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Overview of the Course

These lectures describe modern tools
for the spectral analysis of dynamical systems.

We shall cover a mix of theory, computation, and applications.

By the end of the week, you will have a thorough understanding of the
sources of nonnormality, its affects on the behavior of dynamical systems,

tools for assessing its impact, and examples where it arises.

You will be able to understand phenomena that many people find
quite mysterious when encountered in the wild.

Lecture 1: Introduction to Nonnormality and Pseudospectra

Lecture 2: Functions of Matrices

Lecture 3: Toeplitz Matrices and Model Reduction

Lecture 4: Model Reduction, Numerical Algorithms, Differential Operators

Lecture 5: Discretization, Extensions, Applications
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Outline for Today

Lecture 1: Introduction to Nonnormality and Peudospectra

I Some motivating examples

I Normality and nonnormality

I Numerical range (field of values)

I Pseudospectra

I Computing the numerical range and pseudospectra, EigTool



Notation

A,B, . . . ∈ Cm×n m × n matrices with complex entries

x, y, . . . ∈ Cn column vectors with n complex entries

A∗ conjugate transpose, A∗ = A
T ∈ Cn×m

x∗ conjugate transpose (row vector), x∗ = xT

ẋ(t) time-derivative of a vector-valued function x : R→ Cn.

‖x‖ norm of x (generally the Euclidean norm, ‖x‖ =
√

x∗x)

‖A‖ matrix norm of A, induced by the vector norm:
‖A‖ := max‖x‖=1 ‖Ax‖
‖AB‖ ≤ ‖A‖‖B‖ (submultiplicativity)

σ(A) spectrum (eigenvalues) of A ∈ Cn×n:
σ(A) = {z ∈ C : zI− A is not invertible}

sk(A) kth largest singular value of A ∈ Cm×n

smin(A) smallest singular value of A ∈ Cm×n

Ran(V) range (column space) of the matrix V ∈ Cn×k

Ker(V) kernel (null space) of the matrix V ∈ Cn×k
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Basic Stability Theory

We begin with a standard time-invariant linear system

ẋ(t) = Ax(t)

with given initial state x(0) = x0.

This system as the well-known solution

x(t) = etAx0,

where etA is the matrix exponential.

For A is diagonalizable,

A = VΛV−1 =
[

v1 v2 · · · vn

]

λ1

λ2

. . .

λn




v̂∗1
v̂∗2
...

v̂∗n

 =
n∑

j=1

λjvj v̂
∗
j ,

etA =
[

v1 v2 · · · vn

]


etλ1

etλ2

. . .

etλn




v̂∗1
v̂∗2
...

v̂∗n

 =
n∑

j=1

etλj vj v̂
∗
j .
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Basic Stability Theory

The system ẋ(t) = Ax(t) is said to be stable provided the solution

x(t) = etAx0

decays as t →∞, i.e., ‖x(t)‖ → 0 for all initial states x0.

Recall that (for diagonalizable A)

etA =
[

v1 v2 · · · vn

]


etλ1

etλ2

. . .

etλn




v̂∗1
v̂∗2
...

v̂∗n

 =
n∑

j=1

etλj vj v̂
∗
j .

Similar formulas hold for nondiagonalizable A.

Since, e.g.,

‖x(t)‖ ≤ ‖etA‖‖x0‖
≤ ‖V‖‖V−1‖ max

λ∈σ(A)
|etλ| ≤ ‖V‖‖V−1‖ max

λ∈σ(A)
etReλ,

we say that the system (or A) is stable provided all eigenvalues of A are in the
left half of the complex plane.



1(a) Some Motivating Examples



Quiz

The plots below show the solution to two dynamical systems, ẋ(t) = Ax(t).

Which system is stable?

That is, for which system, does x(t)→ 0 as t →∞?

(a) neither system is stable
(b) only the one on the blue system is stable
(c) only the one on the red system is stable
(d) both are stable
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Quiz

The plots below show the solution to two dynamical systems, ẋ(t) = Ax(t).

Which system is stable?

That is, for which system, does x(t)→ 0 as t →∞?

original unstable system stabilized system

Eigenvalues of 55× 55 Boeing 767 flutter models [Burke, Lewis, Overton].
These eigenvalues do not reveal the exotic transient behavior.



Why is Transient Growth Important?

Many linear systems arise from the linearization of nonlinear equations, e.g.,
Navier–Stokes. We compute eigenvalues as part of linear stability analysis.

Transient growth in a stable linearized system has implications
for the behavior of the associated nonlinear system.

Seminal article in Science, 1993:



Why is Transient Growth Important?

Transient growth in a stable linearized system has implications
for the behavior of the associated nonlinear system.

(RECIPE FOR LINEAR STABILITY ANALYSIS)

Consider the autonomous nonlinear system u̇(t) = f(u).

I Find a steady state u∗, i.e., f(u∗) = 0.

I Linearize f about this steady state and analyze small perturbations,
u = u∗ + v:

v̇(t) = u̇(t) = f(u∗ + v)

= f(u∗) + Av + O(‖v‖2)

= Av + O(‖v‖2).

I Ignore higher-order effects, and analyze the linear system v̇(t) = Av(t).
The steady state u∗ is stable provided A is stable.

But what if the small perturbation v(t) grows
by orders of magnitude before eventually decaying?
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Example: a Nonlinear Heat Equation

An example of the failure of linear stability analysis for a PDE problem.

Consider the nonlinear heat equation on x ∈ [−1, 1] with u(−1, t) = u(1, t) = 0

ut(x , t) = νuxx(x , t)

+
√
νux(x , t) + 1

8
u(x , t) + u(x , t)p

with ν > 0

and p > 1 [Demanet, Holmer, Zworski].

