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Overview of the Course

These lectures describe modern tools
for the spectral analysis of dynamical systems.

We shall cover a mix of theory, computation, and applications.

Lecture 1:
Lecture 2:
Lecture 3:
Lecture 4:

Lecture 5:

Introduction to Nonnormality and Pseudospectra

Functions of Matrices

Toeplitz Matrices and Model Reduction

Model Reduction, Numerical Algorithms, Differential Operators

Discretization, Extensions, Applications



Outline for Today

Lecture 3: Functions of Matrices and Model Reduction

v

Toeplitz matrices

v

Model Reduction: Balanced Truncation

» Nonnormality and Lyapunov Equations

v

Model Reduction: Moment Matching



3(a) Toeplitz Matrices



Pseudospectra

Recall the example that began our investigation of pseudospectra yesterday.

Example

Compute eigenvalues of three similar 100 x 100 matrices using MATLAB's eig.

0 1 0 1/2 0 1/3

1 0 . 2 0 . 3 0

1 0 2 0 3 0



Toeplitz Matrices

Consider the pseudospectra of the 100 x 100 matrix in the middle
of the last slide, A = tridiag(2,0,1/2).

25
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" " " " "
-3 -2 -1 0 1 2 3

A is diagonalizable (it has distinct eigenvalues), but
Bauer—Fike is useless here: xk(V) = 2% ~ 6 x 10%.



Jordan Blocks

We've already analyzed pseudospectra of Jordan blocks near A for small ¢ > 0.

Here we want to investigate the entire pseudospectrum for larger ¢.

n = 16

0.5

—0.5F

Near the eigenvalue, the resolvent norm grows with dimension n;
outside the unit disk, the resolvent norm does not seem to get big.

We would like to prove this.
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Jordan Blocks

We've already analyzed pseudospectra of Jordan blocks near A for small ¢ > 0.
Here we want to investigate the entire pseudospectrum for larger ¢.

n =32

0.5

—0.5F

-0.5 0 0.5

1 15

Near the eigenvalue, the resolvent norm grows with dimension n;
outside the unit disk, the resolvent norm does not seem to get big.

We would like to prove this.




Jordan Blocks

We've already analyzed pseudospectra of Jordan blocks near A for small ¢ > 0.

Here we want to investigate the entire pseudospectrum for larger ¢.

n = 64

0.5

—0.5F

Near the eigenvalue, the resolvent norm grows with dimension n;
outside the unit disk, the resolvent norm does not seem to get big.

We would like to prove this.
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Jordan Blocks/Shift Operator
Consider the generalization of the Jordan block to the domain
AIN) = {(x1, %, . Z gl? < oo}

The shift operator S on £*(N) is defined as

S(><1,X27 .. ) = (XQ,X37 .. )



Jordan Blocks/Shift Operator
Consider the generalization of the Jordan block to the domain
62(N) ={(a,x, ... Z \XJ| < oo}
The shift operator S on £*(N) is defined as
S(x1,x2,...) = (x2, X3, ...).

In particular,
S(1, z, 2, .. D) o= (z 2,25 .. )
= z(1,z, .. e
So if (1,z,2°,...) € (N), then z € o(S).



Jordan Blocks/Shift Operator
Consider the generalization of the Jordan block to the domain
AIN) = {(x1, %, . Z gl? < oo}

The shift operator S on £*(N) is defined as
S(X1,X27 .. ) = (X2,X37 .. )

In particular,

S(1, z, 2, .. D) o= (z 2,25 .. )
= z(1,z, .. e
So if (1,z,2°,...) € (N), then z € o(S).
If |z] < 1, then
—12 _
Z\z’ —1_|Z‘2<oo.
Jj=1
So,

{ze C:|z] <1} Co(S).



Jordan Blocks/Shift Operator

S(X17X27 . ) = (X27X37 . )
We have seen that

{ze C:|z| < 1} C o(S).

