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Overview of the Course

These lectures describe modern tools
for the spectral analysis of dynamical systems.
We shall cover a mix of theory, computation, and applications.

By the end of the week, you will have a thorough understanding of the
sources of nonnormality, its affects on the behavior of dynamical systems,
tools for assessing its impact, and examples where it arises.

You will be able to understand phenomena that many people find
quite mysterious when encountered in the wild.
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Outline for Today

Lecture 1: Introduction to Nonnormality and Peudospectra

» Some motivating examples

v

Normality and nonnormality

> Numerical range (field of values)

v

Pseudospectra

» Computing the numerical range and pseudospectra, EigTool



Notation

A B,...c C™"
X,y,...€ C"

m X n matrices with complex entries
column vectors with n complex entries
conjugate transpose, A" = A e cmm
conjugate transpose (row vector), x* = X'
time-derivative of a vector-valued function x : R — C".

xI| = vx7%)

matrix norm of A, induced by the vector norm:
Al := maxx—1 [|Ax|]
||AB|| < ||A|l||B]| (submultiplicativity)

norm of x (generally the Euclidean norm,
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matrix norm of A, induced by the vector norm:

Al := maxx—1 [|Ax|]

||AB|| < ||A|l||B]| (submultiplicativity)

norm of x (generally the Euclidean norm,

spectrum (eigenvalues) of A € C"™*":
o(A) ={z € C:zl — Ais not invertible}

kth largest singular value of A € C™*"
smallest singular value of A € C™*"
range (column space) of the matrix V € C"<*

kernel (null space) of the matrix V € C"<*



Basic Stability Theory

We begin with a standard time-invariant linear system
x(t) = Ax(t)

with given initial state x(0) = xo.

This system as the well-known solution
x(t) = e™xo,

where e is the matrix exponential.
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Basic Stability Theory

The system x(t) = Ax(t) is said to be stable provided the solution

x(t) = e™xo

decays as t — o0, i.e.,

|x(t)]| — 0 for all initial states xq.

Recall that (for diagonalizable A)

et)\l ok

n
tA A, o
e =lvi v - v, ] ) ) :E eV
. : =

Similar formulas hold for nondiagonalizable A.
Since, e.g.,

A
Ix(@)l < lle™[llxoll
<

-1 A -1 Re A
VIV max e < IVIIIVTH| max e,
€o(A) Aeo(A)

we say that the system (or A) is stable provided all eigenvalues of A are in the
left half of the complex plane.



1(a) Some Motivating Examples



Quiz

The plots below show the solution to two dynamical systems, x(t) = Ax(t).
Which system is stable?

That is, for which system, does x(t) — 0 as t — 00?
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a) neither system is stable

b) only the one on the blue system is stable
c) only the one on the red system is stable
d) both are stable
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Quiz

The plots below show the solution to two dynamical systems, x(t) = Ax(t).
Which system is stable?

That is, for which system, does x(t) — 0 as t — 00?
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(a) neither system is stable
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Quiz

The plots below show the solution to two dynamical systems, x(t) = Ax(t).
Which system is stable?

That is, for which system, does x(t) — 0 as t — 00?
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Eigenvalues of 55 x 55 Boeing 767 flutter models [Burke, Lewis, Overton].
These eigenvalues do not reveal the exotic transient behavior.



Why is Transient Growth Important?

Many linear systems arise from the linearization of nonlinear equations, e.g.,
Navier—Stokes. We compute eigenvalues as part of linear stability analysis.

Transient growth in a stable linearized system has implications
for the behavior of the associated nonlinear system.

Seminal article in Science, 1993:

Hydrodynamic Stability Without Eigenvalues

Lloyd N. Trefethen, Anne E. Trefethen, Satish C. Reddy, Tobin A. Driscoll

Fluid flows that are smooth at low speeds become unstable and then turbulent at higher
speeds. This phenomenon has traditionally been investigated by linearizing the equations
offlow and testing for unstable eigenvalues of the linearized problem, but the results of such
investigations agree poorly in many cases with experiments. Nevertheless, linear effects
play a central role in hydrodynamic instability. A reconciliation of these findings with the
traditional analysis is presented based on the “pseudospectra” of the linearized problem,
which imply that small perturbations to the smooth flow may be amplified by factors on the
order of 10° by a linear mechanism even though all the eigenmodes decay monotonically.
The methods suggested here apply also to other problems in the mathematical sciences
that involve nonorthogonal eigenfunctions.




Why is Transient Growth Important?

Transient growth in a stable linearized system has implications
for the behavior of the associated nonlinear system.

(RECIPE FOR LINEAR STABILITY ANALYSIS)

Consider the autonomous nonlinear system u(t) = f(u).
> Find a steady state u,, ie., f(u.) =0.

> Linearize f about this steady state and analyze small perturbations,
u=uy +Vv:

v(t) = u(t)

f(u. +v)
f(u.) + Av + O(||v|)
Av + O(||v[).

> Ignore higher-order effects, and analyze the linear system v(t) = Av(t).
The steady state u, is stable provided A is stable.



Why is Transient Growth Important?

Transient growth in a stable linearized system has implications
for the behavior of the associated nonlinear system.

(RECIPE FOR LINEAR STABILITY ANALYSIS)

Consider the autonomous nonlinear system u(t) = f(u).
> Find a steady state u,, ie., f(u.) =0.

> Linearize f about this steady state and analyze small perturbations,
u=uy +Vv:

v(t) = u(t)

f(u. +v)
f(u.) + Av + O(||v|)
Av + O(||v[).

> Ignore higher-order effects, and analyze the linear system v(t) = Av(t).
The steady state u, is stable provided A is stable.

But what if the small perturbation v(t) grows
by orders of magnitude before eventually decaying?



Example: a Nonlinear Heat Equation

An example of the failure of linear stability analysis for a PDE problem.