The linearization L, an advection–diffusion operator,

Lu = νuxx +
√
νux + 1

8
u

has eigenvalues and eigenfunctions

λn = −1

8
− n2π2ν

4
< 0, un(x) = e−x/(2

√
ν) sin(nπx/2);

see, e.g., [Reddy & Trefethen 1994].

The linearized operator is stable for all ν > 0, but has interesting transients . . . .
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Nonnormality in the Linearization

The linearized system is stable:

Rightmost part of the spectrum for ν = 0.002

But transient growth can feed the nonlinearity. . . .



Evolution of a Small Initial Condition
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Nonlinear model (blue) and linearization (black)



Transient Behavior
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Linearized system (black) and nonlinear system (dashed blue)

Nonnormal growth feeds the nonlinear instability.



Spectra and Pseudospectra

Source for much of the content of these lectures:

Princeton University Press
2005



Motivating Applications

Situations like these arise in many applications:

I convective fluid flows

I damped mechanical systems

I atmospheric science

I magnetohydrodynamics

I neutron transport

I population dynamics

I food webs

I directed social networks

I Markov chains

I lasers

ut(x, t) = ν∆u(x, t)

− (a · ∇)u(x, t)

Mẍ(t) = −Kx(t)

−Dẋ(t)



Motivating Applications

Situations like these arise in many applications:

I convective fluid flows

I damped mechanical systems

I atmospheric science

I magnetohydrodynamics

I neutron transport

I population dynamics

I food webs

I directed social networks

I Markov chains

I lasers

ut(x, t) = ν∆u(x, t)− (a · ∇)u(x, t)

Mẍ(t) = −Kx(t)−Dẋ(t)



1(b) Normality and Nonnormality



Normality and Nonnormality

Unless otherwise noted, all matrices are of size n × n, with complex entries.

The adjoint is denoted by A∗ = AT .

Definition (Normal)

The matrix A is normal if it commutes with its adjoint, A∗A = AA∗.

A =

[
1 1
−1 1

]
: A∗A = AA∗ =

[
2 0
0 2

]
=⇒ normal

A =

[
−1 1
0 1

]
: A∗A =

[
1 −1
−1 2

]
6=
[

2 1
1 1

]
= AA∗ =⇒ nonnormal

Important note:
The adjoint is defined via the inner product: 〈Ax, y〉 = 〈x,A∗y〉.
hence the definition of normality depends on the inner product.
Here we always use the standard Euclidean inner product, unless noted.
In applications, one must use the physically relevant inner product.
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Conditions for Normality

Many (∼ 89) equivalent definitions of normality are known;
see [Grone et al. 1987], [Elsner & Ikramov 1998].

By far, the most important of these concerns the eigenvectors of A.

Theorem

The matrix A is normal if and only if it is unitarily diagonalizable,

A = UΛU∗,

for U unitary (U∗U = I) and Λ diagonal.

Equivalently, A is normal if and only if is possesses an orthonormal basis of
eigenvectors (i.e., the columns of U).

Hence, any nondiagonalizable (defective) matrix is nonnormal.
But there are many interesting diagonalizable nonnormal matrices.
Our fixation with diagonalizability has caused us to overlook these matrices.
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Orthogonality of Eigenvectors

Theorem

The matrix A is normal if and only if it is unitarily diagonalizable,

A = UΛU∗,

for U unitary (U∗U = I) and Λ diagonal.

Equivalently, A is normal if and only if is possesses an orthonormal basis of
eigenvectors (i.e., the columns of U).

An orthogonal basis of eigenvectors gives a perfect coordinate system for
studying dynamical systems: set z(t) := U∗x(t), so

x′(t) = Ax(t) =⇒ U∗x′(t) = U∗AUU∗x(t)

=⇒ z′(t) = Λz(t)

=⇒ z ′j (t) = λjzj(t),

with ‖x(t)‖2 = x(t)∗x(t) = x(t)∗UU∗x(t) = ‖z(t)‖2 for all t.



The Perils of Oblique Eigenvectors

Now suppose we only have a diagonalization, A = VΛV−1:

x′(t) = Ax(t) =⇒ V−1x′(t) = V−1AVV−1x(t)

=⇒ z′(t) = Λz(t)

=⇒ z ′j (t) = λjzj(t),

with ‖x(t)‖ 6= ‖z(t)‖ in general.

The exact solution is easy:

x(t) = Vz(t) =
n∑

k=1

etλk zk(0)vk .

Suppose ‖x(0)‖ = 1. The coefficients zk(0) might still be quite large:

x(0) = Vz(0) =
n∑

k=0

zk(0)vk .

The “cancellation” that gives x(0) is washed out for t > 0 by the etλk terms.
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Oblique Eigenvectors: Example

Example

[
x ′1(t)
x ′2(t)

]
=

[
−1/2 500

0 −5

] [
x1(t)
x2(t)

]
,

[
x1(0)
x2(0)

]
=

[
1
1

]
.

Eigenvalues and eigenvectors:

λ1 = −1/2, v1 =

[
1
0

]
, λ2 = −5, v2 =

[
1

−.009

]
Initial condition:

x(0) =

[
1
1

]
=

1009

9
v1 −

1000

9
v2.

Exact solution:

x(t) =
1009

9
eλ1tv1 −

1000

9
eλ2tv2.



Oblique Eigenvectors: Example

‖x(0)‖ = 1

‖x(.4)‖ = 76.75

Note the different scales of the horizontal and vertical axes.



Oblique Eigenvectors Can Lead to Transient Growth

Transient growth in the solution: a consequence of nonnormality.



