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Overview of the Course

These lectures describe modern tools
for the spectral analysis of dynamical systems.

We shall cover a mix of theory, computation, and applications.

Lecture 1: Introduction to Nonnormality and Pseudospectra

Lecture 2: Functions of Matrices

Lecture 3: Toeplitz Matrices and Model Reduction

Lecture 4: Model Reduction, Numerical Algorithms, Differential Operators

Lecture 5: Discretization, Extensions, Applications



Outline for Today

Lecture 2: Functions of Matrices

I Recap computation of σε(A) and W (A)

I Bounds on ‖f (A)‖ using W (A)

I Behavior of the resolvent near eigenvalues

I Bounds on ‖f (A)‖ using σε(A)

I Computing the pseudospectral abscissa and radius



1(e) Computing W (A) and σε(A)



Computation of Pseudospectra (Dense Matrices)

Naive algorithm: O(n3) per grid point

I Compute ‖(z − A)−1‖ using the SVD on a grid of points in C.
SVD costs O(n3) for dense A.

I Send data to a contour plotting routine.
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Computation of Pseudospectra (Dense Matrices)

Modern algorithm: O(n3) + O(n2) per grid point [Lui 1997; Trefethen 1999]

I Compute a Schur triangularization, A = UTU∗.
Schur costs O(n3) for dense A.

I Recall that σε(A) = σε(T).

I One can efficiently solve linear systems Tx = b for x.
Each solve costs O(n2) for upper triangular T.

I To compute ‖(z − T)−1‖ = 1/smin(z − T) = smax((z − T)−1),
find the largest eigenvalue of (z − T)−∗(z − T)−1.

I To do so, apply the Lanczos iteration on (z − T)−∗(z − T)−1

for each grid point z .

I At each step, one must compute (z − T)−∗(z − T)−1b:
This requires a lower-triangular solve with (z − T)∗ (O(n2))
and an upper triangular solve with (z − T) (O(n2)).
One observes a constant number of iterations per grid point.

I Total cost: O(n3) + O(n2) per grid point.
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Computation of Pseudospectra (Sparse Matrices)

Large-scale problems [Toh and Trefethen 1996; Wright and Trefethen 2001]

Key idea:

I Find V ∈ Cn×k with orthonormal columns, V∗AV, for k � n.
I The “generalized Rayleigh quotient” V∗AV ∈ Ck×k .
I Approximate σε(V∗AV) ≈ σε(A).

In general, σ(V∗AV) 6∈ σ(A), so for some ε > 0,

σε(V∗AV) 6⊆ σε(A).

Depending on the choice of V, the approximation σε(V∗AV) might give a
rough general impression of σε(A), or it might give a rather accurate
approximation in one interesting region of σε(A).

true, n = 128 Arnoldi, k = 96 eigenspace, k = 32



Computation of Pseudospectra (Sparse Matrices)

First important choice for Vk [Toh and Trefethen 1996]:

I Projection onto Krylov subspaces (Arnoldi factorization)

Ran(Vk) = span{x,Ax, . . . ,Ak−1x}.

The Arnoldi process generates orthonormal bases for Krylov subspaces:

AVk = Vk+1
eHk ,

where eHk ∈ C(k+1)×k is upper Hessenberg.
Due to the upper Hessenberg structure, we have

smin(z − eHk) ≥ smin(z − A),

so one can get a bound
σε(eHk) ⊆ σε(A),

where, for a rectangular matrix R, we have

σε(R) := {z ∈ C : smin(z − R) < ε}.



Computation of Pseudospectra (Sparse Matrices)

Second important choice for Vk [Wright and Trefethen 2001]:

I Projection onto an invariant suspace (eigenspace)

Vk = [v1, . . . , vk ]

Suppose AVk = VkX for some X ∈ Ck×k .
Then Ran(Vk) is an invariant subspace of A.

If V = [Vk
bVk ] is a unitary matrix, V∗V = I, then

V∗AV =

"
V∗k AVk

bV∗k AVk

0 bV∗k AbVk

#
.

Thus σε(V∗k AVk) ⊆ σε(A).

