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Overview of the Course

These lectures describe modern tools
for the spectral analysis of dynamical systems.

We shall cover a mix of theory, computation, and applications.

Lecture 1: Introduction to Nonnormality and Pseudospectra

Lecture 2: Functions of Matrices

Lecture 3: Toeplitz Matrices and Model Reduction

Lecture 4: Model Reduction, Numerical Algorithms, Differential Operators

Lecture 5: Discretization, Extensions, Applications



Outline for Today

Lecture 5: Discretization, Extensions, Applications

I Discretization of Differential Operators

I Structured Pseudospectra

I Pseudospectra for Generalized Eigenvalue Problems / DAEs

I Pseudospectra for Polynomial Eigenvalue Problems

I Applications



5(a) Discretization of Differential Operators



Discretization of Differential Operators

I Many numerical methods are available for discretizing differential
operators: finite differences, finite elements, spectral/collocation methods
– many variants.

I For simple operators, it is difficult to beat spectral/collocation methods,
which give (1) high order accuracy; (2) small (but dense) discretization
matrices.

I Trefethen’s Spectral Methods in MATLAB (2000) describes on effective
approach that we have used throughout our examples here.



Discretization of Differential Operators

“Chebyshev Pseudospectral Collocation Methods”

I Key idea: represent a function u by the degree-n polynomial pn that
interpolates it at “Chebyshev points” (on [−1, 1], say):

xj = cos
“ jπ

n

”
, j = 0, . . . , n,

so that
pn(xj) = u(xj), j = 0, . . . , n.

I Then approximate u′(x) by p′n(x), etc.
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Chebyshev Pseudospectral Collocation Methods

I These operations can be encoded in matrices.
Represent u by its values on the Chebyshev grid:

u = [u(x0) u(x1) . . . u(xn)]T .

I Differentiation is them represented as a matrix-vector product:26664
u′(x0)
u′(x1)

...
u′(xn)

37775 ≈
26664

p′n(x0)
p′n(x1)

...
p′n(xn)

37775 = Du.

I To apply two derivatives, square the matrix:26664
u′′(x0)
u′′(x1)

...
u′′(xn)

37775 ≈
26664

p′′n (x0)
p′′n (x1)

...
p′′n (xn)

37775 = D2u.

I To impose Dirichlet boundary conditions on both ends, set
u(x0) = u(xn) = 0, and truncate the discretization to the interior
(n − 1)× (n − 1) submatrix.



Chebyshev Pseudospectral Collocation Methods

I To approximate, e.g., the L2 norm, we use Clenshaw–Curtis quadrature,
i.e., the exact integral of the Chebyshev interpolant.

‖u‖L2 ≈
nX

j=0

wj |u(xj)|2.

I Trefethen’s cheb.m MATLAB code constructs this differentiation matrix:
[D,x] = cheb(n)

I Trefethen’s clencurt.m MATLAB code constructs the Clenshaw-Curtis
notes and weights:
[x,w] = clencurt(n)

Code to discretize the Laplacian on [−1, 1] with homogeneous Dirichlet
boundary conditions, and compute its L2-norm pseudospectra:

[D,x] = cheb(n); % construct differentiation matrix on [-1,1]

L = D*D; % compute second derivative matrix

L = L(2:n,2:n); % impose homogeneous Dirichlet boundary conditions

[x,w] = clencurt(n); % Clenshaw-Curtis quadrature weights

R = diag(sqrt(w(2:n))); % matrix that defines the L2 norm, G = R’*R

eigtool(R*L/R) % compute pseudospectra

1
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Pseudospectra of Differential Operators: example 3

Consider the operator
Au = u + 3u′ + 3u′′ + u′′′

a(ΓR) for R = 8

10



Pseudospectra of Differential Operators: example 3

Consider the operator
Au = u + 3u′ + 3u′′ + u′′′

σε(A) for ` = 16, β = 1, γ = 2
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Pseudospectra of Differential Operators: example 3

Consider the operator
Au = u + 3u′ + 3u′′ + u′′′

σε(A) for ` = 50, β = 2, γ = 1
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5(b) Structured Pseudospectra



Structured Pseudospectra

Definition (ε-pseudospectrum)

For any ε > 0, the ε-pseudospectrum of A, denoted σε(A), is the set

σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}.