A Classic Paper on the Matrix Exponential

SIAM REVIEW
Vol. 20, No. 4, October 1978

) Society for Industrial and Applied Mathematics
0036-1445/78/2004-0031 $01.00/0

NINETEEN DUBIOUS WAYS TO COMPUTE
THE EXPONENTIAL OF A MATRIX*
CLEVE MOLER" AND CHARLES VAN LOANS

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involving
approximation theory, differential equations, the matrix eigenvalues, and the matrix characteristic poly-
nomial have been proposed. In practice, consideration of computational stability and efficiency indicates
that some of the methods are preferable to others, but that none are completely satisfactory.

1. Introduction. Mathematical models of many physical, biological, and
economic processes involve systems of linear, constant coefficient ordinary differential
equations

(t)=Ax(t).
Here A is a given, fixed, real or complex n-by-n matrix. A solution vector x(t) is
sought which satisfies an initial condition

x(0)=x0.
In control theory, A is known as the state companion matrix and x(t) is the system
response.

In principle, the solution is given by x(t)=etAxo where e ta can be formally
defined by the convergent power series

t2A2
tAe =I+tA+ +....

2!

The effective computation of this matrix function is the main topic of this survey.
We will primarily be concerned with matrices whose order n is less than a few

hundred, so that all the elements can be stored in the main memory of a contemporary
computer. Our discussion will be less germane to the type of large, sparse matrices
which occur in the method of lines for partial differential equations.

Dozens of methods for computing e ta can be obtained from more or less classical
results in analysis, approximation theory, and matrix theory. Some of the methods
have been proposed as specific algorithms, while others are based on less constructive
characterizations. Our bibliography concentrates on recent papers with strong
algorithmic content, although we have included a fair number of references which
possess historical or theoretical interest.

In this survey we try to describe all the methods that appear to be practical,
classify them into five broad categories, and assess their relative effectiveness. Actu-
ally, each of the "methods" when completely implemented might lead to many
different computer programs which differ in various details. Moreover, these details
might have more influence on the actual performance than our gross assessment
indicates. Thus, our comments may not directly apply to particular subroutines.

In assessing the effectiveness of various algorithms we will be concerned with the
following attributes, listed in decreasing order of importance" generality, reliability,

* Received by the editors July 23, 1976, and in revised form March 19, 1977.
t Department of Mathematics, University of New Mexico, Albuquerque, New Mexico 87106. This

work was partially supported by NSF Grant MCS76-03052.
$ Department of Computer Science, Cornell University, Ithaca, New York 14850. This work was

partially supported by NSF Grant MCS76-08686.
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but not negligible. Then, if the divided difference

e at e

A-
is computed in the most obvious way, a result with a large relative error is produced.
When multiplied by a, the final computed answer may be very inaccurate. Of course,
for this example, the formula for the off-diagonal element can be written in other ways
which are more stable. However, when the same type of difficulty occurs in nontrian-
gular problems, or in problems that are larger than 2-by-2, its detection and cure is by
no means easy.

The example also illustrates another property of e ta which must be faced by any
successful algorithm. As increases, the elements of e ta may grow before they decay.
If A and are both negative and a is fairly large, the graph in Fig. 1 is typical.

FIG. 1. The "hump".

Several algorithms make direct or indirect use of the identity

ea (eSa/")".
The difficulty occurs when s/m is under the hump but s is beyond it, for then

Unfortunately, the roundoff errors in the mth power of a matrix, say B’, are usually
small relative to IIBII" rather than IIB’II. Consequently, any algorithm which tries to
pass over the hump by repeated multiplications is in difficulty.

Finally, the example illustrates the special nature of symmetric matrices. A is
symmetric if and only if a 0, and then the difficulties with multiple eigenvalues and
the hump both disappear. We will find later that multiple eigenvalue and hump
problems do not exist when A is a normal matrix.

It is convenient to review some conventions and definitions at this time. Unless
otherwise stated, all matrices are n-by-n. If A (aij) we have the notions of transpose,
A’= (aji), and conjugate transpose, A*= (ai--.). The following types of matrices have

Much More on Tuesday
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In principle, the solution is given by x(t)=etAxo where e ta can be formally
defined by the convergent power series

t2A2
tAe =I+tA+ +....

2!

The effective computation of this matrix function is the main topic of this survey.
We will primarily be concerned with matrices whose order n is less than a few

hundred, so that all the elements can be stored in the main memory of a contemporary
computer. Our discussion will be less germane to the type of large, sparse matrices
which occur in the method of lines for partial differential equations.

Dozens of methods for computing e ta can be obtained from more or less classical
results in analysis, approximation theory, and matrix theory. Some of the methods
have been proposed as specific algorithms, while others are based on less constructive
characterizations. Our bibliography concentrates on recent papers with strong
algorithmic content, although we have included a fair number of references which
possess historical or theoretical interest.

In this survey we try to describe all the methods that appear to be practical,
classify them into five broad categories, and assess their relative effectiveness. Actu-
ally, each of the "methods" when completely implemented might lead to many
different computer programs which differ in various details. Moreover, these details
might have more influence on the actual performance than our gross assessment
indicates. Thus, our comments may not directly apply to particular subroutines.

In assessing the effectiveness of various algorithms we will be concerned with the
following attributes, listed in decreasing order of importance" generality, reliability,

* Received by the editors July 23, 1976, and in revised form March 19, 1977.
t Department of Mathematics, University of New Mexico, Albuquerque, New Mexico 87106. This

work was partially supported by NSF Grant MCS76-03052.
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but not negligible. Then, if the divided difference

e at e

A-
is computed in the most obvious way, a result with a large relative error is produced.
When multiplied by a, the final computed answer may be very inaccurate. Of course,
for this example, the formula for the off-diagonal element can be written in other ways
which are more stable. However, when the same type of difficulty occurs in nontrian-
gular problems, or in problems that are larger than 2-by-2, its detection and cure is by
no means easy.

