
Matrix Methods for
Computational Modeling
and Data Analytics

Mark Embree
embree@vt.edu

Virginia Tech · Spring 2019

version of 21 January 2019

Ax=b

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2019

Mark Embree

embree@vt.edu

Ax=b
version of 21 January 2019

Chapter 1
Introduction

CMDA 3606 is about the linear algebra problem

Ax = b

in many wild and wonderful varieties. Most students are introduced
to this equation in a sterile form, where A is a small, tidy matrix with
integer entries whose origins are obscure, say

A =

2

64
8 1 6
3 5 7
4 9 2

3

75 .

We start this class by considering several physical situations that give
rise to Ax = b problems: these are physical systems at equilibrium,
where Ax = b encodes a balance of forces:

• b describes some applied force, which we can usually measure;

• A encodes the physical properties of the system (how it is con-
nected, its material parameters), which we also know, or can measure;

• x, the unknown, describes the system’s reaction to the force b.

This context gives physical meaning to otherwise abstract questions
like, “Does Ax = b have a unique solution?” When A models a
structure,we will see how this question becomes roughly equivalent
to “Is my building stable?”

Figure 1.1: A primitive model of the
Eiffel Tower. Is it stable?

When modeling realistic physical systems, the matrix A can be
sufficiently large that the standard technique (Gaussian elimination)
does not work. In this class we will study faster alternatives.

We will consider other variations of the Ax = b problem. Some-
times we do not know the matrix A, but we can conduct a series of
physical experiments to apply known forces, b and measure the corre-
sponding effects, x. Can we use such experiments to discover A?

2

This way of turning Ax = b on its head is an example of an inverse
problem. Often such problems are intimately connected to least squares
and optimization: subjects that will occupy much of our semester.

Other situations arise where an exact solution x to Ax = b exists:
the theoreticians rest easy. But when you actually compute x, you see
that it looks like garbage (the polite term is noise): it obviously has no
physical meaning!

The illustration below sketches one example of this phenomenon
that arises in many problems in image science. The vector x contains
some image that we want to see, while the vector b represents the
image that we can measure with our camera. The matrix A encodes

More specifically, b is a vector of pixel
values. For example, each entry in b
might be an integer between 0 and 255,
representing a shade of 8-bit grayscale
(0 = black, 255 = white). To make an
image into a vector, we stack each
column of pixel values, one on top of
the other, scanning from left to right
across the image.

the blurring that inevitably occurs when the true image x is mapped
to the observed image b.

=blurring
matrix

true
im

age

blurry
im

age

A x b

known
(properties of
camera optics)

unknown
but desired

known
(observed by

camera)
@@R ? ��

We can estimate A based on properties of the camera’s optics, and
calibrate it by applying the camera to a few test images where we
know x.

We use the term camera generically;
your camera might be a telescope: A can
be calibrated by viewing well-studied
objects, before turning your telescope to
seek more interesting, unknown b.

Here is a simple one-dimensional version of the blurring problem:
scanning a UPC barcode. Consider the barcode shown below.

This application is mentioned by Per
Christian Hansen in his book
Discrete Inverse Problems: Insight and
Algorithms, SIAM, 2010. Virginia Tech
students can access the book for free:
see the class website for a link.

Now take a horizontal slice of the barcode, shown in red below.

3

To turn this barcode into a length-n vector, we will discretize the red
line into n pixels. Then the jth entry of x is determined by

xj =

(
0, the jth pixel is white;
1, the jth pixel is black.

For n = 500, we obtain the function shown below.

1 100 200 300 400 500

0

0.5

1

Now we simulate the action of a supermarket barcode scanner, which
detects the fuzzy version of this barcode shown in red in the plot
below. This is the blurred vector, b. From it we want to find the true
barcode, x.