The choice E ∈ Cn×n might seem contrived: if you view pseudospectra as a
tool for understanding eigenvalue sensitivity, this perspective is reasonable.

I Eigenvalue computations
Stable algorithms give exact eigenvalues of A + E for ‖E‖ = O(‖A‖εmach).
Good methods for real A give real E.
Good methods for Hermitian A give Hermitian E.
Good methods for Hamiltonian A give Hamiltonian E.
Interval matrices have structured entries.

I Uncertain systems
The physical system often dictates that A have certain structure (e.g.,
Toeplitz, nonnegative, stochastic, etc.). Model uncertainty causes matrix
entries to change while preserving the structure.
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Structured Pseudospectra

Definition (ε-pseudospectrum)

For any ε > 0, the ε-pseudospectrum of A, denoted σε(A), is the set

σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}.

Concerns about structured perturbations motivate a new definition.

Definition (structured ε-pseudospectrum)

Let S denote some subset of Cn×n. For any ε > 0, the S-structured
ε-pseudospectrum of A, denoted σSε (A), is the set

σSε (A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ S with ‖E‖ < ε}.

I σSε (A) ⊆ σε(A) for any choice of S.
I We cannot equivalently define σSε (A) in terms of the resolvent norm or

pseudoeigenvectors.

cf. [Hinrichsen & Pritchard, 1990, 1992, 2005].



Structured Pseudospectra: Stochastic Example

Stochastic matrices have entries in [0, 1] with rows that sum to one.

2664
1/2 1/2 0

1/8 3/4 1/8

0 1/2 1/2

3775
2664

1/4 3/4 0

1/4 1/4 1/2

1/2 1/4 1/4

3775
We shall make structured perturbations of size bounded by ε = 1/4 that
preserve the stochastic structure of A.

Blue curves shows the boundary of σε(A) for ‖ · ‖ = ‖ · ‖∞.
Red dots show the eigenvalues of A. Black dots show eigenvalues for 1000 E.
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Structured Pseudospectra: Toeplitz Example

Consider a Toeplitz matrix with N = 50, a symbol used in Lecture 3:

a(z) = i z−4 + z−2 + 2z−1 + 5z2 + i z5.

The orange curves show the boundary of σε(A) for ε = 10−1 (unstructured).

I Compute 200 random unstructured perturbations and display eigenvalues.

I Compute 200 random Toeplitz perturbations and display eigenvalues.

Which plot is which?

TOEPLITZ UNSTRUCTURED
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Some Special Structures

On the last slide, we saw close apparent resemblance of the structured Toepltiz
pseudospectrum and unstructured pseudospectrum. In fact, this is a general
phenomenon for a number of important structures.

Theorem (Rump, 2006)

Suppose A ∈ S, where S comprises one of: complex symmetric, persymmetric,
circulant, Toeplitz, symmetric Toeplitz, Hankel or persymmetric Hankel
matrices. Then for all ε > 0,

σSε (A) = σε(A).

If S comprises Hermitian matrices and A ∈ S, then

σSε (A) = σε(A) ∩R.

If S comprises skew-Hermitian matrices and A ∈ S, then

σSε (A) = σε(A) ∩ iR.



Real Structured Perturbations

For most structures not covered by Rump’s Theorem, σSε (A) is very hard to
compute (e.g., when S contains matrices with the same sparsity pattern as A).

But several special cases are computable, e.g., with σSε (A) characterized for
small ε; see Karow et al. [2003 – 2011. . . ].

