 and Steve Cox2. 1 Gilbert Strang. Introduction to Applied

Mathematics. Wellesley-Cambridge
Press, Wellesley, MA, 1986
2 Steven J. Cox. Matrix Analysis in Situ.
Rice University, 2013

3.1 A springy column

Consider the arrangement of four springs in a vertical column shown
in Figure 3.1, with three masses separating the springs. The springs
are fixed at the top and bottom of this arrangement, and when forces
are applied to these masses, the springs will compress or extend.
(For now we do not allow the springs to move left or right out of this
vertical arrangement.)

Our goal is to determine how the forces f1, f2, and f3, applied to
the masses m1, m2, and m3, affect the displacements x1, x2, and x3.
The solution will depend on the material properties of the springs You can consider the forces coming

from gravity acting on the masses, with
the springs being essentially massless.

(i.e., the spring constants k1, k2, and k3): we expect stiff springs will
allow smaller deformations than more flexible springs. In any case,
we presume that our springs behave according to Hooke’s Law; when
dealing with real springs, this will not generally be the case if the
forces are too small or too great — with the extreme case being the
fracture of the spring under an excessive load. (Moreover, while we
speak of “springs,” we might instead envision a “truss,” perhaps
a steel girder, a timber beam, or a concrete pier that we assume to
behave in a roughly Hookean fashion.)
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The procedure for determining the displacements x1, x2, and x3

will closely resemble our methodology for modelings circuits. Again,
we break the process into four steps. Let us agree to measure positive
quantities in the down direction; e.g., if the top spring gets longer un-
der the applied load, the displacement x1 of mass m1 will be positive.

step 1 Compute the extension of each spring.

We first measure the elongation of the four different springs. As
seen in Figure 3.1, the loads will cause some springs to stretch
while others compress; a positive “elongation” means the spring is
stretched, while a negative value indicates compression. The first The springs will change length, but the

sum of the changes must be zero, since
the top and bottom are fixed.

elongation is easy to compute: it is simply x1, the amount the first
mass has descends under the load. We thus set

system at rest

m3

m2

m1

loaded system

k4

m3

k3

m2

k2

k1

m1

x1

f1

x2

f2

x3

f3

Figure 3.1: Four springs stacked ver-
tically, separated by three masses and
fixed at the top and bottom. The figure
on the left shows the network with no
load applied. When forces f1, f2, and f3
are applied to the masses m1, m2, and
m3, the springs deform, as sketched in
the schematic on the right. These forces
cause the jth mass to drop by xj units,
as controlled by the spring constants
k1, . . . , k4.

e1 = x1.

The amount the second spring stretches equals the amount by
which the drop of mass m2 exceeds the drop of mass m1. (In the
cartoon in Figure 3.1, the top two masses have dropped by the
same amount, so the second spring has zero elongation.) Thus, the
extension of the second spring is

e2 = x2 � x1.

The third spring stretches similarly:

e3 = x3 � x2.

Finally, the last spring get shorter by the amount that mass m3

descends, so
e4 = �x3.

As usual, we arrange these four equations in matrix-vector form:
2

6664

e1
e2

e3

e4

3

7775
=

2

6664

1 0 0
�1 1 0

0 �1 1
0 0 �1

3

7775

2

64
x1
x2

x3

3

75, (3.1)

which we write as
e = Ax. (3.2)

step 2 Apply Hooke’s Law.

Next we seek to relate the elongation of spring j to the restoring
force yj that the spring exerts. Hooke’s Law does the trick: the
force is proportional to the elongation, with the proportionality
given by the spring constant:

yj = kj ej, j = 1, . . . , 4.
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In matrix-vector form,
2

664

y1
y2

y3

y4

3

775 =

2

664

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

3

775

2

664

e1
e2

e3

e4

3

775 ,

which we write as
y = Ke. (3.3)

step 3 Balance forces at each mass.

We aim to figure out how much the applied forces f1, f2, and
f3 cause the masses to descend at equilibrium. The key step is You can imagine that f j = mjg, where g

denotes the gravitational constant, but
other external forces are possible too.

to balance these known forces acting on each mass against the
restoring force of each spring. Since the system is at rest (static),
the forces balance at each mass. Getting the signs of the restoring
forces correct can be tricky. At mass m1, the force exerted by the
top spring acts to restore to the spring to its original length, hence
it pulls m1 up, which, by our convention, is the negative direction.
Meanwhile, as the second spring seeks to be restored to its rest
length, it tugs mass 1 downward, the positive direction. Hence, the
applied force f1 balances the restoring force �y1 + y2:

f1 � y1 + y2 = 0.

