
Matrix Methods for
Computational Modeling
and Data Analytics

Mark Embree
embree@vt.edu

Virginia Tech · Fall 2022

version 1.3 [28 October 2022]

Ax=b

summary of recent changes

version 1.3.1: minor typo corrections.

version 1.3: added rank definition, Rank-Nullity Theorem to Chapter 3; edited Chapter 4.

version 1.2.1: minor typo corrections and typesetting adjustments.

version 1.2: expanded subspace material in Chapter 3; moved results from Chapter 4 to Chapter 3.

version 1.1: added several marginal notes/figures in Chapters 1, 2 and 3.

acknowledgements

Elements of these notes (and some specific examples) were inspired by Steve Cox’s Matrix Analysis in
Situ lecture notes from CAAM 335 at Rice University. I am grateful to Steve for his inspiration and cama-
raderie. I also appreciate helpful suggestions and corrections from Owen Embree, Serkan Gugercin, and
students who have used these notes for CMDA 3606 at Virginia Tech.

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 1
Introduction

CMDA 3606 is about the linear algebra problem

Ax = b

in many wild and wonderful varieties. Most students are introduced
to this equation in a sterile form, where A is a small, tidy matrix of
obscure origin with integer entries, say

A =




8 1 6
3 5 7
4 9 2


 .

Such examples suffice to illustrate the basics, but matrices get much
more interesting when we populate A with meaningful entries from
mathematical modeling or data science problems. In the crucible of
such problems, interesting computational challenges emerge.

Linear systems of the form Ax = b often follow a simple template:

• b contains some quantities that we can measure (i.e., a vector of
data);

• A encodes some underlying mathematical/statistical model which
we also know, or can at least hypothesize, or measure;

• x, the unknown, describes the unknown parameters of the model.

We then hope that there exists some set of parameters x such that the
model Ax equals (or at least approximates) the data b. This context
gives meaning to otherwise abstract questions like, “Does Ax = b
have a unique solution?” In data science applications, this question
translates to: “Does my model exactly fit my data?”

In many realistic applications, the matrix A can be sufficiently
large that the standard technique for solving Ax = b problems

© Copyright 2022 by Mark Embree. All rights reserved.

2

(Gaussian elimination) does not work. In this class we will briefly
consider alternatives for large-scale problems.

We will consider other variations of the Ax = b problem. Some-
times we do not know the matrix A, but we can conduct a series of
physical experiments to apply known forces, b and measure the corre-
sponding effects, x. Can we use such experiments to discover A?

This way of turning Ax = b on its head is an example of an inverse
problem. Often such problems are intimately connected to least squares
and optimization: subjects that will occupy much of our semester.

Other situations arise where an exact solution x to Ax = b exists:
the theoreticians rest easy. But when you actually compute x, you see
that it looks like garbage (the polite term is noise): it obviously has no
physical meaning!

The illustration below sketches one example of this phenomenon
that arises in many problems in image processing. The vector x con-
tains some image that we want to see, while the vector b represents
the image that we can measure with our camera. The matrix A en-

More specifically, b is a vector of pixel
values. For example, each entry in b
might be an integer between 0 and 255,
representing a shade of 8-bit grayscale
(0 = black, 255 = white). To make an
image into a vector, we stack each
column of pixel values, one on top of
the other, scanning from left to right
across the image.

codes the blurring operation that inevitably occurs when the true
image x is mapped to the observed image b.

=
blurring
matrix

true
im

age

blurry
im

age

A x b

known
(properties of
camera optics)

unknown
but desired

known
(observed by

camera)

@
@R ? �

�	

We can estimate A based on properties of the camera’s optics, and
calibrate it by applying the camera to a few test images for which we
know the exact true image, x.

We use the term camera generically;
your camera might be a telescope: A can
be calibrated by viewing well-studied
objects, before turning your telescope to
seek more interesting, unknown b.

Here is a simple one-dimensional version of the blurring problem:
scanning a UPC barcode. Consider the barcode shown below.

This application is mentioned by Per
Christian Hansen in his book
Discrete Inverse Problems: Insight and
Algorithms, SIAM, 2010. Virginia Tech
students can access the book for free:
see the class website for a link.

Now take a horizontal slice of the barcode, shown in red below.

3

To turn this barcode into a length-n vector, we will discretize the red
line into n pixels. Then the jth entry of x is determined by

xj =

{
0, if the jth pixel is white;
1, if the jth pixel is black.

For n = 500 pixels, we obtain the function shown below.

1 100 200 300 400 500

0

0.5

1

true image, x

Now we simulate the action of a supermarket barcode scanner, which
detects the fuzzy version of this barcode shown in red in the plot
below. This is the blurred vector, b. From it we want to find the true
barcode, x.

1 100 200 300 400 500

0

5

10

15

20
10 -3

observed image, b
(blurred)

Suppose we know all about the blurring operation that made this
image: we know the engineering behind the optics in the scanner,
and so we know the matrix A exactly. Indeed, this A is invertible.
Knowing the scanner A and the scanned image b, we should be able
to compute the true, unblemished barcode:

In Python, numpy.linalg.solve.x = A−1b.

The resulting x should (in theory) exactly match the blue barcode plot
shown above. Instead, computing A−1b yields the following result:
garbage!

4

1 100 200 300 400 500
-200

-100

0

100

200 Solutions to general Ax = b problems
are not always this poor! Deblurring
problems typically give A matrices that
are especially fragile and prone to this
behavior. How do you know if A is so
vulnerable? We will find out later in the
course. . . .

recovered image, A−1b

What could possibly go wrong? The matrix A is invertible, but it is
very close to a matrix that is not invertible, and this makes the solu-
tion of Ax = b very sensitive to the small mistakes that occur when
solving real problems in floating-point arithmetic on a computer (and
to measurement noise that would normally pollute the vector b in
applications). Unfortunately, many important, practical problems

Modern computers use a “floating point
number system” for calculations that
involve real numbers. The computer
cannot represent all the (uncountably
many) real numbers; instead it uses a
carefully selected finite subset of the
real numbers. Most of the time, this
number system allows us to compute
quickly and accurately (with small
mistakes on the order of 10−16, which
we can ignore). However, when a
problem is sensitive to small changes
in the input data, you will get bad
errors regardless of the cleverness of
your computer’s floating-point number
system.

have this same structure. As a result, much research has gone into
effective ways of adjusting this Ax = b problem to discover a more
robust solution. Later in the semester, we will learn about regular-
ization (known among statisticians as ridge regression). Applying this
technique, we arrive at a much more satisfactory estimate of x, shown
in blue below. (The gray line underneath shows the true x we are
trying to find.)

1 100 200 300 400 500

0

0.5

1

recovered image
(with regularization)

This answer is not perfect, but to read the barcode we only need
to know if our function is closer to 0 (white) or 1 (black) at a given
pixel. The plot above is good enough to serve that purpose.

This example suggests that Ax = b is rather more subtle (and in-
teresting!) than you might have thought when you encountered this
equation in your first linear algebra class. Throughout CMDA 3606
we will try to convince you with additional examples and applica-
tions. By the semester’s end, you will:

• master the singular value decomposition (SVD);

• appreciate when Ax = b can be solved;

• apply the SVD for data analytics, including principal component
analysis and recommender systems;

5

• when Ax = b cannot be solved, understand the approximation

min
x
‖Ax− b‖,

which is often associated with inverse problems;

Here ‖ · ‖ denotes a norm, a way of
measuring the size of a vector – in this
case, the mismatch between Ax and b.

• use this approximation problem (with regularization) to solve in-
verse problems from applications, such as image deblurring;

• learn several important applications that lead to Ax = b problems;

• solve optimization problems like

min
x

f (x),

where f depends on a vector of variables, using line search meth-
ods, including the stochastic gradient descent method for large-scale
problems. These technique are essential in modern deep learning
applications. (Notice that Ax = b is a special case, for we mini-
mize f (x) = ‖Ax− b‖ when Ax = b.)

Where possible, methods will be derived rigorously, but algorithms
and applications will be a constant theme. Through this course (and
CMDA 3605 before it), CMDA 3606 students will acquire a significant
toolkit for solving a variety of applied problems in mathematical
modeling and data science. This course teaches empowering technology.

1.1 Prerequisites

Upon starting CMDA 3606, all students are expected to have a basic
working knowledge of:

• basic matrix-vector operations;

• subspaces (especially the column space and null space of a ma-
trix), basis, dimension, and rank;

• Gaussian elimination for solving Ax = b;

• eigenvalues and eigenvectors;

• Python and NumPy.

These concepts will be reviewed just-in-time, as need for them arises
throughout the semester.

Students are not expected to be expert Python programmers,
but should be able to write short programs on their own. Together
Python and Jupyter notebooks provide a good environment for
experimenting with the concepts we will discuss throughout the
semester. The instructor will provide sample codes from in-class
demonstrations.

MATLAB, a commercial problem-
solving environment designed around
matrix computations, is a strong alter-
native. Julia is a modern open-source
(free) environment that is gaining
popularity.

6

1.2 Some notation and basic matrix-vector operations

We start modestly, establishing our basic conventions. Notation is
the unsung hero of mathematics. The right notation clarifies, helping
you see the essence of a problem. The conventions we describe have
gradually evolved over linear algebra’s 170 year history.

A vector is a column of numbers. We write v ∈ Rn to indicate that
v is a vector of length n whose entries are real numbers. If the entries
in v are complex numbers, we instead write v ∈ Cn. (In this class,
most of our vectors will only contain real numbers.) In either case,
we express v in terms of its entries:

v =




v1
...

vn


 .

Often you will need to turn a column vector into a row vector with

Vectors are typeset as bold Roman
characters, while their entries (like all
our scalars) are italic Roman (or Greek)
letters.

the help of the transpose:

vT =
[

v1 · · · vn

]
.

Matrices are rectangular arrays of numbers. We write A ∈ Rm×n

for a matrix with m rows and n columns made up of real entries;
when those entries could be complex, we write A ∈ Cm×n. In either

Matrices are denoted by bold capital
letters, either Roman or Greek.

case, we express A in terms of its entries:

A =




a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n


 .

We refer to aj,k as the “(j, k) entry of A”: that is, the entry in row j

A ∈ Rm×n designates a matrix that has
m rows and n columns. We will also
refer to A as an m-by-n matrix.

and column k.
As you become a nimble manipulator of matrices, you will find it

convenient to organize these entries in different ways. For example,
you might write A ∈ Rm×n by columns as

A =
[

a1 · · · an

]
,

where each ak is a vector of length m:

A = ∈ Rm×na1 a2 · · · an

ak =




a1,k

a2,k
...

am,k




.

7

This bird’s-eye view of A gives you a deeper appreciation for matrix-
vector multiplication, for

Ax =
[

a1 · · · an

]



x1
...

xn


 =

n

∑
k=1

xkak =
n

∑
k=1

xk




a1,k

a2,k
...

am,k




,

A =
[

a1 · · · an

]
,

revealing Ax to be a weighted sum of the columns of A: the entry xk

Key idea: matrix-vector multiplication is
just a linear combination (or weighted
sum) of the columns of A.

Ax = a1 · · · an

x1
...

xn = x1 a1 + · · ·+ xn an

reveals how much the vector ak contributes to the product Ax.

You can also build matrices from other matrices, as in
[

A B
C D

]
,

(assuming the dimensions match up properly). Then you can multi-
ply against a conformally partitioned vector:

[
A B
C D

] [
x
y

]
=

[
Ax + By
Cx + Dy

]
.

The underlying mathematical model often suggests a natural way
to partition a matrix like this, where x and y represent two different
kinds of variables.

Such composite matrices arise naturally
in constrained multivariable opti-
mization problems (where “x” are the
variables being optimized, and “y” are
Lagrange multipliers) and in models of
incompressible fluid dynamics (where
“x” are velocities and “y” are pressures
of the fluid).

Matrix multiplication is a fundamental operation that can be inter-
preted in several ways, each of which is valuable in certain contexts.
Consider A ∈ Rm×n and B ∈ Rn×p. Most mechanically, the (j, k)
entry of the m-by-p matrix C := AB is given by the “row-by-column”
formula:

cj,k =
n

∑
`=1

aj,`b`,k,
j = 1, . . . , m;
k = 1, . . . , p.

This formula reveals cj,k to be the dot product of the jth row of A

Notice that the product AB only makes
sense when the number of columns of A
equals the number of rows of B. By taking
A ∈ Rm×n and B ∈ Rn×p, we have
implicitly insured this requirement: A
has n columns and B has n rows. The
product C := AB has m rows and p
columns: C ∈ Rm×p.

Remember it this way: We can mul-
tiply an m-by-n against an n-by-p
because the “inner dimensions” (n)
match; the “outer dimensions” (m and
p) give the dimension of the product.

m

p

C = m

n

A n

p

B

with the kth column of B. (We will have much more to say about dot
products in the next chapter.)

Alternatively, one can view the matrix-matrix product C := AB as
a series of matrix-vector products, stacked side-by-side:

[
c1 · · · cp

]
= A

[
b1 · · · bp

]
=
[

Ab1 · · · Abp

]
.

From this perspective, each column of C is the result of A operating
on a column of B.

Several distinguished matrices merit special mention. The zero
matrix has all entries set to zero; we write it as 0, and its dimension

0 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




8

will be clear from the context. The identity matrix is a square matrix
with zeros everywhere except the main diagonal, whose entries are
all ones; we denote it by I. We shall occasionally pick out kth column
of the identity, which we denote by ek. Thus the n× n identity is

I =
[

e1 e2 · · · en

]
.

For example, when n = 4,

e1 =




1
0
0
0


 , e2 =




0
1
0
0


 , e3 =




0
0
1
0


 , e4 =




0
0
0
1


 . (1.1)

Note that, for all n,

Notice this helpful trick. You can use ek
to extract the kth column from A:

Aek = ak .

Ix = x, IA = A, AI = A,

for all vectors x and matrices A. More generally, we construct diago-
nal matrices as

diag(d1, . . . , dn) =




d1
. . .

dn


 ,

where the unspecified off-diagonal elements are zero.
A square matrix B for which AB = I is called the inverse of A, and

is denoted by A−1. Not all matrices are invertible; for example, A = 0
has no inverse. When the inverse exists, it is unique. It works on the
right and the left sides of A:

A−1A = AA−1 = I.

These important facts are proved in
most linear algebra books/courses. We
presume you are familiar with them,
and only give an overview here.

The inverse of a product of matrices is the product of the indi-
vidual inverses, in reverse order. For example, if both A and B are
invertible, then

(AB)−1 = B−1A−1. (1.2)

This fact is easily verified, since
A B

−1

= B−1 A−1

(AB)(B−1A−1) = ABB−1A−1 = AIA−1 = AA−1 = I.

Hence B−1A−1 does what an inverse of AB is supposed to do, and
since the inverse is unique, it is the only matrix that so affects AB.

A

AT

m

n m

n

Just as we took the vector transpose, we do similarly for matrices:

A =




a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n


 , AT =




a1,1 · · · am,1
...

. . .
...

a1,n · · · am,n


 .

9

When AT = A we say A is symmetric. (Notice that only square matri-
ces can be symmetric.)

The transpose distributes across addition, and distributes across a
product, but reverses the order (just like inverting a product):

(A + B)T = AT + BT , (AB)T = BTAT . (1.3)

Perhaps it seems strange to reverse the order, but notice that it is the
A

B

T

=

BT
AT

only sensible thing to do, from the standpoint of matrix dimensions.
If A ∈ Rm×n and B ∈ Rn×p, then “ATBT” would be an n-by-m
matrix times a p-by-n matrix, which does not make sense when m 6= p.
In contrast, BTAT is a p-by-n matrix times an n-by-m matrix, which is
always defined regardless of the values of m, n, and p.

Key concept. To invert or transpose a product of matrices, reverse the
order and distributed the operation:

(AB)−1 = B−1A−1, (AB)T = BTAT .

You can recursively apply this idea to handle longer strings of
matrices. For example, (ABCD)T = DTCTBTAT .

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 2
The Geometry of Vector Spaces

Before plunging into fancy matrix factorizations, we must
first understand the basic geometry of the vector spaces that such
matrices will operate upon.

2.1 Inner and outer products, vector norms

We often multiply vectors together in two special ways.

Definition 2.1. The inner product (or dot product) of v, w ∈ Rn is the
scalar

vTw =

[
v1 · · · vn

] 


w1
...

wn


 =

n

∑
j=1

vjwj ∈ R1×1 = R.

The inner product vTw can be viewed as
the product of a 1× n matrix with an
n× 1 matrix, giving a 1× 1 result.

vT

w

= vTw1

n

n

1

1

1

The outer product vwT is the product of
an m × 1 matrix with a 1× n matrix,
giving an m× n result.

v

wT =

vwTm

1

1

n

m

n

Definition 2.2. The outer product of v ∈ Rm and w ∈ Rn is the m× n
matrix

vwT =




v1
...

vm




[
w1 · · · wn

]

=




v1w1 · · · v1wn
...