In many applications A contains only real entries; uncertainties in physical
parameters will only induce real perturbations.

Definition (real structured ε-pseudospectrum)

For any ε > 0, the real structured ε-pseudospectrum of A is the set

σR
ε (A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Rn×n with ‖E‖ < ε}.

cf. [Hinrichsen & Pritchard, 1990, 1992, 2005].



Real Structured Perturbations

The size of a complex perturbation required to make z an eigenvalue of A is:

dC(A, z) =
“

s1

`
(z − A)−1´”−1

.

The size of a real perturbation required to make z an eigenvalue of A is:

dR(A, z) =

 
inf

γ∈(0,1]
s2

 "
Re(z − A)−1 −γ Im(z − A)−1

γ−1Im(z − A)−1 Re(z − A)−1

#!!−1

[Qiu, Berhardsson, Rantzer, Davison, Young, Doyle, 1995].

The real structured pseudospectrum can be computed via the definition

σR
ε (A) = {z ∈ C : dR(A, z) < ε}

[Karow, 2003].



Complex versus Real Perturbations: Example 1

Consider the following Toeplitz matrix studied by Demmel [1987]:

A =

266664
−1 −M −M2 −M3 −M4

0 −1 −M −M2 −M3

0 0 −1 −M −M2

0 0 0 −1 −M
0 0 0 0 −1

377775
with M = 10.

The matrix is stable but small perturbations can move eigenvalues significantly.

How do the real structured pseudospectra compare
to the (unstructured) pseudospectra?



Complex versus Real Perturbations: Example 1

Complex and real pseudospectra for 5× 5 matrix, ε = 10−2, 10−3, . . . , 10−8
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Complex versus Real Perturbations: Example 1

Complex and real pseudospectra for 5× 5 matrix, ε = 10−4
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Complex versus Real Perturbations: Example 1

Complex and real pseudospectra for 5× 5 matrix, ε = 10−4
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Complex versus Real Perturbations: Example 2

Real perturbations need not describe transient behavior of dynamical systems.

Consider the matrix

A =

»
−1 M2

−1 −1

–
,M ∈ R

with spectrum σ(A) = {−1± iM}. For M = 100:
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Complex versus Real Perturbations

Consider the dynamical system

x′(t) =

»
−1 M2

−1 −1

–
x(t)

with M = 100.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

t

‖etA‖

Real perturbations suggest this system is far from unstable,
yet transient growth on the order of M is observed.



5(c) Generalized Eigenvalue Problems /

DAEs



Generalized Eigenvalue Problems

Problem

How should one adapt the definition of the ε-pseudospectrum to the
generalized eigenvalue problem

Ax = λBx ?

Equivalent definitions of σε(A) lead to different meanings for σε(A,B).

I Approach 1: eigenvalues of perturbations
σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}

I Approach 2: matrix behavior
σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε}
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GEPs: Eigenvalue Perturbation Approach

Approach 1: eigenvalues of perturbations

I σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}

Frayssé, Gueury, Nicoud, Toumazou [1996] proposed:

σε(A,B) = {z ∈ C : (A + E0)x = z(B + E1)x for some

x 6= 0 and E0, E1 with ‖E0‖ < εα0, ‖E1‖ < εα1},

where, e.g., either α0 = α1 = 1, or α0 = ‖A‖ and α1 = ‖B‖.

I This has an equivalent resolvent-like formulation:

σε(A,B) = {z ∈ C : ‖(Bz − A)−1‖(α0 + α1|z |) > 1/ε}.

I Generalized to matrix polynomials by Tisseur & N. Higham [2001, 2002];
see also Lancaster & Psarrakos [2005].

I Cf. [Boutry, Elad, Golub, Milanfar, 2005] for rectangular pencils.
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GEPs: Eigenvalue Perturbation Approach

A =

»
−1 −5M
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»
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GEPs: Eigenvalue Perturbation Approach

Consider solutions to Bẋ(t) = Ax(t) for the previous example:

A =

»
−1 −5M
0 −5

–
, B =

»
1 M
0 1

–
Note that

B−1A =

»
−1 0
0 −5

–
.