1 100 200 300 400 500

0

5

10

15

20 10-3

Suppose we know all about the blurring operation that made this
image: we know the engineering behind the optics in the scanner,
and so we know the matrix A exactly. Indeed, this A is invertible.
Knowing the scanner A and the scanned image b, we should be able
to compute the original barcode:

In MATLAB, compute x = A\b.x = A�1b.

The resulting x should (in theory) exactly match the blue barcode plot
shown above. Instead, MATLAB yields the following result: garbage!

Solutions to general Ax = b problems
are not always this poor! Deblurring
problems typically give A matrices that
are especially fragile and prone to this
behavior. Later in the course we will
understand how to identify such A.

1 100 200 300 400 500
-200

-100

0

100

200

4

What could possibly go wrong? The matrix A is invertible, but it is
very close to a matrix that is not invertible, and this makes the solu-
tion of Ax = b very sensitive to the small mistakes that occur when
solving real problems in floating-point arithmetic on a computer (and
to noise that would normally pollute the vector b). Unfortunately,

Modern computers use a “floating point
number system” for calculations that
involve real numbers. The computer
cannot represent all the (uncountably
many) real numbers; instead it uses a
carefully selected finite subset of the
reals. Most of the time, this number
system allows us to compute quickly
and accurately (with small mistakes
on the order of 10�16, which we can
ignore). However, when a problem
is sensitive to small changes in the
input data, you will get bad errors
regardless of the cleverness of your
number system.

many important, practical problems have this same structure. As a
result, much research has gone into effective ways of tweaking this
Ax = b problem to discover a more robust solution. Later in the
semester, we will learn about regularization. Applying this technique,
we arrive at a much more satisfactory estimate of x, shown in blue
below. (The gray line underneath show the true x we are trying to
find.)

1 100 200 300 400 500

0

0.5

1

This answer is not perfect, but to read the barcode we only need
to know if our function is closer to 0 (white) or 1 (black) at a given
pixel. The plot above is good enough to serve our purposes.

This example suggests that Ax = b is much more interesting than
you might have thought when you encountered this equation in
your first linear algebra class. Throughout CMDA 3606 we will try
to convince you with additional examples and applications. By the
semester’s end, you will:

• learn several important origins of Ax = b problems;

• appreciate when Ax = b can be solved;

• efficiently solve Ax = b when A is very large;

• when Ax = b cannot be solved, understand the approximation

min
x

kAx � bk,

which is often associated with inverse problems;

• use this approximation problem (with regularization) to solve in-
verse problems from applications, such as image deblurring;

• master the singular value decomposition (SVD);

5

• apply the SVD for data analytics, including principal component
analysis and recommender systems;

• solve optimization problems like

min
x

f (x),

where f depends on a vector of variables, using Newton’s
method (which requires the solution of an Ax = b problem at
each step).

Where possible, methods will be derived rigorously, but algorithms
and applications will be a constant theme. Through this course (and
CMDA 3605 before it), CMDA 3606 students will acquire a significant
toolkit for solving a variety of applied problems in mathematical
modeling and data science. This course teaches empowering technology.

1.1 Prerequisites

Upon starting CMDA 3606, all students are expected to have a basic
working knowledge of:

• basic matrix-vector operations;

• subspaces, especially the column space and null space of a matrix;

• Gaussian elimination for solving Ax = b;

• eigenvalues and eigenvectors;

• MATLAB.

These concepts will be reviewed just-in-time, as need for them arises
throughout the semester.

Students in the class are not expected to be expert MATLAB users,
but should be able to write short programs on their own. MATLAB
provides the best environment for experimenting with the concepts
we will discuss throughout the semester. The instructor will provide
sample codes from in-class demonstrations.

Python, with its NumPy package, is
becoming an increasingly popular
alternative to MATLAB.

1.2 Some notation and basic matrix-vector operations

We start modestly, establishing our basic conventions. Notation is
the unsung hero of mathematics. The right notation clarifies, helping
you see the essence of a problem. The conventions we describe have
gradually evolved over linear algebra’s 150 year history.