. . .
...

vmw1 · · · vmwn


 ∈ Rm×n.

Notice that, except for special cases, vwT 6= wvT : the order of vectors
matters for an outer product.

Suppose v = [2, 1, 2]T and w = [1, 0,−1]T . The inner product of v
and w is the scalar

vTw =

[
2 1 2

] 


1
0
−1


 = 2 · 1 + 1 · 0 + 2 · (−1) = 0,

© Copyright 2022 by Mark Embree. All rights reserved.

11

while the outer product is the matrix

vwT =




2
1
2




[
1 0 −1

]

=




2 0 −2
1 0 −1
2 0 −2


 .

Often we take inner and outer products of a vector with itself. For
example,

vTv =

[
2 1 2

] 


2
1
2


 = 2 · 2 + 1 · 1 + 2 · 2 = 9,

and
The special outer product vvT is always
symmetric: using the rule (1.3),

(vvT)T = (vT)T(v)T = vvT .
vvT =




2
1
2




[
2 1 2

]

=




4 2 4
2 1 2
4 2 4


 .

Sometimes we casually speak of the “length” or “size” of a vector,
meaning its number of components, or, more properly, its dimension.
However, there is another notion of the size of a vector that depends
on the magnitude of the entries of the vector. This definition general-
izes the absolute value of a scalar.

Definition 2.3. The norm of a vector v ∈ Rn is denoted

‖v‖ =
√√√√

n

∑
j=1
|vj|2 =

√
vTv.

This definition of the norm of a vector is just the usual notion of
Euclidean length you are familiar with from geometry and physics.
Notice that this norm obeys some simple properties:

Some applications motivate a different
notion of “length,” as described by the
1-norm (“taxi cab norm”)

‖v‖1 = |v1|+ |v2|+ · · ·+ |vn|
or the ∞-norm (“max norm”)

‖v‖∞ = max
1≤j≤n

|vj|.

In this course, you can always assume
‖v‖ =

√
vTv unless otherwise stated.

• ‖v‖ ≥ 0 for all v ∈ Rn;

• ‖v‖ = 0 if and only if v = 0;

• ‖αv‖ = |α|‖v‖ for all α ∈ R and v ∈ Rn;

• ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ Rn.

• Length cannot be negative.

• The only vector with length zero is
the zero vector, v = 0.

• Scaling vectors scales their length by
the same amount.

• You cannot decrease length by
decomposing a vector into parts.

The first three facts follow immediately
from Definition 2.3. The last fact, called
the triangle inequality, is a bit more
subtle; we will address that later in the
chapter.

Key concept. Throughout this course we will often use this
connection between inner products and norms:

vTv = ‖v‖2.

For the previous example v = [2, 1, 2]T , we found vTv = 9, and hence

‖v‖ =
√

9 = 3.

Norms also allow us to measure the proximity of two vectors.

12

Definition 2.4. The distance between the vectors v, w ∈ Rn is defined to
be the norm of their difference:

‖w− v‖.

Notice that this definition obeys some natural properties we expect a
“distance” to obey: you can confirm that ‖w− v‖ ≥ 0 for any v and
w, and that ‖w− v‖ = 0 if and only if w = v.

The triangle inequality also holds: for
any three vectors u, v, w,

‖u−w‖ ≤ ‖u− v‖+ ‖v−w‖.
This fact is a little trickier to prove;
we will return to it at the end of this
chapter.

We begin our construction of vector space geometry with the concept
of orthogonality, which extends the notion of perpendicular lines.

Definition 2.5. Two vectors v, w ∈ Rn are orthogonal provided

vTw = 0.

Often the orthogonality of v and w is expressed as

v ⊥ w.

In this setting, the Pythagorean Theorem from classical geometry
(“A2 + B2 = C2”) becomes quite simple. The proof just applies the
“key concept” above.

Illustration after Oliver Byrne’s 1847
rendering of Euclid’s Elements.

Theorem 2.1 (Pythagorean Theorem). If v, w ∈ Rn are orthogonal, then

‖v + w‖2 = ‖v‖2 + ‖w‖2.

Proof. The orthogonality of v and w implies vTw = wTv = 0, so

‖v + w‖2 = (v + w)T(v + w)

= (vT + wT)(v + w)

= vTv + vTw + wTv + wTw

= vTv + wTw

= ‖v‖2 + ‖w‖2.

We will apply this ancient theorem at several key points this semester.

2.2 A best approximation problem

Many problems in this class – and in data science – involve some
kind of approximation: finding the closest object to a given piece of
data. Thus it is fitting that we should start the semester with a basic
example of this kind of problem.

Suppose we have a vector w ∈ Rn (the data) and we want to find
the closest approximation to the vector in the direction of the vector

13

v ∈ Rn (the model). (We assume that v 6= 0.) The set of all vectors in
the direction of v is given by the set

span{v} = {αv : α ∈ R}.

This set forms a line in n-dimensional space. Since we can take α = 0,
this line must include the zero vector, i.e., it must go through the
origin.

The notation “{αv : α ∈ R}” is
mathematical shorthand that means
“the set of all objects that have the form
αv, where α is allowed to be any real
number”.

span{v}

w

v0

Figure 2.1: Three choices (blue dots)
for approximations to w from span{v}.
The one in the middle looks optimal. We
want to find a formula for it.

To solve the best approximation problem, we must clarify what we
mean by “best.” By that term we mean “the αv that minimizes the
distance from w,” using the notion of distance from Definition 2.4.
That is, we seek that value of α ∈ R that minimizes

‖w− αv‖.

This minimizing αv is called the best approximation to w from span{v}.
It turns out that this optimal α always has a beautiful formula.

Theorem 2.2 (Best Approximation). The best approximation to w ∈ Rn

by a vector in the direction of the nonzero v ∈ Rn is

αv =
vTw
vTv

v. (2.1)

Notice that vTw and vTv are both inner
products, and so α = (vTw)/(vTv) is
just a real number. The denominator
is vTv = ‖v‖2 (see the “key concept”
above), and since v is nonzero, ‖v‖ > 0.
Thus, the formula for α is well defined.

Where did this formula come from? We will derive it in a moment.
First, make sure you understand the objects involved. Does the for-
mula make sense? Is it always defined?

Proof. First, notice that the α that minimizes ‖w − αv‖ also min-
imizes ‖w − αv‖2. We prefer to work with this latter expression,
because it gets rid of the square root in the definition of the norm
(Definition 2.3). Thus we have to solve

min
α∈R
‖w− αv‖2,

which will amount to a simple calculus problem. We proceed as in
the proof of the Pythagorean Theorem, again using the “key concept”
to expand

‖w− αv‖2 = (w− αv)T(w− αv)

= (wT − αvT)(w− αv)

= wTw− αvTw− αwTv + α2vTv

= wTw− 2αvTw + α2vTv. (2.2)

The last step follows from the fact that vTw = wTv. Since v and w α

f (α)

vT w
vT v

The function f (α) is the equation of a
parabola in α. Since the coefficient of α2

is vTv = ‖v‖2 > 0, the parabola opens
up, and hence has a global minimum.

are given, the only variable in this last expression is α. To minimize
with respect to α, define

f (α) = wTw− 2αvTw + α2vTv

14

and find its minimum. To do so, compute

f ′(α) = −2vTw + 2αvTv,

set f ′(α) = 0, and solve for α to get

α =
vTw
vTv

.

Indeed, this is a local minimum (since f ′′(α) = 2‖v‖2 > 0), and hence
the best approximation to w from span{v} is

αv =
vTw
vTv

v.

This best approximation satisfies a neat and important property.
Notice that the residual vector (or misfit)

r := w− αv = w− vTw
vTv

v

is orthogonal to the approximating set. In particular,

vTr = vTw− vTw
vTv

vTv = vTw− vTw = 0.

A similar calculation shows v̂Tr = 0 for any v̂ ∈ span{v}. This fact is
sufficiently important that we will document it here, so we can shine
a light upon it later.

span{v}vT w
vT v v

w

v0

Figure 2.2: Theorem 2.2 gives a formula
for the best approximation to w from
span{v}. The residual/misfit (red
dashed line) is orthogonal to span{v}.

Corollary 2.1. The residual vector between w ∈ Rn and its best approxi-
mation from span{v} is orthogonal to the approximating set:

r := w− vTw
vTv

v ⊥ span{v}.

Example 2.1. Our first example comes from Figure 2.1. Let

v =

[
2
0

]
, w =

[
5
3

]
.

Compute the optimal scaling factor

α =
vTw
vTv

=
10
4

=
5
2

and then multiply this against v to get the best approximation to w:

αv =
5
2

[
2
0

]
=

[
5
0

]
.

The residual

r = w− αv =

[
5
3

]
−
[

5
0

]
=

[
0
3

]
,

is clearly orthogonal to v.

15

Example 2.2. Consider this rather different example. Suppose we
have a series of samples, w1, w2, . . . , wn ∈ R; you could imagine this
being a time series, say, measuring the temperature in Blacksburg.
We want to find the constant value α ∈ R that best approximates
all these values. We can set this up in the framework of Theorem 2.2
as follows. Put all the data in a column vector, and view αv as a
“model” approximating the data vector:

w =




w1

w2
...

wn



∈ Rn, αv = α




1
1
...
1



=




α

α
...
α



∈ Rn.

Then we seek the value of α that minimizes ‖w− αv‖. Theorem 2.2
gives

α =
vTw
vTv

=
1 · w1 + 1 · w2 + · · ·+ 1 · wn

1 · 1 + 1 · 1 + · · ·+ 1 · 1 =
w1 + w2 + wn

n
,

which is just the sample mean (or empirical mean) of our data set.
Presumably you are not surprised that the best constant approx-

imation to w1, . . . , wn is the average of these values, but it is com-
forting to see that the theory we have developed here recovers that
obvious result.

2.3 Angles between vectors

The inner product gives rise to another geometric notion, the angle
between two vectors. In a basic linear algebra course you have likely
encountered some formula relating the angle between vectors to the
dot product. Where does that formula come from? Best approxima-

Often expressed “v ·w = cos θ|v||w|.”

tions are the key.
We seek to measure the angle θ = 6 (v, w) between the vectors

v, w ∈ Rn, shown in red in the picture below.

span{v}v

span{w}
w

θ

Notice that the angle is determined by the direction of the vector,
not its length. We could imagine defining cos θ using the familiar

16

formula
cos θ =

length of adjacent side
length of hypotenuse

.

Remember from geometry that this formula holds for right triangles.
Corollary 2.1 suggests how we can do this: if we compute the best
approximation to w from span{v}, the residual will form a right
angle with the best approximation, as in the figure below.

span{v}v

span{w}
w

vTw
vTv v

θ

To apply the cosine formula, we only need to compute the length of
the adjacent and hypotenuse sides of the right triangle formed by this
best approximation.

‖w‖

∥∥∥ vTw
vTv v

∥∥∥

θ

The definition of the cosine then gives

cos θ =
length of adjacent side

length of hypotenuse
=

∥∥∥ vTw
vTv v

∥∥∥
‖w‖ .

Since (vTw)/(vTv) is a scalar, we can pull its absolute value out of
the norm in the numerator, giving Recall the scaling property of

vector norms from page 11: for
any α ∈ R, ‖αv‖ = |α|‖v‖.cos θ =

∣∣∣∣
vTw
vTv

∣∣∣∣
‖v‖
‖w‖ =

|vTw|
‖v‖2

‖v‖
‖w‖ =

|vTw|
‖v‖‖w‖ .

The only difference between this formula and the one you learned in
a first linear algebra class might be the absolute value bars on |vTw|.
With the absolute value bars, the angle between v and w will always
be acute (i.e., θ ∈ [0, π/2]), which makes particular sense if we regard
θ as the (smallest) angle between the subspaces span{v} and span{w}.

If v and w are nonzero, then orthogo-
nality is equivalent to cos 6 (v, w) = 0,
i.e., 6 (v, w) = π/2. Thus two vectors
are orthogonal if they form a right
angle.

Definition 2.6. The angle between the nonzero vectors v and w ∈ Rn is

cos 6 (v, w) =
|vTw|
‖v‖‖w‖ . (2.3)

17

Our next result ensures that

0 ≤ |vTw|
‖v‖‖w‖ ≤ 1,

and hence the right hand-side of (2.3) takes reasonable values for
cos 6 (v, w).

Theorem 2.3 (Cauchy–Schwarz Inequality). For any v, w ∈ Rn,

|vTw| ≤ ‖v‖‖w‖.

Simple though it may seem, the
Cauchy–Schwarz inequality is
powerful and widely applicable. Its
diverse proofs point to many directions
in mathematics, forming the subject of
an entire book:

J. Michael Steele. The Cauchy–Schwarz
Master Class. Cambridge University
Press, Cambridge, 2004

Proof. We can prove this result by adapting an argument that already
appeared in the proof of the Best Approximation Theorem (Theo-
rem 2.2). For any real number α, recall that equation (2.2) gives

‖w− αv‖2 = ‖w‖2 + 2αvTw + α2‖v‖2,

and since the left-hand side is a norm, it cannot be negative:

0 ≤ ‖w‖2 + 2αvTw + α2‖v‖2.

The right-hand side is a quadratic equation in α, describing a parabola
that opens up, and can never be negative. That means the quadratic
cannot have a pair of distinct real roots (otherwise, the parabola
would be negative in between them), and so the discriminant (the
“B2 − 4AC” part of the quadratic formula) must be non-positive.

Recall the quadratic equation, which
gives the roots of a quadratic equation
Ax2 + Bx + C = 0 as

−B±
√

B2 − 4AC
2A

.

In our case, A = ‖v‖2, B = 2vTw, and
C = ‖w‖2, and B2 − 4AC ≤ 0.

Thus
(2vTw)2 − 4‖v‖2‖w‖2 ≤ 0.

Rearrange this equation, divide by 4, and take square roots to get the
required inequality:

|vTw| ≤ ‖v‖‖w‖.

The Cauchy–Schwarz inequality enables a simple proof of the
fundamental triangle inequality, which we encountered earlier in this
chapter.

Theorem 2.4 (Triangle Inequality). For any vectors v, w ∈ Rn,

‖v + w‖ ≤ ‖v‖+ ‖w‖.

Proof. As in the proof of the Pythagorean Theorem, begin by expand-
ing ‖v + w‖2 to obtain

‖v + w‖2 = ‖v‖2 + 2vTw + ‖w‖2.

Now since vTw ≤ |vTw|, we have

‖v + w‖2 ≤ ‖v‖2 + 2|vTw|+ ‖w‖2.

18

Apply the Cauchy–Schwarz inequality to obtain

‖v + w‖2 ≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2

=
(
‖v‖+ ‖w‖

)2.

Take the square root of both sides to obtain the result.

2.4 Projectors: surgical instruments of linear algebra

We seek a deeper appreciation of the best approximation formula (2.1),

vTw
vTv

v ∈ Rn.

This expression has the form “scalar (vTw/vTv) times vector (v)”,
which of course gives us a vector.

Let us manipulate this expression a little bit. Move the scalar onto
the right side of the vector (which we can do with scalars) to get

v
vTw
vTv

=
vvTw
vTv

=
vvT

vTv
w.

As these equivalent expressions hint, we can perform the multiplica-
tions here in any order we like. For example, we can start by multi-
plying vvT – which is an outer product, an n× n matrix. Then we can

Forming that matrix vvT would be a
very inefficient way to implement this
formula in code, but it gives deeper
insight into the mathematics.divide the entries of that matrix by the scalar vTv = ‖v‖2. Finally, we

multiply this matrix (vvT)/(vTv) against the vector w. This gives the
equivalent formula (

vvT

vTv

)
w.

Notice that matrix in parentheses does not involve the vector w.
It is a general purpose matrix that maps any vector w to its best
approximation in span{v}. Such matrices are so special that we given
them a distinguished name.

Definition 2.7. For any nonzero vector v ∈ Rn, the matrix

Pv :=
vvT

vTv

is the orthogonal projector onto span{v}.
The best approximation to w ∈ Rn from span{v} is thus written Pvw. Some authors write “projvw”.

Pv = v
‖v‖

vT

‖v‖

= vvT

vT v

If the formula for Pv looks strange (dividing the matrix vvT by the
scalar vTv = ‖v‖2), you can equivalently write

Pv =

(
v
‖v‖

)(
v
‖v‖

)T
.

19

In dividing the vector v by ‖v‖, we obtain a unit vector in span{v}.
Thus you can understand Pv as the outer product of two unit vectors.

Notice a few neat properties of Pv. Try to prove them for yourself.

• Pv is symmetric.