I Since B−1A is normal and stable, solutions to Bẋ(t) = Ax(t) cannot
exhibit growth.

I The parameter M affects the stability of eigenvalues of the pencil,
but has no influence on the solution of Bẋ(t) = Ax(t).
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exhibit growth.

I The parameter M affects the stability of eigenvalues of the pencil,
but has no influence on the solution of Bẋ(t) = Ax(t).



GEPs: Matrix Behavior Approach

I More generally, premultiplying

Bẋ(t) = Ax(t)

by some invertible matrix S

SBẋ(t) = SAx(t)

affects the perturbation theory of the pencil (SA,SB),
but not the system driven by (SB)−1(SA) = B−1A.

This fact suggests an alternative definition.

Approach 2: matrix behavior

I [Ruhe, 1995], [Riedel, 1994] proposed:
For A ∈ Cn×n and invertible B ∈ Cn×n,

σε(A,B) = σε(B−1A).
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Comparison of GEP Pseudospectra
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GEP: Behavior in Different Norms

Ruhe’s definition is closely related to Riedel’s [1994]:

I If B is Hermitian positive definite with Cholesky factorization B = LL∗,
then the ε-pseudospectrum of the matrix pencil (A,B) is the set

σε(A,B) = σε(L−1AL−∗).

This definition is the same as Ruhe’s definition, but in a different norm. Let

〈x, y〉B = y∗Bx, ‖x‖2B = x∗Bx.

Then
‖(z − L−1AL−∗)−1‖2 = ‖(z − B−1A)−1‖B.



Pseudospectra for DAEs

Suppose B is singular, but (A,B) is regular (det(zB−A) 6= 0 for some z ∈ C).

Bẋ(t) = Ax(t) is a differential-algebraic equation (DAE).

Simple example:

ẋ1(t) = −x1(t)

x1(t) = x2(t)

»
1 0
0 0

– »
ẋ1(t)
ẋ2(t)

–
=

»
−1 0
−1 1

– »
x1(t)
x2(t)

–

I Campbell & Meyer [1979], Campbell [1980]

I Kunkel & Mehrmann [2006]

I Descriptor systems: Benner, Byers, Mehrmann, Stykel, . . .



DAEs, Simplest Case: A Invertible

Suppose that A is invertible, so that we can write

Bẋ(t) = Ax(t)

in the form
A−1Bẋ(t) = x(t).

First take a (generalized) Schur decomposition,

A−1B = QTQ∗ =
ˆ

Q1 Q2

˜ » G D
0 N

– »
Q∗1
Q∗2

–
,

where Q is unitary, G is invertible, and N is nilpotent.
(The degree of nilpotency corresponds to the index of the DAE.)

This decomposition reveals the algebraic structure of the problem:

Bẋ(t) = Ax(t), x(0) = x0 has a solution if and only if x0 ∈ Range Q1.



DAEs, Simplest Case: A Invertible

A−1B =
ˆ

Q1 Q2

˜ » G D
0 N

– »
Q∗1
Q∗2

–
We wish to write the solution to the DAE as

x(t) = Q1y(t) + Q2z(t).

One can show that z(t) = 0 for all t, so we seek:

Gẏ(t) = y(t), z(t) = 0.

Hence write x(t) = Q1etG−1

y(0), i.e.,

x(t) = Q1etG−1

Q∗1 x0.

Special case: B invertible =⇒ Q1 = I and G = A−1B, so

x(t) = et G−1

x0 = et B−1Ax0.



Pseudospectra of (A, B) for Transient Analysis of DAEs

Suppose x0 ∈ Range Q1, with the columns of Q1 forming an orthonormal basis
for the invariant subspace of the pencil associated with finite eigenvalues. Then

x(t) = Q1etG−1

Q∗1 x0,

where G = Q∗1 A−1BQ1 ∈ Cm×m (m = # of finite eigenvalues).