Compute an invariant subspace corresponding to eigenvalues
of physical interest (e.g., using ARPACK).



Computation of Pseudospectra

Alternative: [Brühl 1996; Bekas and Gallopoulos, . . . ]

Curve tracing: follow level sets of ‖(z − A)−1‖.

I Given a point z = x + iy ∈ C, suppose ‖z − A‖−1 = 1/ε.

I Suppose the smallest singular value s of z − A is simple, with singular
vectors u and v:

(z − A)v = su.

I Brühl uses a result of Sun (1988) to obtain

∂s

∂x
= Re(u∗v),

∂s

∂y
= Im(v∗u).

I Use these derivatives to follow the boundary ∂σε(A).

This seems like an elegant alternative to the grid-based method, but:

I It only gives σε(A) for one value of ε.

I One must beware of cusps, holes, disconnected components of σε(A).
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EigTool: Software for Pseudospectra Computation

EigTool: Thomas Wright, 2002

http://www.cs.ox.ac.uk/pseudospectra/eigtool



Computing the Numerical Range

normal random Grcar Jordan

If z ∈W (A), then

Re z =
z + z

2
=

1

2
(x∗Ax + x∗A∗x) = x∗

“A + A∗

2

”
x.

Using properties of Hermitian matrices, we conclude that

Re(W (A)) =
h
λmin

“A + A∗

2

”
, λmax

“A + A∗

2

”i
.

Similarly, one can determine the intersection of W (A) with any line in C.
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Computation of the Numerical Range

This calculation yields points on the boundary of the numerical range.
Use convexity to obtain polygonal outer and inner approximations
[Johnson 1980]; Higham’s fv.m.

Neat problem: Given z ∈W (A), find unit vector x such that z = x∗Ax
[Uhlig 2008; Carden 2009].



Computation of the Numerical Range

This calculation yields points on the boundary of the numerical range.
Use convexity to obtain polygonal outer and inner approximations
[Johnson 1980]; Higham’s fv.m.

Neat problem: Given z ∈W (A), find unit vector x such that z = x∗Ax
[Uhlig 2008; Carden 2009].



2. Functions of Matrices

and Toeplitz Matrices



Behavior of Matrices

We are primarily interested in using pseudospectra (and other tools)
to study the behavior of a nonnormal matrix.

In particular, we seek to quantify (or bound) how nonnormality affects
the value of functions of matrices.

Much research has been devoted to functions of matrices over the past decade;
see the book by Nick Higham [Hig08]. We focus on functions that are analytic
on the spectrum of A.

Theorem (Spectral Mapping Theorem)

Suppose f is analytic on σ(A). Then

σ(f (A)) = f (σ(A)).

Thus ‖f (A)‖ ≥ max
ζ∈σ(f (A))

|ζ| = max
λ∈σ(A)

|f (λ)|.

See [Huhtanen, 1999] for work on lower bounds.



2(a) Bounds on ‖f (A)‖ using W (A)



Numerical Range and the Matrix Exponential

What does the numerical range reveal about matrix behavior?

d

dt
‖etAx0‖

˛̨̨
t=0

=
d

dt

“
x∗0 etA∗etAx0

”1/2

=
d

dt

“
x∗0 (I + tA∗)(I + tA)x0

”1/2

=
1

‖x0‖
x∗0
“A + A∗

2

”
x0

So, the rightmost point in W (A) reveals the maximal slope of ‖etA‖ at t = 0.

Definition (numerical abscissa)

The numerical abscissa is the rightmost in W (A):

ω(A) := max
z∈W (A)

Re z .
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Initial Transient Growth via Numerical Abscissa

A =

»
−1.1 10

0 −1

–

eω(A)t

κ(V)e−t



Numerical Range and Matrix Norm

Definition

The numerical radius of A ∈ Cn×n is the largest magnitude of a point in W (A):

µ(A) := max
z∈W (A)

|z |.