Consider the nonlinear heat equation on x € [—1,1] with u(—1,t) = u(1,t) =0
ue(x, t) = vuw(x, t)

with v >0
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Example: a Nonlinear Heat Equation

An example of the failure of linear stability analysis for a PDE problem.
Consider the nonlinear heat equation on x € [—1,1] with u(—1,t) = u(1,t) =0
ue(x, t) = vue(x, t) + Vrue(x, t) + su(x, t) + u(x, t)°

with v > 0 and p > 1 [Demanet, Holmer, Zworski].

The linearization L, an advection—diffusion operator,
Lu = vuey +vu, + éu

has eigenvalues and eigenfunctions

5 2 < 0, un(x) = e /@ sin(nrx/2);

see, e.g., [Reddy & Trefethen 1994].

The linearized operator is stable for all ¥ > 0, but has interesting transients . ...



Nonnormality in the Linearization

The linearized system is stable:
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Rightmost part of the spectrum for v = 0.002

But transient growth can feed the nonlinearity. . ..



Evolution of a Small Initial Condition
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Nonlinear model (blue) and linearization (black)



Transient Behavior
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Linearized system (black) and nonlinear system (dashed blue)

Nonnormal growth feeds the nonlinear instability.



Spectra and Pseudospectra

Source for much of the content of these lectures:
LLOYD N. TREFETHEN
MARK EMBREE

SPECTIRA

AND

PSEUDOSPECTRA

The Behavior of Nonnormal

Matrices and Operators

Princeton University Press
2005




Motivating Applications

Situations like these arise in many applications:

» convective fluid flows

» damped mechanical systems
» atmospheric science

> magnetohydrodynamics

> neutron transport

» population dynamics

» food webs

» directed social networks

» Markov chains

> lasers

u:(x,t) = vAu(x,t)

<
x:
—~
~+
—
I

—Kx(t)



Motivating Applications

Situations like these arise in many applications:

» convective fluid flows

» damped mechanical systems
» atmospheric science

> magnetohydrodynamics

> neutron transport

» population dynamics

» food webs

» directed social networks

» Markov chains

> lasers

u:(x,t) = vAu(x,t) — (a- V)u(x,t)

<
x:
—~
~+
—
I

—Kx(t) — Dx(t)



1(b) Normality and Nonnormality



Normality and Nonnormality

Unless otherwise noted, all matrices are of size n X n, with complex entries.

The adjoint is denoted by A* = AT.

Definition (Normal)
The matrix A is normal if it commutes with its adjoint, A*A = AA".

1 1] aon  ame |20
A_[ }.AA_AA_{O )

101 ] — normal

-1 1 n_ |1 -1 2 1] e
A_[ 1}.AA_[71 2};&{1 1}_AA =—> nonnormal



Normality and Nonnormality

Unless otherwise noted, all matrices are of size n X n, with complex entries.

The adjoint is denoted by A* = AT.
Definition (Normal)
The matrix A is normal if it commutes with its adjoint, A*A = AA".

2 0

1 1 * _ *
A_[ }.AA_AA_{O 5

101 ] — normal

-1 1 n_ |1 -1 2 1] e
A_[ 1}.AA_[71 2};&{1 1}_AA =—> nonnormal

Important note:

The adjoint is defined via the inner product: (Ax,y) = (x, A'y).

hence the definition of normality depends on the inner product.

Here we always use the standard Euclidean inner product, unless noted.
In applications, one must use the physically relevant inner product.



Conditions for Normality

Many (~ 89) equivalent definitions of normality are known;
see [Grone et al. 1987], [Elsner & Ikramov 1998].

By far, the most important of these concerns the eigenvectors of A.

Theorem
The matrix A is normal if and only if it is unitarily diagonalizable,
A = UAU",

for U unitary (U*U = 1) and N diagonal.

Equivalently, A is normal if and only if is possesses an orthonormal basis of
eigenvectors (i.e., the columns of U).



Conditions for Normality

Many (~ 89) equivalent definitions of normality are known;
see [Grone et al. 1987], [Elsner & Ikramov 1998].

By far, the most important of these concerns the eigenvectors of A.

Theorem
The matrix A is normal if and only if it is unitarily diagonalizable,
A = UAU",

for U unitary (U*U = 1) and N diagonal.

Equivalently, A is normal if and only if is possesses an orthonormal basis of
eigenvectors (i.e., the columns of U).

Hence, any nondiagonalizable (defective) matrix is nonnormal.
But there are many interesting diagonalizable nonnormal matrices.
Our fixation with diagonalizability has caused us to overlook these matrices.



Orthogonality of Eigenvectors

Theorem
The matrix A is normal if and only if it is unitarily diagonalizable,
A = UAU",

for U unitary (U*U = 1) and N diagonal.

Equivalently, A is normal if and only if is possesses an orthonormal basis of
eigenvectors (i.e., the columns of U).

An orthogonal basis of eigenvectors gives a perfect coordinate system for
studying dynamical systems: set z(t) := U*x(t), so
X'(t) = Ax(t) = U"X/(t) = U"AUU x(t)
= Z/(t) = Nz(t)
= z(t) = \z(t),

with ||x(£))* = x(t)*x(t) = x(t)*"UU*x(t) = ||z(t)||* for all t.



The Perils of Oblique Eigenvectors

Now suppose we only have a diagonalization, A = VAV~

X (t) = Ax(t) = V X(t) =V 'AVV 'x(t)
= Z/(t) = Nz(t)
= z(t) = \z(t),

with ||x(t)|| # ||z(t)]| in general.



The Perils of Oblique Eigenvectors

Now suppose we only have a diagonalization, A = VAV~

X (t) = Ax(t) = V X(t) =V 'AVV 'x(t)
= Z/(t) = Nz(t)
= z(t) = \z(t),

with ||x(t)|| # ||z(t)]| in general.

The exact solution is easy:

x(t) = Vz(t) = > ™z (0)vi.

Suppose ||x(0)|| = 1. The coefficients z((0) might still be quite large:

n

x(0) = Vz(0) = > _ z(0)v«.

k=0

The “cancellation” that gives x(0) is washed out for t > 0 by the e"** terms.