• PvPv = Pv. We usually write PvPv as P2
v .

• (I− Pv)Pv = 0.

• If w is orthogonal to v, then Pvw = 0.

• For any w ∈ Rn, (I− Pv)w is orthogonal to v.

We will use projectors throughout this course. By learning how to
use them nimbly, you will develop a better appreciation for key data
science concepts such as regression and principal component analy-
sis, as we shall highlight in future chapters of these notes.

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 3
Orthogonalization

We need a few more tools from basic linear algebra to tackle the
applications that lie ahead. This chapter addresses subspaces and
bases, ultimately using projectors to orthogonalize a set of vectors.
We shall see that this procedure can be viewed as a way of factoring
a matrix into a product of two special matrices. This high-level view
of the orthogonalization process is an example of the matrix-level
thinking we will use to solve problems throughout this course.

3.1 Subspaces and bases

The last chapter focused on single vectors and the geometry that al-
lowed us to compare such vectors. We also considered one-dimensional
subspaces, such as, for nonzero v ∈ Rm,

span{v} := {αv : α ∈ R}.

This collection of vectors traces out a line in Rm that goes through the
origin. To create more sophisticated models involving multiple de-

Take α = 0 to see that the origin is in
span{v}, i.e.,

0v = 0 ∈ span{v}.scriptive variables, we must consider higher-dimensional subspaces
of Rm. The results in this section should be familiar from your first
linear algebra course. We state them here as a reminder, and only
include a few representative proofs.

Definition 3.1. The nonzero set of vectors V ⊂ Rn is a subspace provided
two properties hold:

• For any α ∈ R and v ∈ V, the vector αv ∈ V;

• For any v, w ∈ V, the vector v + w ∈ V.

We say that “a vector space is closed
under scalar multiplication and vector
addition:” if you multiply a vector in V

by a scalar, or add two vectors from V

together, the result is also in V.

We can manufacture a subspace out of any set of vectors.

© Copyright 2022 by Mark Embree. All rights reserved.

21

Definition 3.2. The span of the vectors v1, . . . , vd ∈ Rm is the set of all
linear combinations (weighted sums) of these vectors:

span{v1, . . . , vd} = {c1v1 + · · ·+ cdvd : c1, . . . , cd ∈ R}.

This definition means that
span{v1, . . . , vd} consists of all vec-
tors that can be written as a weighted
sum of v1, v2, . . . , vd.

c1 v1 + c2 v2 + · · ·+ cd vd

Theorem 3.1. For any v1, . . . , vd ∈ Rm, span{v1, . . . , vd} is a subspace.

Proof. To show that R(A) is a subspace, we must verify the two prop-
erties in Definition 3.1. (i) Suppose v ∈ span{v1, . . . , vd} and consider
any α ∈ R. The vector v can be written as a linear combination of
v1, . . . , vd:

v = c1v1 + · · ·+ cdvd

for some scalars c1, . . . , cd ∈ R. Then

αv = (αc1)v1 + · · ·+ (αcd)vd,

and αv can also be written as a linear combination of v1, . . . , vd. It
follows that αv ∈ span{v1, . . . , vd}. We have shown that span{v1, . . . , vd}
is closed under scalar multiplication.

(ii) Suppose further that w ∈ span{v1, . . . , vd}, so we can write

w = γ1v1 + · · ·+ γdvd

for some scalars γ1, . . . , γd ∈ R. Thus

v + w = (c1 + γ1)v1 + · · ·+ (cd + γd)vd,

and so v + w is also a linear combination of v1, . . . , vn. It follows that
v + w ∈ span{v1, . . . , vd}. We have thus shown that span{v1, . . . , vd}
is closed under vector addition.

Since span{v1, . . . , vd} satisfies both requirements of Definition 3.1,
we conclude that R(A) is a subspace.

Definition 3.3. Consider the matrix A ∈ Rm×n.

• The column space (or range) of A is the set

R(A) = {Ax : x ∈ Rn} ⊆ Rm.

• The row space of A is the set

R(AT) = {ATy : y ∈ Rm} ⊆ Rn.

• The null space of A is the set

N(A) = {x ∈ Rn : Ax = 0} ⊆ Rn.

This notation means that R(A) contains
all vectors of the form Ax, where x can
be any vector in Rn. Since Ax ∈ Rm, the
set R(A) contains vectors of length m,
and we write R(A) ⊆ Rm to mean
“R(A) is a subset of Rm.”

This notation means that N(A) contains
all vectors x ∈ Rn such that Ax = 0.
Since such vectors x have length n, we
write N(A) ⊆ Rn to mean “N(A) is a
subset of Rn”.

22

Theorem 3.2. For any matrix A ∈ Rm×n, the column space R(A), the row
space R(AT), and the null space N(A) are all subspaces.

Proof. We will only prove this theorem for R(A); see if you can adapt the
proof for R(AT) and N(A) yourself.

To show that R(A) is a subspace, we must verify the two prop-
erties in Definition 3.1. (i) Suppose α ∈ R and v ∈ R(A). Since
v ∈ R(A), by the definition of what it means to be a vector in R(A),
there must exist some vector x ∈ Rn such that Ax = v. Now consider

αv = α(Ax)A(αx).

Since αv can be written as “A times a vector,” this means that αv ∈
R(A), verifying that R(A) is closed under scalar multiplication.

(ii) Now suppose that v, w ∈ R(A). Again, by the definition of
R(A), there must exist vectors x, y ∈ Rn such that Ax = v and
Ay = w. Now consider

v + w = Ax + Ay = A(x + y).

Since we can write v + w as “A times a vector,” we see v + w ∈
R(A), verifying that R(A) is closed under vector addition. Since
R(A) satisfies both requirements of Definition 3.1, we conclude that
R(A) is a subspace.

Definition 3.4. A set of vectors {v1, . . . , vd} ⊂ Rm is linearly indepen-
dent provided that

c1v1 + c2v2 + · · ·+ cdvd = 0

is only possible if c1 = c2 = · · · = cd = 0.

Definition 3.5. A set of vectors {v1, . . . , vd} ⊂ Rm is a basis for a
subspace V ⊆ Rm provided:

• span{v1, . . . , vd} = V;

• the set {v1, . . . , vd} is linearly independent.

Theorem 3.3. Every basis for the subspace V has the same number of vectors.

Definition 3.6. The number of vectors in a basis for a subspace V is called
the dimension of V. In particular, if {v1, . . . , vd} is a basis for V, then
dim(V) = d.

Definition 3.7. The rank of a matrix A ∈ Rn×n is the dimension of the
column space:

rank(A) = dim(R(A)).

23

Theorem 3.4. Given a matrix A ∈ Rm×n, the column and row spaces have
the same dimension:

r := rank(A) = dim(R(A)) = dim(R(AT)).

The null space N(A) has dimension n− r. The left null space N(AT) has
dimension m− r. Thus we can write

m = dim(R(A)) + dim(N(AT))

n = dim(R(AT)) + dim(N(A)).

This result is often called the Rank-
Nullity Theorem. A more complete
version, known as the Fundamental
Theorem of Linear Algebra, will be proved
in Theorem 5.5.

Basis vectors provide an economical way to describe a subspace,
but not all bases are created equal. Clearly the following three pairs
of vectors all form bases for R2:

[
1
0

]
,

[
0
1

]
;

[√
2/2√
2/2

]
,

[√
2/2

−
√

2/2

]
;

[
1
0

]
,

[
1,

.001

]
.

For example, the vector v = [1, 1]T can be written as a linear combi-
nation of all three sets of vectors. In the first two cases,

[
1
1

]
= 1

[
1
0

]
+ 1

[
0
1

]
=
√

2
[√

2/2√
2/2

]
+ 0

[√
2/2

−
√

2/2

]
,

the coefficients (in red) multiplying against the basis vectors are no
bigger than ‖v‖ =

√
2. In the third case,

[
1
1

]
= −999

[
1
0

]
+ 1000

[
1

.001

]
,

the coefficients −999 and 1000 are much bigger than ‖v‖. Small
changes in v require significant swings in these coefficients. For
example, if we change the second entry of v from 1 to 0.9,

[
1
.9

]
= −899

[
1
0

]
+ 900

[
1

.001

]
,

the coefficients change by 100, which is 1000 times the change in v !
The first two bases above are special, for the norm of each vector

is one, and the two basis vectors are orthogonal to each other. The
vectors in the third basis form a small angle. Indeed, all these bases
are linearly independent, but, we might say, some bases are more
linearly independent than others.

“All animals are equal, but some
animals are more equal than others.”
— George Orwell, Animal Farm (1945)

24

3.2 Orthogonalization

This rest of this chapter focuses on orthogonalizing a set of linearly
independent vectors. The main tool of this craft is the orthogonal
projector onto a one dimensional subspace, as given in Definition 2.7.

Definition 3.8. A basis {q1, . . . , qn} is orthonormal provided

• qT
j qk = 0 for all j 6= k (the vectors are orthogonal);

• ‖qj‖ = 1 for j = 1, . . . , n (the vectors are normalized).

We can summarize orthonormality quite neatly if we arrange the
basis vectors in the matrix

Q = [q1 q2 · · · qn] .

Then QTQ contains all possible inner products between qj and qk:

QTQ =




qT
1 q1 qT

1 q2 · · · qT
1 qn

qT
2 q1 qT

2 q2
. . .

...
...

. qT
n−1qn

qT
n q1 · · · qT

n qn−1 qT
n qn



=




1 0 · · · 0

0 1
. . .

...
...

. 0

0 · · · 0 1



= I,

since qT
j qj = ‖qj‖2 = 1.

Definition 3.9. A matrix Q ∈ Rn×n is unitary if QTQ = I.
If Q ∈ Rm×n with m > n and QTQ = I, then Q is subunitary.

An n-by-n unitary matrix with real
entries is often called an orthogonal
matrix. The term “subunitary” (or
“suborthogonal”), which follows a
suggestion of Gilbert Strang, is not
yet standard – but sounds tidier than
“rectangular matrix with orthonormal
columns”.

exercises

3.1. Suppose Q ∈ Rm×n with m < n. Is it possible that QTQ = I?
Explain.

3.2. Suppose that Q ∈ Rm×n is subunitary. Show that Π := QQT ∈
Rm×m is the sum of projectors onto the spans of the orthonormal
basis vectors:

Π := QQT =
n

∑
j=1

qjq
T
j .

Now prove that Π is itself a projector, meaning that Π2 = Π.
What is the column space of Π?

Recall that the column space) of Π is the
set of all vectors of the form Πx, i.e.,

R(Π) = {Πx : x ∈ Rm}.

span{a1}

span{a2}

a1

a2
a2 − P1a2

The setting: basis vectors a1 and a2 that
are neither unit length, nor orthogonal.

We are now prepared to orthogonalize a set of vectors. Suppose
we have a basis a1, . . . , an for a subspace V ⊂ Rm. We seek an or-
thonormal basis q1, . . . , qn for the same subspace, which we shall
build one vector at a time. The goal is to first construct a unit vector
q1 so that

25

span{q1} = span{a1}
and then to build a unit vector q2 orthogonal to q1 so that

span{q1, q2} = span{a1, a2}
and then a unit vector q3 orthogonal to q1 and q2 so that

span{q1, q2, q3} = span{a1, a2, a3}
and so on, one qj vector at a time, until we have the whole new basis:

span{q1, q2, . . . , qn} = span{a1, a2, . . . , an} = V.

span{a1}

span{a2}

a1

a2

q1

a2 − P1a2

First normalize a1 to obtain q1 with
span{q1} = span{a1}.

The first of these steps is easy, for we get q1 by normalizing a1:

q1 =
1
‖a1‖

a1.

The next step is decisive, and here we use insight gained from our
study of orthogonal projectors in Chapter 2. Figuratively speaking,
we must remove the part of a2 in the direction q1, leaving the portion
of a2 orthogonal to q1. Since q1 is a unit vector,

P1 := q1qT
1

is an orthogonal projector onto span{q1} = span{a1}, so

P1a2 = q1qT
1 a2

is the part of a2 in the direction q1. Remove that from a2 to get

q̂2 := a2 − P1a2.

Since

span{a1}

span{a2}

a1

a2

q1 P1a2

a2 − P1a2 = q̂2

Compute q̂2 := a2 − P1a2, the portion
of a2 that is orthogonal to q1.

P1q̂2 = P1(a2 − P1a2) = 0,

spot that q̂2 ∈ N(P1), which is orthogonal to R(P1) = span{q1}, so
q̂2 ⊥ q1. If you prefer a less high-falutin’ explanation, just compute

qT
1 q̂2 = qT

1 a2 − qT
1 q1qT

1 a2 = qT
1 a2 − qT

1 a2 = 0.

So we have constructed a vector q̂2 orthogonal to q1 such that

span{a1}

span{a2}

a1

a2

q1 P1a2

a2 − P1a2 = q̂2

q2

Normalize q2 = q̂2/‖q̂2‖ to get a unit
vector in the q̂2 direction.

span{q1, q̂2} = span{a1, a2}.

Since we want not just an orthogonal basis, but an orthonormal basis,
we adjust q̂2 by scaling it to become the unit vector

q2 :=
1
‖q̂2‖

q̂2.

The orthogonalization process for subsequent vectors follows the
same template. To construct q3, we first remove from a3 its compo-
nents in the q1 and q2 directions:

q̂3 := a3 − P1a3 − P2a3,

26

where P2 = q2qT
2 , where for j = 1, 2,

qT
j q̂3 = qT

j a3 − qT
j q1qT

1 a3 − qT
j q2qT

2 a3

= qT
j a3 − qT

j a3 = 0,

using the orthonormality of q1 and q2. Normalize q̂3 to get

q3 :=
1
‖q̂3‖

q̂3.

Now the general pattern should be evident. For future vectors,
construct

q̂k+1 = ak+1 −
k

∑
j=1

Pj ak+1, with Pj := qjq
T
j ,

then normalize

qk+1 =
1

‖q̂k+1‖
q̂k+1,

giving

qk+1 ⊥ span{q1, . . . , qk},

which extends the orthonormal basis in one more direction:

span{q1, . . . , qk, qk+1} = span{a1, . . . , ak, ak+1}.

This algorithm is known as the Gram–Schmidt process.

exercises

3.3. Under what circumstances will this procedure break down? That
is, will you ever divide by zero when trying to construct qk+1 =

q̂k+1/‖q̂k+1‖?

3.4. Suppose the Gram–Schmidt process does not break down, but
that ‖q̂k‖ � ‖ak‖ for some k. What does this situation imply about
how ak relates to a1, . . . , ak−1?

The notation “�” means “much less
than.”

3.5. Show that Πk := P1 + · · · + Pk is an orthogonal projector, i.e.,
show Π2

k = Πk. What space does Πk project onto? (That is, what
is the column space of Πk?) With this notation, explain how each
Gram–Schmidt step can be expressed compactly as

qk+1 =
(I−Πk)ak+1
‖(I−Πk)ak+1‖

.

27

3.3 Gram–Schmidt is QR factorization

The Gram–Schmidt process is a classical way to orthogonalize a
basis, and you can execute the process by hand when the vectors are
short (m is small) and there are few of them (n is small). However, its
real power comes when we apply the technique to large collections of
vectors. To do so, we need to organize the steps more systematically.
Ultimately, if we arrange our original vectors as the columns of the
matrix A ∈ Rm×n, then the Gram–Schmidt process can be viewed
as a way of decomposing or factoring the matrix A into the special form
A = QR, where Q ∈ Rm×n has orthonormal columns (and hence is
subunitary) and R ∈ Rn×n is upper triangular, i.e., all entries below its
main diagonal are zero.

Let us work through the arithmetic behind the orthogonalization
of three linearly independent vectors a1, a2, and a3, and along the
way define some quantities rj,k that arise in the process:

q̂1 := a1

q1 :=
1
‖q̂1‖

q̂1 =
1

r1,1
q̂1

q̂2 := a2 − q1qT
1 a2

= a2 − r1,2 q1

q2 :=
1
‖q̂2‖

q̂2 =
1

r2,2
q̂2

q̂3 := a3 − q1qT
1 a3 − q2qT

2 a3

= a3 − r1,3 q1 − r2,3 q2

q3 :=
1
‖q̂3‖

q̂3 =
1

r3,3
q̂3.

To summarize, we have defined

r1,1 = ‖q̂1‖

r1,2 = qT
1 a2

r2,2 = ‖q̂2‖

r1,3 = qT
1 a3

r2,3 = qT
2 a3

r3,3 = ‖q̂3‖

rj,k =





qT
j ak, j < k;

‖q̂j‖, j = k;

0, j > k.

With this notation, three steps of the Gram–Schmidt process be-

The diagonal entry rj,j contains some
very interesting information. Since

rj,j = ‖q̂j‖ = ‖aj − (P1 + · · ·+ Pj−1)aj‖,
rj,j measures the portion of aj that is
not already captured by the directions
q1, . . . , qj−1. Consider the extreme cases.