Theorem

1

2
µ(A) ≤ ‖A‖ ≤ µ(A).

[To be proved during the Exercises.]



Numerical Range and Matrix Powers

Theorem (Berger, 1965)

‖Ak‖ ≤ 2µ(A)k .

For A = tridiag(0, 1/2, 1) of dimension n = 32:

2µ(A)k



Crouzeix’s Theorem

The numerical range can bound the size of general matrix functions.

Theorem (Crouzeix, 2007)

Let f be a function analytic on W (A). Then

‖f (A)‖ ≤ 11.08 max
z∈W (A)

|f (z)|.

Crouzeix has conjectured that the constant 11.08 can be improved. . .

I In some situations, the physical problem restricts the extent of W (A),
e.g. coercivity in finite element problems.

I However, in many other applications, W (A) is so large that it prevents
this bound from being meaningful. For example, in these three situations,
we want maxz∈W (A) |f (z)| small:
f (z) = zk , but W (A) contains z with |z | ≥ 1;
f (z) = et z , but W (A) contains z with Re z ≥ 0;
f (z) = p(z) with p(0) = 1, but W (A) contains z = 0.
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2(b) Behavior of the resolvent near

eigenvalues



Spectral Representation of a Matrix

Theorem (See Kato, 1980)

Any matrix with m distinct eigenvalues can be written in the form

A =
mX

j=1

λjPj + Dj

where, for Jordan curves Γj surrounding λj and no other eigenvalues,

I Pj =
1

2πi

Z
Γj

(z − A)−1 dz is a spectral projector;

I Dj =
1

2πi

Z
Γj

(z − λj)(z − A)−1 dz is nilpotent;

I PjA = APj = λjPj + Dj ;

I PjPk = 0 if j 6= k;

I Dj = 0 if λj is not defective.

The resolvent plays a fundamental role in the structure of the matrix A.



Functions of a Diagonalizable Matrix

If A is diagonalizable (i.e., no defective eigenvalues), then

A =
mX

j=1

λjPj .

If f is any function that is analytic on σ(A) and on/inside all contours Γj , then

f (A) =
mX

j=1

f (λj)Pj .

Equivalently, for

A =
ˆ

v1 · · · vn

˜ 264 λ1

. . .

λn

375
264 bv

∗
1

...bv∗n
375 ,

we have

f (A) =
ˆ

v1 · · · vn

˜ 264 f (λ1)
. . .

f (λn)

375
264 bv

∗
1

...bv∗n
375 .



Functions of a Nondiagonalizable Matrix

For all matrices, we have a more general formula. If the Jordan form of A has
m Jordan blocks,

A =
ˆ

V1 · · · Vm

˜ 264 J1

. . .

Jm

375
2664
bV∗1
...bV∗m
3775 ,

then

f (A) =
ˆ

V1 · · · Vm

˜ 264 f (J1)
. . .

f (Jm)

375
2664
bV∗1
...bV∗m
3775 ,

where for

J =

266664
λ 1

λ
. . .

. . . 1
λ

377775 , f (J) =

2666664
f (λ) f ′(λ) · · · f (d−1)(λ)

(d−1)!

f (λ)
. . .

...
. . . f ′(λ)

f (λ)

3777775 .



Cauchy Integral Formula for Matrices

Recall the standard result from complex analysis.

Theorem (Cauchy Integral Formula )

Let Γ be a finite union of Jordan curves containing a ∈ C in its interior, and
suppose f is a function analytic on Γ and its interior. Then

f (a) =
1

2πi

Z
Γ

f (z)

z − a
dz .

This formula holds for matrices (sometimes called the Dunford–Taylor integral).

Theorem (Cauchy Integral Formula for Matrices)

Let Γ be a finite union of Jordan curves containing σ(A) in its interior, and
suppose f is a function analytic on Γ and its interior. Then

f (A) =
1

2πi

Z
Γ

f (z)(z − A)−1 dz .
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Resolvent Bounds

Suppose the eigenvalues of A ∈ Cn×n are distinct.