Oblique Eigenvectors: Example

Example

el RG] Kol

Eigenvalues and eigenvectors:

1

1 1
)\1 :—1/27 V] = |: 0 :|, AQ:—S, Vo = |: — 009 :|

Initial condition:

x(O):{1 = vy —

17 1009 1000
9 9 =

Exact solution:
_ 1009ehtv _ 1OOOeA2tvz.

x(t) = =5 17 g



Oblique Eigenvectors: Example

t =0.00
20 40 60 80 100 120
oy
t =0.40
20 40 60 80 100 120
Ty

Note the different scales of the horizontal and vertical axes.

[x(0)] = 1

x(.4)|| = 76.75



Oblique Eigenvectors Can Lead to Transient Growth

Transient growth in the solution: a consequence of nonnormality.

lI=(®)]]




A Classic Paper on the Matrix Exponential

SIAM REVIEW © Society for Industrial and Applied Mathematics
Vol. 20, No. 4, October 1978 0036-1445/78/2004-0031801.00/0

NINETEEN DUBIOUS WAYS TO COMPUTE
THE EXPONENTIAL OF A MATRIX*

CLEVE MOLERt AND CHARLES VAN LOAN#

e

FiG. 1. The “hump”.



A Classic Paper on the Matrix Exponential

SIAM REVIEW © Society for Industrial and Applied Mathematics
Vol. 20, No. 4, October 1978 0036-1445/78/2004-0031801.00/0

NINETEEN DUBIOUS WAYS TO COMPUTE
THE EXPONENTIAL OF A MATRIX*

CLEVE MOLERt AND CHARLES VAN LOAN#

Much More on Tuesday

e

s/m s

FiG. 1. The “hump”.



Nonnormality in lterative Linear Algebra

Nonnormality can complicate the convergence of iterative eigensolvers.

Imx
rio
POOR (UN\V[RG[NH .‘.’: L20
s
\ 4 |
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. “ F1o
2,0. 2 e ! ° Wolfgang Kerner
Reh ‘Large-scale complex eigenvalue problems’
J. Comp. Phys. 85 (1989) 1-85.




Nonnormality in lterative Linear Algebra

Nonnormality can complicate the convergence of iterative eigensolvers.

Imx
= Much More on Thursday
POOR CONVERGENCE .‘.’:. L20
s
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SN
. “ F1o
2,0. 2 e ! ° Wolfgang Kerner
Reh ‘Large-scale complex eigenvalue problems’
J. Comp. Phys. 85 (1989) 1-85.




Tools for Measuring Nonnormality

Given a matrix, we would like some effective way to measure whether
we should be concerned about the effects of nonnormality.
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Given a matrix, we would like some effective way to measure whether
we should be concerned about the effects of nonnormality.

First, we might seek a scalar measure of normality.
Any definition of normality leads to such a gauge.

> IA"A— AN
> min ||A—2Z|
Z normal

(See work on computing the nearest normal matrix by Gabriel, Ruhe 1987.)

> Henrici's departure from normality:

depy(A) = min [INJ.
A=U(D+N)U*
Schur factorization

No minimization is needed in the Frobenius norm:

dep(A) = min N|F = Al|z — A2,
W= min NI = 18T -1

Schur factorization
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Given a matrix, we would like some effective way to measure whether
we should be concerned about the effects of nonnormality.

First, we might seek a scalar measure of normality.
Any definition of normality leads to such a gauge.

> IA"A— AN
> min ||A—2Z|
Z normal

(See work on computing the nearest normal matrix by Gabriel, Ruhe 1987.)

> Henrici's departure from normality:

depy(A) = min [INJ.
A=U(D+N)U*
Schur factorization

No minimization is needed in the Frobenius norm:
depr(A)=  min [INJlr =
A=U(D+N)U*

n
LYV
Schur factorization Jj=1

These are related by equivalence constants [Elsner, Paardekooper, 1987].




Tools for Measuring Nonnormality

Given a matrix, we would like some effective way to measure whether
we should be concerned about the effects of nonnormality.

First, we might seek a scalar measure of normality.
Any definition of normality leads to such a gauge.

> IA"A— AN
> min ||A—2Z|
Z normal

(See work on computing the nearest normal matrix by Gabriel, Ruhe 1987.)

> Henrici's departure from normality:

depy(A) = min [INJ.
A=U(D+N)U*
Schur factorization

No minimization is needed in the Frobenius norm:
depr(A)=  min [INJlr =
A=U(D+N)U*

n
LYV
Schur factorization Jj=1

These are related by equivalence constants [Elsner, Paardekooper, 1987].
None of these measures is of much use in practice.




Tools for Measuring Nonnormality

If A is diagonalizable,
A=VAV!

I

one can characterize nonnormality by (V) := ||V||||[V7}|| > 1.

» This quantity depends on the choice of eigenvectors;

scaling each column of V to be a unit vector gets within \/n
of the optimal value, if the eigenvalues are distinct [van der Sluis 1969].
For normal matrices, one can take V unitary, so (V) = 1.

If K(V) is not much more than 1 for some diagonalization, then the effects
of nonnormality will be minimal.



Tools for Measuring Nonnormality

If A is diagonalizable,
A=VAV!

I

one can characterize nonnormality by (V) := ||V||||[V7}|| > 1.

» This quantity depends on the choice of eigenvectors;
scaling each column of V to be a unit vector gets within \/n
of the optimal value, if the eigenvalues are distinct [van der Sluis 1969].

» For normal matrices, one can take V unitary, so (V) = 1.

» If (V) is not much more than 1 for some diagonalization, then the effects
of nonnormality will be minimal.

Example (Bound for Continuous Systems)

Ix(6)]l = lle®x(@)[ < [[e™|/lIx(0)]|
< VeV Ix(0) |
< \Y} 2 11x(0)].
< &( )Agg(ﬁ)le [[1x(0)]]



1(c) Numerical range (field of values)



Rayleigh Quotients

Another approach: identify a set in the complex plane to replace the spectrum.
This dates to the early 20th century literature in functional analysis, e.g., the
numerical range, Von Neumann's spectral sets, and sectorial operators.