Observe that
[SI| = sup [|Sx|| =1,

[Ix]|=1
and so
o(S)C{zeC:|z|] <1}
The spectrum is closed, so

o(A)={zeC:|z| <1}

For any finite dimensional n x n Jordan block S,,

o(S») = {0}.



Jordan Blocks/Shift Operator

S(X17X27 . ) = (X27X37 . )
We have seen that

{ze C:|z| < 1} C o(S).

Observe that
[SI| = sup [|Sx|| =1,

[Ix]|=1
and so
o(S)C{zeC:|z| <1}
The spectrum is closed, so

oc(A)={ze C:|z] <1}
For any finite dimensional n x n Jordan block S,,
o(S») = {0}.

So the S, — S strongly, but there is a discontinuity in the spectrum:

a(Sn) # a(8).



Pseudospectra of Jordan Blocks

Pseudospectra resolve this unpleasant discontinuity.
Recall the eigenvectors (1,z,2%,...) for S.

Truncate this vector to length n, and apply it to S,:

0 1 1

z
0 - . z 22
1 =
0 1 2"72 znfl



Pseudospectra of Jordan Blocks

Pseudospectra resolve this unpleasant discontinuity.

Recall the eigenvectors (1,z,2%,...) for S.

Truncate this vector to length n, and apply it to S,:

0 1 ,
0 z 22
1 =
0 1 2"72 znfl



Pseudospectra of Jordan Blocks

Pseudospectra resolve this unpleasant discontinuity.
Recall the eigenvectors (1,z,2%,...) for S.

Truncate this vector to length n, and apply it to S,:

01 1 z 1
0 . z 22 z
1 = = Z —
2"72 znfl Zn72
0 g') n—1 0 n—1

,sofora||€>7 |z|"

z € 0.(Sh).

VAP

Hence, ||Spx — zx| = |z|"

We conclude that for fixed |z| < 1, the resolvent norm ||(z — S.)™}||
grows exponentially with n.



Upper Triangular Toeplitz Matrices

Consider an upper triangular Toeplitz matrix giving the matrix with constant
diagonals containing the Laurent coefficients:

a a1 a2

ao . . .
An _ . c Cnxn.
. ai ar
ao al
ao

Definition (Symbol, Symbol Curve)

Toeplitz matrices are described by their symbol a with Taylor expansion

o0
a(z) = Z axz®.
k=0

Call the image of the unit circle T under a the symbol curve, a(T).



Pseudospectra of Upper Triangular Toeplitz Matrices

Apply the same approximate eigenvector we used for the Jordan block:

a a @@ - an- 1 S akz
n—1 k+1
ao k=0 9kZ
ai an ) .
n—2 n—2 n—1
z

a0 x . aonz + a1z

a0 z a0z "

If the matrix has fixed bandwidth b < n, (i.e., ax = 0 for k > b), then

_ _ r b k
ao -+ ap D ko Z
b
. ) 1 Zk:o azk
ao . . z )
ap : = b—1 k+n—b
n—2 D ok—o AZ
. z
ao . Zn—l .
a _
- 0 L aopz 1 _




Pseudospectra of Upper Triangular Toeplitz Matrices

ao

ab
ao
ap

ao .
a0

[ Efzo axz"

b k+1
> ko AZ

b—1 k+n—b
> h—o AZ

L aozn—l
1
b z
2 : k
akZ
k=0 n—2
znfl

abz"

b n—1+k
L D ko1 AKZ ]




Pseudospectra of Upper Triangular Toeplitz Matrices

ao ap

ao

ap

ao .
ao

[ Efzo axz*

b k+1
> ko AZ

b—1 k+n—b
> h—o AZ

L aozn—l
1
b z
2 : k
= akZ
k=0 zn72
n—1

Hence A,x — a(z)x gets very small in size as n — oo.
In fact, this reveals the spectrum of the infinite Toeplitz operator on *(N)....

abz"

b n—1+k
| Do 2z J




Spectrum of Toeplitz Operators on (?(Z)

