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Overview of the Course

These lectures describe modern tools
for the spectral analysis of dynamical systems.

We shall cover a mix of theory, computation, and applications.

Lecture 1: Introduction to Nonnormality and Pseudospectra

Lecture 2: Functions of Matrices

Lecture 3: Toeplitz Matrices and Model Reduction

Lecture 4: Model Reduction, Numerical Algorithms, Differential Operators

Lecture 5: Discretization, Extensions, Applications



Outline for Today

Lecture 4: Differential Opeartors and Behavior of Numerical Algorithms

I Nonnormality and Lyapunov Equations

I Moment Matching Model Reduction

I Nonnormality in Iterative Linear Algebra

I Pseudospectra of Operators on Infinite Dimensional Spaces

I Pseudospectra of Differential Operators



4(a) Nonnormality and Lyapunov Equations



Lyapunov Equations

Balanced Truncation required the controlability and observability gramians

P :=

Z ∞
0

etAbb∗etA∗ dt, Q :=

Z ∞
0

etA∗c∗cetA dt

Hermitian positive definite, for a controllable and observable stable system.

Similarly, the total energy of the state in ẋ = Ax is given byZ ∞
0

‖x(t)‖2 dt =

Z ∞
0

x∗0 etA∗etAx0 dt = x∗0
“Z ∞

0

etA∗etA dt
”

x0 = x∗0 Ex0.

These integrals can be found as the solution of a Lyapunov equation.

AP + PA∗ =

Z ∞
0

“
AetAbb∗etA∗ + etAbb∗etA∗A∗

”
dt

=

Z ∞
0

d

dt

“
etAbb∗etA∗

”
dt

=
h
etAbb∗etA∗

i∞
t=0

= −bb∗.

Hence, P, Q, and E satisfy:

AP + PA∗ = −bb∗, A∗Q + QA = −c∗c, A∗E + EA = −I.
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Lyapunov Equations: Properties of the Solution

AP + PA∗ = −bb∗ A∗Q + QA = −c∗c A∗E + EA = −I

I Under natural assumptions, P, Q, and E are Hermitian, positive definite.

I In general, P, Q, and E are dense n × n matrices.

I Key obstacle: We seek P and Q to perform model reduction, which
suggests that the state space dimension n is large (e.g., 105 or larger).
It could be impossible to store these solutions on modern computers.

I Penzl [2000] observed, however, that when the right hand side is low rank,
the singular values of the solution often decay rapidly.
See also [Gudmundsson and Laub 1994].

I Such solutions can be approximated to high accuracy by low-rank matrices.
Thus, the approximate solutions can be stored very efficiently.
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Lyapunov Equations: Properties of the Solution

“CD Player” from SLICOT



Lyapunov Equations: Properties of the Solution

“International Space Station” from SLICOT



Lyapunov Equations: Properties of the Solution

“Eady” storm track model from SLICOT



Decay of Singular Values of Lyapunov Solutions

The eigenvalues of A affect the rate of decay, as seen in this example.

Normal matrices: A = tridiag(−1, α, 1) with spectrum

σ(A) ⊆ {α + iy : y ∈ [−2, 2]}.
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Convergence slows as α ↑ 0, i.e., eigenvalues move toward imaginary axis.



Decay of Singular Values of Lyapunov Solutions

Normal example: A = tridiag(−L,−1, L) with spectrum

σ(A) ⊆ {−1 + iy : y ∈ [−2L, 2L]}.
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Convergence slows as L increases, though the spectral abscissa is unchanged.



Decay of Singular Values of Lyapunov Solutions

Let sk denote the kth singular value of P, sk ≥ sk+1.

I For Hermitian A, bounds on sk/s1 have been derived by
Penzl [2000], Sabino [2006] (see Ellner & Wachspress [1991]).

I For diagonalizable A = VΛV−1, Antoulas, Sorensen, and Zhou [2002] prove

sk+1 ≤ κ(V)2δk+1‖b‖2(N − k)2, δk =
−1

2Reλk

k−1Y
j=1

|λk − λj |2

|λk + λj |2
.

The κ(V)2 term imposes a significant penalty for nonnormality;
cf. [Truhar, Tomljanović, Li 2009].

We seek a bound that gives a more flexible approach, by enlarging
the set over which we study rational functions like δk .



Decay of Singular Values of Lyapunov Solutions

The ADI iteration [Wachspress 1988; Penzl 2000] constructs a rank-k
approximation Pk to P.

I Pick shifts µ1, µ2, . . . , .

I Set

Aµj = (µj − A)(µj + A)−1, bµj =
p
−2Reµj(µj + A)−1b.

I Set P0 := 0.

I For k = 1, 2, . . . , p

Pk := Aµk
Pk−1A∗µk

+ bµk
b∗µk

.

I Then the solution P satisfies

P− Pk = φ(A)Pφ(A)∗,

where rank(Pk) ≤ k and

φ(z) =
kY

j=1

µj − z

µj + z
.