We can bound the norm of the solution by

‖x(t)‖ ≤ ‖etG−1

‖‖x0‖.

Definition (Pseudospectra of a Regular Pencil, A invertible)

Consider the matrix pencil A− λB with A invertible, and Schur factorization

A−1B =
ˆ

Q1 Q2

˜ » G D
0 N

– »
Q∗1
Q∗2

–
for N nilpotent and 0 6∈ σ(G).
The ε-pseudospectrum of the matrix pencil (A,B) is

σε(A,B) := σε((Q∗1 A−1BQ1)−1).
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Examples: Stability Analysis for Incompressible Flow

Pseudospectra for a matrix pencil derived from incompressible flow
over a backward facing step, discretized via IFISS.
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Examples: Stability Analysis for Incompressible Flow

Pseudospectra for a matrix pencil derived from incompressible flow
over a backward facing step, discretized via IFISS.
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5(d) Polynomial Eigenvalue Problems



Pseudospectra for Polynomial Eigenvalue Problems

Higher order problems give rise to polynomial eigenvalue problems.

For example, with the second-order ODE

Mü(t) + Gu̇(t) + Ku(t) = 0

we associate the quadratic eigenvalue problem

(λ2M + λG + K)u = 0.

A typical numerical approach is to “linearize” this equation to obtain a
generalized eigenvalue problem: introduce

v := λu,

so that
λMv + Gv + Ku = 0.

Together, we have Ax = λBx of the form»
0 I
−K −G

– »
u
v

–
= λ

»
I 0
0 M

– »
u
v

–
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Pseudospectra for Polynomial Eigenvalue Problems

By transforming the quadratic problem

(λ2M + λG + K)u = 0.

into the form Ax = λBx, i.e.,»
0 I
−K −G

– »
u
v

–
= λ

»
I 0
0 M

– »
u
v

–
we can perform pseudospectral analysis on the generalized eigenvalue problem.

However: Generic perturbations A + E0 and B + E1 will destroy the structure
that derives from the second-order form.

Definition (Tisseur & Higham, 2001)

The ε-pseudospectrum σε(P) of the matrix polynomial
P(λ) = A0 + A1λ+ · · ·+ λdAd is the set

σε(P) = {z ∈ C : z ∈ σ(P + E) for some

E(λ) = E0 + λE1 + · · ·+ λdEd , ‖Ej‖ ≤ εαj , j = 0, . . . , d},

for nonnegative α0, . . . , αd .

For most applications, one would either take αj = 1 for all j , or αj = ‖Aj‖.
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Pseudospectra for Polynomial Eigenvalue Problems

Definition (Tisseur & Higham, 2001)

The ε-pseudospectrum σε(P) of the matrix polynomial
P(λ) = A0 + A1λ+ · · ·+ λdAd is the set

σε(P) = {z ∈ C : z ∈ σ(P + E) for some

E(λ) = E0 + λE1 + · · ·+ λdEd , ‖Ej‖ ≤ εαj , j = 0, . . . , d},

for nonnegative α0, . . . , αd .

For most applications, one would either take αj = 1 for all j , or αj = ‖Aj‖.

This definition restricts the perturbed problem to have the same structure as
the unperturbed problem.

»
0 I

−K− E0 −G− E1

– »
u
v

–
= λ

»
I 0
0 M + E2

– »
u
v

–
The resulting spectrum of each of these perturbations will be the spectrum
associated with a second-order system.



Pseudospectra for Polynomial Eigenvalue Problems

Definition (Tisseur & Higham, 2001)

The ε-pseudospectrum σε(P) of the matrix polynomial
P(λ) = A0 + A1λ+ · · ·+ λdAd is the set

σε(P) = {z ∈ C : z ∈ σ(P + E) for some

E(λ) = E0 + λE1 + · · ·+ λdEd , ‖Ej‖ ≤ εαj , j = 0, . . . , d},

for nonnegative α0, . . . , αd .