The same argument applied to masses m2 and m3 to give

f2 � y2 + y3 = 0

f3 � y3 + y4 = 0.

We rearrange to get the matrix-vector form,
2

64
1 �1 0 0
0 1 �1 0
0 0 1 �1

3

75

2

6664

y1
y2

y3

y4

3

7775
=

2

64
f1
f2

f3

3

75 . (3.4)

The matrix here encodes the connectivity of the spring network,
mapping spring forces to masses; in perfect parallel to the cir-
cuit model, it is the transpose of the matrix in (3.1) from step 1,
which mapped mass displacements to spring extensions: hence we
write (3.4) as

ATy = f. (3.5)

step 4 Assembly.

Now we simply put the pieces together to arrive at an equation for
the unknown x. Inserting equation (3.3) into (3.5) gives

f = ATy

= ATKe.
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Now insert equation (3.2) for e to give the fundamental relation

ATKA x = f, (3.6)

the same equation we arrived at for our circuit model.

In a different context, Richard Feynman
mused on the question of why so many
entirely different physical phenomena
give rise to the same equations. See
Lecture 12 (and especially Section 12.7,
“The ‘underlying unity’ of nature”) in:

Richard Feynman, Robert B. Leighton,
and Matthew L. Sands. The Feynman
Lectures on Physics, volume 2. Addison-
Wesley, Reading, MA, 1964student experiments

3.7. Suppose all the springs are identical, k1 = k2 = k3 = k4 = k, as
are the masses, m1 = m2 = m3 = m, and the applied forces come
from gravity: f j = mg. Set up and solve (3.6) for x1, x2, and x3.

3.8. Generalize the configuration in Figure 3.1 to have N equal
masses and N + 1 identical springs. Fix the total mass in the sys-
tem, independent of N, and divide it evenly across the masses.
How do the displacements x1, . . . , xN behave as N gets large? How
should the spring constant k scale with N so that your solution
tends to a clean limit as N ! •?

Ulimately we seek to understand when equations like ATKAx = f
have a solution, and when that solution is unique. The one-dimensional
truss is very clean: you can see that indeed a solution always exists,
and it is unique, for the matrix ATKA is invertible. Yet we ultimately
we will extend this modeling procedure to handle more interest-
ing two-dimensional trusses, and the solvability question gets much
more interesting.

3.2 Two dimensions and linearization

Circuits do not notice the angles at which we arrange the wires rela-
tive to the nodes, but mechanical structures certainly do. We avoided
these concerns in the last lecture by forcing all the displacements to
occur in the same direction. However, we mostly care about struc-
tures in two or three dimensions, where the springs can attach at
odd angles. This geometry makes it more difficult to compute the
elongation of the springs. To set the stage, consider the tipsy two-
dimensional table shown in Figure 3.2. We presume that L1 = L3, so
that at rest, the horizontal and vertical springs join at right angles.

Suppose, following Step 1 of the procedure outlined in the last
lecture, we want to compute the elongation of the spring on the left,
which at rest has length L1. When forces are applied, mass m1 moves
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system at rest

L1

L2

L3

m1 m2

loaded system

m1 m2

x1

x2

x3

x4

f1

f2
f3

f4k1

k2

k3

Figure 3.2: A tipsy table. Three springs
with rest lengths Lj and spring con-
stants kj are connected via two masses,
m1 and m2. Forces vertical ( f1 and
f3) and horizontal ( f2 and f4) are ap-
plied to each mass, causing vertical
(x1 and x3) and horizontal (x2 and x4)
displacements of each mass.

x1 units down and x2 units to the right. Use the Pythagorean Theo-
rem to compute the length of the deformed spring,

loaded length of spring 1 =
q
(L1 � x1)2 + x2

2,

from which we deduce the formula

elongation of spring 1 =
q
(L1 � x1)2 + x2

2 � L1. (3.7)

Similar formulas hold for the other two springs:

elongation of spring 2 =
q
((x1 � x3)2 + (L2 + x4 � x2)2 � L2 (3.8)

elongation of spring 3 =
q
(L3 � x3)2 + x2

4 � L3. (3.9)

Following the pattern of the last lecture, we should now try to write
these elongation equations in the matrix-vector form

e = Ax.