Decay of Singular Values of Lyapunov Solutions

I For comparison, the bound of Antoulas, Sorensen, Zhou [2002]:

sk+1 ≤ κ(V)2δk+1‖b‖2(N − k)2, δk =
−1

2Reλk

k−1Y
j=1

|λk − λj |2

|λk + λj |2
.

I The ADI iteration gives P−Pk = φ(A)Pφ(A)∗, where rank(Pk) ≤ k and

φ(z) =
kY

j=1

µj − z

µj + z
.

I Hence sk+1 ≤ ‖φ(A)‖2‖P‖ = ‖φ(A)‖2 s1.

Theorem (Pseudospectral Bound on Singular Value Decay)

Using the fact that rank(Pk) ≤ k,

sk+1

s1
≤ min

µ1,...,µk

‖φ(A)‖2
2 ≤

„
Lε

2πε

«2

min
µ1,...,µk

sup
z∈σε(A)

kY
j=1

|µj − z |2

|µj + z |2 ,

where Lε is the boundary length of a contour enclosing σε(A)

[Beattie, E., Sabino; cf. Beckermann (2004)].



Singular Values of Lyapunov Solutions
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where Lε is the boundary length of a contour enclosing σε(A)

I How should one choose the shifts, µ1, µ2, . . .?

I One can pick the shifts to minimize the upper bound, i.e., be
asymptotically optimal rational interpolation points for σε(A)
for some ε > 0.

I Other heuristics are also effective. For example, Sabino [2006] shows that
MATLAB’s fminsearch can give excellent results for a few shifts.
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Examples of the Decay Bound Based on Pseudospectra
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Examples of the Decay Bound Based on Pseudospectra
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Spectrum, pseudospectra, and numerical range (boundary = dashed line)



Examples of the Decay Bound Based on Pseudospectra
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Any Decay Possible for Any Spectrum

Theorem (Penzl, 2000)

Let A be stable and b some vector such that (A, b) is controllable. Given any
Hermitian positive definite P, there exists some invertible matrix S such that

(SAS−1)P + P(SAS−1) = −(Sb)(Sb)∗.

Any singular value decay is possible for a matrix with any eigenvalues.

Proof. The proof is a construction.

I Solve AY + YA∗ = −bb∗ for Y.
(Y is Hermitian positive definite, since (A, b) controllable.)

I Set S := P1/2Y−1/2.

I Notice that SYS∗ = P1/2Y−1/2 YY−1/2P1/2 = P.

I Define bA := SAS−1, bb := Sb.

Now it is easy to verify that P solves the desired Lyapunov equation:bAP + PbA∗ = (SAS−1)(SYS∗) + (SYS∗)(S−∗AS∗)

= S(AY + YA)S∗ = −(Sb)(Sb)∗ = −bbbb∗.



A Nonnormal Anomaly

The pseudospectral bound and the bound of Antoulas, Sorensen, and Zhou
both predict that the decay rate slows as nonnormality increases.

However, for the solutions to Lyapunov equations this intuition can be wrong
[Sabino 2006].

Consider

A =

»
−1 α
0 −1

–
, b =

»
t
1

–
, t ∈ R.

As α grows, A’s departure from normality grows.
All bounds suggest that the ‘decay’ rate should worsen as α increases.

The Lyapunov equation AP + PA∗ = −bb∗ has the solution

P =
1

4

»
2t2 + 2αt + α2 α + 2t

α + 2t 2

–
.

For each α, we wish to pick t to maximize the ‘decay’, i.e., s2/s1.
This is accomplished for t = −α/2, giving

s2

s1
=


α2/4, 0 < α ≤ 2;
4/α2, 2 ≤ α.
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Jordan block: 2 × 2 case, numerical illustration
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4/α2, 2 ≤ α.

Blue dots: s2/s1 for random b and 2000 α values.

The effect of nonnormality on Lyapunov solutions
remains only partially understood.
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4(d) Moment Matching Model Reduction



Krylov methods for moment matching model reduction

We now turn to a model reduction approach where nonnormality plays a crucial
role. Once again, begin with the SISO system

ẋ(t) = Ax(t) + bu(t)

y(t) = cx(t) + du(t),

with A ∈ Cn×n and b, cT ∈ Cn and initial condition x(0) = x0.

Compress the state space to dimension k � n via a projection method:

ḃx(t) = bAbx(t) + bbu(t)by(t) = bcbx(t) + du(t),

where bA = W∗AV ∈ Ck×k , bb = W∗b ∈ Ck×1, bc = cV ∈ C1×k

for some V,W ∈ Cn×k with W∗V = I.

The matrices V and W are constructed by a Krylov subspace method.