The example also illustrates another property of e ta which must be faced by any
successful algorithm. As increases, the elements of e ta may grow before they decay.
If A and are both negative and a is fairly large, the graph in Fig. 1 is typical.

FIG. 1. The "hump".

Several algorithms make direct or indirect use of the identity

ea (eSa/")".
The difficulty occurs when s/m is under the hump but s is beyond it, for then

Unfortunately, the roundoff errors in the mth power of a matrix, say B’, are usually
small relative to IIBII" rather than IIB’II. Consequently, any algorithm which tries to
pass over the hump by repeated multiplications is in difficulty.

Finally, the example illustrates the special nature of symmetric matrices. A is
symmetric if and only if a 0, and then the difficulties with multiple eigenvalues and
the hump both disappear. We will find later that multiple eigenvalue and hump
problems do not exist when A is a normal matrix.

It is convenient to review some conventions and definitions at this time. Unless
otherwise stated, all matrices are n-by-n. If A (aij) we have the notions of transpose,
A’= (aji), and conjugate transpose, A*= (ai--.). The following types of matrices have

Much More on Tuesday



Nonnormality in Iterative Linear Algebra

Nonnormality can complicate the convergence of iterative eigensolvers.

Wolfgang Kerner

‘Large-scale complex eigenvalue problems’

J. Comp. Phys. 85 (1989) 1–85.
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Tools for Measuring Nonnormality

Given a matrix, we would like some effective way to measure whether
we should be concerned about the effects of nonnormality.

First, we might seek a scalar measure of normality.
Any definition of normality leads to such a gauge.

I ‖A∗A− AA∗‖
I min

Z normal
‖A− Z‖

(See work on computing the nearest normal matrix by Gabriel, Ruhe 1987.)

I Henrici’s departure from normality:

dep2(A) = min
A=U(D+N)U∗

Schur factorization

‖N‖.

No minimization is needed in the Frobenius norm:

depF (A) = min
A=U(D+N)U∗

Schur factorization

‖N‖F =

√√√√‖A‖2F − n∑
j=1

|λj |2.

These are related by equivalence constants [Elsner, Paardekooper, 1987].
None of these measures is of much use in practice.
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Tools for Measuring Nonnormality

If A is diagonalizable,
A = VΛV−1,

one can characterize nonnormality by κ(V) := ‖V‖‖V−1‖ ≥ 1.

I This quantity depends on the choice of eigenvectors;
scaling each column of V to be a unit vector gets within

√
n

of the optimal value, if the eigenvalues are distinct [van der Sluis 1969].

I For normal matrices, one can take V unitary, so κ(V) = 1.

I If κ(V) is not much more than 1 for some diagonalization, then the effects
of nonnormality will be minimal.

Example (Bound for Continuous Systems)

‖x(t)‖ = ‖etAx(0)‖ ≤ ‖etA‖‖x(0)‖

≤ ‖VetΛV−1‖‖x(0)‖

≤ κ(V) max
λ∈σ(A)

|etλ|‖x(0)‖.
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1(c) Numerical range (field of values)



Rayleigh Quotients

Another approach: identify a set in the complex plane to replace the spectrum.
This dates to the early 20th century literature in functional analysis, e.g., the
numerical range, Von Neumann’s spectral sets, and sectorial operators.

Definition (Rayleigh Quotient)

The Rayleigh quotient of A ∈ Cn×n with respect to nonzero x ∈ Cn is

x∗Ax

x∗x
.

For a Hermitian matrix A with eigenvalues λ1 ≤ · · · ≤ λn,

λ1 ≤
x∗Ax

x∗x
≤ λn.

More generally, Rayleigh quotients are often used as eigenvalue estimates, since
if (λ, x) is an eigenpair, then

x∗Ax

x∗x
= λ.



Numerical Range (Field of Values)

So, consider looking beyond σ(A) to the set of all Rayleigh quotients.

Definition (Numerical Range, a.k.a. Field of Values)

The numerical range of a matrix is the set

W (A) = {x∗Ax : ‖x‖ = 1} .

I σ(A) ⊂W (A) [Proof: take x to be an eigenvector.]

I W (A) is a closed, convex subset of C.

I If U is unitary, then W (U∗AU) = W (A).

I If A is normal, then W (A) is the convex hull of σ(A).

I Unlike σ(A), the numerical range is robust to perturbations:

W (A + E) ⊆W (A) + {z ∈ C : |z | ≤ ‖E‖}.
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A Gallery of Numerical Ranges

Eigenvalues and the numerical range, for four different 15× 15 matrices:

normal random Grcar Jordan

We will describe computation of W (A) later this morning.



The Numerical Range Can Contain Points Far from the Spectrum

Boeing 737 example, revisited: numerical range of the 55× 55 stable matrix.

σ(A) W (A)

���

���

We seek some middle ground between σ(A) and W (A).
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1(d) Pseudospectra



Pseudospectra

The numerical range W (A) and the spectrum σ(A) both have limitations.
Here we shall explore another option that, loosely speaking,
interpolates between σ(A) and W (A).

Example

Compute eigenvalues of three similar 100× 100 matrices using MATLAB’s eig.


0 1

1 0
. . .

. . .
. . . 1
1 0




0 1/2

2 0
. . .

. . .
. . . 1/2
2 0




0 1/3

3 0
. . .

. . .
. . . 1/3
3 0
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Pseudospectra

Definition (ε-pseudospectrum)

For any ε > 0, the ε-pseudospectrum of A, denoted σε(A), is the set

σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}.

We can estimate σε(A) by conducting experiments with random perturbations.

For the 20× 20 version of A = tridiag(2, 0, 1/2), 50 trials each:

ε = 10−2 ε = 10−4 ε = 10−6
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Distance to Singularity

There is a fundamental connection between the distance of A to singularity and
the norm of the inverse.