• What does it mean when rj,j = ‖aj‖?
• What does it mean when rj,j = 0?

come:

r1,1q1 = a1

r2,2q2 = a2 − r1,2q1

r3,3q3 = a3 − r1,3q1 − r2,3q2,

28

or, collecting the aj vectors on the left hand side:

a1 = r1,1q1 + 0q2 + 0q3

a2 = r1,2q1 + r2,2q2 + 0q3

a3 = r1,3q1 + r2,3q2 + r3,3q3.

Stack the orthonormal basis vectors as the columns of the subunitary
matrix Q ∈ Rm×n

Q = [q1 q2 q3] ,

and note that

a1 =


 q1 q2 q3






r1,1

0
0




a2 =


 q1 q2 q3






r1,2

r2,2

0




a3 =


 q1 q2 q3






r1,3

r2,3

r3,3


 ,

which we organize in matrix form as

 a1 a2 a3


 =


 q1 q2 q3






r1,1 r1,2 r1,3

0 r2,2 r2,3

0 0 r3,3


 . a1 a2 a3 = q1 q2 q3

r1,1 r1,2 r1,3

0 r2,2 r2,3

0 0 r3,3

m

3

m

3 3

3

We summarize the entire process as:

A = QR,

where Q ∈ Rm×n is subunitary and R ∈ Rn×n is upper triangular.
Now change your perspective: let A ∈ Rm×n be any matrix with

linearly independent columns, m ≥ n. Performing the Gram–
Schmidt process on those columns yields the factorization A = QR,
which is known as the QR factorization. When A is a data matrix, the
QR factorization gives considerable insight about that data. As we
shall see, it can be used to solve regression problems in an efficient
and stable way. The QR factorization can also help identify the most
“important” or “representative” columns of the data set, an area of
matrix theory known as interpolatory decompositions.

A = Q

@
@
@@

R

m

n

m

n n

n
Theorem 3.5. Suppose A ∈ Rm×n has linearly independent columns
(hence m ≥ n). Then there exists a subunitary matrix Q ∈ Rm×n and an
invertible upper triangular matrix R ∈ Rn×n such that

A = QR.

29

exercises

3.6. Suppose the vectors a1, . . . , an ∈ Rm are orthonormal to begin
with. What can you say about Q and R?

3.7. Suppose the vectors a1, . . . , an ∈ Rm are orthogonal but not
necessarily normalized to be unit vectors. What can you say about
the matrix R? Be as specific as possible.

Example 3.1. To illustrate the QR factorization, let us orthogonalize the
“bad basis” from page 23:

a1 =

[
1
0

]
, a2 =

[
1

.001

]
.

The first step simply normalizes a1:

q̂1 := a1 =

[
1
0

]
, r1,1 := ‖q̂1‖ = 1, q1 :=

1
r1,1

q̂1 =

[
1
0

]
.

The second step begins by removing from a2 the best approximation
from span{q1}:

r1,2 := qT
1 a2 = 1, q̂2 := a2− r1,1q1 =

[
1

.001

]
− 1

[
1
0

]
=

[
0

.001

]
.

Complete the second step by normalizing:

r2,2 := ‖q̂2‖ = .001, q2 :=
1

r2,2
q̂2 =

[
0
1

]
.

Now assemble the pieces into the QR decomposition:

A =

[
1 1
0 .001

]
=

[
1 0
0 1

] [
1 1
0 .001

]
= QR.

This example is not so exciting (after all, Q = I in this special case),
but it does illustrate how a small diagonal entry rj,j in R indicates that
one of the aj vectors was nearly captured entirely by q1, . . . , qj−1.

A variation called the rank-revealing QR
decomposition automatically reorders the
columns of A so that the small entries
of R congregate at the bottom right.

3.3.1 Coda: Testing orthogonality

Recall the calculation of QTQ from page 24:

QTQ =




qT
1 q1 qT

1 q2 · · · qT
1 qn

qT
2 q1 qT

2 q2
. . .

...
...

. qT
n−1qn

qT
n q1 · · · qT

n qn−1 qT
n qn



=




1 0 · · · 0

0 1
. . .

...
...

. 0

0 · · · 0 1



= I.

30

Key concept. The (j, k) entry of the matrix QTQ is the inner product
of qj and qk:

(QTQ)j,k = qT
j qk.

Thus, computing QTQ gives a quick way to test the orthonormality
of the columns of some matrix Q ∈ Rm×n.

(i) If one of the off-diagonal entries of QTQ is nonzero, then the
columns are not orthogonal:

(QTQ)j,k 6= 0 for j 6= k =⇒ qj and qk are not orthogonal.

(ii) If one of the diagonal entries of QTQ is not equal to one, then a
column of Q is not normalized:

(QTQ)j,j 6= 1 =⇒ ‖qj‖ 6= 1.

(iii) If QTQ = I, then the columns of Q are orthonormal.

When testing QTQ = I on a computer,
you will inevitably encounter very
small rounding errors due to the
machine’s finite precision floating point
arithmetic. In particular, it is common
to find that (QTQ)j,k ≈ 10−15 for j 6= k.
This is nothing to worry about: we can
regard such vectors as orthogonal.

If you try to implement the Gram–
Schmidt process (as described above)
on a computer with moderate values of
m and n, you will likely produce vec-
tors that fail to be orthogonal by a non-
trivial margin (e.g., (QTQ)j,k ≈ 10−8

or larger). A variant of the algorithm
called the “Modified Gram–Schmidt”
method produces better results; you can
improve the qj vectors even more using
a “reorthogonalization” algorithm or
the “Householder QR” method. You
can learn about such topics in a course
in Numerical Linear Algebra.

These considerations inform robust
numerical software for QR decomposi-
tions, such as the LAPACK library that
is utilized by NumPy.

Example 3.2. First consider

Q =




1 1/
√

3
0 1/

√
3

0 1/
√

3


 .

Then

QTQ =

[
1 1/

√
3

1/
√

3 1

]
.

The off-diagonal entries of QTQ are nonzero, so by (i) we conclude
that the columns of Q are not orthogonal. The diagonal entries of
QTQ both equal 1, implying that the columns of Q are normalized
(i.e., ‖q1‖ = ‖q2‖ = 1).

Next consider

Q =




1 1
1 −1
0 1


 .

Then

QTQ =

[
2 0
0 3

]
.

The off-diagonal entries of QTQ are zero, so we conclude that the
columns of Q are orthogonal. The diagonal entries of QTQ do not
equal 1, implying by (ii) that the columns of Q are not normalized:
indeed ‖q1‖2 = 2 and ‖q2‖2 = 3.

31

Suppose we normalize q1 and q2 by dividing each one by their norm,
giving

Q =




1/
√

2 1/
√

3
1/
√

2 −1/
√

3
0 1/

√
3


 .

Now

QTQ =

[
1 0
0 1

]
,

so by (iii) we conclude that the columns of Q are orthogonal.

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 4
The Symmetric Eigenvalue Problem

Eigenvalues and eigenvectors are fundamental objects in linear
algebra, especially enabling the analysis of dynamical systems and
for identifying dominant features in data. We presume that students
are already acquainted with computing eigenvalues and eigenvectors,
but we will review a few key ideas.

4.1 Computing eigenvalues and eigenvectors

In this course we will mainly be interested in the eigenvalues of
symmetric matrices, but we first start with the general case. This

Recall: S is symmetric if ST = S, e.g.,

S =

[
a b
b d

]
.

requires that we allow the possibility of complex eigenvalues λ ∈ C

and eigenvectors v ∈ Cn.

Definition 4.1. A scalar λ ∈ C is an eigenvalue of the square matrix
S ∈ Rn×n provided there exists some nonzero vector v ∈ Cn, called an
eigenvector, such that

Sv = λv.

If we allowed v = 0, then any λ ∈ C

would be an eigenvector: S0 = λ0.

Subtract the left from the right-hand side to obtain

(λI− S)v = 0.

This statement means that the null space N(λI − S) contains the
nonzero vector v ∈ Cn, which means that λI− S is not invertible.

The null space N(·) was defined on
page 21. Apply that definition to λI− S
(now allowing complex vectors):

N(λI− S) = {v ∈ Cn : (λI− S)v = 0}.
Key concept. The scalar λ ∈ C is an eigenvalue of S if and only if
λI− S is not invertible.

This key fact motivates our customary method for computing eigen-
values “by hand.”

33

• A square matrix is not invertible if and only if its determinant is zero. Early computer algorithms that tried
to implement this process for larger
matrices were highly problematic. Mod-
ern algorithms compute eigenvalues
using an entirely different approach: far
more subtle and interesting. To learn
more, read up on “the QR algorithm for
eigenvalues.”

• Thus to find the values of λ ∈ C where λI − S is not invertible,
compute the determinant of λI− S, written det(λI− S).

• If S ∈ Rn×n, then det(λI− S) is a degree-n polynomial, called the
characteristic polynomial.

• Factor det(λI− S) = 0 to find the eigenvalues of S.

• Once you have an eigenvalue λ of S, find a corresponding eigen-
vector by solving (λI − S)v = 0 for a nonzero solution v ∈ Cn. A nonzero solution v must always exist,

since λI− S is not invertible for this λ.
Equivalently, you are looking for any
nonzero v ∈ N(λI− S).

Example 4.1. Consider the 2× 2 matrix

S =

[
2 2
2 5

]
.

Compute the characteristic polynomial:

det(λI− S) = det

([
λ− 2 −2
−2 λ− 5

])

= (λ− 2)(λ− 5)− (−2) · (−2) = λ2 − 7λ + 6.

Now factor λ2 − 7λ + 6 = 0 to get

(λ− 1)(λ− 6) = 0,

and identify the two roots as the eigenvalues:

λ1 = 1, λ2 = 6.

Before computing eigenvectors, let us pause to recall where we are at.

Key concept. The scalar λ ∈ C is an eigenvalue of S if and only if
λI− S is not invertible.

What would we get if we tried to compute (λI− S)−1 directly, with λ

as a variable? Gauss–Jordan elimination yields

The matrix (λI − S)−1 is sufficiently
important to have its own special name:
we call it the resolvent of S at λ.

(λI− S)−1 =




λ− 5
(λ− 1)(λ− 6)

2
(λ− 1)(λ− 6)

2
(λ− 1)(λ− 6)

λ− 2
(λ− 1)(λ− 6)


 . (4.1)

Take a moment to savor this formula! When is λI − S not invert-
ible? Precisely when the formula for (λI− S)−1 fails – that is, when

© Copyright 2022 by Mark Embree. All rights reserved.

34

we get a division by zero. Notice that this happens only when the de-
nominator of any entry in the matrix (4.1) is zero. In this case, the
denominator is precisely

(λ− 1)(λ− 6) = λ2 − 7λ + 6,

the characteristic polynomial! When λ2 − 7λ + 6 = 0, λ is an eigen-
value of S, and (λI − S)−1 does not exist (due to the division by
zero).

Now we return to the computation of the eigenvectors. To com-
pute an eigenvector v1 corresponding to λ1 = 1, we must find a
nontrivial (nonzero) solution v1 to the system

(λ1I− S)v1 = 0.

Writing out the matrix explicitly, we need to solve

In the language of null spaces in-
troduced at the beginning of this
chapter, we seek a nonzero vector
v1 ∈ N(λ1I− S).

(λ1I− S)v1 =

[
−1 −2
−2 −4

] [
α

β

]
=

[
0
0

]

for α and β not both zero. The matrix equation gives two scalar equa-
tions,

−α− 2β = 0, −2α− 4β = 0,

which both reduce to α = −2β. Thus v1 can be any vector of the form

v1 =

[
−2β

β

]
, β 6= 0.

We will often prefer to pick v1 to be a unit vector. In this case, either

Notice that these vectors (aside
from the omission of v1 = 0)
form a one-dimensional subspace,
V1 := span{[−2, 1]T}. The eigenvec-
tor identifies a direction. Any nonzero
multiple of that direction is still an
eigenvector associated with the same
eigenvalue.

Even better: since v1 is an eigenvector,
we also know that Sv1 = λ1v1 points in
the same direction as v1: in this special
direction v1, multiplying by the matrix
S has the same effect as multiplying by
the scalar λ1.

of these two choices would work:

v1 =

[
−2/
√

5
1/
√

5

]
or v1 =

[
2/
√

5
−1/
√

5

]
.

To compute the eigenvector associated with λ2 = 6, we must find a
nonzero solution of

(λ2I− S)v1 =

[
4 −2
−2 1

] [
α

β

]
=

[
0
0

]
,

which reduces to the single equation β = 2α for α 6= 0. Thus
v1

v2

Eigenvectors v1 and v2 of the symmet-
ric matrix S. (Notice that these vectors
are orthogonal.) Any nonzero vector in
the direction of v1 is an eigenvector for
λ1; any nonzero vector in the direction
of v2 is an eigenvector for λ2.

v2 =

[
α

2α

]
, α 6= 0,

and we could choose unit-length eigenvectors to be

v2 =

[
1/
√

5
2/
√

5

]
or v2 =

[
−1/
√

5
−2/
√

5

]
.

35

4.2 Eigenvalues and eigenvectors of symmetric matrices

To derive the singular value decomposition of a general (rectangu-
lar) matrix A ∈ Rm×n, we shall rely on several special properties of
the square, symmetric matrix ATA. While this course assumes you
are well acquainted with eigenvalues and eigenvectors, we will re-
call some fundamental concepts, especially pertaining to symmetric
matrices.

4.2.1 A passing nod to complex numbers

Recall that even if a matrix has real number entries, it could have
eigenvalues that are complex numbers; the corresponding eigenvec-
tors will also have complex entries. Consider, for example, the matrix

S =

[
0 −1
1 0

]
.

To find the eigenvalues of S, form the characteristic polynomial

det(λI− S) = det

([
λ 1
−1 λ

])
= λ2 + 1.

Factor this polynomial (e.g., using the quadratic formula) to get

det(λI− S) = λ2 + 1 = (λ− i)(λ + i),

where i =
√
−1. Thus, we conclude that S (a matrix with real entries)

has the complex eigenvalues

λ1 = i, λ2 = −i

and we can compute the corresponding eigenvectors

v1 =

[
i
1

]
, v2 =

[
−i
1

]
.

To find the eigenvector associated with
λ1, we need to find some nonzero
v ∈ N(λ1I − S). To do so, solve the
consistent but underdetermined system

[
i 1
−1 i

] [
α
β

]
=

[
0
0

]
.

The first row requires

iα + β = 0,

while the second row requires

−α + iβ = 0.

Multiply that last equation by −i and
you obtain the first equation: so if you
satisfy the second equation (α = iβ),
you satisfy them both. Thus let

v =

[
α
β

]
=

[
iβ
β

]
.

The specific eigenvector v1 presented
in the main text follows from picking
β = 1.

Suppose we want to compute the norm of the eigenvector v1.
Using our usual method, we would have

‖v1‖2 = vT
1 v1 =

[
i 1

] [
i
1

]
= i2 + 1 = −1 + 1 = 0.

This result seems strange, no? How could the norm of a nonzero
vector – even one with complex entries – be zero?

This example reveals a crucial shortcoming in our definition of the
norm, when applied to complex vectors. Instead of

‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n =
√

xTx,

36

we want
‖x‖ =

√
|x1|2 + |x2|2 + · · ·+ |xn|2.

For real vectors x ∈ Rn, both definitions are the same. For complex
vectors x ∈ Cn they can be very different. Just as the norm of a real

If z = a + ib ∈ C with a, b ∈ R,
then |z| =

√
a2 + b2. We call |z| then

magnitude of the complex number z.

vector has the compact notation ‖v‖ =
√

vTv, so too does the norm
of a complex vector:

‖v‖ =
√

vTv,

where v denotes the complex conjugate of v. Now apply this defini-

The complex conjugate of z = a + ib is

z = a− ib,

allowing us to write

|z|2 = zz = (a− ib)(a + i)

= a2 − ib + ib + a2 = a2 + b2.

The complex conjugate of a matrix or
vector applies entrywise. For example, if

x =




x1
...

xn


 ,

then

x =




x1
...

xn


 , xT =

[
x1 · · · xn

]
.

As a result, we can swap the order of
conjugation and transposition:

(x)T = xT .

Similarly, we can distribute conjugation
over matrix-vector products:

(Ax) = (A)(x).

tion of the norm to v1:

‖v1‖2 = vT
1 v1 =

[
−i 1

] [
i
1

]
= −i2 + 1 = 1 + 1 = 2,

a much more reasonable answer than we had before.
We will wrap up this complex interlude by proving that the real

symmetric matrices that will be our focus in this course can never
have complex eigenvalues.