Krylov methods for moment matching model reduction

bA = W∗AV ∈ Ck×k , bb = W∗b ∈ Ck×1, bc = cV ∈ C1×k

Arnoldi Reduction

If V = W and the columns of V span the kth Krylov subspace,

Ran(V) = Kk(A, b) = span{b,Ab, . . . ,Ak−1b},

then the reduced model matches k moments of the system:

bcbAjbb = cAj b, j = 0, . . . , k − 1.

Bi-Lanczos Reduction

If the columns and V and W span the Krylov subspaces

Ran(V) = Kk(A, b) = span{b,Ab, . . . ,Ak−1b}
Ran(W) = Kk(A∗, c∗) = span{c∗,A∗c∗, . . . , (A∗)k−1c∗},

then the reduced model matches 2k moments of the system:

bcbAjbb = cAj b, j = 0, . . . , 2k − 1.



Stability of Reduced Order Models

Question

Does the reduced model inherit properties of the original system?

Properties include stability, passivity, second-order structure, etc.

In this lecture we are concerned with stability – and, more generally, the
behavior of eigenvalues of the reduced matrix bA.

Observation

For Arnoldi reduction, the eigenvalues of bA are contained in the numerical range

W (A) = {x∗Ax : ‖x‖ = 1} .

Proof: If bAz = θz for ‖z‖ = 1, then θ = z∗V∗AV∗z = (Vz)∗A(Vz), where
‖Vz‖ = ‖z‖ = 1

No such bound for Bi-Lanczos: the decomposition may not even exist.
For the famous ‘CD Player’ model, cb = 0: method breaks down at first step.
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Stability and Bi-Lanczos

For Bi-Lanczos, the stability question is rather more subtle.

For example, if b and c are nearly orthogonal,
the (1,1) entry in bA = W∗AV will generally be very large.

Given a fixed b, one has much freedom to rig poor results via c:

[A]ny three-term recurrence (run for no more than (n +2)/2 steps,
where n is the size of the matrix) is the two-sided Lanczos algo-
rithm for some left starting vector. [Greenbaum, 1998]



Example: Arnoldi Reduction for Normal versus Nonnormal

The eigenvalues of bA are known as Ritz values.

normal matrix nonnormal matrix

Eigenvalues (•), Ritz values (◦), and numerical range for isospectral matrices.



A Remedy for Unstable Arnoldi Models?

One can counteract instability by restarting the Arnoldi algorithm
to shift out unstable eigenvalues [Grimme, Sorensen, Van Dooren, 1994];
cf. [Jaimoukha and Kasenally, 1997].

I bA := V∗AV has eigenvalues θ1, . . . , θk (Ritz values for A)

I Suppose θ1, . . . , θp are in the right half plane.

I Replace the starting vector b by the filtered vector

b+ = ψ(A)b, ψ(z) =

pY
j=1

(z − θj),

where the filter polynomial ψ “discourages” future Ritz values near the
shifts θ1, . . . , θp.

I Build new matrices V, bA with starting vector b+ (implicit restart).

I Now modified moments, b∗ψ(A)∗Ajψ(A)b, will be matched.

Repeat this process until bA has no unstable modes.



Matching the Moments of a Nonnormal Matrix

Model of flutter in a Boeing 767 from SLICOT (n = 55),
stabilized by Burke, Lewis, Overton [2003].
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Matching the Moments of a Nonnormal Matrix

Model of flutter in a Boeing 767 from SLICOT (n = 55),
stabilized by Burke, Lewis, Overton [2003].
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σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε}

see [Trefethen & E. 2005]



Reduction via Restarted Arnoldi
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Reduction via Restarted Arnoldi
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Reduced system is stable, but underestimates
transient growth by several orders of magnitude.



Aggregate Filter Polynomials

Color indicates relative size of log10 |ψ(z)|.

first restart



Aggregate Filter Polynomials

Color indicates relative size of log10 |ψ(z)|.

second restart



Aggregate Filter Polynomials

Color indicates relative size of log10 |ψ(z)|.

third restart



Aggregate Filter Polynomials

Color indicates relative size of log10 |ψ(z)|.

fourth restart



Nonlinear Heat Equation: Revisited

Linear models often arise as linearizations of nonlinear equations.

Consider the nonlinear heat equation on x ∈ [−1, 1] with u(−1, t) = u(1, t) = 0

ut(x , t) = νuxx(x , t) +
√
νux(x , t) + 1

8
u(x , t) + u(x , t)p

with ν > 0 and p > 1 [Demanet, Holmer, Zworski].

The linearization L, an advection–diffusion operator,

Lu = νuxx +
√
νux + 1

8
u

has eigenvalues and eigenfunctions

λn = −1

8
− n2π2ν

4
, un(x) = e−x/(2

√
ν) sin(nπx/2);

see, e.g., [Reddy & Trefethen 1994].

The linearized operator is stable for all ν > 0, but has interesting transients . . . .