I Suppose ‖A−1‖ = 1/ε.

I There exists some unit vector w ∈ Cn where the norm is attained:

‖A−1‖ = ‖A−1w‖ =
1

ε
.

I Define v̂ := A−1w.

I Define v := v̂/‖v̂‖, a unit vector.

I ‖Av‖ =
‖w‖
‖v̂‖ = ε, so A is “nearly singular.”

I Define E := −Avv∗ ∈ Cn×n.

I Now (A + E)v = Av − Avv∗v = 0, so A + E is singular.

I The distance of A to singularity is ‖E‖ = ‖Av‖ = ε.

Norms of inverses are closely related to eigenvalue perturbations.
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Equivalent Definitions of the Pseudospectrum

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.
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2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.

Proof. (1) =⇒ (2)

If z ∈ σ(A + E) for some E with ‖E‖ < ε, there exists a unit vector v such that
(A + E)v = zv. Rearrange to obtain

v = (z − A)−1Ev.

Take norms:

‖v‖ = ‖(z − A)−1Ev‖ ≤ ‖(z − A)−1‖‖E‖‖v‖ < ε‖(z − A)−1‖‖v‖.

Hence ‖(z − A)−1‖ > 1/ε.



Equivalent Definitions of the Pseudospectrum

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.

Proof. (2) =⇒ (3)

If ‖(z − A)−1‖ > 1/ε, there exists a unit vector w with ‖(z − A)−1w‖ > 1/ε.
Define v̂ := (z − A)−1w, so that 1/‖v̂‖ < ε, and

‖(z − A)v̂‖
‖v̂‖ =

‖w‖
‖v̂‖ < ε.

Hence we have found a unit vector v := v̂/‖v̂‖ for which ‖Av − zv‖ < ε.



Equivalent Definitions of the Pseudospectrum

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.

Proof. (3) =⇒ (1)

Given a unit vector v such that ‖Av − zv‖ < ε, define r := Av − zv.
Now set E := −rv∗, so that

(A + E)v = (A− rv∗)v = Av − r = zv.

Hence z ∈ σ(A + E).



Equivalent Definitions of the Pseudospectrum

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.

These different definitions are useful in different contexts:

1. interpreting numerically computed eigenvalues;

2. analyzing matrix behavior/functions of matrices;
computing pseudospectra on a grid in C;

3. proving bounds on a particular σε(A).



A Gallery of Numerical Ranges

Eigenvalues and the numerical range, for four different 15× 15 matrices:

normal random Grcar Jordan



A Gallery of Pseudospectra

Eigenvalues and ε-pseudospectra for four different 15× 15 matrices,
for ε = 100, 10−.5, 10−1:

normal random Grcar Jordan



History of Pseudospectra

Invented at least four times, independently:

Jim Varah (Stanford) in his 1967 PhD thesis
Eigenvalue computations, inverse iteration

Henry Landau (Bell Labs) in a 1975 paper
Integral equations in laser theory

S. K. Godunov and colleagues (Novosibirsk), 1980s.
Eigenvalue computations, discretizations of PDEs

Nick Trefethen (MIT) starting in 1990
Discretization of PDEs, iterative linear algebra



History of Pseudospectra
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Vol. 24, No. 5, October 1987
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AN INSTABILITY PHENOMENON IN SPECTRAL METHODS*
LLOYD N. TREFETHENf AND MANFRED R. TRUMMER

Abstract. The eigenvalues ofChebyshev and Legendre spectral differentiation matrices, which determine
the allowable time step in an explicit time integration, are extraordinarily sensitive to rounding errors and
other perturbations. On a grid of N points per space dimension, machine rounding leads to errors in the
eigenvalues of size O(N2). This phenomenon may lead to inconsistency between predicted and observed
time step restrictions. One consequence of it is that spectral differentiation by interpolation in Legendre
points, which has a favorable O(N-) time step restriction for the model problem ut-Ux in theory, is
subject to an O(N-2) restriction in practice. The same effect occurs with Chebyshev points for the model
problem ut =-XUx. Another consequence is that a spectral calculation with a fixed time step may be stable
in double precision but unstable in single precision. We know ofno other examples in numerical computation
of this kind of precision-dependent stability.

Key words, spectral method, instability, rounding error, differentiation matrix, boundary condition
AMS(MOS) subject classifications. 65M10, 65G05, 65D25, 65F15

1. Introduction. Spectral methods have become popular in the last decade for the
numerical solution of partial differential equations 1 ], [8], 18]. The essential idea is
to approximate spatial derivatives by constructing a global interpolant through discrete
data points, and then differentiating the interpolant at each point. (Such a process is
more properly known as a "pseudospectral" method.) On a periodic domain, as arises
for example in global atmospheric circulation models, the data points are evenly spaced
and the interpolant is a trigonometric function. On a domain with boundaries, as arises
more often, the points are unevenly spaced, usually at the zeros or extrema ofChebyshev
or Legendre polynomials, and the interpolant is a polynomial.

The advantage of spectral methods is that in favorable circumstances they are
more accurate than finite differences or finite elements, so that fewer grid points are
needed. A principal disadvantage is that in problems with boundaries, they are often
subject to tight stability restrictions. On a grid of N points in one space dimension,
an explicit finite difference formula will typically exhibit a time step restriction of
At--O(N-1) for hyperbolic and At O(N-2) for parabolic problems. For spectral
methods the restrictions become At= O(N-2) and At 0(N-4), respectively. This
presents one with the choice of taking wastefully short time steps to maintain stability,
or of turning to implicit formulas. Since spectral differentiation matrices are dense,
the latter course leads to difficult linear or nonlinear algebraic problems whose efficient
solution---usually by preconditioned iterative or multigrid methodsis at present a
topic of active research [ 13].