Definition (Rayleigh Quotient)

The Rayleigh quotient of A € C"*" with respect to nonzero x € C" is

x*Ax
X*X
For a Hermitian matrix A with eigenvalues A\; < --- < A,
x* Ax
)\1 S S An-
X*X

More generally, Rayleigh quotients are often used as eigenvalue estimates, since
if (A, x) is an eigenpair, then
x*Ax

X*X

=




Numerical Range (Field of Values)

So, consider looking beyond o(A) to the set of all Rayleigh quotients.

Definition (Numerical Range, a.k.a. Field of Values)

The numerical range of a matrix is the set

W(A) = {x"Ax : [|x|| = 1}.



Numerical Range (Field of Values)

So, consider looking beyond o(A) to the set of all Rayleigh quotients.

Definition (Numerical Range, a.k.a. Field of Values)

The numerical range of a matrix is the set

W(A) = {x"Ax : [|x|| = 1}.

\{

o(A) C W(A) [Proof: take x to be an eigenvector.]
W(A) is a closed, convex subset of C.

If U is unitary, then W(U*AU) = W(A).

If A is normal, then W/(A) is the convex hull of o(A).

Unlike o(A), the numerical range is robust to perturbations:

v

v

v

v

W(A+E)C W(A)+{zeC:|z <|E[}.



Eigenvalues and the numerical range, for four different 15 x 15 matrices:

*O)e

normal random Grcar Jordan

We will describe computation of W(A) later this morning.



The Numerical Range Can Contain Points Far from the Spectrum

Boeing 737 example, revisited: numerical range of the 55 x 55 stable matrix.

7

400 ‘ ‘ 1 x 10
300 .
2001 1 0.5¢
* L]
100 ° . L
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. - . o
-1001 . M 1
. L]
—200} 1 -0.5¢
-3001 .
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4(1(%5 -10 -5 0 -1 -0.5 0 0.5 1
7
o(A) W(A) x10

We seek some middle ground between o(A) and W/(A).



The Numerical Range Can Contain Points Far from the Spectrum

Boeing 737 example, revisited: numerical range of the 55 x 55 stable matrix.
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We seek some middle ground between o(A) and W/(A).



1(d) Pseudospectra



Pseudospectra

The numerical range W/(A) and the spectrum o(A) both have limitations.
Here we shall explore another option that, loosely speaking,
interpolates between o(A) and W(A).



Pseudospectra

The numerical range W/(A) and the spectrum o(A) both have limitations.

Here we shall explore another option that, loosely speaking,

interpolates between o(A) and W(A).

Example

Compute eigenvalues of three similar 100 x 100 matrices using MATLAB's eig.
0 1 0 1/2 0 1/3

1 0 . 2 o0 . 3 0

[y

: 1/2 L3
1 0 2 0 30



Pseudospectra

The numerical range W/(A) and the spectrum o(A) both have limitations.
Here we shall explore another option that, loosely speaking,
interpolates between o(A) and W(A).

Example

Compute eigenvalues of three similar 100 x 100 matrices using MATLAB's eig.
0 1 0 1/2 0 1/3
1 0 . 2 o0 . 3 0

Sl . % AR L3
1 0 2 0 30



Pseudospectra

Definition (e-pseudospectrum)

For any € > 0, the e-pseudospectrum of A, denoted o-(A), is the set

g:(A) ={z€ C:z € o(A+E) for some E € C"™*" with ||E|| < €}.



Pseudospectra

Definition (e-pseudospectrum)

For any € > 0, the e-pseudospectrum of A, denoted o-(A), is the set

g:(A) ={z€ C:z € o(A+E) for some E € C"™*" with ||E|| < €}.

We can estimate o.(A) by conducting experiments with random perturbations.

1/2), 50 trials each:




Distance to Singularity

There is a fundamental connection between the distance of A to singularity and
the norm of the inverse.

> Suppose |[A7Y = 1/e.
» There exists some unit vector w € C" where the norm is attained:
1

Al = A w] =
IAT = lIA™ wll = -



Distance to Singularity

There is a fundamental connection between the distance of A to singularity and
the norm of the inverse.

> Suppose |[A7Y = 1/e.
» There exists some unit vector w € C" where the norm is attained:
_ _ 1
1 1
A7 =A™ w| = -.
€

> Define v:= A”lw.

v

Define v := v/||v||, a unit vector.

|Av|| = % =¢, 50 A is "nearly singular.”
v

v



Distance to Singularity

There is a fundamental connection between the distance of A to singularity and
the norm of the inverse.

> Suppose |[A7Y = 1/e.
» There exists some unit vector w € C" where the norm is attained:
_ _ 1
1 1
A7 =A™ w| = -.
€

> Define v:= A”lw.

» Define v :=V/||v]|, a unit vector.
> ||Av] = H =¢, 50 A is "nearly singular.”
» Define E := —Aw"* € C"™*".

v

Now (A + E)v = Av — Aw" v = 0, so A + E is singular.
The distance of A to singularity is ||E|| = ||Av|| = .

v



Distance to Singularity

There is a fundamental connection between the distance of A to singularity and
the norm of the inverse.

> Suppose |[A7Y = 1/e.
» There exists some unit vector w € C" where the norm is attained:
_ _ 1
1 1
A7 =A™ w| = -.
€

> Define v:= A”lw.

» Define v :=V/||v]|, a unit vector.
> ||Av] = % =¢, 50 A is "nearly singular.”
v
> Define E := —Aw* € C"*",
» Now (A + E)v = Av — Aw*v =0, so A + E is singular.
» The distance of A to singularity is |E|| = ||Av|| = €.

Norms of inverses are closely related to eigenvalue perturbations.