Apply the previous formula to f (ζ) = (z − ζ)−1:

f (A) = (z − A)−1 =
nX

j=1

1

z − λj
Pj .

If λj has right eigenvector vj and left eigenvector bvj , then

Pj =
vjbv∗jbv∗j vj

and the norm of Pj is

κ(λj) := ‖Pj‖ =
‖vj‖‖bvj‖
|bv∗j vj |

,

which is called the condition number of the eigenvalue λj .

Hence for z near λj ,

‖(z − A)−1‖ ≈ κ(λj)

|z − λj |
.



Containment Regions for Pseudospectra

Hence for small ε > 0 and diagonalizable matrices, we can approximate

σε(A) ≈
n[

j=1

λj + ∆εκ(λj ),

where ∆r := {z ∈ C : |z | < r}.

Theorem (Bauer–Fike, 1963)

If A ∈ C n×n is diagonalizable, then for all ε > 0,

σε(A) ⊆
n[

j=1

λj + ∆nεκ(λj ).

Unlike the earlier version of Bauer–Fike, the radii of the disks vary with j .



Pseudospectra near a Defective Eigenvalue

For A in Jordan form with m distinct Jordan blocks, we write

A =
mX

j=1

VjJj
bV∗j , f (A) =

mX
j=1

Vj f (Jj)bV∗j .
The resolvent follows with f (ζ) = (z − ζ)−1,

(z − A)−1 =
mX

j=1

Vj(z − Jj)
−1bV∗j ,

with, for a d × d Jordan block (index d eigenvalue),

J =

266664
λ 1

λ
. . .

. . . 1
λ

377775 , (z − J)−1 =

26666664

1
z−λ

−1
(z−λ)2 · · · (−1)d+1

(z−λ)d

1
z−λ

. . .
...

. . . 1
(z−λ)2

1
z−λ

37777775 .
��
��

So near an eigenvalue of index d , Rellich’s perturbation theory requires that the
pseudospectrum behave like a disk whose radius scales like ε1/d as ε→ 0.
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2(c) Bounds on ‖f (A)‖ using σε(A)



Bounds on ‖f (A)‖

Suppose A is diagonalizable, A = VΛV−1. Then

f (A) =
nX

j=1

f (λj)Pj = Vf (Λ)V−1.

This immediately suggests several upper bounds on ‖f (A)‖:

‖f (A)‖ = ‖Vf (Λ)V−1‖ ≤ ‖V‖‖V−1‖ max
λ∈σ(A)

|f (λ)|

= κ(V) max
λ∈σ(A)

|f (λ)|;

‖f (A)‖ ≤
nX

j=1

|f (λj)|‖Pj‖ =
nX

j=1

κ(λj)|f (λj)|.

We seek bounds that provide a more flexible way of handling nonnormality.



Pseudospectral Bounds on ‖f (A)‖

Theorem (Cauchy Integral Formula for Matrices)

f (A) =
1

2πi

Z
Γ

f (z)(z − A)−1 dz .

Take norms of the expression for f (A):

‖f (A)‖ =
‚‚‚ 1

2πi

Z
Γ

f (z)(z − A)−1 dz
‚‚‚ ≤ 1

2π

Z
Γ

|f (z)‖(z − A)−1‖|dz |.

Now pick Γ to be the boundary of σε(A)

‖f (A)‖ ≤ 1

2π

Z
∂σε

|f (z)‖(z − A)−1‖|dz |

=
1

2πε

Z
∂σε

|f (z)||dz |

≤ 1

2πε
sup

z∈σε(A)

|f (z)|
Z
∂σε

|dz | ≤ Lε
2πε

sup
z∈σε(A)

|f (z)|

where Lε denotes the arc-length of ∂σε(A) [Trefethen 1990].
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Pseudospectral Bounds on ‖f (A)‖

Theorem

Let f be analytic on σε(A) for some ε > 0. Then

‖f (A)‖ ≤ Lε
2πε

sup
z∈σε(A)

|f (z)|,

where Lε denotes the contour length of the boundary of σε(A).