The stability of spectral methods for initial boundary value problems is not well
understood. Certain model problems have been worked out in detail [4], [6], [15], but
no general theory is available that is as readily applicable as the "Kreiss-Osher" theory
for finite differences [9]. A recent contribution in this direction is by Gottlieb, Lustman
and Tadmor [7].
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History of Pseudospectra

Early adopters include Wilkinson (1986), Demmel (1987), Chatelin (1990s).
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Fig. 2. 

Hence, for any x > 0, the perturbed closed-loop system remains stable. 
Note that in this example the unstable poles of the perturbed plant differ 
from those of nominal plant. 

w. PARAMETRIC  REPRESENTATION OF  THE  STABLE  SET  OF AP 

In this section, we give a class of allowable perturbed plant, for which 

From  Theorem 1, we have that the perturbed system S(P ,  C )  is stable, 
the perturbed system remains stable. 

if and only if 

M=D,AP[Z+ C ( I +  PC)-'AP]-'D,  (33) 

is in H ,  under the assumption that S(P,  C )  is stable. Let us  now solve for 
AP from (33). Let 

k =  DlAPD, (34) 

g=  U,D;'.  (35) 

After a direct substitution, (33) becomes 

M = k ( I + g k ) - ' .  (36) 

It can be shown from (36) that k = M(Z - g M )  - I .  From (34) and (35) 

AP=(D/-MU,)- 'MD,-' .  (37) 

We can state the following theorem. 

and only if 
Theorem 2: Assume that S(P ,  C )  is stable, then S(p, C )  is stable. if 

AP E {AP=(D/-   WU,)- 'WDr-' l  W E H ,  4- WU, E I). ( 3 8 )  

Proof: Let S(p, C )  be stable then AP must satisfy (37), with M E 
H and (Dl - MU,) E Z .  Therefore, (38) is satisfied with W = M .  
Conversely, let A P  satisfy (38), for some W,  we want to show that 

M=k(Z+gk)- '  E H 

where k and g are defined by (34) 2nd (35). First, 

(D/- WU,)=(Z-  Wg)D, E Z 

implies that ( I  - Wg) exists, and hence ( Z  - g W )  - I  exists. It can be 
shown from (38) that 

k=   W(Z+gk)  

which together with the existence  of  the  inverse ( Z  - g W )  - I implies that 
(Z + gk) - I  exists.  Hence, 

W=k(Z+gk) - '=M E H 

by hypothesis. Therefore, S ( P ,  C )  is stable. The claim is proved. 
Remark: 

1) The set (38) is not empty, [because W = 0, P = P belongs to  the 
set (38)]. And with some certain normed algebra for G ,  the set is an open, 
dense subset of G, which has both an RCF and LCF [13]. 

2) The set (38) also can be expressed in another form as follows: 

AP E {AP=D; 'W(D, -U/W)- ' l  W E H ,  D,-U/W E Z (39) 

which is a dual result of (38). 

I TRANSACTIONS ON AUTOMATIC  COh'TROL, VOL. AC-32. NO. 4, APRIL 1987 

V. CONCLUSION 
We have obtained a necessary and sufficient condition for the 

robustness stability of the perturbed closed-loop system with additive 
plant perturbation. The result can be applied to any linear system without 
any restriction for AP. In particular,  the number of unstable poles of  the 
perturbed plant needs not be the same as that of the nominal plant, as it is 
required in [4], [lo], and [ 111. A little thought shows that the feedback 
structure used here can be extended to ones as in [lo], [ l  11, and that the 
restriction for square plants i s  unnecessary [14]. 
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A Counterexample for Two Conjectures about Stability 

JAMES W. DEMMEL 

Abstract-One measure of the stability of a matrix A is the distance to 
the nearest unstable matrix B. Recently Van Loan presented an algorithm 
to compute B which depended on  a conjecture about the location of its 
eigenvalues. We provide a  counterexample to this conjecture which shows 
that the algorithm may overestimate the distance to B by an arbitrary 
amount. The same counterexample invalidates another conjecture and 
algorithm of the author. 
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Fig.  3. Contour plot  of loglo (am(A - Xr)) in the X-plane. 
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Fig. 4. Graph of log,, (o,,(A - id)) versus P .  

Loan’s algorithm would return 1/B as its (0ver)estimate of the  true 
distance to the nearest unstable matrix 33’2/(2B3. Demmel’s algorithm 
for s e h  would be similarly mislead. 

The proof is a simple computation. When p = 0 and B B- 1 we 
compute 

When p # 0 we compute 

which as a function of p reaches its minimum 33’2/(2B2) at g = 2-”2. 
If we let A be n by n and of the same structure as before: - 

- 1  - B  . . - p - l  

- 1  . . 
A =  

- 1  - B  
- 1  - : I  

then umIn(A) = B-I as before and umin(A - id) achieves its minimum 
O(B1-“)  for p = O(1). Thus, for large B and/or large n, using 
Conjectures 1 and 2 as computational heuristics can lead to very bad 
results. 

Note, however, that the matrix A is quite special: not only is it 
defective but it is nearly derogatory. Of course, perturbing A slightly 
would yield a matrix with distinct eigenvalues with similarly shaped S(A, 
E ) ,  so defectiveness per se is not essential, but nearness to a defective and 
derogatory matrix seems to be. It appears that if A is far from a 
derogatory matrix (i.e., A can be block diagonalized with one block per 
eigenvalue using a well-conditioned similarity), then one cannot go  too far 
wrong using Conjecture 1 as a heuristic, and  since derogatory matrices 
are quite rare (in the sense that a random matrix is unlikely to be very 
close to one [2]), the heuristic is likely to be reliable. 