For the Toeplitz operator (semi-infinite matrix) Ao, with the same symbol:

ao ap - 1 - - Zizoakzk -
ao K . i . z 22:0 észkJrl
b k+2
ap 2 = Ek:o az"" = a(z)

ao




Spectrum of Toeplitz Operators on (*(Z)

For the Toeplitz operator (semi-infinite matrix) Ao, with the same symbol:

ao ap - 1 - - Zizoakzk -
ao K . i . z 22:0 éJkaJrl
2 Eb a Zk+2
ab | = k=0 —a(z) | 2
ao :

Thus a(z) € o(A) for all |z| < 1. In fact, one can show that for this banded
upper triangular symbol,

o(Ax) ={a(z) : |z] < 1}.




Spectrum of Toeplitz Operators on (*(Z)

For the Toeplitz operator (semi-infinite matrix) Ao, with the same symbol:

ao ap r1 7 - Zizoakzk -
b k+2
ap 2 = Ek:o az"" = a(z)
ao :

Thus a(z) € o(A) for all |z| < 1. In fact, one can show that for this banded
upper triangular symbol,

o(Ax) ={a(z) : |z] < 1}.

The calculation on the last slide guarantees that for any € > 0, there exists
N > 0 such that if n > N,

o(Ax) C o (Ay).




Symbols of Upper Triangular Toeplitz Matrices

Symbol curves for banded upper triangular Toeplitz matrices.




General Toeplitz Matrices

More generally, the dense Toeplitz matrix

ao ail ar
a—i1 ao

j— . . nxn
Av=1| ., . & a|€C

a—i1 ao al
a_»2 a_1 a0

follows the same terminology.

Definition (Symbol, Symbol Curve)

Toeplitz matrices are described by their symbol a with Laurent expansion

a(z) = i arz”.

k=—o00

Call the image of the unit circle T under a the symbol curve, a(T).



Spectrum of a General Toeplitz Operator

Theorem (Spectrum of a Toeplitz Operator)

Suppose the Toeplitz operator A, : £2(N) — £*(N) has a symbol that is
continuous. Then

o(A) = a(T) U {all points a(T) encloses with nonzero winding number}.

Due variously to: Wintner; Gohberg; Krein; Calderén, Spitzer, & Widom.

See Albrecht Bottcher and colleagues for many more details.



Spectrum of a General Toeplitz Operator

Theorem (Spectrum of a Toeplitz Operator)

Suppose the Toeplitz operator A, : £2(N) — £*(N) has a symbol that is
continuous. Then

o(A) = a(T) U {all points a(T) encloses with nonzero winding number}.

Due variously to: Wintner; Gohberg; Krein; Calderén, Spitzer, & Widom.

See Albrecht Bottcher and colleagues for many more details.



Spectrum of a General Toeplitz Operator

Theorem (Spectrum of a Toeplitz Operator)

Suppose the Toeplitz operator A : £>(N) — £?(N) has a symbol that is
continuous. Then

0(Ax) = a(T) U {all points a(T) encloses with nonzero winding number}.

Due variously to: Wintner; Gohberg; Krein; Calderén, Spitzer, & Widom.

See Albrecht Béttcher and colleagues for many more details.

a(T) o(As)



Spectrum of a General Toeplitz Matrix

What can be said of the eigenvalues of a finite-dimensional Toeplitz matrix?
Theorem (Limiting Spectrum of Finite Toeplitz Matrices)

Consider the family of banded Toeplitz matrices {A,}ncn with upper
bandwidth b and lower bandwidth d. For any fixed A € C, label the roots
Ciy-..,Chia Of the polynomial z%(a(z) — A) by increasing modulus.

If [Ca| = |Ca+1], then X € lim o(A,).