However, we run into a fundamental obstacle: equations (3.7)–(3.9)
are nonlinear functions of x1, x2, x3, and x4; they involve squares,
square roots, and products like x1x3. There is no way to write these
elongations as linear functions of the xj variables, as implied by the
equation e = Ax.

Despite the exaggerated elongations shown in Figure 3.2, we are
generally envisioning deformations that are quite modest, compared
to the rest lengths of the springs. In this parameter regime, the elon- In a substantial structure, trusses with

lengths measured in meters or tens of
meters might deform on the order of
millimeters or centimeters.

gations are approximately linear functions of the deformations. To see
this, take a closer look at the elongation of spring 1, which we can
rewrite as

elongation of spring 1 =
q
(L1 � x1)2 + x2

2 � L1

=

s

L2
1

✓⇣
1 � x1

L1

⌘2
+

⇣ x2
L1

⌘2
◆
� L1

= L1

s

1 � 2x1
L1

+
x2

1 + x2
2

L2
1

� L1. (3.10)
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If the rest length L1 is much larger in magnitude than the deforma-
tions x1 and x2, then the term �2x1/L1 + (x2

1 + x2
2)/L2

1 under the
radical will be quite small. This calls to mind the Taylor series

p
1 + x = 1 +

x
2
� x2

8
+

x3

16
+ · · ·

whose leading terms give an excellent approximation when |x| is

This is the Taylor (Maclaurin) series

f (x) = f (0)+ x f 0(0)+
x2

2!
f 00(0)+

x3

3!
f 000(0)+ · · · ,

with the function f (x) =
p

1 + x. The
series converges for |x| < 1.

small. Substituting the square root from (3.10) into the Taylor series,
we get
s

1 � 2x1
L1

+
x2

1 + x2
2

L2
1

= 1 +
1
2

✓
� 2x1

L1
+

x2
1 + x2

2
L2

1

◆
+

1
8

✓
� 2x1

L1
+

x2
1 + x2

2
L2

1

◆2
+ · · ·

= 1 � x1
L1

+ O
✓

x2
1 + x2

2
L2

1

◆

⇡ 1 � x1
L1

.

Now insert this approximation into the elongation formula (3.10):

The “big-oh” notation O((x2
1 + x2

2)/L2
1)

takes the place of terms that are smaller
than some constant times (x2

1 + x2
2)/L2

1
as (x2

1 + x2
2)/L2

1 ! 0. This is notation is
a convenient tool for tracking the size
of neglected terms, without writing out
their formulas in detail.

elongation of spring 1 ⇡ L1

⇣
1 � x1

L1

⌘
� L1 = �x1. (3.11)

This approximation seems quite reasonable, as it matches the formula
we would have obtained if spring 1 were constrained to only deform
in the vertical direction (like the springy column in the last lecture).
Next, apply the same approximation strategy to the elongation for-
mulas (3.8) and (3.9) to obtain

elongation of spring 2 ⇡ x4 � x2 (3.12)

elongation of spring 3 ⇡ �x3 (3.13)

Notice a key property of the approximations (3.11)–(3.13):

The dominant deformation occurs
in the direction of the spring’s orientation.

That is, the approximate elongation formula is the same thing we
would obtain if the spring were constrained to only deform in the
direction of its main axis. This general rule makes it easy to approx-
imate the elongation of springs at arbitrary orientations, when we
approach structures with more interesting geometry than the one
shown in Figure 3.2.

student experiments

3.9. Use geometry to derive the extension formulas (3.8) and (3.9).
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3.10. Test the quality of the approximation. Suppose L1 = 10 m, and
let x1 = x2. Produce a plot that compares the true elongation (3.7)
of spring 1 to the approximation (3.11) for small displacements
starting at x1 = x2 = 0 m and increasing. (Plot x1 = x2 on the
horizontal axis, and the values of the elongation and its approxi-
mation on the vertical axis.) How large can x1 = x2 be before the
approximation (3.11) noticeably loses its accuracy?