Nonnormality in the Linearization

−5 −4 −3 −2 −1 0 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−6

−5

−4

−3

−2

−1

0

Spectrum, pseudospectra, and numerical range (L2 norm, ν = 0.02)

Transient growth can feed the nonlinearity
cf. [Trefethen, Trefethen, Reddy, Driscoll 1993], . . . .
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Spectrum, pseudospectra, and numerical range (L2 norm, ν = 0.02)

Transient growth can feed the nonlinearity
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Nonnormality in the Linearization

Spectrum, pseudospectra, and numerical range (L2 norm, ν = 0.02)

Transient growth can feed the nonlinearity
cf. [Trefethen, Trefethen, Reddy, Driscoll 1993], . . . .



Transient Behavior
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Transient Behavior

Linearized system (black) and nonlinear system (dashed blue)

Nonnormal growth feeds the nonlinear instability.

Red line: estimated “lower bound”: z‖(z − A)−1‖‖u0(t)‖L2 for z = 0.02.



Transient Behavior: Reduction of the Linearized Model

−3 −2.5 −2 −1.5 −1 −0.5 0

x 10
4

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

entire spectrum zoom

Spectral discretization, n = 128 (black) and Arnoldi reduction, m = 10 (red).

[Many Ritz values capture spurious eigenvalues of the discretization of the left.]



Transient Behavior: Reduction of the Linearized Model
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Transient Behavior: Reduction of the Linearized Model
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Spectral discretization, n = 128 (black) and Arnoldi reduction, m = 10 (red)
after a restart to remove the spurious eigenvalue.

[This effectively pushes Ritz values to the left.]



Transient Behavior: Reduction of the Linearized Model
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after one restart to remove the spurious eigenvalue.



Transient Behavior: Reduction of the Linearized Model
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4(c) Nonnormality in Iterative Linear Algebra



Nonnormality and Iterative Linear Algebra

We wish to describe the role of nonnormality in the iterative solution of
differential equations.

The GMRES algorithm produces optimal iterates xk whose residuals
rk = b− Axk satisfy

‖rk‖ ≤ min
p∈Pk
p(0)=1

‖p(A)b‖,

where Pk denotes the set of polynomials of degree k or less.

Applying the Cauchy integral theorem bound,

‖rk‖
‖b‖ ≤

Lε
2πε

min
p∈Pk
p(0)=1

sup
z∈σε(A)

|p(z)|.

Different ε values give the best bounds at different stages of convergence.

Illustrations and applications: [Trefethen 1990; E. 2000; Sifuentes, E., Morgan 2011].



GMRES Convergence: Example

Pseudospectral bound for convection–diffusion problem, n = 2304.

ε = 10−3.5, 10−3, 10−3.5, . . . , 10−13

�	
ε = 10−3.5

-
ε =
10−13

Bound σε(A) with a circle centered at c, use pk(z) = (1− z/c)k .



Perturbed GMRES and Approximate Preconditioning

I We shall show how psedospectra can be used to bound GMRES
convergence when the coefficient matrix A is slightly perturbed.
[Sifuentes, E., Morgan, 2011]

I The primary application result of this work is approximate preconditioning,
where we aim to solve Ax = b by the modified system

PAx = Pb

for some invertible P.

I Often one knows an “ideal” preconditioner that is expensive to compute,
but for which σ(PA) is easy to analyze. In practice, P is only applied
approximately. How accurate must it be to provide similar convergence to
the exact preconditioner?



An illustrative example

2d Advection–Diffusion discretized with SUPG
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[Fischer, Ramage, Silvester, Wathen 1999]

[Ernst 2000], [Liesen, Strakoš 2005]

Matrix is of order n = 162.
A + E1: slightly change wind direction
A + E2: random perturbation
‖E1‖ = ‖E2‖ ≈ 5.86× 10−4

• eigenvalues of coefficient matrix

• harmonic Ritz values (roots of GMRES residual polynomial)

blue color denotes log10 |pk(z)| in the complex plane (white =⇒ smaller)



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 1

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 2

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 3

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 4

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 5

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 6

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 7

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 8

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 9

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 10

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 11

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 12

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 13

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 14

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 15

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 16

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 17

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 18

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 19

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 20

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 21

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 22

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 23

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 24

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 25

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 26

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 27

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 28

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 29

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



An illustrative example

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
original problem

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
structured perturbation

0 0.05 0.1 0.15
−0.075

−0.05

−0.025

0

0.025

0.05

0.075
random perturbation

Iteration 30

0 5 10 15 20 25 30
10

−10

10
−5

10
0

k

re
la

ti
ve

re
si

d
u
al

n
or

m

 

 

original
structured
random

� ‖E‖/‖A‖



Analysis via Cauchy integrals

Define

original problem: rk = pk(A)r0

perturbed problem: ρk = φk(A + E)r0

Note that

‖ρk‖ − ‖rk‖ = ‖φk(A + E)r0‖ − ‖pk(A)r0‖

≤ ‖pk(A + E)r0‖ − ‖pk(A)r0‖

≤
‚‚`pk(A + E)− pk(A)

´
r0

‚‚.