4.2.2 The spectral theorem for symmetric matrices

Theorem 4.1. All eigenvalues of a real symmetric matrix are real.

Proof. Let S denote a symmetric matrix with real entries, so ST = S
(since S is symmetric) and S = S (since S is real).

Let (λ, v) be an arbitrary eigenpair of S, so that Sv = λv. Without
loss of generality, we can assume that v is scaled so that ‖v‖ = 1, i.e.,
vTv = ‖v‖2 = 1. Thus Since we do not yet know that v is

real-valued, we must use the norm
definition for complex vectors discussed
in the previous subsection.

λ = λ‖v‖2 = λ(vTv) = vT(λv) = vT(Sv).

Since S is real and symmetric, S = ST , and so

vT(Sv) = vTSTv = (Sv)
T

v = (λv)
T

v = λvTv = λ‖v‖2 = λ.

We have shown that λ = λ, which is only possible if λ is real.

If z = a + ib and z = z, then a + ib =
a− ib, i.e.,

b = −b,

which is only possible if b = 0.

It immediately follows that if λ is an eigenvalue of the real sym-
metric matrix S, then we can always find a real-valued eigenvector v
of S corresponding to λ, simply by finding a real-valued vector in the
null space

N(λI− S),

since λI− S is a real-valued matrix.
Crucially, the eigenvectors of a real symmetric matrix S associated

with distinct eigenvalues must be orthogonal.

Theorem 4.2. Eigenvectors of a real symmetric matrix associated with
distinct eigenvalues are orthogonal.

37

Proof. Suppose λ and γ are distinct eigenvalues of a real symmetric
matrix S associated with eigenvectors v ∈ Rn and w ∈ Rn:

Sv = λv, Sw = γw

with λ 6= γ. Now consider

λwTv = wT(λv) = wT(Sv) = wTSTv,

where we have used the fact that S = ST . Now

wTSTv = (Sw)Tv = (γw)Tv = γwTv.

We have thus shown that

λwTv = γwTv.

Since λ 6= γ, this statement can only be true if wTv = 0, i.e., if v and
w are orthogonal.

What if the eigenvalues are not distinct?
Consider the simple 2 × 2 identity
matrix, I. Any nonzero x ∈ R2 is an
eigenvector of I associated with the
eigenvalue λ = 1, since

Ix = 1x.

Thus we have many eigenvectors that
are not orthogonal. However, we can
always find vectors, like

v1 =

[
1
0

]
, v2 =

[
0
1

]

that are orthogonal.
We are ready to collect relevant facts in the Spectral Theorem.

Theorem 4.3 (Spectral Theorem). Suppose S ∈ Rn×n is symmetric,
ST = S. Then there exist n (not necessarily distinct) eigenvalues
λ1, . . . , λn and corresponding unit-length eigenvectors v1, . . . , vn such that

Svj = λjvj, (4.2)

the eigenvectors form an orthonormal basis for Rn,

Rn = span{v1, . . . , vn},

and vT
j vk = 0 when j 6= k, and vT

j vj = ‖vj‖2 = 1.

For example, when

S =

[
3 −1
−1 3

]
,

we have λ1 = 4 and λ2 = 2, with

v1 =

[
1/
√

2
−1/
√

2

]
, v2 =

[
1/
√

2
1/
√

2

]
.

Note that these eigenvectors are unit
vectors, and they are orthogonal. We
can write

S = VΛVT

=

[
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

] [
4 0
0 2

] [
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]

= λ1v1vT
1 ++λ2v2vT

2

= 4
[

1/2 −1/2
−1/2 1/2

]
+ 2

[
1/2 1/2
1/2 1/2

]
.

4.2.3 Two important ways to write the spectral decomposition

The Spectral Theorem leads to two very convenient ways to decom-
pose the matrix S. First stack the n equations in (4.2) side-by-side:



| | |

Sv1 Sv2 · · · Svn

| | |


 =



| | |

λ1v1 λ2v2 · · · λnvn

| | |


 .

The matrices on each side of this equation can be pulled apart as the
product of two simpler matrices:

S



| | |

v1 v2 · · · vn

| | |


 =



| | |

v1 v2 · · · vn

| | |







λ1

λ2
. . .

λn




.

38

Define the matrices

V :=



| | |

v1 v2 · · · vn

| | |


 , Λ :=




λ1

λ2
. . .

λn




,

so the last equation can be written compactly as

SV = VΛ. (4.3)

Since the vectors {v1, . . . , vn} for an orthonormal basis for Rn, notice
that this orthogonality can be neatly summarized as:



| | |

v1 v2 · · · vn

| | |




T 

| | |

v1 v2 · · · vn

| | |


 =




vT
1 v1 vT

1 v2 · · · vT
1 vn

vT
2 v1 vT

2 v2
. . .

...
...

. vT
n−1vn

vT
n v1 · · · vT

n vn−1 vT
n vn



=




1 0 · · · 0

0 1
. . .

...
...

. 0

0 · · · 0 1



= I.

We have just seen that VTV = I. Since V ∈ Rn×n is a square matrix,
this must mean that V−1 = VT . Multiplying equation (4.3) on the
right by VT gives

SVVT = SI = S.S = VΛVT (4.4)

Equation (4.4) is called the diagonalization of the symmetric matrix S.

We can also rearrange the decomposition (4.4) in a different format
that further illuminates the structure and action of S. Start with (4.4)
and multiply together VΛ, giving

S = (VΛ)VT =




| | |
λ1v1 λ2v2 · · · λnvn

| | |







vT
1

vT
2
...

vT
n




.

Notice that the matrices on the right form a matrix outer product.
Multiplying them together, row-by-column, reveals that entries from
λ1v1 always multiply against entries from vT

1 , and λ2v2 multiplies
against vT

2 , and so on. We can thus write

If this looks like magic, a small sym-
bolic calculation will convince you that
this works. Multiply out




a e
b f
c g
d h




[
s t u v
w x y z

]

and compare the result to



a
b
c
d




[
s t u v

]

+




e
f
g
h




[
w x y z

]

.
S =

n

∑
j=1

λj




|
λ1vj

|




[
vT

j

]

=
n

∑
j=1

λj


 vjv

T
j


 .

39

S =
n

∑
j=1

λjvjv
T
j . (4.5)

This equation expresses S as the weighted sum of the special n-
by-n matrices vjv

T
j . Notice that vjv

T
j is the orthogonal projector onto In the next chapter, the singular value

decomposition will provide a similar
way to tease apart a rectangular matrix.

span{vj}, the direction of the jth eigenvector. This perspective gives a
beautiful view of the action of S upon a vector x ∈ Rn:

Sx =

(
n

∑
j=1

λjvjv
T
j

)
x =

n

∑
j=1

λj

(
vjv

T
j x
)
=

n

∑
j=1

λj(v
T
j x)vj. (4.6)

The vector Sx is constructed by:

• Computing the best approximation to x from span{vj},

vjv
T
j

vT
j vj

x = vjv
T
j x = (vT

j x)vj,

where we have used the normality of the eigenvector (vT
j vj =

‖vj‖2 = 1) and the best approximation formula (2.1) on page 13;

• Weighting the best approximation in the vj direction by the eigen-
value λj:

λj(vT
j x)vj;

• Adding up the pieces to get Sx.

The result will depend on two key factors: (1) how much x is biased
toward each eigenvector direction (as revealed by vT

j x), and (2) the
size of each eigenvalue, λj.

exercises

4.8. Let S ∈ Rn×n be a symmetric matrix.

• For any positive integer k, show that

Sk =
n

∑
j=1

λk
j vjv

T
j .

• Show that if S is invertible,

S−1 =
n

∑
j=1

1
λj

vjv
T
j .

What goes wrong with this formula when S is not invertible?

40

4.3 Symmetric positive definite matrices

Amongst the symmetric matrices, we pick out a special class that
arises in many applications: the positive (semi)definite matrices. Key to For example, in statistics, covariance

matrices are always symmetric positive
semidefinite.

this definition is the quadratic form

xTSx.

You could work this out in terms of the entries sj,k of S and the en-
tries xj of x to get

xTSx =
n

∑
j=1

n

∑
k=1

sj,kxjxk, (4.7)

but this formula does not reveal very much. For example, can you
use (4.7) to determine the maximum and minimum values of xTSx,
over all unit vectors x?

Eigenvalues provide much more insight. Using equation (4.6),

xTSx = xT(Sx) = xT

(
n

∑
j=1

λj(vT
j x)vj

)

=
n

∑
j=1

λjxT(vT
j x)vj =

n

∑
j=1

λj(vT
j x)(xTvj) =

n

∑
j=1

λj(vT
j x)2.

This expression reveals the extreme values of xTSx when x is re-
quired to be a unit vector. Suppose the eigenvalues are labeled in
decreasing order (always possible, since the are real numbers):

λ1 ≥ λ2 ≥ · · · ≥ λn.

First consider the maximum value. Since λ1 is the largest eigenvalue,

xTSx =
n

∑
j=1

λj(vT
j x)2 ≤ λ1

n

∑
j=1

(vT
j x)2. (4.8)

As noted before, since VTV = I, we also have VVT = I, and so We can only say that VTV = I implies
VVT = I because V is a square matrix.

n

∑
j=1

(vT
j x)2 = ‖VTx‖2 = (VTx)T(VTx) = xTVVTx = xTx = ‖x‖2.

Thus, the inequality (4.8) becomes

xTSx ≤ λ1

n

∑
j=1

(vT
j x)2 = λ1‖x‖2.

Maximizing xTSx over all unit vectors thus gives

max
‖x‖=1

xTSx ≤ λ1.

41

Choosing x = v1 shows that this inequality holds with equality, since

vT
1 Sv1 = vT

1 (Sv1) = vT
1 (λ1v1) = λ1vT

1 v1 = λ1.

You can readily see how to modify this argument to minimize xTSx.

Theorem 4.4. Let S ∈ Rn×n be a symmetric matrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Then

max
‖x‖=1

xTSx = λ1, min
‖x‖=1

xTSx = λn.

Notice a corollary of Theorem 4.4: For
any unit vector x ∈ Rn,

λn ≤ xTSx ≤ λ1.

(This result can be extended further
into the Courant–Fischer variational
characterization of eigenvalues.)

Matrices for which xTSx is always positive (or nonnegative) arise in
many applications, and so we given them a special name.

Definition 4.2. A symmetric matrix S ∈ Rn×n is

• positive definite provided xTSx > 0 for all nonzero x ∈ Rn;

• positive semidefinite provided xTSx ≥ 0 for all x ∈ Rn.

For the example above,

xTSx =

[
x1
x2

]T [3 −1
−1 3

] [
x1
x2

]

= 3x2
1 − 2x1x2 + x2

2

= 2(x1 − x2)
2 + (x1 + x2)

2.

This last expression, the sum of squares,
is clearly positive for all nonzero x, so
S is positive definite. (Proving positive
definiteness by factoring polynomials
like this would not be pleasant for
larger values of n, hence the utility of
Theorem 4.5!)

Theorem 4.5. All eigenvalues of a symmetric positive definite matrix are
positive; all eigenvalues of a symmetric positive semidefinite matrix are
nonnegative.

Proof. Let (λj, vj) denote an eigenpair of the symmetric positive
definite matrix S ∈ Rn×n with ‖vj‖2 = vT

j vj = 1. Since S is symmetric
, λj must be real. We conclude that

λj = λjv
T
j vj = vT

j (λjvj) = vT
j Svj,

which must be positive since S is positive definite and vj 6= 0.
The proof for positive semidefinite matrices is the same, except we

can only conclude that λj = vT
j Svj ≥ 0.

Can you prove the converse of this
theorem? (A symmetric matrix with
positive eigenvalues is positive defi-
nite.) Hint: use the Spectral Theorem.
With this result, we can check if S is
positive definite by just looking at its
eigenvalues, rather than working out a
formula for xTSx, as done above.

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 5
The Singular Value Decomposition

The singular value decomposition (SVD) is among the most
important matrix factorizations, especially for applications in data
science. Up to now, we have considered the range (column space)
R(A) of a matrix A ∈ Rm×n in its entirety; the SVD will provide
a way to rank the directions in R(A), allowing an analyst to pull out
the most significant components from A, while neglecting those that
matter less for the application at hand. As we shall see, the SVD
unlocks the solution to a variety of least squares/regression problems,
and is also the fundamental tool for dimension reduction (including
principal component analysis, PCA). The SVD is not just a practical
tool; it also enables deep theoretical insights. This chapter introduces
the SVD and describes a few of its most compelling applications.

5.1 Derivation of the singular value decomposition: Full rank case

We seek to derive the singular value decomposition of a general rect-
angular matrix. To simplify our initial derivation, we shall assume
that A ∈ Rm×n with m ≥ n, and all the columns of A linearly indepen-
dent. This last condition implies that rank(A) is as large as possible,

rank(A) = n,

so the dimension of the column space is n: dim(R(A)) = n.
AT

A

= ATAn

m

m

n

∈ Rn×n
To begin, form ATA, which is an n× n matrix. Notice that ATA is

always symmetric, since

(ATA)T = AT(AT)T = ATA.

Furthermore, ATA is positive definite: notice that

xTATAx = (Ax)T(Ax) = ‖Ax‖2 ≥ 0.

© Copyright 2022 by Mark Embree. All rights reserved.

43

Now suppose that Ax = 0 for x 6= 0. Remember that Ax is a linear
combination of the columns of A, so

0 = Ax = x1a1 + · · ·+ xnan.

Since we assumed that the columns of A are linearly independent,
the only way for Ax = 0 is the trivial case, x = 0. We conclude that

xTATAx > 0 for all nonzero x ∈ Rn,

and hence ATA is symmetric positive definite. See Definition 4.2.

We are now ready to construct our first version of the singular
value decomposition. We shall construct the pieces one at a time,
then assemble them into the desired decomposition.

Step 1. Compute the eigenvalues and eigenvectors of ATA.

As a consequence of results about symmetric matrices presented in
Chapter 4, we can find n eigenpairs {(λj, vj)}n

j=1 of S := ATA with

unit eigenvectors (vT
j vj = ‖vj‖2 = 1) that are orthogonal to one

another (vT
j vk = 0 when j 6= k). We are free to pick any conve-

nient indexing for these eigenpairs; we shall label them so that the
eigenvalues are decreasing in size, λ1 ≥ λ2 ≥ · · · ≥ λn > 0. We

Even if A is a square matrix, be sure to
compute the eigenvalues and eigenvec-
tors of ATA.

Since S = ATA is positive definite, all
its eigenvalues are positive.emphasize that v1, . . . , vn ∈ Rn. These orthonormal vectors v1, . . . , vn

are the right singular vectors of A.

Step 2. Define σj = ‖Avj‖ =
√

λj for j = 1, . . . , n.

Note that σ2
j = ‖Avj‖2

2 = vT
j ATAvj = λj. Since the eigenvalues

λ1, . . . , λn are decreasing in size, so too are the σj values:

σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

The numbers σ1, . . . , σn are called the singular values of A.

Step 3. Define uj = Avj/σj for j = 1, . . . , n.

Notice that u1, . . . , un ∈ Rm. Because σj = ‖Avj‖, we ensure that

The assumption that rank(A) = n
helped us out here, by ensuring that
σj > 0 for all j: hence we can safely
divide by σj in the definition of uj.

‖uj‖ =
∥∥∥ 1

σj
Avj

∥∥∥ =
‖Avj‖

σj
= 1.

Thus the uj vectors are automatically normalized, by construction.
Furthermore, these uj vectors are orthogonal. To see this, write

uT
j uk =

1
σj σk

(Avj)
T(Avk) =

1
σj σk

vT
j ATAvk.

44

Since vk is an eigenvector of ATA corresponding to eigenvalue λk,

uT
j uk =

1
σj σk

vT
j (A

TA)vk =
1

σj σk
vT

j (λkvk) =
λj

σj σk
vT

j vk.

Since the eigenvectors of the symmetric matrix ATA are orthogonal,
vT

j vk = 0 when j 6= k, so the uj vectors inherit the orthogonality of the
vj vectors:

uT
j uk = 0, j 6= k.

These orthonormal vectors u1, . . . , un are the left singular vectors of A.

Step 4. Put the pieces together.

For all j = 1, . . . , n,
Avj = σjuj.

We can stack these n vector equations as columns of a single matrix

Av1 · · · Avn = σ1u1 · · · σnun
equation:



| | |

Av1 Av2 · · · Avn

| | |


 =



| | |

σ1u1 σ2u2 · · · σnun

| | |


 .

We follow the same strategy we used for the symmetric eigenvalue
problem in Section 4.2.3. Note that both matrices in this equation can
be factored into the product of simpler matrices:

A



| | |

v1 v2 · · · vn

| | |


 =



| | |

u1 u2 · · · un

| | |







σ1

σ2
. . .

σn




.