3.11. Work out the approximations for the elongations of springs 2
and 3 given in (3.12) and (3.13).

3.3 Four–steps for the linearized model

With the approximate elongations at hand, we can proceed with the
four steps of the modeling process described in the last lecture.

step 1 Compute the (approximate) extension of each spring.

Since we are after a linear relationship between the displacements
and elongations, we use the approximations (3.11)–(3.13):

e1 = �x1

e2 = x4 � x2

e3 = �x3.

These approximations can be written in the matrix–vector form
2

4
e1
e2

e3

3

5 =

2

4
�1 0 0 0
0 �1 0 1
0 0 �1 0

3

5

2

664

x1
x2

x3

x4

3

775
, (3.14)

which, of course, we write as

e = Ax.

step 2 Apply Hooke’s Law.

Hooke’s Law pays no heed to the way the springs are connected,
so there is no need to make a linearizing approximation here. We
proceed as before, computing the restoring force in each spring as

yj = kj ej, j = 1, 2, 3,

which takes the matrix form
2

4
y1
y2

y3

3

5 =

2

4
k1 0 0
0 k2 0
0 0 k3

3

5

2

4
e1
e2

e3

3

5 ,
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or
y = Ke.

step 3 Balance Forces.

The truss can move within the plane, with forces acting in the
vertical and horizontal directions. Hence we must balance forces
in two directions at each node. Since (in our linear approximation)
the spring elongation occurs in the direction in which the spring
is oriented, the force balance step inherits the same assumption.
For this simple case, the restoring forces of springs 1 and 3 act in
the vertical direction, while spring 2 acts horizontally. So the force
balance equations become:

mass 1, vertical: 0 = f1 + y1;

mass 1, horizontal: 0 = f2 + y2;

mass 2, vertical: 0 = f3 + y3;

mass 2, horitzontal: 0 = f4 � y2.

Collect these four equations as

2

664

�1 0 0
0 �1 0
0 0 �1
0 1 0

3

775

2

4
y1
y2

y3

3

5
=

2

664

f1
f2

f3

f4

3

775 .

Yes indeed, the matrix in this last equation once again is AT , so

ATy = f.

step 4 Assembly.

This step proceeds just as before:

f = ATy

= ATKe

= ATKAx,

resulting in the equation

ATKA x = f. (3.15)

Before proceeding to solve this equation, pause for a moment to con-
sider the matrix dimensions that arise when modeling general planar
(2d) trusses. Suppose we have m masses connected by n springs. This
gives the following dimensions.
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x 2m ⇥ 1 vector

e n ⇥ 1 vector

y n ⇥ 1 vector

f 2m ⇥ 1 vector

A n ⇥ 2m matrix

K n ⇥ n matrix

ATKA 2m ⇥ 2m matrix

These dimensions play a crucial role when it comes to solving for the
displacements x corresponding to a known load f.

3.4 When Gaussian elimination fails

Return now to the specific scenario sketched in Figure 3.2. Work out

ATKA =

2

664

k1 0 0 0
0 k2 0 �k2

0 0 k3 0
0 �k2 0 k2

3

775 ,

and, with known loads f1, f2, f3, and f4, proceed to solve ATKAx =

f, 2

664

k1 0 0 0
0 k2 0 �k2

0 0 k3 0
0 �k2 0 k2

3

775

2

664

x1
x2

x3

x4

3

775 =

2

664

f1
f2

f3

f4

3

775 .

Suppose we try to do so with Gaussian elimination, forming the
augmented matrix

2

664

k1 0 0 0
0 k2 0 �k2

0 0 k3 0
0 �k2 0 k2

��������

f1
f2

f3

f4

3

775 .

Given the large number of zeros in this matrix, elimination looks to
be an easy task. First we target the (4,2) entry, which can be elimi-
nated by replacing row 4 by the sum of rows 2 and 4:

2

664

k1 0 0 0
0 k2 0 �k2

0 0 k3 0
0 0 0 0

��������

f1
f2

f3

f4 + f2

3

775 . (3.16)

What just happened? We have an upper triangular matrix on the left,
but a strange one. Perhaps it helps to write out the equations:

k1x1 = f1 (3.17)
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k2x2 � k2x4 = f2 (3.18)

k3x3 = f3 (3.19)

0 = f2 + f4. (3.20)

The last of these equations imposes a consistency condition. Remem-
ber that we seek x1, x2, x3, and x4 that satisfy a static equilibrium: if
the condition f2 + f4 = 0 is violated, then the horizontal load is
imbalanced ( f2 6= � f4), and the structure will not stand: no static . . . aside perhaps from the pile of

debris that occurs when the structure
collapses!

equilibrium exists. You knew this instinctively from Figure 3.2, and
now you see it confirmed by the linear algebra.