A vector is a column of numbers. We write v 2 IRn to indicate that
v is a vector of length n whose entries are real numbers. If the entries

6

in v are complex numbers, we instead write v 2 Cn. (In this class,
most of our vectors will only contain real numbers.) In either case,
we express v in terms of its entries:

v =

2

64
v1
...

vn

3

75 .

Often you will need to turn a column vector into a row vector with

Vectors are typeset as bold Roman
characters, while their entries (like all
our scalars) are italic Roman (or Greek)
letters.

the help of the transpose:

vT = [v1 · · · vn] .

Matrices are rectangular arrays of numbers. We write A 2 IRm⇥n

for a matrix with m rows and n columns made up of real entries;
when those entries could be complex, we write A 2 Cm⇥n. In either
case, we express A in terms of its entries:

A =

2

64

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

3

75 .

As you become a nimble manipulator of matrices, you will find it

Matrices are denoted by bold capital
letters, either Roman or Greek.

convenient to organize these entries in different ways. For example,
you might write A by columns as

A = [a1 · · · an] ,

where each ak is a vector of length m:

A = 2 IRm⇥na1 a2 · · · an

ak =

2

6664

a1,k
a2,k

...
am,k

3

7775
.

This bird’s-eye view of A gives you a deeper appreciation for matrix-
vector multiplication, for

Ax = [a1 · · · an]

2

64
x1
...

xn

3

75 =
n

Â
k=1

xkak =
n

Â
k=1

xk

2

6664

a1,k
a2,k

...
am,k

3

7775
,

revealing Ax to be a weighted sum of the columns of A: the entry xk
reveals how much the vector ak contributes to the product Ax.

You can also build matrices from other matrices, as in


A B
C D

�
,

7

(assuming the dimensions match up properly). Then you can multi-
ply against a conformally partitioned vector:


A B
C D

� 
x
y

�
=


Ax + By
Cx + Dy

�
.

The underlying mathematical model often suggests a natural way to
partition a matrix like this.

Such composite matrices arise nat-
urally in constrained multivariable
optimization problems and in models of
incompressible fluid dynamics.

Several distinguished matrices merit special mention. The zero
matrix has all entries set to zero; we write it as 0, and its dimension
will be clear from the context. The identity is a square matrix with
zeros everywhere except the main diagonal, whose entries are all
ones; we denote it by I. We shall occasionally pick out kth column of
the identity, which we denote by ek. Thus the n ⇥ n identity is

I = [e1 e2 · · · en] .

For example, when n = 4,

e1 =

2

664

1
0
0
0

3

775 , e2 =

2

664

0
1
0
0

3

775 , e3 =

2

664

0
0
1
0

3

775 , e4 =

2

664

0
0
0
1

3

775 . (1.1)

Notice that, for all n,

Notice that you can use ek to extract the
kth column from A:

Aek = ak .

Ix = x, IA = A, AI = A,

for all vectors x and matrices A. More generally, we construct diago-
nal matrices as

diag(d1, . . . , dn) =

2

64
d1

. . .
dn

3

75 ,

where the unspecified off-diagonal elements are zero.
A square matrix B for which AB = I is called the inverse of A, and

is denoted by A�1. Not all matrices are invertible; for example, A = 0
has no inverse. When the inverse exists, it is unique. It works on the
right and the left sides of A:

A�1A = AA�1 = I.
These important facts are proved in
most linear algebra books/courses. We
shall not go into details here.The inverse of a product of matrices is the product of the indi-

vidual inverses, in reverse order. For example, if both A and B are
invertible, then

(AB)�1 = B�1A�1.

8

This fact is easily verified, since

(AB)(B�1A�1) = ABB�1A�1 = AIA�1 = AA�1 = I.

Hence B�1A�1 does what an inverse of AB is supposed to do, and
since the inverse is unique, it is the only matrix that so affects AB.