This result, proved by [Schmidt & Spitzer, 1960], shows that in general:

lim o(A,) # o(Ax).

n—oo



Spectrum of a General Toeplitz Matrix

What can be said of the eigenvalues of a finite-dimensional Toeplitz matrix?
Theorem (Limiting Spectrum of Finite Toeplitz Matrices)

Consider the family of banded Toeplitz matrices {A,}ncn with upper
bandwidth b and lower bandwidth d. For any fixed A\ € C, label the roots
Ciy-..,Chia Of the polynomial z%(a(z) — A) by increasing modulus.

If [Ca| = |Ca+1], then X € lim o(A,).

This result, proved by [Schmidt & Spitzer, 1960], shows that in general:

lim o(A,) # o(Ax).

n—oo

a(T) lim o(A,)

n— oo



Spectrum of a General Toeplitz Matrix: Example

a(T) lim o(A,)

n— oo

O’(Aso)



Spectrum of a General Toeplitz Matrix: Example

a(T) lim o(A,)

n— oo

o(A100)



Spectrum of a General Toeplitz Matrix: Example

a(T) lim o(A,)

n— oo



Spectrum of a General Toeplitz Matrix: Example

a(T) lim o(A,)

n— oo

o (As00)



Spectrum of a General Toeplitz Matrix: Example

a(T) lim o(A,)

n— oo




Pseudospectra of Toeplitz Matrices

Theorem (Landau; Reichel and Trefethen; Bottcher)

Let a(z) = S°)_,, akz" be the symbol of a banded Toeplitz operator.

» The pseudospectra of A, converge to the pseudospectra of the Toeplitz
operator on £*(N) as n — co.

Let z € C have nonzero winding number w.r.t. the symbol curve a(T).

> ||[(z — A,)7|| grows exponentially in n.

> Foralle >0, z € o.(A,) for all n sufficiently large.

n =128



Pseudospectra of Toeplitz Matrices

5 6
4 a
2 2
0 0
2| -2
-4 -4
-6| -6
-8 & 4 2 0 2 a 6 8 10 S8 % 4 -2 0 2 4 6 8

symbol curve

-5



Pseudospectra of Toeplitz Matrices

~
L |
A M o N & o ®

symbol curve




Hermitian Toeplitz Matrices

We have seen “large” pseudospectra arise for generic Toeplitz matrices.
But what about Hermitian Toeplitz matrices?

For example, the matrix

has symbol a(z) = z7! 4 z, so

a(e’)=e7" + e =2cos(f) € [-2,2] C R.



Hermitian Toeplitz Matrices

We have seen “large” pseudospectra arise for generic Toeplitz matrices.
But what about Hermitian Toeplitz matrices?

For example, the matrix

has symbol a(z) = z7! 4 z, so

a(e’)=e7" + e =2cos(f) € [-2,2] C R.

In general, Hermitian symbols have a_x = ax, so

-1 oo
io ko ko
a(e'”) = a+ E ae' +E axe'
k=1

k=—o00

o0 o0 oo
= a0+ Za*kef"ke + Z ae’™? = ap + Z2Re(ake”‘9) cR.
k=1 k=1 k=1

As n — o0, eigenvalues of A, distribute according to Szegd's theorem.



Tridiagonal Toeplitz Matrices

Consider the case of a tridiagonal Toeplitz matrix,

B

A — o ﬂ B " E Can
a f
with symbol
@

a(z) = S +B+z.

The symbol curve is the ellipse

a(T):{ZET:%—i—ﬁ—l—fyz}.




Eigenvectors of Tridiagonal Toeplitz Matrices

A = tridiag(1,0,1), n =20

===¢
=S=<
===5
=

===

Normal matrix: orthogonal eigenvectors



Eigenvectors of Tridiagonal Toeplitz Matrices

A = tridiag(2,0,1/2), n =20

e e e S S
-

e M e
N N N NN

Nonnormal matrix: non-orthogonal eigenvectors




Circulant Matrices and Laurent Operators

In contrast, consider the circulant matrix

ao

a—1

a
ai

ai

ao

ar

ai
ao

e CFIXH



Circulant Matrices and Laurent Operators

In contrast, consider the circulant matrix

v

v

v

a0 al

a—1 ao
C,=

a

al ar

C, is normal for all symbols.

ai
ao

e CFIXH

C, is diagonalized by the Discrete Fourier Transform matrix.