Equivalent Definitions of the Pseudospectrum

Theorem
The following three definitions of the e-pseudospectrum are equivalent:

1. 0.(A)={z€ C:z € o(A+E) for some E € C"™" with ||E|| <e};
2. 0 (A)={z€ C:|(z—A)Y >1/e}
3. 0.(A)={z € C :|Av — zv|| < € for some unit vectorv € C"}.



Equivalent Definitions of the Pseudospectrum

Theorem
The following three definitions of the e-pseudospectrum are equivalent:

1. 0.(A)={z€ C:z € o(A+E) for some E € C"™" with ||E|| <e};
2. 0 (A)={z€ C:|(z—A)Y >1/e}
3. 0.(A)={z € C :|Av — zv|| < € for some unit vectorv € C"}.

Proof. (1) = (2)

If z € o(A + E) for some E with ||[E|| < &, there exists a unit vector v such that
(A 4+ E)v = zv. Rearrange to obtain

v=(z—A) 'Ev.
Take norms:
vl = [I(z = A)Ev|| < [I(z = A)THIIENIvI < ll(z = A)[[Iv]|-
Hence ||(z — A)7!|| > 1/e. O



Equivalent Definitions of the Pseudospectrum

Theorem
The following three definitions of the e-pseudospectrum are equivalent:

1. 0.(A)={z€ C:z € o(A+E) for some E € C"™" with ||E|| <e};
2. 0 (A)={z€ C:|(z—A)Y >1/e}
3. 0.(A)={z € C :|Av — zv|| < € for some unit vectorv € C"}.

Proof. (2) = (3)

If |[(z— A)7!|| > 1/e, there exists a unit vector w with ||(z — A)"'w| > 1/e.
Define v := (z — A)~'w, so that 1/||V]| < ¢, and

— A v
Iz = Al _ wll __
[T

Hence we have found a unit vector v := v/||v]| for which ||Av — zv|| < ¢. O



Equivalent Definitions of the Pseudospectrum

Theorem
The following three definitions of the e-pseudospectrum are equivalent:

1. 0.(A)={z€ C:z € o(A+E) for some E € C"™" with ||E|| <e};
2. 0 (A)={z€ C:|(z—A)Y >1/e}
3. 0.(A)={z € C :|Av — zv|| < € for some unit vectorv € C"}.

Proof. (3) = (1)

Given a unit vector v such that ||Av — zv|| < ¢, define r := Av — zv.
Now set E := —rv™, so that

(A+E)v=(A—rv')v=Av—r=2zv.

Hence z € o(A + E).



Equivalent Definitions of the Pseudospectrum

Theorem
The following three definitions of the e-pseudospectrum are equivalent:
1. 0.(A)={z€ C:z € o(A+E) for some E € C"™" with ||E|| <e};

2. 0 (A)={z€ C:|(z—A)Y >1/e}
3. 0.(A)={z € C :|Av — zv|| < € for some unit vectorv € C"}.

These different definitions are useful in different contexts:

1. interpreting numerically computed eigenvalues;

2. analyzing matrix behavior/functions of matrices;
computing pseudospectra on a grid in C;

3. proving bounds on a particular o-(A).



Eigenvalues and the numerical range, for four different 15 x 15 matrices:

*O)e

normal random Grcar Jordan



A Gallery of Pseudospectra

Eigenvalues and e-pseudospectra for four different 15 x 15 matrices,
for e =10°,10%,1071:

O]
®
® ®
®, 0 0
O] ®
®
O]

normal random Grcar Jordan



History of Pseudospectra

Invented at least four times, independently:

Jim Varah (Stanford) in his 1967 PhD thesis
Eigenvalue computations, inverse iteration

Henry Landau (Bell Labs) in a 1975 paper
Integral equations in laser theory

S. K. Godunov and colleagues (Novosibirsk), 1980s.
Eigenvalue computations, discretizations of PDEs

' Nick Trefethen (MIT) starting in 1990
“\7 Discretization of PDEs, iterative linear algebra



History of Pseudospectra

SIAM J. NUMER. ANAL. © 1987 Society for Industrial and Applied Mathematics
Vol. 24, No. 5, October 1987 004

AN INSTABILITY PHENOMENON IN SPECTRAL METHODS*
LLOYD N. TREFETHENt AND MANFRED R. TRUMMER}

(a) 16 digits (b) 8 digits (c) 4 digits

FiG. 4. Eigenvalues of the Legendre differentiation matrix D with N =28, computed in various precisions . The dashes indicate the line Re A =}10g, e.




History of Pseudospectra

Early adopters include Wilkinson (1986), Demmel (1987), Chatelin (1990s).

A Counterexample for Two Conjectures about Stability .

JAMES W. DEMMEL 3. mn =3y

‘-5, -4. -3. -2. -1. 0. 1.

First computer plot of pseudospectra (1987) Fig. 3. Contour plt of ogi (0auldd — A1) in the Aplanc,



Demmel’s Pseudospectra

-1 —100 —10000
A= -1 —100
-1

5 4 3 2 - 0 1 2 5 4 3 -2 A 0 1 2

Find the largest € value for which o.(A) is contained in the left half plane.

The figure on the right (¢ = 107>) shows that pseudospectra can have “holes”,
where the norm of the resolvent has a local minima.



Properties of Pseudospectra

A is normal <= o.(A) is the union of open e-balls about each eigenvalue:

A normal = o (A)= U)\j + A
J

A nonnormal = o.(A)D U/\j + A,

A circulant (hence normal) matrix:

0.5

>

Il
—oooo
cocooor
cocoro
coroO
orooo




Properties of Pseudospectra

A is normal <= o.(A) is the union of open e-balls about each eigenvalue:

A normal = o.(A) = U)\j + A
J

A nonnormal = o.(A)D U/\j + A,

A circulant (hence normal) matrix:

>

I
—oooo
cocoocowr
cocoro
corooO
orooo




Normal Matrices: matching distance

An easy misinterpretation: “A size € perturbation to a normal matrix can move
the eigenvalues by no more than ¢.”