Some key observations:

I This should be regarded as a family of bounds that vary with ε;

I The best choice for ε will depend on the problem;

I Sometimes it is excellent; usually it is decent; on occasion it is poor;

I The choice of ε has nothing to do with rounding errors; do not expect the
bound to be most descriptive when ε = εmach or ε = ‖A‖εmach.



Bounds on the Matrix Exponential

To understand behavior of ẋ(t) = Ax(t) [and LTI control systems], we wish to
use pseudospectra to bound ‖etA‖.

Definition

The spectral abscissa is the rightmost point in the spectrum:

α(A) := max
λ∈σ(A)

Re z .

The ε-pseudospectral abscissa is the supremum of the real parts of z ∈ σε(A):

αε(A) := sup
z∈σε(A)

Re z .

Applying the Cauchy integral bound to f (z) = etz gives an upper bound.

Theorem (Upper Bound on ‖etA‖)

For any A ∈ C n×n and ε > 0,

‖etA‖ ≤ Lε
2πε

etαε(A),

where Lε denotes the contour length of the boundary of σε(A).



Bounds on the Matrix Exponential
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Upper Bound on the Matrix Exponential

A =

26666664

−1 2

−1
. . .

. . . 2
−1 2

−1

37777775 ∈ C20×20.

Question: can you estimate σε(A) for this matrix?

σε(A) for ε = 10−20, 10−19, . . . , 10−1
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37777775 ∈ C20×20.
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Computing the Bound Based on the Cauchy Integral Formula

Theorem

Let f be analytic on σε(A) for some ε > 0. Then

‖f (A)‖ ≤ Lε
2πε

sup
z∈σε(A)

|f (z)|,

where Lε denotes the contour length of the boundary of σε(A).

To compute/estimate this bound:

I Compute resolvent norm on a grid that contains all σε(A) of interest,
e.g., using EigTool: [x,y,z] = eigtool(A);

I Send resolvent norm data to a contour plotting routine,
e.g., c = contour(x,y,z,epsilon);

I Extract the contour data from c for each value of epsilon;

I Estimate Lε using linear interpolation between points on each contour;

I Using the maximum principle, supz∈σε(A) |f (z)| = supz∈∂σε(A) |f (z)|, so
take the max of |f (z)| evaluated at all points z on each contour.



Computing the Bound Based on the Cauchy Integral Formula

Theorem

Let f be analytic on σε(A) for some ε > 0. Then

‖f (A)‖ ≤ Lε
2πε

sup
z∈σε(A)

|f (z)|,

where Lε denotes the contour length of the boundary of σε(A).

To compute/estimate this bound:

I Compute resolvent norm on a grid that contains all σε(A) of interest,
e.g., using EigTool: [x,y,z] = eigtool(A);

I Send resolvent norm data to a contour plotting routine,
e.g., c = contour(x,y,z,epsilon);

I Extract the contour data from c for each value of epsilon;

I Estimate Lε using linear interpolation between points on each contour;

I Using the maximum principle, supz∈σε(A) |f (z)| = supz∈∂σε(A) |f (z)|, so
take the max of |f (z)| evaluated at all points z on each contour.



Computing the Bound Based on the Cauchy Integral Formula

Theorem

Let f be analytic on σε(A) for some ε > 0. Then

‖f (A)‖ ≤ Lε
2πε

sup
z∈σε(A)

|f (z)|,

where Lε denotes the contour length of the boundary of σε(A).

To compute/estimate this bound:

I Compute resolvent norm on a grid that contains all σε(A) of interest,
e.g., using EigTool: [x,y,z] = eigtool(A);

I Send resolvent norm data to a contour plotting routine,
e.g., c = contour(x,y,z,epsilon);

I Extract the contour data from c for each value of epsilon;

I Estimate Lε using linear interpolation between points on each contour;

I Using the maximum principle, supz∈σε(A) |f (z)| = supz∈∂σε(A) |f (z)|, so
take the max of |f (z)| evaluated at all points z on each contour.