0(Cn) ={a(z) : z € Ts}, where T, := {&*™"/" k=0,...,n—1}:
i.e., (C,) comprises the image of the nth roots of unity under the symbol.

Infinite dimensional generalization: Laurent operators Co. on £*(Z)
(doubly-infinite matrices) with spectrum ¢(Cs) = a(T).



Circulant Matrix and Laurent Operators

U(Cloo) U(c200)



Piecewise Continuous Symbols

It is possible for the symbol

a(z) = Z az"

k=—o00

to, e.g., have a jump discontinuity. This compromises the exponential growth
of the norm of the resolvent [Béttcher, E., Trefethen, 2002].

For example, take a(e’?) = e’®, a symbol studied by [Basor & Morrison, 1994].

a(T)

/ 0<(A100)



“Twisted” Toeplitz Matrices

A “twisted” Toeplitz matrix is a Toeplitz-like matrix with varying coefficients
[Trefethen & Chapman, 2004].

For example, for x; = 2mj/n, set

X1 §X1

1
5Xn—1
Xn

The “symbol” now depends on two variables: a(x,z) = x + %XZ.

The pseudospectra resemble those of standard Toeplitz matrices,
but the (pseudo)-eigenvectors have an entirely different character.



“Twisted” Toeplitz Matrices

For xj = 2mj/n, set

1
X1 §X1

Pseudospectra of o.(A100)



Eigenvectors of a Twisted Toeplitz Matrix

Eigenvectors form wave packets for twisted Toeplitz matrices.

Pseudoeigenvectors for z € o.(A) have a similar form.

\ A N N A

ANA A WA U W
ANV A A A U
VAN N A A

Eigenvectors of Ay for a(x,z) = x + ixz




Looking Forward to Differential Operators

Where do Toeplitz (and twisted Toeplitz) matrices come from?

Numerous applications — be we will highlight just one of them:
discretization of differential operators.

Consider the steady—state convection diffusion equation Lu = f, where
Lu=du"+cu
posed over for x € [0, 1] with u(0) = u(1) = 0.

» Fix a discretization parameter n
> Approximate the problem on a simple grid {x; J"iol with spacing
h=1/(n+1):
xj = jh.
> Replace the first and second derivatives with second-order accurate
formulas on the grid:

d(g) = Ul uli) o

'(y) = =2 ebia) o,




Finite Difference Discretizations
Now let uj = u(x;) with up = upy1 =
!
u(x) =

u"(x) =

Approximate Lu = f, with

1 !
Lu=u +cu,

via
[ -2 1+ch/2
1 1—ch/2 -2
h

i 1—ch/2

Label these components: A,u = f.

A, is Toeplitz for this constant-coefficient differential operator.

0, so that
Ujt1 — Uj

2h

h2

1+ ch/2

-2

Uji—1 — 2uj + ujn

uz

Un




Finite Difference Discretizations

—2  1+ch/2
1—ch/2 -2

1+ ch/2

1—ch/2 -2

Notice that the symbol of A, depends on n (recall h = 1/(n+ 1)):

an(z) = (hi _ zih) 1o (hi) + (hi+§) .




Finite Difference Discretizations

—2  1+ch/2
1—ch/2 -2

1+ ch/2

1—ch/2 -2

Notice that the symbol of A, depends on n (recall h = 1/(n+ 1)):
a ( ) — i _ < -1 _ 3 + l + <
"=\ T 2n) m W 2n)®

» For all n, the symbol curve a,(T) is an ellipse.