CONCLUSIONS 

We have shown that two apparently reasonable algorithms for 
computing two different measures of stability are unreliable: either may 
greatly overestimate the measure of stability without warning.  The 
situations where these overestimates occur seem to be rare, however, so 
the algorithms may still have values as heuristics, and they still produce 
guaranteed upper bounds. A different sort of algorithm altogether for Van 
Loan’s problem has been proposed by Byers [l]. Byers’ algorithm 
produces guaranteed upper and lower bounds which can be made as close 
as one wants. This is currently the most reliable method available, and is 
also fast. So far no such reliable algorithm exists  for computing sepx. 
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First computer plot of pseudospectra (1987)



Demmel’s Pseudospectra

A =

 −1 −100 −10000
−1 −100

−1



Find the largest ε value for which σε(A) is contained in the left half plane.

The figure on the right (ε = 10−3) shows that pseudospectra can have “holes”,
where the norm of the resolvent has a local minima.



Properties of Pseudospectra

A is normal ⇐⇒ σε(A) is the union of open ε-balls about each eigenvalue:

A normal =⇒ σε(A) =
⋃
j

λj + ∆ε

A nonnormal =⇒ σε(A) ⊃
⋃
j

λj + ∆ε

A circulant (hence normal) matrix:

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
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⋃
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Re z

Im z
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Normal Matrices: matching distance

An easy misinterpretation: “A size ε perturbation to a normal matrix can move
the eigenvalues by no more than ε.”

This holds for Hermitian matrices, but not all normal matrices.

An example constructed by Gerd Krause (see Bhatia, Matrix Analysis, 1997):

A = diag(1, (4 + 5
√
−3)/13, (−1 + 2

√
−3)/13).

Now construct the (unitary) Householder reflector

U = I− 2vv∗

for v = [
√

5/8, 1/2,
√

1/8]∗, and define E via

A + E = −U∗AU.

By construction A + E is normal and σ(A + E) = −σ(A).



Normal Matrices: matching distance

A = diag(1, (4 + 5
√
−3)/13, (−1 + 2

√
−3)/13).

A + E = −U∗AU.
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Properties of Pseudospectra

Theorem (Facts about Pseudospectra)

For all ε > 0,

I σε(A) is an open, finite set that contains the spectrum.

I σε(A) is stable to perturbations: σε(A + E) ⊆ σε+‖E‖(A).

I If U is unitary, σε(UAU∗) = σε(A).

I For V invertible, σε/κ(V)(VAV−1) ⊆ σε(A) ⊆ σεκ(V)(VAV−1).

I σε(A + α) = α + σε(A).

I σ|γ|ε(γA) = γσε(A).

I σε
([A 0

0 B

])
= σε(A) ∪ σε(B).



Relationship to κ(V) and W (A)

Let ∆r := {z ∈ C : |z | < r} denote the open disk of radius r > 0.

Theorem (Bauer–Fike, 1963)

Let A be diagonalizable, A = VΛV−1. Then for all ε > 0,

σε(A) ⊆ σ(A) + ∆εκ(V).

If κ(V) is small, then σε(A) cannot contain points far from σ(A).

Theorem (Stone, 1932)

For any A,
σε(A) ⊆W (A) + ∆ε.

The pseudospectrum σε(A) cannot be bigger than W (A) in an interesting way.
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Pole Placement Example

Problem (Pole Placement Example of Mehrmann and Xu, 1996)

Given A = diag(1, 2, . . . ,N) and b = [1, 1, . . . , 1]T , find f ∈ C n such that

σ(A− bf∗) = {−1,−2, . . . ,−N}.

One can show that f = G−∗e, where e = [1, 1, . . . , 1]T , where

G:,k = (A− λk)−1b = (A + k)−1b.

This gives

A− bf∗ = G

−1
. . .

−n

G−1,

with

Gj,k =
1

j + k
.



Pole Placement Example: Numerics

In exact arithmetic, σ(A− bf∗) = {−1,−2, . . . ,−N}.

All entries in A− bf∗ are integers.
(To ensure this, we compute f symbolically.)

For example, when N = 8,

A−bf∗ =



73 −2520 27720 −138600 360360 −504504 360360 −102960
72 −2518 27720 −138600 360360 −504504 360360 −102960
72 −2520 27723 −138600 360360 −504504 360360 −102960
72 −2520 27720 −138596 360360 −504504 360360 −102960
72 −2520 27720 −138600 360365 −504504 360360 −102960
72 −2520 27720 −138600 360360 −504498 360360 −102960
72 −2520 27720 −138600 360360 −504504 360367 −102960
72 −2520 27720 −138600 360360 −504504 360360 −102952


.



Pole Placement Example: Numerics

In exact arithmetic, σ(A− bf∗) = {−1,−2, . . . ,−N}.

Computed eigenvalues of A− bf∗ (matrix is exact: all integer entries).

◦ exact eigenvalues
• computed eigenvalues
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Pole Placement Example: Pseudospectra

Computed pseudospectra of A− bf∗.

Computed eigenvalues should be accurate to roughly εmach‖A− bf∗‖.
For example, when N = 11, ‖A− bf∗‖ = 5.26× 108.
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Polynomial Zeros and Companion Matrices

MATLAB’s roots command computes polynomial zeros by computing the
eigenvalues of a companion matrix.

For example, given p(z) = c0 + c1z + c2z
2 + c3z

3 + c4z
4, MATLAB builds

A =


−c4/c0 −c3/c0 −c2/c0 −c1/c0

1 0 0 0
0 1 0 0
0 0 1 0

 .
whose characteristic polynomial is p.

Problem (Wilkinson’s “Perfidious Polynomial”)

Find the zeros of the polynomial

p(z) = (z − 1)(z − 2) · · · (z − N)

from coefficients in the monomial basis.