For appropriate Γ, we write

pk(A) =
1

2πi

Z
Γ

pk(z)(z − A)−1 dz

pk(A + E) =
1

2πi

Z
Γ

pk(z)(z − A− E)−1 dz .



Analysis via Cauchy integrals

Define

original problem: rk = pk(A)r0

perturbed problem: ρk = φk(A + E)r0

Note that

‖ρk‖ − ‖rk‖ = ‖φk(A + E)r0‖ − ‖pk(A)r0‖

≤ ‖pk(A + E)r0‖ − ‖pk(A)r0‖

≤
‚‚`pk(A + E)− pk(A)

´
r0

‚‚.
For appropriate Γ, we write

pk(A) =
1

2πi

Z
Γ

pk(z)(z − A)−1 dz

pk(A + E) =
1

2πi

Z
Γ

pk(z)(z − A− E)−1 dz .



Sharper analysis via Cauchy integrals

pk(A) =
1

2πi

Z
Γ

pk(z)(z − A)−1 dz

pk(A + E) =
1

2πi

Z
Γ

pk(z)(z − A− E)−1 dz .

Key fact: the resolvent is robust to perturbations if Γ is chosen properly:

(z − A− E)−1 =
`
(z − A)(I− (z − A)−1E)

´−1

= (I− (z − A)−1E)−1(z − A)−1.

Our bound thus becomes:

‖ρk‖ − ‖rk‖
‖r0‖

≤ LΓ

2π

“
max
z∈Γ
|pk(z)|

”“
max
z∈Γ
‖(I− (z − A)−1E)−1‖

”“
max
z∈Γ
‖(z − A)−1‖

”
.
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Bounding the perturbed resolvent

Two options ‖(I− (z − A)−1E)−1‖:

I if rank(E)� n, use Sherman-Morrison;

I if ‖E‖ < 1/‖(z − A)−1‖ for z ∈ Γ, then use a Neumann series:

‖(I− (z − A)−1E)−1‖ =
‚‚ ∞X

k=1

(z − A)−1E
‚‚

=
‖E‖ ‖(z − A)−1‖

1− ‖E‖ ‖(z − A)−1‖ .

Thus, our bound takes the form

‖ρk‖ − ‖rk‖
‖r0‖

≤ LΓ

2π

“
max
z∈Γ
|pk(z)|

”“
max
z∈Γ

‖E‖ ‖(z − A)−1‖2

1− ‖E‖ ‖(z − A)−1‖

”
.

For this approach to perturbed matrix functions:
R. F. Rinehart, “The Derivative of a Matric Function,” Proc. A.M.S., 1956.
E. B. Davies, “Approximate Diagonalization,” SIAM J. Matrix Anal., 2007.



How to select the contour Γ ?

‖ρk‖ − ‖rk‖
‖r0‖

≤ LΓ

2π

“
max
z∈Γ
|pk(z)|

”“
max
z∈Γ

‖E‖ ‖(z − A)−1‖2

1− ‖E‖ ‖(z − A)−1‖

”
.

We have competing goals that affect the selection of Γ:

I Γ should be close enough to the spectrum of A that |pk(z)| is small;

I Γ should be far enough from the spectrum of A that ‖(z − A)−1‖ is small.



How to select the contour Γ ?

‖ρk‖ − ‖rk‖
‖r0‖

≤ LΓ

2π

“
max
z∈Γ
|pk(z)|

”“
max
z∈Γ

‖E‖ ‖(z − A)−1‖2

1− ‖E‖ ‖(z − A)−1‖

”
.

Take Γ to be the boundary of the δ-pseudospectrum, σδ(A).
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|p18(z)| = 100, 10−1, . . . , 10−5
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cf. [Trefethen 1990; Toh & Trefethen 1998]



Perturbation bounds for GMRES based on pseudospectra

‖ρk‖ − ‖rk‖
‖r0‖

≤ LΓ

2π

“
max
z∈Γ
|pk(z)|

”“
max
z∈Γ

‖E‖ ‖(z − A)−1‖2

1− ‖E‖ ‖(z − A)−1‖

”
.

Select Γ = ∂σδ(A) for some δ > ε := ‖E‖:

‖ρk‖
‖r0‖

≤ ‖rk‖
‖r0‖

+
Lδ

2πδ

“ ε

δ − ε

”“
max

z∈σδ(A)
|pk(z)|

”
.

Note that σ(A + E) ⊂ σε(A) ⊂ σδ(A).

Alternatively, we can bound ‖ρk‖ above independent of the specific pk :

‖ρk‖
‖r0‖

≤ Lδ
2πδ

“ δ

δ − ε

”“
min
p∈Pk
p(0)=1

max
z∈σδ(A)

|p(z)|
”
.