Finite Difference Discretizations

—2  1+ch/2
1—ch/2 -2

1+ ch/2

1—ch/2 -2

Notice that the symbol of A, depends on n (recall h = 1/(n+ 1)):
a ( ) — i _ < -1 _ 3 + l + <
"=\ T 2n) m W 2n)®

» For all n, the symbol curve a,(T) is an ellipse.
> If ¢ =0 (no convection), then a,(T) is a real line segment:
A, and L are both self-adjoint, hence normal.

> If ¢ # 0, the eigenvalues of A, will be real,
but the pseudospectra can be far from these eigenvalues.




Finite Difference Discretizations

—2  1+ch/2
1—ch/2 -2

1+ ch/2

1—ch/2 -2

Notice that the symbol of A, depends on n (recall h = 1/(n+ 1)):
a ( ) — i _ < -1 _ 3 + l + <
"=\ T 2n) m W 2n)®

» For all n, the symbol curve a,(T) is an ellipse.

> If ¢ =0 (no convection), then a,(T) is a real line segment:
A, and L are both self-adjoint, hence normal.

> If ¢ # 0, the eigenvalues of A, will be real,
but the pseudospectra can be far from these eigenvalues.

» Rightmost part of o-(A,) approximates the corresponding part of o.(L).



Finite Differences: Symbol Curves

6000

4000

2000

—-2000

—-4000

—-6000

I I I I I I
-16000 -14000 -12000 -10000 -8000 -6000 —4000

Symbol curves a,(T) for n = 16, 32,64

I
—2000




Finite Differences: Symbol Curves

2000

1500

1000

500

-500

-1000

-1500

2000 : : : :
5000 4000 3000 2000 ~1000 0

Symbol curves a,(T) for n = 16, 32,64



Finite Differences: Approximate Pseudospectra

25
2000
2
1500} 1
1000 1 1.5
500 ]
.
0 |
05
-500 :
~1000 : 0
1500} 1
05
2000 ‘ ‘ ‘ ‘
25000 4000 3000 2000 1000 0
1

Rightmost part of o.(A,) for n = 64



Finite Differences: Approximate Pseudospectra

25
2000
2
1500 1
1000 | E 1.5
500 1
’
(I ZFOROROX OO O OORORORON 3 -
05
-500 E
-1000F : 0
~1500F E
-05
-2000 ‘ ‘ ‘ ‘
25000 ~4000 ~3000 —2000 ~1000 0
1

Rightmost part of o-(A,) for n =128



Finite Differences: Approximate Pseudospectra

25
2000
2
1500F 1
1000 1 1.5
500 ]
.
0 |
05
-500 :
~1000 1 0
1500} 1
05
2000 ‘ ‘ ‘ ‘
25000 4000 3000 2000 1000 0
1

Rightmost part of o-(A,) for n = 256



Finite Differences: Approximate Pseudospectra

25
2000
2
1500F 1
1000 1 1.5
500 ]
.
0 |
05
-500 :
~1000 1 0
1500} 1
05
2000 ‘ ‘ ‘ ‘
25000 4000 3000 2000 1000 0
1

Rightmost part of o-(A,) for n =512



3(b) Balanced Truncation Model Reduction



Balanced Truncation Model Reduction

Consider the single-input, single-output (SISO) linear dynamical system:

>< .
—~
~
~—
I

Ax(t) + bu(t)
y(t) = ex(1),
A c C™" b,c" € C". We assume that A is stable: a(A) < 0.

We wish to reduce the dimension of the dynamical system by projecting
onto well-chosen subspaces.

Balanced truncation:  Change basis to match states that
are easy to reach and easy to observe,
then project onto that prominent subspace.



Controllability and Observability Gramians

To guage the observability of an initial state xo = X,
measure the energy in its output (when there is no input, u = 0):

y(t) = ce™x.

Then
o0 o0 .
/ y(0)Rdt = / %°e™ ez dt
0 0

e * o~ o~
= x*(/ e c*cemdt>x = X"Qx.
0



Controllability and Observability Gramians

To guage the observability of an initial state xo = X,
measure the energy in its output (when there is no input, u = 0):

y(t) = ce™x.