MATLAB gives this as an example: roots(poly(1:20)).
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Roots of Wilkinson’s Perfidious Polynomial

Computed eigenvalues of the companion matrix.

◦ exact eigenvalues
• computed eigenvalues
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Roots of Wilkinson’s Perfidious Polynomial

Computed eigenvalues of the companion matrix.

◦ exact eigenvalues
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Roots of Wilkinson’s Perfidious Polynomial

Pseudospectra for N = 25.

◦ exact eigenvalues
• computed eigenvalues



Roots of Wilkinson’s Perfidious Polynomial

3d plot of the resolvent norm reveals the a local minimum.

Re z

Im z

‖(z − A)−1‖

◦ exact eigenvalues
• computed eigenvalues



1(e) Computing W (A) and σε(A)



A Gallery of Numerical Ranges

normal random Grcar Jordan

If z ∈W (A), then

Re z =
z + z

2
=

1

2
(x∗Ax + x∗A∗x) = x∗

(A + A∗

2

)
x.

Using properties of Hermitian matrices, we conclude that

Re(W (A)) =
[
λmin

(A + A∗

2

)
, λmax

(A + A∗

2

)]
.

Similarly, one can determine the intersection of W (A) with any line in C.
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Computation of the Numerical Range

This calculation yields points on the boundary of the numerical range.
Use convexity to obtain polygonal outer and inner approximations
[Johnson 1980]; Higham’s fv.m.

Neat problem: Given z ∈W (A), find unit vector x such that z = x∗Ax
[Uhlig 2008; Carden 2009].
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Computation of Pseudospectra (Dense Matrices)

Naive algorithm: O(n3) per grid point

I Compute ‖(z − A)−1‖ using the SVD on a grid of points in C.
SVD costs O(n3) for dense A.

I Send data to a contour plotting routine.
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Computation of Pseudospectra (Dense Matrices)

Modern algorithm: O(n3) + O(n2) per grid point [Lui 1997; Trefethen 1999]

I Compute a Schur triangularization, A = UTU∗.
Schur costs O(n3) for dense A.

I Recall that σε(A) = σε(T).

I One can efficiently solve linear systems Tx = b for x.
Each solve costs O(n2) for upper triangular T.

I To compute ‖(z − T)−1‖ = 1/smin(z − T) = smax((z − T)−1),
find the largest eigenvalue of (z − T)−∗(z − T)−1.

I To do so, apply the Lanczos iteration on (z − T)−∗(z − T)−1

for each grid point z .

I At each step, one must compute (z − T)−∗(z − T)−1b:
This requires a lower-triangular solve with (z − T)∗ (O(n2))
and an upper triangular solve with (z − T) (O(n2)).
One observes a constant number of iterations per grid point.

I Total cost: O(n3) + O(n2) per grid point.
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Computation of Pseudospectra (Sparse Matrices)

Large-scale problems [Toh and Trefethen 1996; Wright and Trefethen 2001]

Key idea:

I Find V ∈ Cn×k with orthonormal columns, V∗AV, for k � n.
I The “generalized Rayleigh quotient” V∗AV ∈ Ck×k .
I Approximate σε(V∗AV) ≈ σε(A).

In general, σ(V∗AV) 6∈ σ(A), so for some ε > 0,

σε(V∗AV) 6⊆ σε(A).

Depending on the choice of V, the approximation σε(V∗AV) might give a
rough general impression of σε(A), or it might give a rather accurate
approximation in one interesting region of σε(A).

true, n = 128 Arnoldi, k = 96 eigenspace, k = 32



Computation of Pseudospectra (Sparse Matrices)

First important choice for Vk [Toh and Trefethen 1996]:

I Projection onto Krylov subspaces (Arnoldi factorization)

Ran(Vk) = span{x,Ax, . . . ,Ak−1x}.

The Arnoldi process generates orthonormal bases for Krylov subspaces:

AVk = Vk+1H̃k ,

where H̃k ∈ C(k+1)×k is upper Hessenberg.
Due to the upper Hessenberg structure, we have

smin(z − H̃k) ≥ smin(z − A),

so one can get a bound
σε(H̃k) ⊆ σε(A),

where, for a rectangular matrix R, we have

σε(R) := {z ∈ C : smin(z − R) < ε}.



Computation of Pseudospectra (Sparse Matrices)

Second important choice for Vk [Wright and Trefethen 2001]:

I Projection onto an invariant suspace (eigenspace)

Vk = [v1, . . . , vk ]

Suppose AVk = VkX for some X ∈ Ck×k .
Then Ran(Vk) is an invariant subspace of A.

If V = [Vk V̂k ] is a unitary matrix, V∗V = I, then

V∗AV =

[
V∗k AVk V̂∗k AVk

0 V̂∗k AV̂k

]
.

Thus σε(V∗k AVk) ⊆ σε(A).

Compute an invariant subspace corresponding to eigenvalues
of physical interest (e.g., using ARPACK).



Computation of Pseudospectra

Alternative: [Brühl 1996; Bekas and Gallopoulos, . . . ]

Curve tracing: follow level sets of ‖(z − A)−1‖.

I Given a point z = x + iy ∈ C, suppose ‖z − A‖−1 = 1/ε.

I Suppose the smallest singular value s of z − A is simple, with singular
vectors u and v:

(z − A)v = su.

I Brühl uses a result of Sun (1988) to obtain

∂s

∂x
= Re(u∗v),

∂s

∂y
= Im(v∗u).

I Use these derivatives to follow the boundary ∂σε(A).

This seems like an elegant alternative to the grid-based method, but:

I It only gives σε(A) for one value of ε.

I One must beware of cusps, holes, disconnected components of σε(A).
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EigTool: Software for Pseudospectra Computation

EigTool: Thomas Wright, 2002

http://www.cs.ox.ac.uk/pseudospectra/eigtool