But what if the forces do balance, f2 + f4 = 0? Then equa-
tions (3.17) and (3.19) immediately give

x1 = f1/k1, x3 = f3/k3.

Regarding x2 and x4, we only know

x2 = x4 + f2/k2.

We call x4 a free variable: for any value it takes, we can construct a
solution to (3.17)–(3.20). Thus, any vector of the form

2

664

x1
x2

x3

x4

3

775 =

2

664

f1/k1
g + f2/k2

f3/k3

g

3

775 , f2 = � f4 (3.21)

solves ATKAx = f. That is, there are infinitely many static configura-
tions of the structure for any single consistent load.

One particular choice of consistent forces illuminates the key prob-
lem. Consider the trivial load

f1 = f2 = f3 = f4 = 0,

in which case the solution space (3.21) becomes
2

664

x1
x2

x3

x4

3

775 =

2

664

0
g

0
g

3

775 , f = 0 (3.22)

for any value of g. Think about the physical significance of this solu-
tion. When no load is applied, the structure is free to displace in any of
the solutions (3.22), which correspond to both masses shifting to the
right (or left) by the same amount. A structure that permits such un-
forced shifts cannot stand: it is unstable, and the linear algebra reveals
the nature of this instability.

student experiments
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3.12. How would you change the tipsy table in Figure 3.2 to stabilize
it? How would your modification affect the linear algebra leading
to the equation ATKAx = f?

Now, in the simple arrangement of Figure 3.2 the trouble is easy
to diagnose. In structures with hundreds or thousands of struts, in-
stabilities can be much more difficult to eyeball. We will thus develop
tools for diagnosing these instabilities, and, later, for understanding
near-instabilities too. Before doing so, we should fix that instability.

3.5 Trusses with oblique supports

Our analysis of the truss in Figure 3.2 was simplified by the fact
that the springs meet at right angles. More interesting structures
inevitably present more complicated geometry. How do we resolve
springs at oblique angles?

Suppose mass mj is connected to mass mk by spring `, forming
an angle q measured clockwise from the horizontal, as illustrated
in Figure 3.3 Then our approximation rule (that springs are mainly The angle is measured this way because

of our convention that downward
vertical displacements correspond to
positive xj values.

deformed in their direction of rest orientation) gives

elongation ⇡ sin(q`)
⇣

net vertical displacement
⌘

+ cos(q`)
⇣

net horizontal displacement
⌘

and so
e` = sin(q`)(x2k�1 � x2j�1) + cos(q`)(x2k � x2j). (3.23)

q`

mj

mk

k`

Figure 3.3: A spring’s angle is mea-
sured clockwise, from the vertical.

Try checking this formula by applying it to the horizontal and
vertical springs that make up the truss in Figure 3.2.

Now put equation (3.23) into action in a more interesting scenario,
by introducing a diagonal brace to support the truss in Figure 3.2.
Suppose for simplicity that the three springs in the original table
have equal length, L1 = L2 = L3, with a new diagonal spring connect-
ing m1 to the floor, forming an angle of p/4 with the second spring,
as shown in Figure 3.4.

m1 m2

k1

k2

k3k4

Figure 3.4: Take the truss in Figure 3.2
(with L1 = L2 = L3) and add a diagonal
brace that meets the second spring at an
angle of p/4.

We quickly recapitulate the steps of our modeling procedure. The
first three springs elongate as before:

e1 = �x1

e2 = x4 � x2

e3 = �x3

The fourth spring is obviously the interesting one. Appealing to (3.23)
with q = p/4 gives

e4 = sin(p/4)(0 � x1) + cos(p/4)(0 � x2)
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= �
p

2
2

(x1 + x2).