Denote these matrices as

A

v1 · · · vn

= u1 · · · un

σ1

. . .

σn

AV = UΣ, (5.1)

where A ∈ Rm×n, V ∈ Rn×n, U ∈ Rm×n, and Σ ∈ Rn×n.

We now have the essential ingredients for the two most im-
portant forms of the singular value decomposition. Since the eigen-
vectors vj of the symmetric matrix ATA are orthonormal, the square
matrix V has orthonormal columns. Just as in Chapter 4, this means
that

VTV =




vT
1 v1 vT

1 v2 · · · vT
1 vn

vT
2 v1 vT

2 v2
. . .

...
...

. vT
n−1vn

vT
n v1 · · · vT

n vn−1 vT
n vn



=




1 0 · · · 0

0 1
. . .

...
...

. 0

0 · · · 0 1



= I,

45

since the (j, k) entry of VTV is simply vT
j vk. Since V is square, the

equation VTV = I implies that VT = V−1. Thus, in addition to VTV,
The inverse of a square matrix is
unique: since VT does what the inverse
of V is supposed to do, i.e., VTV = I, it
must be the unique matrix V−1.we also have

VVT = VV−1 = I.

Thus multiplying both sides of equation (5.1) on the right by VT

gives
A = UΣVT . (5.2)

This factorization is the reduced (or economy-sized or skinny) singular

A = U

Σ VT

value decomposition of A. It can be obtained via the Python/NumPy
via the command

U, S, Vt = np.linalg.svd(A, FullMatrices=False),

where S is a vector of singular values.

Note that the third returned variable
comes “pre-transposed,” that is, the
np.linalg.svd command returns the
matrix Vt = VT . Since, in our case thus
far, V ∈ Rn×n is a square matrix, one
could easily miss this delicate point.

What can be said of the matrix U ∈ Rm×n? Recall that its columns,
the vectors u1, . . . , un, are orthonormal. However, in contrast to V, we
cannot conclude that UUT = I when m > n. Why not? Because when
m > n, UT ∈ Rn×m has a nontrivial null space, and hence cannot be
invertible.

When m > n, there must exist
some nonzero z ∈ Rm such that
z ⊥ u1, . . . , un, which implies UTz = 0.
Hence UUTz = 0, so we cannot have
UUT = I. However, UUT ∈ Rm×m

is a projector onto the n-dimensional
subspace span{u1, . . . , un} of Rm.

A = U

Σ VT

Theorem 5.1 (Reduced Singular Value Decomposition, full-rank A).
Suppose A ∈ Rm×n has rank(A) = n, with m ≥ n. Then we can write

A = UΣVT ,

where the columns of U ∈ Rm×n and V ∈ Rn×n are orthonormal,

UTU = I ∈ Rn×n, VTV = I ∈ Rn×n,

and Σ ∈ Rn×n is zero everywhere except for entries on the main diagonal,
where the (j, j) entry is σj, for j = 1, . . . , n and

σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

Example 5.1. Consider the matrix

A =




1 1
0 0√
2 −

√
2


 ,

for which ATA is the symmetric matrix S that appeared earlier as an
example on page 37:

ATA =

[
3 −1
−1 3

]
.

This matrix has rank(A) = 2 = n, so we can apply the analysis
described above.

46

Step 1. Compute the eigenvalues and eigenvectors of ATA.

We have already seen that, for this matrix, λ1 = 4 and λ2 = 2, with

v1 =

[√
2/2

−
√

2/2

]
, v2 =

[√
2/2√
2/2

]
,

with λ1 ≥ λ2, the required order. The vectors v1 and v2 will be the
right singular vectors of A.

Step 2. Define σj = ‖Avj‖ =
√

λj for j = 1, . . . , n.

In this case, we compute

σ1 =
√

λ1 = 2, σ2 =
√

λ2 =
√

2.

Alternatively, we could have computed the singular values from

Av1 =




1 1
0 0√
2 −

√
2



[

1/
√

2
−1/
√

2

]
=




0
0
2




Av2 =




1 1
0 0√
2 −

√
2



[

1/
√

2
1/
√

2

]
=




√
2

0
0


 ,

with σ1 = ‖Av1‖ = 2 and σ2 = ‖Av2‖ =
√

2.

Step 3. Define uj = Avj/σj, j = 1, . . . , n.

We use the vectors Av1 and Av2 computed at the last step:

u1 =
1
σ1

Av1 =
1
2




0
0
2


 =




0
0
1


 , u2 =

1
σ2

Av2 =
1√
2




√
2

0
0


 =




1
0
0


 .

Step 4. Put the pieces together.

We immediately have the reduced SVD A = UΣVT :



1 1
0 0√
2 −

√
2


 =




0 1
0 0
1 0



[

2 0
0
√

2

] [
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
.

5.2 The dyadic form of the SVD

We are now prepared to develop an analogue of the formula (4.5) for
full-rank rectangular matrices. Consider the reduced SVD,

A = UΣVT ,

and multiply UΣ to obtain



| | |

u1 u2 · · · un

| | |







σ1

σ2
. . .

σn



=



| | |

σ1u1 σ1u2 · · · σnun

| | |


 .

47

Now notice that you can write A = (UΣ)VT as




σ1u1 σ1u2 · · · σnun







vT
1

vT
2
...

vT
n



=

n

∑
j=1

σjujv
T
j ,

which parallels the form (4.5) we had for symmetric matrices. For
symmetric matrices S ∈ Rn×n we wrote

A =
n

∑
j=1

λjvjv
T
j .

Now for any matrix A ∈ Rm×n with m ≥ n and linearly independent
columns, we can write A as the weighted sum of outer products.

A =
n

∑
j=1

σj uj

vjT

=
n

∑
j=1

σj ujv
T
j

Theorem 5.2 (Dyadic Singular Value Decomposition, full-rank A).
Suppose A ∈ Rm×n has rank(A) = n, with m ≥ n. Then we can write

A =
n

∑
j=1

σj ujv
T
j , (5.3)

where the columns u1, . . . , un ∈ Rm are orthonormal and v1, . . . , vn ∈ Rn

are orthonormal, and

σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

The expression (5.3) is called the dyadic form of the SVD. The ma-
trices ujv

T
j ∈ Rm×n are not generally projectors (as were the vjv

T
j

matrices in the symmetric spectral decomposition (4.5)), but they
have a similar interpretation. When computing the action of A upon
a vector x ∈ Rn,

Ax =

(
n

∑
j=1

σj ujv
T
j

)
x =

n

∑
j=1

σj (v
T
j x)uj,

the scalars vT
j x are the coefficients of the best approximation to x from

span{vj}. (This value vT
j x tells us “how rich x is in the vj direction.”)

Now this coefficient vT
j x is multiplied against the left singular vector

uj, and scaled by the singular value σj.
Because we have ordered σ1 ≥ σ2 ≥ · · · ≥ σn, the leading terms

in this sum dominate the others. This fact plays a crucial role in
applications where we want to approximate a matrix with its leading
low-rank part.

Example 5.2. We continue with Example 5.1. The dyadic form of the

48

SVD takes the form A = ∑2
j=1 σjujv

T
j :




1 1
0 0√
2 −

√
2


 = 2




0
0
1


 [1/

√
2 −1/

√
2] +

√
2




1
0
0


 [1/

√
2 1/

√
2]

=




0 0
0 0√
2 −

√
2


+




1 1
0 0
0 0


 .

5.3 A first application

Now that we have the basic SVD in hand, let us consider a very sim-
ple way to deploy it: using the SVD to solve a system of equations

Ax = b

in the case that A ∈ Rn×n is a square, invertible matrix. While the
SVD is a fancy tool for solving such a simple equation, this example
will give us the first instance of an all-purpose tool to solve a wide
variety of regression-type problems.

Assuming A ∈ Rn×n is an invertible square matrix (m = n), we
have the SVD

A = UΣVT =
n

∑
j=1

σjujv
T
j .

To solve Ax = b first substitute the SVD for A:

UΣVTx = b. (5.4)

We want to expose the solution x on the right-hand side. Since the
columns of U are orthonormal, UTU = I, so premultiplying both
sides of (5.4) by UT gives

UTUΣVTx = UTb =⇒ ΣVTx = UTb. (5.5)

Since the columns of A are linearly independent, all the diagonal
elements in Σ are nonzero, so

Σ−1 =




1
σ1

. . .
1

σn


 .

Premultiply each side of (5.5) by Σ−1 to get

Σ−1ΣVTx = Σ−1UTb =⇒ VTx = Σ−1UTb. (5.6)

Since V ∈ Rn×n is a square matrix and VTV = I, we see that V−1 =

VT , and hence VVT = I. Thus premultiplying (5.6) by V yields

VVTx = VΣ−1UTb =⇒ x = VΣ−1UTb. (5.7)

49

Variants of this equation x = VΣ−1UTb will recur throughout the
next few chapters. Just as A = UΣVT has a dyadic form, so too does
A−1 = VΣ−1UT :

We could have arrived at this same
equation for x by computing

A−1 = (UΣVT)−1

= (VT)−1Σ−1U−1

= VΣ−1UT ,

and then writing

x = A−1b = VΣ−1UTb.

A =
n

∑
j=1

σjujv
T
j , A−1 =

n

∑
j=1

1
σj

vjuT
j .

We can use this dyadic form of A−1 to write out the solution x:

x = A−1b =

(
n

∑
j=1

1
σj

vjuT
j

)
b =

n

∑
j=1

uT
j b

σj
vj.

This form for the solution will turn out to be very important in this
course, so we single it out for attention:

x = A−1b =
n

∑
j=1

(
uT

j b

σj

)
vj. (5.8) This vector x ∈ Rn solves Ax = b when

A ∈ Rn×n is a square invertible matrix.

Can we push this idea a little bit? Suppose A ∈ Rm×n is a rectan-
gular matrix, still with linearly independent columns. The equation
Ax = b implies that b ∈ R(A). If this is indeed the case, then the

Recall that the range (column space) of
A ∈ Rm×n,

R(A) = {Ax : x ∈ Rn},
is the set of all linear combinations of
the columns of A.

steps we just executed for the square matrix A still hold: UTU = I
since the columns of U ∈ Rm×n are orthogonal, Σ ∈ Rn×n is remains
invertible, and V ∈ Rn×n has VT as its inverse, and so the expansion
for x in (5.8) still holds:

x =
n

∑
j=1

uT
j b

σj
vj.

Example 5.3. Pick up the matrix from Example 5.1, with a b ∈ R(A):

A =




1 1
0 0√
2 −

√
2


 , b =




8
0

2
√

2


 .

Now use the SVD for A to write

Recall from Example 5.1 that

v1 =

[
1/
√

2
−1/
√

2

]
, v2 =

[
1/
√

2
1/
√

2

]

and

u1 =




0
0
1


 , u2 =




1
0
0




with σ1 = 2 and σ2 =
√

2.

x =

(
uT

1 b
σ1

)
v1 +

(
uT

2 b
σ2

)
v2

=
2
√

2
2

[
1/
√

2
−1/
√

2

]
+

8√
2

[
1/
√

2
1/
√

2

]
=

[
1
−1

]
+

[
4
4

]
=

[
5
3

]
.

Indeed, you can confirm that Ax = b, as promised.

This is all well and good, provided b ∈ R(A). But what if b ∈
R(A)? Then we cannot satisfy Ax = b with any x, and so we must
settle for some x that gives an approximate solution,

Ax ≈ b.

50

How can we select a good approximation x? Naturally we want Ax
to be the vector closest to b, in the sense introduced in Chapter 2:

min
x∈Rn

‖Ax− b‖.

This optimization is called a least squares problem. To solve it, we must
venture beyond R(A). We will return to this problem in Section 5.9;
we will get some help from an expanded version of the SVD.

5.4 The Full SVD

We still require A ∈ Rm×n to be a rectangular matrix with m ≥ n
and linearly independent columns. In the reduced SVD, the matrix
U ∈ Rm×n had orthonormal columns, so UTU = I, but if m > n the
columns of U cannot form an orthonormal basis for Rm, so UUT 6= I.

Here we seek to augment the matrix U ∈ Rm×n with m− n addi-
tional column vectors, to give a full set of m orthonormal vectors in
Rm. To find these extra vectors: For j = n + 1, . . . , m, pick In Section 5.5, we will see that

un+1, . . . , um form an orthonormal basis
for N(AT), suggesting a convenient way
to compute these vectors.

uj ⊥ span{u1, . . . , uj−1}

with uT
j uj = 1. Then define

Ũ =



| | | |

u1 · · · un un+1 · · · um

| | | |


 ∈ Rm×m. (5.9)

We have constructed u1, . . . , um to be orthonormal vectors, so

UTU = I.

However, since U ∈ Rm×m, this orthogonality also implies U−1 = UT .

U

Σ =

Ũ Σ̃

U

Σ =

U U⊥

Σ

0

Now we are ready to replace the rectangular matrix U ∈ Rm×n in
the reduced SVD (5.2) with the square matrix Ũ ∈ Rm×m. To do so,
we also need to replace Σ ∈ Rn×n by some Σ̃ ∈ Rm×n in such a way
that

UΣ = ŨΣ̃.

The simplest approach is to obtain Σ̃ by appending zeros to the end
of Σ, thus ensuring there is no contribution when the new entries of
Ũ multiply against the new entries of Σ̃:

Σ̃ =

[
Σ

0

]
∈ Rm×n. (5.10)

Finally, we arrive at the main result, the full singular value decomposi-

A = Ũ Σ̃

VT

tion, for the case where rank(A) = n.

51

Theorem 5.3 (Full Singular Value Decomposition, full-rank A).
Suppose A ∈ Rm×n has rank(A) = n, with m ≥ n. Then we can write

A = ŨΣ̃VT ,

where the columns of Ũ ∈ Rm×m and V ∈ Rn×n are orthonormal,

ŨTŨ = I ∈ Rm×m, VTV = I ∈ Rn×n,

and Σ̃ ∈ Rm×n is zero everywhere except for entries on the main diagonal,
where the (j, j) entry is σj, for j = 1, . . . , n and

σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

The full SVD is obtained via the Python/NumPy command

U, S, Vt = np.linalg.svd(A, full_matrices=True),

Definition 5.1. Let A = UΣVT be a full singular value decomposition.
The diagonal entries of Σ, denoted σ1 ≥ σ2 ≥ · · · ≥ σn, are called the
singular values of A. The columns u1, . . . , um of U are the left singular
vectors; the columns v1, . . . , vm of V are the right singular vectors.

5.5 The Singular Value Decomposition: General m ≥ n case

We have computed the singular value decomposition of a matrix
A ∈ Rm×n with n linearly independent columns, which gave n
positive singular values

σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

What happens if the columns of A are linearly dependent?

If the columns of A are linearly dependent, then by definition
there must exist some matrix v ∈ Rn such that Av = 0. Premultiply
this equation by AT to obtain

ATAv = AT0 = 0 = 0v,

meaning v is an eigenvector of ATA corresponding to the eigenvalue λ = 0.

Let r denote the number of nonzero eigenvalues of ATA ∈ Rn×n.
If r = n, we are in the full-rank case addressed above. At the other
extreme, r = 0, we must have the trivial case A = 0. Between these

For A = 0 ∈ Rm×n, the full SVD is

A = ŨΣ̃ṼT ,

where Σ̃ = 0 ∈ Rm×n and Ũ ∈ Rm×m

and Ṽ ∈ Rn×n are arbitrary matrices
with orthonormal columns; natural
choices: Ũ = I ∈ Rm×m, Ṽ = I ∈ Rn×n.

extremes, 0 < r < n, we label the eigenvalues of ATA as

λ1 ≥ λ2 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λn,

52

with orthonormal eigenvectors v1, . . . , vn.
Note that if n− r > 1, be sure to choose
orthonormal eigenvectors vr+1, . . . , vn
associated with λr+1 = · · · = λn = 0.We proceed to build the SVD using the same steps as before, but

with a modification in how we handle the left singular vectors.

Step 1. Compute the eigenvalues and eigenvectors of ATA.

Let r denote the number of nonzero eigenvalues of ATA, which thus
has n− r zero eigenvalues:

λ1 ≥ λ2 ≥ · · · ≥ λr > 0, λr+1 = · · · = λn = 0.

The corresponding orthonormal eigenvectors are v1, . . . , vn.
As we shall see below in Lemma 5.2, the zero eigenvectors of

ATA form an orthonormal basis for N(A), giving a helpful way to
compute vr+1, . . . , vn.

The vectors vr+1, . . . , vn form an orthonormal basis for N(A).
To find these vectors, solve Av = 0 and choose your

“free variables” to give orthonormal vectors.
These vectors will be automatically orthogonal to v1, . . . , vr.

Step 2. Define σj = ‖Avj‖ =
√

λj, j = 1, . . . , n.