Example: SUPG Matrix for N = 32, ν = 0.01

N = 32, ν = 0.01 =⇒ A ∈ R1024×1024.

perturbation size: ‖E‖ = 10−4‖A‖

original GMRES residual curve for Ax = b

perturbed GMRES residual curve for (A + E)x = b

upper bound on perturbed residual
(δ = 10−5.2, 10−5, 10−4.5, . . . , 10−3, 10−2.9)



Example: SUPG Matrix for N = 32, ν = 0.01

N = 32, ν = 0.01 =⇒ A ∈ R1024×1024.

perturbation size: ‖E‖ = 10−6‖A‖

original GMRES residual curve for Ax = b

perturbed GMRES residual curve for (A + E)x = b

upper bound on perturbed residual
(δ = 10−7.2, 10−7, 10−6.5, . . . , 10−3, 10−2.9)



Example: SUPG Matrix for N = 32, ν = 0.01

N = 32, ν = 0.01 =⇒ A ∈ R1024×1024.

perturbation size: ‖E‖ = 10−8‖A‖

original GMRES residual curve for Ax = b

perturbed GMRES residual curve for (A + E)x = b

upper bound on perturbed residual
(δ = 10−9.2, 10−9, 10−8.5, . . . , 10−3, 10−2.9)



Nonnormality in Eigenvalue Computations

Here we shall only consider the simplest iterative method for computing
eigenvalues: the power method.

Given a starting vector x0, repeatedly apply A:

xk = Akx0.

Assume A is diagonalizable,

A =
nX

j=1

λjvjbv∗j
with eigenvalues

|λ1| > |λ2| ≥ · · · ≥ |λn|.
Then if x0 =

P
γjvj , then

xk = Akx0 =
nX

j=1

λk
j vj .

Hence if γ1 6= 0, as k →∞
∠(xk , v1)→ 0

at the asymptotic rate |λ2|/|/|λ1|.
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Transient Behavior of the Power Method

Large coefficients in the expansion of x0 in the eigenvector basis can lead to
cancellation effects in xk = Akx0.

Example: here different choices of α and β affect eigenvalue conditioning,

A =

241 α 0
0 3/4 β
0 0 −3/4

35 , v1 =

241
0
0

35 , v2 =

24−4α
1
0

35 , v3 =

248αβ/21
−2β/3

1

35 .

:
v1

6v3

}
v2

x0
x2

x4
x6

x8

x1

x3
x5

x7 :
v2:
v1

6
v3

x0

x1, ..., x8 :
v1

i
v3

k
v2

x0
x2

x4
x6

x8x1

x3 x5 x7

normal nonnormal nonnormal
v1 ⊥ v2 ⊥ v3 v1 6⊥ v2 ⊥ v3 v1 ⊥ v2 6⊥ v3

α = β = 0 α = 10, β = 0 α = 0, β = 10

Cf. [Beattie, E., Rossi 2004; Beattie, E., Sorensen 2005]
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4(d) Pseudospectra of Operators



Pseudospectra with More General Norms

Recall our definition of pseudospectra of a matrix from Lecture 1.

Definition (ε-pseudospectrum)

For any ε > 0, the ε-pseudospectrum of A, denoted σε(A), is the set

σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}.

At the time, we assumed that ‖ · ‖ was the vector 2-norm on Cn and the
“operator norm” it induces,

‖A‖ = sup
‖x‖=1

‖Ax‖.

Now we address various generalizations:

I More general induced/operator norms on Cn;

I Matrix norms on Cn×n not induced by vector norms;

I Infinite dimensional Banach or Hilbert spaces, with the operator norm.

In applications, the use of the proper norm is an essential (but sometimes
overlooked) aspect of pseudospectral theory.



Equivalent definitions in the induced 2-norm

Suppose for the moment that we still use the vector 2-norm, ‖x‖ =
√

x∗x.

In our discussion (especially about computing pseudospectra) we have
occasionally used the fact that

‖(z − A)−1‖ =
1

smin(z − A)
.

Theorem

The following four definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};

2a. σε(A) = {z ∈ C : smin(z − A) < ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.

This equivalence (2)=(2a) is a property of the vector 2-norm that can be
extended to any norm induced by an inner product, 〈x, y〉 := yTGx for

G Hermitian positive definite; the adjoint becomes A? = G−1A
T

G.



Pseudospectra with Induced Norms on Cn

Let ‖ · ‖ denote any vector norm on Cn and let

‖A‖ = sup
‖x‖=1

‖Ax‖.

The equivalence of the three definitions of the ε-pseudospectrum still hold, but
one proof gets generalized.

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.

Proof. (3) =⇒ (1)

Given a unit vector v such that ‖Av − zv‖ < ε, define r := Av − zv.
Now set E := −rw∗, where w is a vector such that w∗v = 1
(possible by the theory of dual norms, or Hahn–Banach), so that

(A + E)v = (A− rw∗)v = Av − r = zv.

Hence z ∈ σ(A + E).
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Given a unit vector v such that ‖Av − zv‖ < ε, define r := Av − zv.
Now set E := −rw∗, where w is a vector such that w∗v = 1
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Hence z ∈ σ(A + E).