This holds for Hermitian matrices, but not all normal matrices.

An example constructed by Gerd Krause (see Bhatia, Matrix Analysis, 1997):
A = diag(1, (4 +5v/=3)/13, (-1 + 2v/~3)/13).
Now construct the (unitary) Householder reflector
U=1-2w"
for v =[,/5/8,1/2,/1/8]", and define E via
A+E=-U"AU.

By construction A + E is normal and o(A + E) = —c(A).



Normal Matrices: matching distance

A = diag(1, (4 + 5v/—3)/13,(—1 + 2v/—3)/13).
A+E=—-U"AU.




Normal Matrices: matching distance

A = diag(1, (4 + 5v/—3)/13,(—1 + 2v/—3)/13).
A+E=—-U"AU.




Properties of Pseudospectra

Theorem (Facts about Pseudospectra)

For all e > 0,

>

>

o-(A) is an open, finite set that contains the spectrum.
oe(A) is stable to perturbations: o-(A + E) C o. g (A).

If U is unitary, c.(UAU™) = o-(A).

For V invertible, o, (VAV™') C 0. (A) C ocpqv)(VAVY).
o:(A+a)=a+o-(A).

Oly(YA) = yoe(A).

0'5( [8 g} ) = o0.(A) Uo.(B).



Relationship to «(V) and W/(A)

Let A, :={z € C: |z| < r} denote the open disk of radius r > 0.

Theorem (Bauer—Fike, 1963)
Let A be diagonalizable, A = VAV, Then for all ¢ > 0,

UE(A) C O‘(A) + Ae,i(v).

If k(V) is small, then o-(A) cannot contain points far from o(A).



Relationship to «(V) and W/(A)

Let A, :={z € C: |z| < r} denote the open disk of radius r > 0.

Theorem (Bauer—Fike, 1963)
Let A be diagonalizable, A = VAV, Then for all ¢ > 0,

US(A) C O‘(A) + Ae,i(v).

If k(V) is small, then o-(A) cannot contain points far from o(A).

Theorem (Stone, 1932)

For any A,
o:(A) C W(A) + A..

The pseudospectrum o.(A) cannot be bigger than W/(A) in an interesting way.



Pole Placement Example

Problem (Pole Placement Example of Mehrmann and Xu, 1996)
Given A = diag(1,2,...,N) andb=[1,1,...,1]", find f € C" such that
o(A—bf)={-1,-2,...,—N}.

One can show that f = G™*e, where e = [1,1,...,1]", where
Gi=(A-X)"'b=(A+k) b
This gives
-1
A—bf" =G G,

with

Gjx=—.
j, k _j+k



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

All entries in A — bf™ are integers.
(To ensure this, we compute f symbolically.)

For example, when N = 8,

A—bf* =

73
72
72
72
72
72
72
72

—2520
—2518
—2520
—2520
—2520
—2520
—2520
—2520

27720
27720
27723
27720
27720
27720
27720
27720

—138600
—138600
—138600
—138596
—138600
—138600
—138600
—138600

360360
360360
360360
360360
360365
360360
360360
360360

—504504
—504504
—504504
—504504
—504504
—504498
—504504
—504504

360360
360360
360360
360360
360360
360360
360367
360360

—102960
—102960
—102960
—102960
—102960
—102960
—102960
—102952



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

or (OO

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

or [O000)

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

or ©©e®©®

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

or ©ee©e®©®

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

or ©OO©®©®®

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

or (OICDICIO0O0)

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

° °
of (.)OOOOOOO(D
L]

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

N =10
15 T
10F
st
L] L]
L]
of * 0000000OP®
L]
L] L]
—5F
-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Numerics

In exact arithmetic, (A — bf*) = {-1,-2,..., —N}.

Computed eigenvalues of A — bf* (matrix is exact: all integer entries).

of . O000000000G
L]

-10f 1 o exact eigenvalues
e computed eigenvalues

_15 " " " " "
-25 -20 -15 -10 -5 0 5



Pole Placement Example: Pseudospectra

Computed pseudospectra of A — bf™.

N=3
15 . 2
-3
10f
-4
s
-5
0 LO=J -6
-7
-5t
-8
_1o0f
-9
_15 L L L L L ~10
25 —20 -15 -10 -5 0 5

Computed eigenvalues should be accurate to roughly emach||A — bf*||.
For example, when N = 11, ||A — bf*|| = 5.26 x 10°.



Pole Placement Example: Pseudospectra

Computed pseudospectra of A — bf™.

N =4

5}

_15 " " " " " ~10
-25 -20 -15 -10 -5 0 5

Computed eigenvalues should be accurate to roughly emach||A — bf*||.
For example, when N = 11, ||A — bf*|| = 5.26 x 10°.



Pole Placement Example: Pseudospectra

Computed pseudospectra of A — bf™.

N =5

5}

_15 " " " " " ~10
-25 -20 -15 -10 -5 0 5

Computed eigenvalues should be accurate to roughly emach||A — bf*|].
For example, when N = 11, ||A — bf*|| = 5.26 x 10°.



Pole Placement Example: Pseudospectra

Computed pseudospectra of A — bf™.

N =6

5}

_15 " " " " " ~10
-25 -20 -15 -10 -5 0 5

Computed eigenvalues should be accurate to roughly emach||A — bf*|].
For example, when N = 11, ||A — bf*|| = 5.26 x 10°.



Pole Placement Example: Pseudospectra

Computed pseudospectra of A — bf™.

N=T

-5

_15 L L L L s 10
—25 -20 -15 -10 -5 0 5

Computed eigenvalues should be accurate to roughly emach||A — bf*|].
For example, when N = 11, ||A — bf*|| = 5.26 x 10°.



Pole Placement Example: Pseudospectra

Computed pseudospectra of A — bf™.

N =38

-5

_15 L L L L s 10
—25 -20 -15 -10 -5 0 5

Computed eigenvalues should be accurate to roughly emach||A — bf*|].
For example, when N = 11, ||A — bf*|| = 5.26 x 10°.