Computing the Bound Based on the Cauchy Integral Formula

Theorem

Let f be analytic on σε(A) for some ε > 0. Then

‖f (A)‖ ≤ Lε
2πε

sup
z∈σε(A)

|f (z)|,

where Lε denotes the contour length of the boundary of σε(A).

To compute/estimate this bound:

I Compute resolvent norm on a grid that contains all σε(A) of interest,
e.g., using EigTool: [x,y,z] = eigtool(A);

I Send resolvent norm data to a contour plotting routine,
e.g., c = contour(x,y,z,epsilon);

I Extract the contour data from c for each value of epsilon;

I Estimate Lε using linear interpolation between points on each contour;

I Using the maximum principle, supz∈σε(A) |f (z)| = supz∈∂σε(A) |f (z)|, so
take the max of |f (z)| evaluated at all points z on each contour.



Computing the Bound Based on the Cauchy Integral Formula

Theorem

Let f be analytic on σε(A) for some ε > 0. Then

‖f (A)‖ ≤ Lε
2πε

sup
z∈σε(A)

|f (z)|,

where Lε denotes the contour length of the boundary of σε(A).

To compute/estimate this bound:

I Compute resolvent norm on a grid that contains all σε(A) of interest,
e.g., using EigTool: [x,y,z] = eigtool(A);

I Send resolvent norm data to a contour plotting routine,
e.g., c = contour(x,y,z,epsilon);

I Extract the contour data from c for each value of epsilon;

I Estimate Lε using linear interpolation between points on each contour;

I Using the maximum principle, supz∈σε(A) |f (z)| = supz∈∂σε(A) |f (z)|, so
take the max of |f (z)| evaluated at all points z on each contour.



Lower Bounds on the Matrix Exponential

We would like to guarantee the potential for transient growth.

Theorem (Lower bound on ‖etA‖)

Suppose α(A) < 0. Then for all ε > 0,

sup
t≥0
‖etA‖ ≥ αε(A)

ε
.

Proof.

Z ∞
0

etAe−ztdt = (z − A)−1.

Since A is stable, let M := supt≥0 ‖etA‖. Then for any z ∈ σε(A), Re z > 0:

1

ε
< ‖(z − A)−1‖ =

‚‚‚Z ∞
0

etAe−zt dt
‚‚‚

≤
Z ∞

0

‖etA‖|e−zt | dt ≤ M

Z ∞
0

e−(Re z)t dt =
M

Re z
.

Hence M ≥ (Re z)/ε. Take the sup over all z ∈ σε(A) to get the bound.
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Lower Bound on the Matrix Exponential

A =

26666664

−1 2

−1
. . .

. . . 2
−1 2

−1

37777775 ∈ C20×20.

ε = 10−5

ε = 10−1



Zabczyk’s Example

Pseudospectra illuminate an important example in semigroup theory.

Zabczyk (1975) proposed a semi-infinite matrix

A =

2666664
J1

J2

J3

J4

. . .

3777775 ,

an unbounded operator on `2(N), where

Jk =

266664
−1 + ik 1

−1 + ik
. . .

. . . 1
−1 + ik

377775 ∈ Ck×k .



Zabczyk’s Example

A =

2666664
J1

J2

J3

J4

. . .

3777775
Spectral abscissa: α(A) = −1

However, ‖etA‖ = 1 for all t ≥ 0.

Growth bound not determined by α(A) = −1.

σε(A) for ε = 10−10, . . . , 10−1



Matrix Powers

Definition

The spectral radius is the largest point in the spectrum:

ρ(A) := max
λ∈σ(A)

|z |.

The ε-pseudospectral radius is the supremum of magnitudes of points in σε(A):

ρε(A) := sup
z∈σε(A)

|z |.