This step proceeds without any alterations, though now we have

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, σr+1 = · · · = σn = 0.

Step 3a. Define uj = Avj/σj for j = 1, . . . , r.

As before, this construction generates orthonormal vectors

u1, . . . , ur,

but note that we only have j = 1, . . . , r now. (The formula for uj fails
when j > r, since we would divide by σj = 0.)

Step 3b. Construct ur+1, . . . , um to be any orthonormal set of
vectors that are orthogonal to u1, . . . , ur.

Like the vectors in Step 3a, note that these vectors also satisfy

This step can be skipped if you are only
computing the reduced or dyadic form of
the SVD.

Avj = σjuj,

since Avj = 0 = 0uj for any choice of uj, when j > r.

53

This step just extends our construction of the vectors un+1, . . . , um

to fill out the Ũ matrix for the full SVD for full-rank A in Section 5.4.
The instructions in the blue box do not suggest a convenient way

to find ur+1, . . . , um. Lemma 5.1 below suggests a helpful technique.

The vectors ur+1, . . . , un form an orthonormal basis for N(AT).
To find these vectors, solve ATu = 0 and choose your

“free variables” to give orthonormal vectors.
These vectors will be automatically orthogonal to u1, . . . , ur.

Step 4. Put the pieces together.

As noted above, the σj = 0 values do not complicate the essential
equation

Avj = σjuj, j = 1, . . . , n.

Stack these n vector equations as columns of a single matrix equation:


| | | |

Av1 · · · Avr Avr+1 · · · Avn

| | | |


 =



| | | |

σ1u1 · · · σrur σr+1ur+1 · · · σnun

| | | |




=



| | | |

σ1u1 · · · σrur 0 · · · 0
| | | |


 ,

where this last line follows from σr+1 = · · · = σn = 0. Just as we did
in the r = n case above, we can tease each side of this equation apart:

A



| | | |

v1 · · · vr vr+1 · · · vn

| | | |


 =



| |

u1 · · · ur

| |




︸ ︷︷ ︸
r

︸ ︷︷ ︸
n−r




σ1
. . .

σr

∣∣∣∣∣∣∣∣

0 · · · 0
...

. . .
...

0 · · · 0


 .





r

Divide the right singular vectors into two matrices:

V :=



| |

v1 · · · vr

| |


 ∈ Rn×r, V⊥ :=



| |

vr+1 · · · vn

| |


 ∈ Rn×(n−r),

which we concatenate into the n× n matrix Ṽ with orthonormal columns:

Ṽ := [V V⊥] ∈ Rn×n, ṼTṼ = I, ṼṼT = I.

Stack the first r left singular vectors and singular values into the matrices

U :=



| |

u1 · · · ur

| |


 ∈ Rm×r, Σ :=




σ1
. . .

σr


 .

54

With these definitions in hand, the long equation above reduces to

AṼ = U [Σ 0].

Multiply both sides by ṼT on the right to get AṼṼT = AI = A.

A = U [Σ 0]ṼT .

Since we partition Ṽ = [V V⊥], we have

A = U
[

Σ 0
] [

V V⊥
]T

= U
[

Σ 0
] [

VT VT
⊥
]
= U

(
ΣVT + 0VT

⊥
)
= UΣVT .

Thus when the dust settles, we are left with the beautiful factoriza-
tion

A = UΣVT ,

which looks just like the reduced SVD we obtained in the full-rank
case, but with slightly different definitions and dimensions:

Reduced SVD, full-rank case (r = n)

A = U

Σ VT

}
n

Reduced SVD, rank-deficient case (r < n)

A = U

Σ VTVT
}

r < n

A = UΣVT =



| |

u1 · · · ur

| |







σ1
. . .

σr







vT
1
...

vT
r


 .

We emphasize the dimensions here, as illustrated on the right:

U ∈ Rm×r, Σ ∈ Rr×r, V ∈ Rn×r.

The product A = UΣVT is still an m× n matrix, despite the dimen-
sion r that arises in the interior of the product.

The reduced SVD in the last blue box immediately suggests a
dyadic form for the case of rank-deficient A. It looks just like equa-
tion (5.3), except for the top limit on the sum is r instead of n:

A =
r

∑
j=1

σjujvT
j . (5.11)

What about the full SVD? The construction is a little clunkier,
but not in an especially difficult (or interesting) way. For the right
singular vectors we already have

V :=



| |

v1 · · · vr

| |


 ∈ Rn×r, V⊥ :=



| |

vr+1 · · · vn

| |


 ∈ Rn×(n−r), Ṽ :=

[
V V⊥

]
∈ Rn×n.

Now define the analogous matrices for the left singular vectors:

U :=



| |

u1 · · · ur

| |


 ∈ Rm×r, U⊥ :=



| |

ur+1 · · · um

| |


 ∈ Rm×(m−r), Ũ :=

[
U U⊥

]
∈ Rm×m.

55

Finally, create an m× n matrix containing the singular values, padded
with zeros to make up the dimensions:

Σ :=




σ1
. . .

σr


 , Σ̃ :=

︸︷︷︸
r
︸︷︷︸
n−r

[
Σ 0
0 0

]
.
} r

} m−r

With the right definitions, the full SVD takes a simple form:

Full SVD, full-rank case (r = n ≤ m)

A = U U⊥

Σ

0

VT

Full SVD, rank-deficient case (r < n ≤ m)

A = U U⊥

Σ 0

0 0

VT

VT
⊥

A = ŨΣ̃ṼT . (5.12)

Please pay special attention to those two sketches on the right. Understand-
ing these diagrams goes a long way toward understanding the full singular
value decomposition.

Example 5.4. Consider the matrix 3× 2 matrix (m = 3, n = 2)

A =




1
√

2
1
√

2
1
√

2


 .

Note that the second column is a multiple of the first, so the columns
are linear dependent.

• Step 1. Form

ATA =

[
3 3

√
2

3
√

2 6

]

having characteristic polynomial

det(λI−ATA) = λ2 − 9λ = λ(λ− 9).

Label the eigenvalues

λ1 = 9, λ2 = 0,

with corresponding orthonormal eigenvectors

v1 =

[
1/
√

3√
2/
√

3

]
, v2 =

[√
2/
√

3
−1/
√

3

]
.

These vectors are the right singular vectors. Since ATA has only one
nonzero eigenvalue, we conclude that r = 1.

• Step 2. Define the singular values

σ1 =
√

λ1 = 3, σ2 =
√

λ2 = 0.

56

• Step 3a. Since r = 1, we can define the left singular vector via

u1 =
1
σ1

Av1 =
1
3




3/
√

3
3/
√

3
3/
√

3


 =




1/
√

3
1/
√

3
1/
√

3


 ,

which is a unit vector, ‖u1‖ = 1.

• Step 3b. To compute the remaining m− r = 3− 1 = 2 left singular
vectors, we must find two mutually orthogonal unit vectors that are
also orthogonal to u1. Following the hint in the black box above,
we look for vectors for which ATu = 0, i.e.,

[
1 1 1√
2
√

2
√

2

] 


α

β

γ


 =

[
0
0

]
.

This equation reduces to the single equation

α + β + γ = 0.

Let α and β be free variables, and solve for

γ = −α− β.

Thus the vectors u2 and u3 must be orthonormal vectors of the
form

u =




α

β

−α− β


 .

For example, pick α = 1/
√

2 and β = 0 to get the unit vector You can make other choices of α and β,
which would lead to a different u2. For
example, you could choose α = 0 and
β = 1/

√
2, giving a different u2 and,

eventually, a different u3 too. So long as
u2 and u3 are orthonormal unit vectors
that are also orthogonal to u1, you have
a valid set of vectors.

u2 =




1/
√

2
0

−1/
√

2


 .

To find u3, eliminate one of the free variables by adding the addi-
tional requirement that 0 = uT

2 u, i.e.,

0 =
[

1/
√

2 0 −1/
√

2
]



α

β

−α− β


 =

α + α + β√
2

,

and hence 2α + β = 0, i.e., β = −2α:

u =




α

−2α

α


 .

57

Pick α = 1/
√

6 to get

u3 =




1/
√

6
−2/
√

6
1/
√

6


 ,

which indeed is a unit vector that is orthogonal to u1 and u2.

Now we have all the ingredients on hand to form the reduced SVD
from

U =




1/
√

3
1/
√

3
1/
√

3


 , Σ =

[
3
]

, V =

[
1/
√

3√
2/
√

3

]
,

giving

A = UΣVT =




1/
√

3
1/
√

3
1/
√

3



[

3
] [

1/
√

3
√

2/
√

3
]

.

The dyadic SVD has just r = 1 term in the sum:

A =
r

∑
j=1

σjujv
T
j = 3




1/
√

3
1/
√

3
1/
√

3



[

1/
√

3
√

2/
√

3
]

.

The full SVD requires the augmented matrices

Ũ =




1/
√

3 1/
√

2 1/
√

6
1/
√

3 0 −2/
√

6
1/
√

3 −1/
√

2 1/
√

6


 , Σ̃ =




3 0
0 0
0 0


 , Ṽ =

[
1/
√

3
√

2/
√

3√
2/
√

3 −1/
√

3

]
,

giving



1
√

2
1
√

2
1
√

2


 = A = ŨΣ̃ṼT =




1/
√

3 1/
√

2 1/
√

6
1/
√

3 0 −2/
√

6
1/
√

3 −1/
√

2 1/
√

6







3 0
0 0
0 0



[

1/
√

3
√

2/
√

3√
2/
√

3 −1/
√

3

]
.

5.6 Modification for the case of m < n

How does the singular value decomposition change if A has more
columns than rows, n > m? The answer is easy: write the SVD of
AT (which has more rows than columns) using the procedure above,
then take the transpose of each term in the SVD. If this makes good
sense, skip ahead to the next section. If you prefer the gory details,
read on.

We now formally adapt the steps described above to handle the
case n > m. First off, note that ATA ∈ Rn×n, while AAT ∈ Rm×m: we

58

prefer to work with the smaller matrix (in this case AAT), since the
eigenvalue problem will be easier to solve.

Step 1. Compute the eigenvalues and eigenvectors of AAT .

Label the eigenvalues of AAT ∈ Rm×m as

λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λm,

and corresponding orthonormal eigenvectors

u1, . . . , ur, ur+1, . . . , um.

We have defined r to be the number of nonzero eigenvalues of AAT .

Step 2. Define σj = ‖ATuj‖ =
√

λj, j = 1, . . . , m.

Step 3a. Define vj = ATuj/σj for j = 1, . . . , r.

Step 3b. Construct vr+1, . . . , vn to be any orthonormal set of
vectors that are orthogonal to v1, . . . , vr.

The vectors vr+1, . . . , vn form an orthonormal basis for N(A).
To find these vectors, solve Av = 0 and choose your

“free variables” to give orthonormal vectors.
These vectors will be automatically orthogonal to v1, . . . , vr.

Step 4. Put the pieces together.

First, defining

U =



| |

u1 · · · ur

| |


 ∈ Rm×r, V =



| |

v1 · · · vr

| |


 ∈ Rn×r,

with diagonal matrix

Σ =




σ1
. . .

σr


 ∈ Rr×r,

we have the reduced SVD

A = UΣVT .

59A = U
Σ VT

To obtain the full SVD, extend U ∈ Rm×r to Ũ ∈ Rm×m by append-
ing the vectors ur+1, . . . , um:

Ũ =
[

U U⊥
]
=



| | | |

u1 · · · ur ur+1 · · · um

| | | |


 ∈ Rm×m,

extend Σ ∈ Rr×r to

Σ̃ :=

︸︷︷︸
r
︸︷︷︸
n−r

[
Σ 0
0 0

]
.
} r

} m−r

and extend Ṽ ∈ Rn×n by appending the vectors vr+1, . . . , vn:

Ṽ =
[

V V⊥
]
=



| | | |

v1 · · · vr vr+1 · · · vn

| | | |


 ∈ Rn×n.

We thus arrive at the full SVD,

A = ŨΣ̃ṼT .
Full SVD, rank-deficient case (r < m ≤ n)

A

= U U⊥
Σ 0

0 0
VT

VT
⊥

Example 5.5. Consider the matrix

A =

[
1 2 1
−1 −2 −1

]
.

Since 2 = m < n = 3, we choose to work with the smaller matrix

AAT =

[
6 −6
−6 6

]
,

which has eigenvalues λ1 = 12 and λ2 = 0. (Clearly the second row

If instead you decided to work with the
3× 3 matrix




2 4 2
4 8 4
2 4 2


 ,

you have a more elaborate eigenvalue
problem to solve. Ultimately you would
find λ1 = 12, λ2 = λ3 = 0, consistent
with the eigenvalues found from AAT .

of A is a multiple of the first row, so we expect that zero eigenvalue.)
The singular vectors are thus σ1 =

√
12 and σ2 = 0. Compute the

orthonormal eigenvectors u1 and u2, then proceed to create v1 =

ATu1/σ1 and then generate two more orthonormal vectors v2 and
v3 that are orthogonal to v1. (The vectors v2 and v3 must both be
members of N(A), giving an easy way to generate vectors orthogonal
to v1.) You should arrive at the reduced SVD

A = UΣVT =

[
1/
√

2
−1/
√

2

][√
12
][

1/
√

6 2/
√

6 1/
√

6
]

the dyadic form

A = σ1u1vT
1 =
√

12

[
1/
√

2
−1/
√

2

] [
1/
√

6 2/
√

6 1/
√

6
]
,

60

and the full SVD

A = ŨΣ̃ṼT =

[
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

] [√
12 0 0
0 0 0

] 


1/
√

6 2/
√

6 1/
√

6
−5/
√

30 2/
√

30 1/
√

30
0 1/

√
5 −2/

√
5


 .

5.7 General statement of the singular value decomposition

We now state the singular value decomposition in full generality.

Theorem 5.4 (Singular Value Decomposition). Suppose A ∈ Rm×n

has rank(A) = r. Then there exists matrices Ũ ∈ Rm×m and Ṽ ∈ Rn×n,
each having orthonormal columns, which can be partitioned as

Ũ =
[

U U⊥
]

, Ṽ =
[

V V⊥
]

with

U =
[

u1 · · · ur

]
∈ Rm×r, U⊥ =

[
ur+1 · · · un

]
∈ Rm×(m−r)

and

V =
[

v1 · · · vr

]
∈ Rn×r, V⊥ =

[
vr+1 · · · vn

]
∈ Rn×(n−r),

and a diagonal matrix

Σ̃ :=

︸︷︷︸
r
︸︷︷︸
n−r

[
Σ 0
0 0

]
} r

} m−r

with Σ = diag(σ1, . . . , σr) for

σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

such that the following expressions for A all hold:

Reduced SVD: A = UΣVT ;

Dyadic SVD: A =
r

∑
j=1

σjujv
T
j ;

Full SVD: A = ŨΣ̃ṼT .

Of course, when r = 0 all the singular
values are zero; when r = min{m, n},
all the singular values are positive.

5.8 Connection to the four fundamental subspaces

Having labored to develop the singular value decomposition in its
complete generality, we are ready to reap its many rewards. We begin

61

by establishing the connection between the singular vectors and the
‘four fundamental subspaces,’ i.e., the column space

R(A) = {Ax : x ∈ Rn} ⊆ Rm,

the row space
R(AT) = {ATy : y ∈ Rm} ⊆ Rn,

the null space

N(A) = {x ∈ Rn : Ax = 0} ⊆ Rn,

and the left null space

N(AT) = {y ∈ Rm : ATy = 0} ⊆ Rm.

Given a matrix A ∈ Rm×n, take the dyadic form of the SVD,

A =
r

∑
j=1

σjujv
T
j .

We can characterize each of the fundamental subspaces in terms of
the singular values and singular vectors.

R(A) = span{u1, . . . , ur}

To see this, relationship, we will prove that each of the subspaces
R(A) and span{u1, . . . , ur} contain the other.

Let U and V be two subspaces.
If U is contained in V (written U ⊆ V)

and V is contained in U (written V ⊆ U),
then U = V. This technique is the
standard way mathematicians show
that two sets are the same.

First, we will show that R(A) ⊆ span{u1, . . . , ur} by showing that
any vector Ax ∈ R(A) must be in span{u1, . . . , ur}. Apply A to a
generic vector x ∈ Rn:

Ax =
(r

∑
j=1

σjujvT
j

)
x =

r

∑
j=1

(
σjujvT

j x
)
=

r

∑
j=1

(
σjv

T
j x
)
uj, (5.13)

where in the last step we have switched the order of the scalar vT
j x

and the vector uj. Equation 5.13 shows that Ax is a weighted sum of
the vectors u1, . . . , ur, and hence in the span of these vectors. Since
this is true for all Ax, we conclude that

R(A) ⊆ span{u1, . . . , ur}.