There is also an equivalent formulation in terms of resolvent norms.

Theorem (Tisseur & Higham, 2001)

The ε-pseudospectrum σε(P) of the matrix polynomial can equivalently be
characterized as

σε(P) = {z ∈ C : ‖P(z)−1‖ > 1/(εφ(|z |))},

where φ(z) =
Pd

j=0 αkzk for the same values of α0, . . . , αd used earlier.



Pseudospectra for Polynomial Eigenvalue Problems

From the perspective of eigenvalue computations, this approach is very helpful.

I Subsequent work by Higham, Tisseur, Mehl, Mehrmann, Mackey, and
Mackey investigates the eigenvalue conditioning of alternative
linearizations of the polynomial problem.

I This work aims to pick the linearization that gives the most stable
eigenvalues, to obtain accurately computed eigenvalues.

I A different perspective: If we are concerned with understanding the
behavior of the underlying dynamical system, we want to see and
understand physically-relevant instability that corresponds to the transient
behavior of our system. One can assess such growth through using the
conventional pseudospectrum of the linearization, measured in the energy
norm for the system.

I We shall investigate this idea using discretizations of a damped wave
equation:

utt(x , t) = uxx(x , t)− 2a(x)ut(x , t),

for x ∈ [0, 1] with u(0) = u(1) = 0.
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Physical Experiments

We have a small laboratory in which to conduct experiments with these
(inverse) eigenvalue problems.

HEARING BEADS ON A STRING 5

Finally, then, we arrive at the solution in the original coordinates, a beautiful, funda-
mental equation:

y(t) = Vz(t) =
n∑

j=1

cj cos(t
√

λj)vj .(2.2)

In words, the vector of vertical bead displacements is the superposition of eigenvectors,
each of which oscillates with frequency

√
λj . These frequencies govern the sound you

hear when the string is plucked; for a uniform continuous string, these frequencies
obey a harmonious even spacing.

3. Experimental Apparatus and Verification of the Forward Problem.
How well does the model we have just derived, which culminated with the solu-
tion (2.2), predict what really happens when a beaded string is plucked?

We investigate this question by conducting experiments on a high-precision mono-
chord constructed by students in our laboratory at Rice University; see Figure 3.1.
For the “massless string” we use a length of XX diameter metal musical wire. Tension
is measured with a force transducer placed at the end of the string. The string then
passes through a collet, which itself is mounted in a collet vise. The string then passes
through a photodetector that measures the vibrations at one point on the string.
Brass beads are threaded onto the string, which continues through a second collet.
(These beads have been carefully machined so as to snugly fit onto our wire.) Finally,
the string is wound upon a spindle, which is used to apply tension to the string. When
the desired tension is achieved, the collet vises are tightened, causing the collets to
fix the string at both ends.

Describe one or two examples demonstrating the success of the forward problem.
Probably a nice three-bead system would be good. Or we could use a symmetric four-
bead string for later use to cut down on space.

Talk about the FFT, in reference to equation (2.2). See, e.g., [2, 9].

4. Determining Mass and Position from Vibrations. Having seen the pre-
dictive ability of the forward model (2.2), we now address a more interesting – and
challenging – problem: Given knowledge of eigenvalues (e.g., as measured experimen-
tally as in the last section), can we “hear the beads on the string”? Can we determine
the bead positions and masses? This question is addressed in Supplement II of the
newly revised English edition of Gantmacher and Krein’s classic text on Oscillation
Matrices [6]. We aim to explicate their ideas, then test them in the laboratory.

4.1. Shooting functions. We approach this problem by first building two im-
portant sets of polynomials. In Section 2, we saw that the bead vibrations were
governed by the eigenvalues and eigenvectors of M−1K. A nonzero vector v is an

force
transducer

!

collet and vise

!

photodetector

!

collet and vise

"
"
"#

tensioner

!