Pole Placement Example: Pseudospectra

Computed pseudospectra of A — bf™.

N=9
15 T -2
3
10
4
5
5
0 6
7
-5
8
-10
9
_15 L L L L s 10
—25 -20 -15 -10 -5 0 5

Computed eigenvalues should be accurate to roughly emach||A — bf*|].
For example, when N = 11, ||A — bf*|| = 5.26 x 10°.



Pole Placement Example: Pseudospectra

Computed pseudospectra of A — bf™.

N =10
15 T -2
3
10
4
5
5
0 6
7
-5
8
-10
9
_15 N N N N N 10
-25 -20 -15 -10 -5 0 5

Computed eigenvalues should be accurate to roughly emach||A — bf*|].
For example, when N = 11, ||A — bf*|| = 5.26 x 10°.



Pole Placement Example: Pseudospectra

Computed pseudospectra of A — bf™.

-2

Computed eigenvalues should be accurate to roughly emach||A — bf*|].
For example, when N = 11, ||A — bf*|| = 5.26 x 10°.



Polynomial Zeros and Companion Matrices

MATLAB's roots command computes polynomial zeros by computing the
eigenvalues of a companion matrix.

For example, given p(z) = co + a1z + ©z° + c32° + cz*, MATLAB builds

—ajc —a/ao —al/a —alc
a_| 1 0 0 0
0 1 0 0
0 0 1 0

whose characteristic polynomial is p.



Polynomial Zeros and Companion Matrices

MATLAB's roots command computes polynomial zeros by computing the
eigenvalues of a companion matrix.

For example, given p(z) = co + a1z + ©z° + c32° + cz*, MATLAB builds

—ajc —a/ao —al/a —alc
a_| 1 0 0 0
0 1 0 0
0 0 1 0

whose characteristic polynomial is p.

Problem (Wilkinson’s “Perfidious Polynomial”)

Find the zeros of the polynomial
p(z)=(z-1)(z—=2)---(z— N)

from coefficients in the monomial basis.

MATLAB gives this as an example: roots(poly(1:20)).



Roots of Wilkinson’s Perfidious Polynomial

Computed eigenvalues of the companion matrix.

of ©OO0®

-5}

_15 n n n n n

-5 0 5 10 15 20

30

1o exact eigenvalues

e computed eigenvalues



Roots of Wilkinson’s Perfidious Polynomial

Computed eigenvalues of the companion matrix.

N =10
15 . . . .

or [C0/000/0/000]

-5}

_15 n n n n n

-5 0 5 10 15 20

30

1o exact eigenvalues

e computed eigenvalues



Roots of Wilkinson’s Perfidious Polynomial

Computed eigenvalues of the companion matrix.

N =15
15 . . . .

-5}

_15 n n n n n

-5 0 5 10 15 20

30

1o exact eigenvalues

e computed eigenvalues



Roots of Wilkinson’s Perfidious Polynomial

Computed eigenvalues of the companion matrix.

N =20
15 . . . .

-5}

_15 n n n n n

-5 0 5 10 15 20

30

1o exact eigenvalues

e computed eigenvalues



Roots of Wilkinson’s Perfidious Polynomial

Computed eigenvalues of the companion matrix.

-5}

-15

N =25
e ® °
. °
o
@@@@@@@@OQOOOOOOOOOOOOOOO b
L] ° . R . L]

-5

30

1o exact eigenvalues

e computed eigenvalues



Roots of Wilkinson’s Perfidious Polynomial

Pseudospectra for N = 25.

24

27

30

33




Roots of Wilkinson’s Perfidious Polynomial

3d plot of the resolvent norm reveals the a local minimum.

l(z—A)~




1(e) Computing W(A) and o.(A)



normal random Grcar Jordan



A Gallery of Numerical Ranges

. . .
. . -.
» . L4
» L4 Y
. . ° O . ..

o o

o o

d

normal random Grcar Jordan

If z € W(A), then

Rez = A+A*)x.

z+z:1(X*AX+X*A*X):X*( 5

2 2

Using properties of Hermitian matrices, we conclude that

R4 = (55 (5.

Similarly, one can determine the intersection of W/(A) with any line in C.



Computation of the Numerical Range

This calculation yields points on the boundary of the numerical range.
Use convexity to obtain polygonal outer and inner approximations
[Johnson 1980]; Higham's fv.m.

L




Computation of the Numerical Range

This calculation yields points on the boundary of the numerical range.
Use convexity to obtain polygonal outer and inner approximations
[Johnson 1980]; Higham's fv.m.

L

Neat problem: Given z € W(A), find unit vector x such that z = x"Ax
[Uhlig 2008; Carden 2009].



Computation of Pseudospectra (Dense Matrices)

Naive algorithm: O(n®) per grid point

» Compute ||(z — A)~!|| using the SVD on a grid of points in C.
SVD costs O(n?) for dense A.

» Send data to a contour plotting routine.

1

0.5F

-051

-1




Computation of Pseudospectra (Dense Matrices)

Naive algorithm: O(n*) per grid point

» Compute ||(z — A)~!|| using the SVD on a grid of points in C.
SVD costs O(n?) for dense A.

» Send data to a contour plotting routine.

1

0.5F —

-051 1

1




Computation of Pseudospectra (Dense Matrices)

Modern algorithm: O(n®) 4 O(n?) per grid point [Lui 1997; Trefethen 1999]

» Compute a Schur triangularization, A = UTU".
Schur costs O(n*) for dense A.

» Recall that o.(A) = 0-(T).



Computation of Pseudospectra (Dense Matrices)

Modern algorithm: O(n®) 4 O(n?) per grid point [Lui 1997; Trefethen 1999]
» Compute a Schur triangularization, A = UTU".
Schur costs O(n*) for dense A.
» Recall that o.(A) = 0-(T).

» One can efficiently solve linear systems Tx = b for x.
Each solve costs O(n?) for upper triangular T.