Theorem (Upper Bound)

For any A ∈ C n×n and ε > 0,

‖Ak‖ ≤ ρε(A)k+1

ε

Proof: Apply the Cauchy integral bound, taking Γ to be the circle of radius
ρε(A) centered at the origin.
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Upper Bound on Matrix Powers

A =
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37777775 ∈ C20×20.

A20 = 0, but lower powers show transient growth.



Upper Bound on Matrix Powers

A =

26666664

0 2

0
. . .

. . . 2
0 2

0

37777775 ∈ C20×20.

A20 = 0, but lower powers show transient growth.

ε = 100

ε = 10−20



Lower Bounds on Matrix Powers

Theorem (Lower bound on power growth)

Suppose ρ(A) < 1. Then for all ε > 0,

sup
k≥0
‖Ak‖ ≥ ρε(A)− 1

ε
.

Proof. Since ρ(A) < 1, Ak → 0 as k →∞. Let M denote the maximum value
of ‖Ak‖, k ≥ 0, and suppose z ∈ σε(A) for |z | > 1. Then

1

ε
< ‖(z − A)−1‖ =

‚‚‚1

z

“
1 +

1

z
A +

1

z2
A2 + · · ·

”‚‚‚

≤ 1

|z |

“
M +

M

|z | +
M

|z |2 + · · ·
”

=
M

|z |
1

1− 1/|z | =
M

|z | − 1
.

Rearrange to obtain M ≥ (|z | − 1)/ε for all z ∈ σε(A) with |z | > 1.
Take the supremum of |z | over all z ∈ σε(A) to get the result.
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Lower Bound on Matrix Powers

A =

26666664

0 2

0
. . .

. . . 2
0 2

0

37777775 ∈ C20×20.

ε = 10−5.5

ε = 10−5.75

ε = 10−4

ε = 10−2

ε = 100



Pseudospectra are not a Panacea

(in the 2-norm)

Key question: “Do pseudospectra determine behavior of a matrix?”
[Greenbaum & Trefethen, 1993].

Greenbaum and Trefethen define “behavior” to mean “norms of polynomials”.

They prove that pseudospectra do not determine behavior.

A1 =

266664
0 1

0 1
0

0 0
0

377775 , A2 =

266664
0 1

0 1
0

0 α
0

377775 .

If α ∈ (1,
√

2], then σε(A1) = σε(A2) for all ε > 0,

1 = ‖A1‖ 6= ‖A2‖ =
√

2.

However: Greenbaum and Trefethen [1993] do show that pseudospectra
determine behavior in the Frobenius norm (σε(A) defined via resolvent norms).
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Pseudospectra are not a Panacea in the 2-norm

Ransford and colleagues have constructed a number of surprising examples.

A sequence η2, . . . , ηm is submultiplicative if ηj+k ≤ ηj ηk

for all j , k ∈ {2, . . . ,m} such that j + k ≤ m.

Theorem (Ransford, 2007)

Suppose α2, . . . , αm and β2, . . . , βm are submultiplicative sequences.
Then there exist matrices A1,A2 ∈ C (2m+3)×(2m+3) with σε(A1) = σε(A2)
for all ε > 0, yet ‖Ak

1‖ = αk and ‖Ak
2‖ = βk for k = 2, . . . ,m.



Pseudospectra are not a Panacea in the 2-norm

Ransford and Rostand (2011) construct matrices with simple eigenvalues

A1 =

266664
0 0 0 0

180 −360 0 0

−90 + 120
√

5 180 + 60
√

5 120
√

5 0

450 −180 −360 216
√

5

377775
and

A2 =

266664
0 0 0 0

120 −360 0 0

45
√

130− 15
√

26 45
√

26 + 15
√

130 120
√

5 0

30
√

130 10
√

130 80
√

5 216
√

5

377775

Theorem (Ransford and Rostand, 2011)

The above matrices A1 and A2 have superidentical pseudospectra (i.e., all
singular values of z − A1 and z − A2 match for all z ∈ C ), yet ‖A2

1‖ 6= ‖A2
2‖.