A

AT

m

n m

n

Just as we took the transpose of vectors, we do similarly for matri-
ces:

AT =

2

64

a1,1 · · · am,1
...

. . .
...

a1,n · · · am,n

3

75 .

When AT = A we say A is symmetric. (Notice that only square matri-
ces can be symmetric.)

The transpose distributes across addition, and (just like the in-
verse) distributes across a product, but reverses the order:

(A + B)T = AT + BT , (AB)T = BTAT .

You can recursively apply this idea to handle longer strings of matri-
A

B

T

=

BT
AT

ces: (ABCD)T = DTCTBTAT .

1.3 Inner and outer products, geometry

We often multiply vectors together in two special ways.

Definition 1 The inner product (or dot product) of v, w 2 IRn is the
scalar

vTw =

[v1 · · · vn]
2

64
w1
...

wn

3

75 =
n

Â
j=1

vjwj 2 IR.

The inner product vTw can be viewed as
the product of a 1 ⇥ n matrix with an
n ⇥ 1 matrix, giving a 1 ⇥ 1 result.

vT

w

= vTw1

n

n

1

The outer product vwT is the product of
an m ⇥ 1 matrix with a 1 ⇥ n matrix,
giving an m ⇥ n result.

v

wT =

vwTm

1

1

n

Definition 2 The outer product of v 2 IRm and w 2 IRn is the m ⇥ n
matrix

vwT =

2

64
v1
...

vm

3

75
[w1 · · · wn]

=

2

64
v1w1 · · · v1wn

...
. . .

...
vmw1 · · · vmwn

3

75 2 IRm⇥n.

We have casually spoken of the “length” of a vector, meaning its
number of components (or dimension). However, there is another
notion of the size of a vector, which generalizes the absolute value.

Definition 3 The norm of a vector v 2 IRn is denoted

kvk =

vuut
n

Â
j=1

|vj|2 =
p

vTv.

9

The norm of a real vector is the usual Euclidean length that is famil-
iar from geometry and physics.

The inner product also gives rise to another geometric notion, the
angle between two vectors.

Definition 4 The angle between the nonzero vectors v and w 2 IRn is

6 (v, w) = cos�1
✓

|vTw|
kvkkwk

◆
. (1.2)

Definition 5 Two vectors v, w 2 IRn are orthogonal provided

vTw = 0.

If v and w are nonzero, then orthogo-
nality is equivalent to 6 (v, w) = p/2,
so orthogonality implies that two
vectors form a right angle.

Often the orthogonality of v and w is expressed as

v ? w.

In this setting, the Pythagorean Theorem becomes quite simple.

Theorem 1 (Pythagoras) If v, w 2 IRn are orthogonal, then

kv + wk2 = kvk2 + kwk2.

Proof. The orthogonality of v and w implies vTw = wTv = 0, so

kv + wk2 = (v + w)T(v + w)

= vTv + vTw + wTv + wTw

= vTv + wTw

= kvk2 + kwk2.

We shall make use of this ancient theorem at several key points in the
semester. Another key result, which we shall not prove here, is the
Cauchy–Schwarz inequality.

Simple though it may seem, the
Cauchy–Schwarz inequality is
powerful and widely applicable. Its
diverse proofs point to many directions
in mathematics, forming the subject of
an entire book:

J. Michael Steele. The Cauchy–Schwarz
Master Class. Cambridge University
Press, Cambridge, 2004

Theorem 2 (Cauchy–Schwarz Inequality) For any v, w 2 IRn,

|vTw|  kvkkwk.

This theorem is trivial when v is orthogonal to w, and it is sharp (i.e.,
it holds with equality) only when v and w are collinear. Notice that
the Cauchy–Schwarz inequality ensures that

|vTw|
kvkkwk  1,

and hence the argument of the arc cosine in (1.2) is permissible, mak-
ing our definition of the angle between two vectors reasonable.