Computation of Pseudospectra (Dense Matrices)

Modern algorithm: O(n®) 4 O(n?) per grid point [Lui 1997; Trefethen 1999]
» Compute a Schur triangularization, A = UTU".
Schur costs O(n*) for dense A.
» Recall that o.(A) = 0-(T).
» One can efficiently solve linear systems Tx = b for x.
Each solve costs O(n?) for upper triangular T.
» To compute [|[(z — T) 7| = 1/smin(z — T) = smax((z — T) ™),
find the largest eigenvalue of (z — T)™*(z — T)™.
» To do so, apply the Lanczos iteration on (z — T) *(z — T)™*
for each grid point z.



Computation of Pseudospectra (Dense Matrices)

Modern algorithm: O(n®) 4 O(n?) per grid point [Lui 1997; Trefethen 1999]

» Compute a Schur triangularization, A = UTU".
Schur costs O(n*) for dense A.

» Recall that o.(A) = 0-(T).

» One can efficiently solve linear systems Tx = b for x.
Each solve costs O(n?) for upper triangular T.

» To compute [|[(z — T) 7| = 1/smin(z — T) = smax((z — T) ™),
find the largest eigenvalue of (z — T)™*(z — T)™.

» To do so, apply the Lanczos iteration on (z — T) *(z — T)™*
for each grid point z.

> At each step, one must compute (z — T)™*(z — T) " 'h:
This requires a lower-triangular solve with (z — T)* (O(n?))

and an upper triangular solve with (z — T) (O(n?)).
One observes a constant number of iterations per grid point.



Computation of Pseudospectra (Dense Matrices)

Modern algorithm: O(n®) 4 O(n?) per grid point [Lui 1997; Trefethen 1999]
» Compute a Schur triangularization, A = UTU".
Schur costs O(n*) for dense A.
» Recall that o.(A) = 0-(T).
» One can efficiently solve linear systems Tx = b for x.
Each solve costs O(n?) for upper triangular T.
» To compute [|[(z — T) 7| = 1/smin(z — T) = smax((z — T) ™),
find the largest eigenvalue of (z — T)™*(z — T)™.
» To do so, apply the Lanczos iteration on (z — T) *(z — T)™*
for each grid point z.

> At each step, one must compute (z — T)™*(z — T) " 'h:
This requires a lower-triangular solve with (z — T)* (O(n?))
and an upper triangular solve with (z — T) (O(n?)).

One observes a constant number of iterations per grid point.

» Total cost: O(n®) + O(n?) per grid point.



Computation of Pseudospectra (Sparse Matrices)

Large-scale problems [Toh and Trefethen 1996; Wright and Trefethen 2001]

Key idea:

» Find V € C"** with orthonormal columns, V*AV, for k < n.
» The “generalized Rayleigh quotient” V*AV € CK*¥,
> Approximate o.(V*AV) =~ o.(A).

In general, o(V*AV) & o(A), so for some € > 0,
o-(V'AV) € o.(A).
Depending on the choice of V, the approximation o.(V*AV) might give a

rough general impression of o.(A), or it might give a rather accurate
approximation in one interesting region of o.(A).

true, n = 128 - Arnoldi, k = 96 eigenspace, k = 32

s

R

L b b b b b b b obLob




Computation of Pseudospectra (Sparse Matrices)

First important choice for Vi [Toh and Trefethen 1996]:
> Projection onto Krylov subspaces (Arnoldi factorization)
Ran(Vy) = span{x, Ax, ..., A¥"'x}.
The Arnoldi process generates orthonormal bases for Krylov subspaces:
AV, = Vk+1ﬁk7

where Hy, € C**D*k is upper Hessenberg.
Due to the upper Hessenberg structure, we have

Smin(z - |F:lk) 2 smin(z - A)7

so one can get a bound _
GE(Hk) g UE(A)v

where, for a rectangular matrix R, we have

0:(R) :={z € C: smn(z —R) < e}



Computation of Pseudospectra (Sparse Matrices)

Second important choice for Vi [Wright and Trefethen 2001]:

> Projection onto an invariant suspace (eigenspace)

Vk = [vl,...,vk]
Suppose AV, = VX for some X € CK*¥,
Then Ran(V) is an invariant subspace of A.
If V= [V \7k] is a unitary matrix, V*V = I, then
V;AV, VAV,

VAV = o
0 VAV,

Thus o.(V;AV,) C o-(A).

Compute an invariant subspace corresponding to eigenvalues
of physical interest (e.g., using ARPACK).



Computation of Pseudospectra

Alternative: [Briihl 1996; Bekas and Gallopoulos, .. .]
Curve tracing: follow level sets of ||(z — A)™?].

» Given a point z = x + iy € C, suppose ||z — A||7} = 1/e.

» Suppose the smallest singular value s of z — A is simple, with singular
vectors u and v:

(z—=A)v = su.
> Briihl uses a result of Sun (1988) to obtain
Os X Os _ "
x Re(u™v), oy Im(v*u

> Use these derivatives to follow the boundary do.(A).



Computation of Pseudospectra

Alternative: [Briihl 1996; Bekas and Gallopoulos, .. .]
Curve tracing: follow level sets of ||(z — A)™?].

» Given a point z = x + iy € C, suppose ||z — A||7} = 1/e.

» Suppose the smallest singular value s of z — A is simple, with singular
vectors u and v:

(z—=A)v = su.
> Briihl uses a result of Sun (1988) to obtain
Os X Os _ "
x Re(u™v), oy Im(v*u

> Use these derivatives to follow the boundary do.(A).
This seems like an elegant alternative to the grid-based method, but:

> It only gives o.(A) for one value of .

» One must beware of cusps, holes, disconnected components of o.(A).
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Eigure 1: EigTool

EigTool: Software for Pseudospectra Computation
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EigTool: left button to zoom in, right button to zoom out
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http://www.cs.ox.ac.uk/pseudospectra/eigtool

EigTool: Thomas Wright, 2002