2(d) Computing the pseudospectral

abscissa αε(A) and radius ρε(A)



Distance to Instability

The spectral abscissa and spectral radius

α(A) := sup
z∈σ(A)

Re z , ρ(A) := sup
z∈σ(A)

|z |

are one important measure of stability, but these quantities can both be
sensitive to perturbations. We seek a more robust measure.

Definition (Distance to Instability)

The distance to instability of a stable system ẋ = Ax is

min{‖E‖ : i y ∈ σ(A + E) for some y ∈ R}.

The distance to instability of a stable system xk+1 = Ax is

min{‖E‖ : z ∈ σ(A + E) for some |z | = 1}.

See also [Hinrichsen and Pritchard, 1990. . . ], especially in the context of
structured perturbations.



Distance to Instability

min{‖E‖ : i y ∈ σ(A + E) for some y ∈ R}

min{‖E‖ : z ∈ σ(A + E) for some |z | = 1}

The continuous-time distance to instability is thus

sup{ε > 0 : σε(A) is contained in the left half plane}

and the discrete-time distance to instability is thus

sup{ε > 0 : σε(A) is contained in the unit circle}.



Optimizing αε(A) and ρε(A) for Robust Stability

I As seen with the Boeing 767 example yesterday, optimizing α(A) can give
asymptotically stable models with considerable transient growth.

I Burke, Lewis, Overton, and Mengi have undertaken an extensive program:
(a) to characterize smoothness of σε(A), αε(A), and ρε(A)
(b) and develop algorithms to compute αε(A) and ρε(A)
(c) toward optimization of these quantities within a given class of models.

Here we focus on efficient algorithms for computing

αε(A) := sup
z∈σε(A)

Re z , ρε(A) := sup
z∈σε(A)

|z |.



Toward Computing αε(A) and ρε(A)

These algorithms will be based on this fundamental result.

Theorem (Byers, 1988)

The matrix (x + i y)−A has a singular value ε if and only if i y is an eigenvalue
of the Hamiltonian matrix "

x − A∗ εI

−εI A− x

#
.

Question: Since this matrix has at most 2n eigenvalues, what can you deduce
about the boundary of σε(A)?

The boundary ∂σε(A) intersects any vertical line in C at no more than 2n
distinct points. Even more, this implies that ∂σε(A) contains no vertical line
segment – nor, by substituting e iθA for A, a segment of any straight line.
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Criss-Cross Algorithm for αε(A)

This algorithm was proposed by [Burke, Lewis, Overton 2003].

Given a fixed value of ε > 0 and the corresponding pseudospectrum σε(A):

1. Find λ, the rightmost eigenvalue of A.

2. Find the rightmost point in ∂σε(A) that intersects the horizontal line
{z ∈ C : Im z = Imλ} through λ. Call this point z1.
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intersects the line.

4. Find the midpoints of these vertical segments. From each midpoint,
search horizontally to find ∂σε(A). Call the rightmost of these points zk+1.
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Criss–Cross Algorithm for ρε(A)

This algorithm will rely on the following adaptation of the result of Byers.

Theorem (Mengi & Overton, 2005)

The matrix reiθ − A has a singular value ε if and only if i r is an eigenvalue of
the Hamiltonian matrix "

i eiθA∗ −εI

εI i e−iθA

#
.



Criss-Cross Algorithm for ρε(A)

This algorithm was proposed by [Mengi & Overton, 2005].

Given a fixed value of ε > 0 and the corresponding pseudospectrum σε(A):

1. Find λ, the eigenvalue of A having largest magnitude.

2. Find the largest magnitude point in ∂σε(A) that intersects the line
connecting the origin to λ, i.e., {z ∈ C : arg z = arg λ}. Call this point z1.
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For k = 1, 2, . . . until convergence

3. Find all points where ∂σε(A) intersects the circle of radius |zk |.
These points determine arcs where σε(A) intersects this circle.

4. Find the midpoints of each arc. From each arc, search radially for ∂σε(A).
Call the point of intersection with largest magnitude zk+1.
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