Pseudospectra with Matrix Norms on Cn×n

We can define pseudospectra for a matrix norm that is not induced by a vector
norm, such as the Frobenius norm (a.k.a. Schatten 2-norm):

‖A‖F =
“X

j,k

|aj,k |2
”1/2

=
q

s2
1 + · · ·+ s2

n .

Observation

If ‖ · ‖ is a matrix norm not induced by a vector norm,
the following definitions need not be equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε}.



Pseudospectra with Matrix Norms on Cn×n

‖A‖F =
“X

j,k

|aj,k |2
”1/2

=
q

s2
1 + · · ·+ s2

n .

Observation

If ‖ · ‖ is a matrix norm not induced by a vector norm,
the following definitions need not be equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε}.

Let (s, u, v) be the smallest singular value and corresponding singular vectors
for z − A, so that (z − A)v = su. Define E = −suv∗, so that

(A + E)v = (A + suv∗)v = Av + su = zv,

so z ∈ σ(A + E). Notice that ‖E‖F = ‖E‖2 = s.

Since ‖E‖F ≥ ‖E‖2 for all E, we conclude that the 2-norm and Frobenius-norm
pseudospectra are identical, by definition (1).



Pseudospectra with Matrix Norms on Cn×n

‖A‖F =
“X

j,k

|aj,k |2
”1/2

=
q

s2
1 + · · ·+ s2

n .

Observation

If ‖ · ‖ is a matrix norm not induced by a vector norm,
the following definitions need not be equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε}.

On the other hand, if (z − A)−1 has singular values s1, . . . , sn, thenq
s2

1 + · · ·+ s2
n = ‖(z − A)−1‖F ≥ ‖(z − A)−1‖2 = s1.

Hence in general, the 2-norm ε-pseudospectrum is strictly contained inside the
Frobenius norm ε-pseudospectrum, if defined by (2).

Using this definition (2), the Frobenius norm pseudospectra “determine matrix
behavior,” as described in Lecture 2.



Computation of Pseudospectra in General Norms

When describing computation of σε(A), our algorithms (and EigTool) used the
2-norm. Different norms require further consideration.

I Norm induced by 〈x, y〉 := y∗Gx.
Factor G = R∗R (e.g., Cholesky decomposition, matrix square root).
Then for any matrix A ∈ Cn×n,

‖A‖2 = sup
x6=0

‖Ax‖2

‖x‖2
= sup

x 6=0

x∗A∗GAx

x∗Gx

= sup
x 6=0

x∗R∗R−∗A∗R∗RAR−1Rx

x∗R∗Rx

= sup
y=Rx
x 6=0

y(R−∗A∗R∗)(RAR−1)y

y∗y
= ‖RAR−1‖2

2.

Hence, the G-norm pseudospectra of A are the same as the 2-norm
pseudospectra of RAR−1. This permits the use of EigTool without
modification: just call eigtool(R*A/R).

I To compute pseudospectra in other norms, one typically needs to
explicitly compute (z − A)−1 at each point on a computational grid.



Pseudospectra in Infinite Dimensional Spaces

Let X denote a Banach space.

Let A be a closed (possibly unbounded) linear operator, A : Dom(A)→ X .

Definition (Spectrum, Resolvent Set)

The resolvent set of A is

%(A) = {z ∈ C : (z − A) has a bounded, densely defined inverse}.

The spectrum is the complement of the resolvent set,

σ(A) = C \ %(A) = {z ∈ C : z 6∈ %(A)}.

I The spectrum can contain points that are not eigenvalues,
i.e., for which there exist no nonzero v ∈ Dom(A) for which Av = zv.

I For unbounded operators, it is possible that σ(A) = ∅.
I By convention, we shall write A−1 when A has a bounded inverse

with AA−1 = I on X and A−1A = I on Dom(A).
If such an inverse does not exist, we write ‖A−1‖ =∞.
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Pseudospectra

Let B(X ) denote the set of bounded operators defined on all X .

The three main equivalent definitions of σε(A) hold
with only slight modifications:

Theorem

The following three definitions of the ε-pseudospectrum are equivalent.

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ B(X ) with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : z ∈ σ(A) or

‖Av − zv‖ < ε for some unit vector v ∈ C n}.



Stability of Bounded Invertibility

Basic properties follow from what Kato calls “stability of bounded invertibility”.

Theorem

Suppose A is a closed operator on X with A−1 ∈ B(X ). Then for E ∈ B(X )
with ‖E‖ < 1/‖A−1‖, A + E has a bounded inverse that satisfies

‖(A + E)−1‖ ≤ ‖A−1‖
1− ‖E‖‖A−1‖ .