Fig. 3.1. The monochord loaded with beads, as used in our experiments.
Apparatus inspired by string designer Fan Tao of J. d’Addario;
Designed by Sean Hardesty, Jeffrey Hokanson.



Dirichlet boundary conditions imposed via a collet



Measured eigenvalues of a real string

Measured eigenvalues of a homogeneous steel wire, driven at frequencies;
results from five trials [Hokanson, 2011].

Eigenvalues determined by Hokanson’s fast variant of VARPRO.
Frequencies (imaginary parts) are easy to find; real parts are more difficult.



Measured eigenvalues of a real string

departure from linear separation of frequencies

Quadratic separation is a characteristic of stiff strings [Hokanson, 2011];
cf. Bensa et al. [2003].



Canonical damping mechanisms

We can consider more exotic classes of damping functions.

viscous damping: utt = uxx − 2a(x)ut

Kelvin–Voigt: utt = uxx + (a(x)uxt)x

magnetic damping: utt = uxx − a(x)

Z 1

0

a(s)ut(s, t) ds

stiff strings: utt = c2uxx − κ2uxxxx − 2a(x)ut + 2b(x)uxxt

Each is posed on x ∈ [0, 1], t ≥ 0, with Dirichlet boundary conditions
u(0, t) = u(1, t) = 0 and initial conditions

u(x , 0) = u0(x), ut(x , 0) = v0(x).

These mechanisms are more sophisticated that “Rayleigh damping” that is
often seen in computational codes, where the eigenvalues of the damped
problem are a simple function of the eigenvalues of the undamped problem.
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General framework

To analyze, we write these operators as first-order time-evolution problems,
(mostly) of the form »

u
ut

–
t

=

»
0 I

d2/dx2 G

– »
u
ut

–
,

where G denotes the damping operator. We rewrite as

Ut = AU,

and are interested in the decay of the semigroup A generates. Here (usually)

U =

»
u
v

–
∈ Dom(A) = (H1

0 (0, 1) ∩ H2(0, 1))× H1
0 (0, 1)

with energy inner productfi»
f
g

–
,

»
u
v

–fl
E

=

Z 1

0

`
f ′(x)u′(x) + g(x)v(x)

´
dx .

Discretized computations should be faithful to this inner product.
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Discretization

With finite elements, »
u
ut

–
t

=

»
0 I

d2/dx2 G

– »
u
ut

–
leads to a system of the form»

I 0
0 M

– »
u
v

–
t

=

»
0 I
−K −G

– »
u
v

–
.

|{z}
SPD
��

SPD
���

structured
AAK

When G is well-behaved, we prefer a Chebyshev spectral discretization,
where M = I and K is only “spiritually SPD”.
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Undamped problem

When G = 0, we have the undamped wave operator

A =

»
0 I

d2/dx2 0

–
,

which is skew-adjoint in the energy inner product:

A∗ =

»
0 −I

−d2/dx2 0

–
.

Consequences:

I eigenvalues are purely imaginary: σ(A) = {±kπ i : k = 1, 2, . . .};

I eigenvectors are U±k =

»
sin(kπx)

±kπ i sin(kπx)

–
;

I operator is normal;

I σε(A) comprises the union of open ε-balls about each of the eigenvalues.

I energy of solutions to Ut = AU is conserved: ‖U(t)‖ = ‖U(0)‖.



Undamped problem

Pseudospectra (posed on [0, π], so eigenvalues are λ±k = ±k i)
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Since A is normal, pseudospectra are the union of ε-balls about the eigenvalues.