Then
o0 o0 .
/ y(0)Rdt = / %°e™ ez dt
0 0

o0 * o~ o~
x*(/ e c*cet? dt)x = X"Qx.
0

Similarly, we measure the controllability by the total input energy required to
steer xo = 0 to a target state X as t — oo. The special form of u that drives
the system to X with minimal energy satisfies

o] S « —1
/ lu(t)2 dt i(/ e bb"e™ dt) X =%P %
0 0



Controllability and Observability Gramians

To guage the observability of an initial state xo = X,
measure the energy in its output (when there is no input, u = 0):

y(t) = ce™x.

Then
o0 o0 .
/ y(0)Rdt = / %°e™ ez dt
0 0

o0 * o~ o~
x*(/ e c*cet? dt)x = X"Qx.
0

Similarly, we measure the controllability by the total input energy required to
steer xo = 0 to a target state X as t — oo. The special form of u that drives
the system to X with minimal energy satisfies

o0 oo « —1
/ u(t)Pdt = i(/ e bb"e™ dt) X =%P %
0 0

Thus we have the infinite controllability and observability gramians P and Q:

o * o *
P ::/ e*bb*e™ dt, Q ::/ e c*ce™ dt.
0

0
See, e.g., [Antoulas, 2005].



Balanced Truncation Model Reduction

The gramians
P = / e®bb*e™ dt, Q= / e crce dt
0 0

(Hermitian positive definite, for a controllable and observable stable system)
can be determined by solving the Lyapunov equations — see the next lecture.

If xo = 0, the minimum energy of u required to drive x to state X is
P

Starting from xo = X with u(t) = 0, the energy of output y is

X" QX.
X*P7IX: X is hard to reach if it is rich in the lowest modes of P.
X*QX: X is hard to observe if it is rich in the lowest modes of Q.

Balanced truncation transforms the state space coordinate system to make
these two gramians the same, then it truncates the lowest modes.



Balanced Truncation Model Reduction

Consider a generic coordinate transformation, for S invertible:
(Sx)'(t) = (SASfl)(Sx(t)) + (Sb)u(t)
y(t) = (chl)(Sx(t)) + du(t), (Sx)(0) = Sxo.
With this transformation, the controllability and observability gramians are
P=SPS", Q=S5"Qs™"

For balancing, we seek S so that P= (3 are diagonal.



Balanced Truncation Model Reduction

Consider a generic coordinate transformation, for S invertible:
(Sx)'(t) = (SAS ")(Sx(t)) + (Sb)u(t)
y(t) = (¢S M)(Sx(t)) + du(t), (Sx)(0) = Sxo.

With this transformation, the controllability and observability gramians are
P=SPS", Q=S"QS"

For balancing, we seek S so that P= (3 are diagonal.

Observation (How does nonnormality affect balancing?)

> Us/n(s)(SAs_l) (- O’E(A) C GEN(S)(SAS_I).

» The choice of internal coordinates will affect P, Q, ...



Balanced Truncation Model Reduction

Consider a generic coordinate transformation, for S invertible:
(Sx)'(t) = (SAS ")(Sx(t)) + (Sb)u(t)
y(t) = (¢S M)(Sx(t)) + du(t), (Sx)(0) = Sxo.

With this transformation, the controllability and observability gramians are
P=SPS", Q=S"QS"

For balancing, we seek S so that P= 6 are diagonal.

Observation (How does nonnormality affect balancing?)

> GE/N(s)(SAS_l) Co.(A) C GEN(S)(SAS_I).
» The choice of internal coordinates will affect P, Q, ...
» but not the Hankel singular values: 36 =SPQS},
> and not the transfer function:
(cS7')(z—SAS')}(Sb) = d +c(z — A)'b,
> and not the system moments:

(cS7')(Sb) =cb, (cS™')(SAS ')(Sb) = cAb,