Proof: Since 1 > ‖E‖‖A−1‖ ≥ ‖EA−1‖, I + EA−1 is invertible, with inverse
given by the Neumann expansion

(I + EA−1)−1 = I− EA−1 + (EA−1)2 − · · · ,

and hence

‖(I + EA−1)−1‖ ≤ 1

1− ‖EA−1‖ ≤
1

1− ‖E‖‖A−1‖ .

Since A also has a bounded inverse, so too does A + E = (I + EA−1)A, with

‖(A + E)−1‖ = ‖(I + EA−1)−1A−1‖ ≤ ‖A−1‖
1− ‖E‖‖A−1‖ .



Basic Properties of Pseudospectra on Banach Spaces

I ‖(z − A)−1‖ ≥ 1/dist(z , σ(A)).

I (z − A)−1 is analytic on %(A).

I ‖(z − A)−1‖ is an unbounded, subharmonic function on %(A).

I For all ε > 0, σε(A) is a nonempty open subset of C.

I Each bounded component of σε(A) intersects σ(A).



Weak versus Strong Inequalities

For matrices (or operators on Hilbert space [Fink & Ehrhardt]),
σε(A) can be defined with weak or strong inequalities:
in both cases, definitions (1) and (2) are equivalent:

{z ∈ C : z ∈ σ(A + E) for some E ∈ B(X ) with ‖E‖<ε}

= {z ∈ C : ‖(z − A)−1‖> 1/ε}.

and
{z ∈ C : z ∈ σ(A + E) for some E ∈ B(X ) with ‖E‖≤ε}

= {z ∈ C : ‖(z − A)−1‖≥ 1/ε}.

Observation

Shargorodsky [2008,2009] has shown that the equivalence for weak inequalities
can fail in Banach spaces:

{z ∈ C : z ∈ σ(A + E) for some E ∈ B(X ) with ‖E‖≤ ε}

6= {z ∈ C : ‖(z − A)−1‖≥ 1/ε}.
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4(e) Pseudospectra of Differential Operators



Pseudospectra of Differential Operators

As an illustrative example, we shall consider the pseudospectra of
constant-coefficient differential operators in one dimension.
There is a close parallel to the pseudospectra of Toeplitz matrices in Lecture 3.

We pose these problems on the Hilbert space X = L2(0, `) for ` > 0.
In general, consider operators of the form

A =
dX

j=0

aj
d j

dx j
.

For example, we shall consider:

Au = u′, a0 = 0, a1 = 1

Au = cu′ + u′′, a0 = 0, a1 = c, a2 = 1

Au = u + 3u′ + 3u′′ + u′′′, a0 = 1, a1 = 3, a2 = 3, a3 = 1

Definition (Symbol)

The symbol of the differential operator A is

a(k) =
dX

j=0

aj(−i k)j .
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Symbol Curve

A =
dX

j=0

aj
d j

dx j
, a(k) =

dX
j=0

aj(−i k)j .

The symbol curve is more complicated than for the a(T) for Toeplitz matrices.

For R > 0, define ΓR to be the real interval [−R,R] with endpoints joined by
the semicircle of radius R centered at zero in the upper half-plane.

Then consider the image of ΓR under a as R →∞.

ΓR for R = 2
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Symbol Curve: Winding Number
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For R > 0, define ΓR to be the real interval [−R,R] with endpoints joined by
the semicircle of radius R centered at zero in the upper half-plane.

Definition

For any λ 6∈ a(R), let I (a, λ) be the winding number of a(ΓR) about λ for
sufficiently large R.

a(ΓR) for R = 4 a(ΓR) for R = 4 (zoom)
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Pseudospectra of Differential Operators

Theorem (Reddy)

Consider the set of degree-d constant coefficient differential operators {A`}
posed on L2[0, `] with symbol a and

I β homogeneous boundary conditions at x = 0;

I γ homogeneous boundary conditions at x = `.

Let z ∈ C . If the winding number satisfies

I I (a, z) < d − β, or

I I (a, z) > γ,

then there exists M > 0 such that for all sufficiently large `,

‖(z − A`)
−1‖ ≥ e`M .



Pseudospectra of Differential Operators: example 1

Consider the operator
Au = u′, u(`) = 0.

Since a0 = 0 and a1 = 1, the symbol is a(k) = −ik.

a(ΓR) for R = 2
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Pseudospectra of Differential Operators: example 1

Consider the operator
Au = u′, u(`) = 0.

Since a0 = 0 and a1 = 1, the symbol is a(k) = −ik.
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Pseudospectra of Differential Operators: example 2

Consider the operator

Au = cu′ + u′′, u(0) = u(`) = 0.

Since a0 = 0, a1 = c = 20, and a2 = 1 the symbol is a(k) = −cik − k2.

a(ΓR) for R = 8
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Pseudospectra of Differential Operators: example 2

Consider the operator

Au = cu′ + u′′, u(0) = u(`) = 0.

Since a0 = 0, a1 = c = 20, and a2 = 1 the symbol is a(k) = −cik − k2.

σε(A) for ` = 1
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