Viscous damping: G (x)v(x) = −2a(x)v(x)

Pseudospectra for a(x) ≡ 3 (posed on [0, π]):
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When a is constant, σ(A) = {−a±
√

a2 − k2 : k = 1, 2, . . .}



Wave Equation with Constant Damping: Transient Behavior

Though a = π gives optimal asymptotic decay, it is not best at all time scales.
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Viscous damping: G (x)v(x) = −2a(x)v(x)

Cox and Overton [1996] asked, “Is constant damping optimal?”
Freitas [1998], Cox and Castro [2001] show not.

Pseudospectra for a(x) = 1/(x + 10−10):

. . . but asymptotic optimality comes at the expense of sensitive eigenvalues.



Wave Equation with Optimal Damping: Transient Behavior
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I Transient slow convergence before eventual rapid decay.

I Note (approximate) extinction at t = 2.



Kelvin–Voigt damping: G (x)v(x) = (a(x)vt(x))x

Pseudospectra for a(x) ≡ 2/5:
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: k = 1, 2, . . .

o
.

See, e.g., [Liu and Liu 2002; Renardy 2004]



Magnetic damping: G (x)v(x) = −a(x)
∫ π
0 a(s)v(s) ds

Pseudospectra for a(x) ≡ 1:
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Inverse problem for Viscous Damping

I We are interested in designing strings that sound a certain way.

I How can you distribute the damping material to give a certain sound?

I If you can “listen” to a string, can you recover its spectrum?

I From the spectrum, can you determine the damping coefficient?

We have an asymptotic method to estimate an even a(x) from eigenvalue data
[Cox & E., 2011].



Inverse problem for Viscous Damping

I We are interested in designing strings that sound a certain way.

I How can you distribute the damping material to give a certain sound?

I If you can “listen” to a string, can you recover its spectrum?

I From the spectrum, can you determine the damping coefficient?

We have an asymptotic method to estimate an even a(x) from eigenvalue data
[Cox & E., 2011].



Accuracy of Spectral Asymptotics for Damped String

• true eigenvalues
◦ asymptotic expression



Accuracy of Spectral Asymptotics for Damped String

Even at low frequencies, our asymptotic formula often does well.

For the damping function on the previous slide:

k λk(a) error

1 −1.00122 + 2.97964 i 0.0269879
2 −1.00106 + 6.20514 i 0.0167440
3 −1.00228 + 9.37615 i 0.0144677
4 −0.97180 + 12.53868 i 0.0197670
5 −1.21888 + 15.66851 i 0.0022341
6 −0.77494 + 18.82612 i 0.0080114
7 −1.02197 + 21.95436 i 0.0097917
8 −0.99174 + 25.10548 i 0.0036935
9 −0.99287 + 28.25021 i 0.0026511

10 −0.99374 + 31.39954 i 0.0005894



Recovery of Even Viscous Damping

damping function
reconstructed from 5 eigenvalues



Recovery of Even Viscous Damping

damping function
reconstructed from 10 eigenvalues



Recovery of Even Viscous Damping

damping function
reconstructed from 20 eigenvalues



Recovery of Even Viscous Damping

damping function
reconstructed from 40 eigenvalues



A Cautionary Example for Inverse Eigenvalue Problems

A damping function of Freitas [1998] that beat the best constant conjecture.

• true eigenvalues
◦ asymptotic expression



A Cautionary Example for Inverse Eigenvalue Problems

A damping function of Freitas [1998] that beat the best constant conjecture.

damping function
reconstructed from 5 eigenvalues



A Cautionary Example

good reconstruction poor reconstruction

Pseudospectra hint at the problem. . . .



5(e) Applications



Overview of the Course

These lectures describe modern tools
for the spectral analysis of dynamical systems.

We shall cover a mix of theory, computation, and applications.

By the end of the week, you will have a thorough understanding of the sources
of nonnormality, its affects on the behavior of dynamical systems, tools for

assessing its impact, and examples where it arises.

You will be able to understand phenomena that many people find
quite mysterious when encountered in the wild.

Hopefully I have fulfilled this promise.

Thank you for your engagement and interest!