Now we set up the elongation equations in the form e = Ax:

Here we have taken j = 1 in (3.23), and
since the spring anchored into the floor
at the far end, the displacements x2k�1
and x2k are both zero.2

664

e1
e2

e3

e4

3

775 =

2

664

�1 0 0 0
0 �1 0 1
0 0 �1 0

�
p

2/2 �
p

2/2 0 0

3

775

2

664

x1
x2

x3

x4

3

775 .

Step 2 of our modeling procedure proceeds as expected:
2

664

y1
y2

y3

y4

3

775 =

2

664

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

3

775

2

664

e1
e2

e3

e4

3

775 .

Step 3 requires that the restoring force of each spring be resolved
into its horizontal and vertical components. For the scenario sketched
in Figure 3.3, spring ` connects to masses mj and mk, and so exterts
forces on both bodies. Those forces must be resolved into horizontal
and vertical components.

mass direction contribution
mj vertical sin(q`)y`
mj horizontal cos(q`)y`
mk vertical � sin(q`)y`
mk horizontal � cos(q`)y`

In general, at mass mj the horizontal
and vertical force balances give the
equations

0 = f2j�1 + Ầ sin(q`)y`

0 = f2j + Ầ cos(q`)y`,

where the sum over ` includes all
springs that attach to mass mj, and
the angles qj are measured from the
positive horizontal emanating from mj.

Thus, in our scenario we still have four force balance equations, but
with new terms for the diagonal springs:

mass 1, vertical: 0 = f1 + y1 + (
p

2/2)y4;

mass 1, horizontal: 0 = f2 + y2 + (
p

2/2)y4;

mass 2, vertical: 0 = f3 + y3;

mass 2, horitzontal: 0 = f4 � y2.

Thus we arrive at the balance equation
2

664

�1 0 0 �
p

2/2
0 �1 0 �

p
2/2

0 0 �1 0
0 1 0 0

3

775

2

664

y1
y2

y3

y4

3

775 =

2

664

f1
f2

f3

f4

3

775 .

Indeed, this is our usual equation

ATy = f,

leading once more to
ATKAx = f

In light of the instability we diagnosed for the original tipsy table, we
now ask the critical question:
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Will the brace stabilize the structure,
i.e., will ATKAx = 0 only have the trivial solution x = 0?

Work out

ATKA =

2

664

k1 + k4/2 k4/2 0 0
k4/2 k2 + k4/2 0 �k2

0 0 k3 0
0 �k2 0 k2

3

775 .

To simplify the arithmetic, suppose k1 = k2 = k3 = k4 = 1. Then to
explore solutions to ATKAx = f, set up the augmented matrix

2

664

3/2 1/2 0 0
1/2 3/2 0 �1

0 0 1 0
0 �1 0 1

��������

f1
f2

f3

f4

3

775 .

Eliminate the (2, 1) entry:

2

664

3/2 1/2 0 0
0 4/3 0 �1
0 0 1 0
0 �1 0 1

��������

f1
f2 � f1/3

f3

f4

3

775 .

Now eliminate the (4, 2) entry:

2

664

3/2 1/2 0 0
0 4/3 0 �1
0 0 1 0
0 0 0 1/4

��������

f1
f2 � f1/3

f3

f4 + 3 f2/4 � f1/4

3

775 ,

reducing the matrix on the left to upper-triangular form. Unlike
the previous augmented form (3.16), all then entries on the main
diagonal of this upper triangular matrix are nonzero. This means that
for any choice of f, we can find a unique corresponding x vector. In
this case, the augmented triangular form implies

3
2 x1 +

1
2 x2 = f1

4
3 x2 � x4 = f2 � 1

3 f1

x3 = f3

1
4 x4 = f4 � 3

4 f2 � 1
4 f1,

giving, for each f, the unique solution

x =

2

664

x1
x2

x3

x4

3

775 =

2

664

f1 � f2 � f4
� f1 + 3 f2 + 3 f4

f3

� f1 + 3 f2 + 4 f4

3

775 .
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The only way for ATKAx = f to equal zero is for f = 0, so we
conclude that the table with the diagonal brace is stable The same
result holds any choice of (nonzero) spring constants, k1, k2, k3, and
k4. With the diagonal spring added, the instability has been removed,
and the structure sits in its static equilibrium.

In the next lecture, we shall delve more deeply into the scenarios
where ATKAx = f has a unique solution.