Can we conclude the converse? We know that R(A) is a subspace, so
if we can show that each of the vectors u1, . . . , ur is in R(A), then we
will know that

span{u1, . . . , ur} ⊆ R(A). (5.14)

To show that uk ∈ R(A), we must find some x such that Ax = uk.
Inspect equation (5.13). We can make Ax = uk if all the coefficients
σjv

T
j x are zero when j 6= k, and σkvT

k x = 1. Can you see how to use

62

orthogonality of the right singular vectors v1, . . . , vr to achieve this?
Setting

x =
1
σk

vk,

we have Ax = uk. Thus uk ∈ R(A), and we can conclude that (5.14)
holds. Since the subspace R(A) and span{u1, . . . , ur} contain one
another, we conclude that

R(A) = span{u1, . . . , ur}.

N(AT) = span{ur+1, . . . , um}

Together all the left singular vectors u1, . . . , um form an orthonormal
set in the m-dimensional space Rm, so

Rm = span{u1, . . . , um}.

Since span{u1, . . . , ur} is orthogonal to span{ur+1, . . . , um}, and
span{u1, . . . , ur} = R(A),

span{ur+1, . . . , um} is the set of all vectors orthogonal to R(A).

Lemma 5.1. For any matrix A ∈ Rm×n, N(AT) ⊥ R(A). The notation N(AT) ⊥ R(A) means:
“Every vector y ∈ N(AT) is orthogonal
to every vector b ∈ R(A).”Proof. Suppose that y ∈ N(AT), so that ATy = 0, and suppose

b ∈ R(A), so that there exists some x ∈ Rn such that Ax = b. Then

bTy = (Ax)Ty = xTATy = xT(ATy) = xT0 = 0.

We thus conclude that every vector in N(AT) is orthgonal to every
vector in R(A), and so N(AT) ⊥ R(A).

Lemma 5.1 implies that N(AT) ⊆ span{ur+1, . . . , um}, since the
latter is the set of everything orthogonal to R(A). To prove that
N(AT) = span{ur+1, . . . , um}, we must show that uk ∈ N(AT) for
k = r + 1, . . . , m. This is easy if we write transpose the dyadic form of
the SVD:

AT =

(
r

∑
j=1

σjujv
T
j

)T

=
r

∑
j=1

σj(ujv
T
j)

T =
r

∑
j=1

σjvju
T
j . (5.15)

Thus for k = r + 1, . . . , m,

ATuk =

(
r

∑
j=1

σjvju
T
j

)
uk =

r

∑
j=1

σjvj(u
T
j uk) =

r

∑
j=1

σjvj · 0 = 0,

since uT
j uk = 0 when 1 ≤ j ≤ r and r + 1 ≤ k ≤ m.

63

We conclude that uk ∈ N(AT) for all k = r + 1, . . . , m and hence
span{ur+1, . . . , um} ⊆ N(AT). Since we already proved the reverse
containment, we have

N(AT) = span{ur+1, . . . , um}.

Just as the left singular vectors spanned R(A) and N(AT), so the
right singular vectors span R(AT) and N(A).

R(AT) = span{v1, . . . , vr}

To prove this statement, use the same argument used for R(A) above,
but now with the dyadic form

AT =
r

∑
j=1

σjvju
T
j .

N(A) = span{vr+1, . . . , vn}

This argument follows exactly as for N(AT), but with A replacing AT .
While considering N(A), we note a helpful connection between

N(A) and the eigenvectors of ATA associated with zero eigenvalues.

Lemma 5.2. For any matrix A ∈ Rm×n, N(ATA) = N(A).

Proof. First we show that N(A) is contained in N(ATA). If x ∈ N(A),
then Ax = 0. Premultiplying by AT gives ATAx = 0, so x ∈ N(ATA).

Now we show that N(ATA) is contained in N(A). If x ∈ N(ATA),
then ATAx = 0. Premultiplying by xT gives

0 = xTATAx = (Ax)T(Ax) = ‖Ax‖2.

Since ‖Ax‖ = 0, we conclude that Ax = 0, and so x ∈ N(A).
Since the spaces N(A) and N(ATA) each contain the other, we

conclude that N(A) = N(ATA).

Putting together the key results from this section, we arrive at
a comprehensive version of the Fundamental Theorem of Linear
Algebra1 in terms of the SVD. 1 Gilbert Strang. The Fundamental

Theorem of Linear Algebra. Amer. Math.
Monthly, 100:848–855, 1993

http://www.jstor.org/stable/2324660
http://www.jstor.org/stable/2324660

64

Theorem 5.5 (Fundamental Theorem of Linear Algebra: FTLA).
Suppose A ∈ Rm×n has rank(A) = r, with left singular vectors
{u1, . . . , um} and right singular vectors {v1, . . . , vn}. Then

R(A) = span{u1, . . . , ur}
N(AT) = span{ur+1, . . . , um}

R(AT) = span{v1, . . . , vr}
N(A) = span{vr+1, . . . , vn},

which implies

R(A)⊕N(AT) = span{u1, . . . , um} = Rm

R(AT)⊕N(A) = span{v1, . . . , vn} = Rn,

and
R(A) ⊥ N(AT), R(AT) ⊥ N(A).

The notation ⊕ is called the direct sum
of subspaces. Suppose U, V, and W are
subspaces of Rn. To say U⊕ V = W

means that “any vector w ∈ W can be
written as w = u + v for unique vectors
u ∈ U and v ∈ V. Writing U+ V = W

means the same thing, but without the
uniqueness of u and v.

5.9 Revisiting linear systems

In Section 5.3 we used the SVD to tackle the linear system Ax = b,
which has the solution

x =
n

∑
j=1

uT
j b

σj
vj

provided b ∈ R(A).
When b 6∈ R(A), we can only hope to solve this equation in the

sense of least squares sense:

min
x∈Rn

‖b−Ax‖. (5.16)

The SVD will give an elegant way to solve this problem as well.

This problem can be viewed as stan-
dard linear least squares regression.
In regression, one posits that the data
y ∈ Rn satisfy the model

y = Xβ + ε,

where the design matrix X ∈ Rn×p

contains the independent variables,
β ∈ Rp contains the (unknown) model
parameters, and ε ∈ Rn describes the
noise (upon which we might impose
statistical assumptions: zero mean,
normality, etc.). Standard least squares
seeks the model parameters that satisfy

min
β∈Rp

‖y− Xβ‖.

The Fundamental Theorem of Linear Algebra (Theorem 5.5) en-
sures that Rm = R(A)⊕N(AT), which means that the vector b ∈ Rm

can be written uniquely as

b = bR + bN , bR ∈ R(A), bN ∈ N(AT).

Now for any choice of x ∈ Rn,

b−Ax = bR + bN −Ax

= (bR −Ax) + bN ,

where we have grouped terms strategically: By its form we must
have Ax ∈ R(A), and since R(A) is a subspace, the sum of two R(A)

65

vectors is also in R(A). The FTLA tells us that R(A) ⊥ N(AT), so we
can apply the Pythagorean Theorem to obtain

‖b−Ax‖2 = ‖bR −Ax‖2 + ‖bN‖2 (5.17)

for any x. To solve the least squares problem (5.16), we must pick x to
minimize the expression (5.17). No choice of x can reach the ‖bN‖2

term; on the other hand, we can pick x to reach any vector Ax in
R(A). In particular, we can pick x so that Ax = bR, and with this
choice

We seek x that solves Ax = bR. As
emphasized in Figure 7.1, this equation
always has a solution since bR ∈ R(A).

‖b−Ax‖2 = ‖bR −Ax‖2 + ‖bN‖2

= ‖bR − bR|2 + ‖bN‖2

= ‖bN‖2,

and this choice must be optimal, since ‖bR −Ax‖2 ≥ 0 for all x.

The approximation problem

min
x∈Rn

‖b−Ax‖

is solved by any x ∈ Rn such that Ax = bR.

One last problem remains: How do we solve Ax = bR, when A is
a rectangular matrix? In particular, we would ideally solve the least
squares problem without explicitly constructing bR. Notice that for
an optimal choice of x that solves Ax = bR, we have

b−Ax = (bR −Ax) + bN = 0 + bN .

Premultiply this equation by AT and recall that bN ∈ N(AT) to obtain

AT(b−Ax) = ATbN

= 0,

and so we rearrange to find

ATAx = ATb. (5.18)

The optimal x that solves the least squares problem also solves
the linear system (5.18), called the normal equations. Notice that

AT

A

n

m n

m

x = AT

b

ATA x =

ATb

ATA ∈ Rn×n. In many applications, the columns of A correspond
to variables we are trying to fit, while the rows of A represent obser-
vations (or the results of experiments) that provide the data for the
fit. We can often collect many more observations than we have vari-
ables, so m � n. Yet the system ATAx = ATb only requires that we
solve a small n× n system to find the best fit x.

66

When does ATAx = ATb have a unique solution? Recall that
Lemma 5.2 showed N(A) = N(ATA), establishing the following key
result.

Theorem 5.6. The normal equations ATAx = ATb have a unique
solution for all b ∈ Rm if and only if N(A) = {0}.

The SVD gives much deeper insight into the normal equations;
We will postpone a full discussion of the least squares problem for
Chapter 7. For now, let us simply consider the case where A ∈ Rm×n

has full column rank, rank(A) = r = n and N(A) = {0}. Thus the
least squares problem has a unique solution

x = (ATA)−1ATb.

In this equation the matrix A+ := (ATA)−1AT ∈ Rn×m functions
something like the inverse A−1 of a square matrix in the solution
x = A−1b to Ax = b.

Substituting the reduced SVD A = UΣVT for A, we can compute
an expression for the pseudoinverse in terms of the SVD:

A+ =
(
(UΣVT)T(UΣVT)

)−1
(UΣVT)T

=
(

VΣTUTUΣVT
)−1

VΣTUT

= (VΣΣVT)−1VΣUT

= V(Σ−1Σ−1VTVΣUT = VΣ−1UT =
r

∑
j=1

1
σj

vju
T
j .

Here we have used the fact that V ∈ Rn×n is an invertible matrix
with orthonormal columns, so VT = V−1.

Definition 5.2. Let A ∈ Rm×n have rank n. The pseudoinverse of A is

A+ := (ATA)−1AT = VΣ−1UT =
r

∑
j=1

1
σj

vju
T
j .

Am

n

original matrix

A+n

m

= (ATA)−1 AT

pseudoinverse

Am

n

A+

m

= AA+

m

m

orthogonal
projector

onto R(A)

We make final observation: the matrix AA+ has a special form:

AA+ =
(

UΣVT
) (

VΣ−1UT
)
= UΣVTVΣ−1UT = UUT

is the orthogonal projector onto R(U) = span{u1, . . . , un} = R(A).

67

Let A ∈ Rm×n have rank n.

• The solution of the least squares problem (5.16) is then simply

x = A+b.

• The least squares approximation Ax to b is

Ax = AA+b = UUTb,

which is the orthogonal projection (best approximation) of b onto
R(U) = R(A).

• The least squares residual is

b−Ax = (I−UUT)b ∈ N(AT),

which is orthogonal to the approximating subspace R(A).

Example 5.6. Consider the matrix introduced in Example 5.1,

A =




1 1
0 0√
2 −

√
2


 ∈ R3×2.

The pseudoinverse is

A+ = VΣ−1U =
2

∑
j=1

1
σj

vjuj =

[
1/2 0 1/(2

√
2)

1/2 0 −1/(2
√

2)

]
∈ R2×3,

while the orthogonal projector onto R(A) is

AA+ = UUT =




1 0 0
0 0 0
0 0 1


 .

Notice that while UUT 6= I, this matrix UUT “acts like the identity”
on R(A): for any b ∈ R(A), UUTb = b.

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 6
Matrix Approximation via the SVD

Often the matrix A ∈ Rm×n represents a large-scale data set: for
example, m samples of n distinct variables, or a digital photograph
m pixels high and n pixels wide. In both these cases we might expect
quite a bit of redundancy in the data: some variables may be highly
correlated (making n large) and samples may be quite similar (mak-
ing m large); a picture contains patches of nearly identical colors.

Rather than storing all m × n real numbers that make up A, we
seek a more efficient approach that reduces storage, and, more im-
portantly, reveals something about the structure of our data set. This
chapter is devoted to such matrix approximation problems, which
inevitably reduce to applications of the SVD. Before we can consider
low rank approximation, principal component analysis, and recom-
mender systems, we must develop a basic tool: a way to measure the
distance between two matrices.

6.1 Matrix norms

How ‘large’ is a matrix? We do not mean dimension – but how large,
in aggregate, are its entries? One can imagine a multitude of ways to
measure the entries; perhaps most natural is to sum the squares of
the entries, then take the square root. This idea is useful, but we pre-
fer a more subtle alternative that is of more universal utility through-
out mathematics: we shall gauge the size A ∈ Rm×n by the maximum
amount it can stretch a vector, x ∈ Rn. That is, we will measure ‖A‖
by the largest that ‖Ax‖ can be. Of course, we can inflate ‖Ax‖ as
much as we like simply by making ‖x‖ larger, which we avoid by
imposing a normalization: ‖x‖ = 1. We arrive at the definition

‖A‖ = max
‖x‖=1

‖Ax‖.

© Copyright 2022 by Mark Embree. All rights reserved.

69

First, suppose that Q is some matrix with orthonormal columns, so
that QTQ = I. Then, using the key fact on page 11,

‖Qx‖2 = (Qx)T(Qx) = xTQTQx = xTx = ‖x‖2,

so premultiplying by Q does not alter the norm of x. Now substitute
the full SVD A = UΣVT for A:

‖Ax‖ = ‖UΣVTx‖ = ‖ΣVTx‖,

where we have used the orthonormality of the columns of U. Now
define a new variable y = VTx (which means Vy = x), and notice
that ‖x‖ = ‖VTx‖ = ‖y‖, since V is a square matrix with orthonor-
mal columns (and hence orthonormal rows). Now we can compute The fact that V is square and has

orthonormal columns implies that both
VTV = I and VVT = I. This means that
‖VTx‖2 = xTVVTx = xTx = ‖x‖2.

the matrix norm:

‖A‖ = max
‖x‖=1

‖Ax‖ = max
‖x‖=1

‖ΣVTx‖ = max
‖Vy‖=1

‖Σy‖ = max
‖y‖=1

‖Σy‖

So the norm of A is the same as the norm of Σ. We now must figure
out how to pick the unit vector y to maximize ‖Σy‖. This is easy: we
want to optimize

‖Σy‖2 = σ2
1 |y1|2 + · · ·+ σ2

r |yr|2

subject to 1 = ‖y‖2 ≥ |y1|2 + · · ·+ |yr|2. Since σ1 ≥ · · · ≥ σr, Alternatively, you could compute ‖Σ‖
by maximizing f (y) = ‖Σy‖ subject to
‖y‖ = 1 using the Lagrange multiplier
technique from vector calculus.

‖Σy‖2 = σ2
1 |y1|2 + · · ·+ σ2

r |yr|2

≤ σ2
1

(
|y1|2 + · · ·+ |yr|2) ≤ σ2

1 ‖y‖2 = σ2
1 ,

resulting in the upper bound

‖Σ‖ = max
‖y‖=1

‖Σy‖ ≤ σ1. (6.1)

Will any unit vector y attain this upper bound? That is, can we find
such a vector so that ‖Σy‖ = σ1? Sure: just take y = [1, 0, · · · , 0]T to
be the first column of the identity matrix. For this special vector,

‖Σy‖2 = σ2
1 |y1|2 + · · ·+ σ2

r |yr|2 = σ2
1 .

Since ‖Σy‖ can be no larger than σ1 for any y, and since ‖Σy‖ = σ1

for at least one choice of y, we conclude

‖Σ‖ = max
‖y‖=1

‖Σy‖ = σ1,

and hence the norm of a matrix is its largest singular value:

‖A‖ = σ1.

70

Consider the matrix

A =

[
1/2 1
−1/2 1

]
=

(√
2

2

[
1 1
1 −1

]) [√
2 0

0
√

2/2

] [
0 1
1 0

]T
.

We see from this SVD that ‖A‖ = σ1 =
√

2. For this example the
vector Ax has the form

Ax = σ1(vT
1 x)u1 + σ2(vT

2 x)u2

=
√

2 x2 u1 +

√
2

2
x1 u2,

so Ax is a blend of some expansion in the u1 direction and some con-
traction in the u2 direction. We maximize the size of Ax by picking
an x for which Ax is maximally rich in u1, i.e., x = v1.

−1 1

−1

1

x1

x2

Every unit vector x in R2 is a point
where ‖x‖2 = x2

1 + x2
2 = 1, so the set

of all such vectors traces out the unit
circle shown in black in the plot above.
We highlight two distinguished vectors:
x = v1 (blue) and x = v2 (red).

−1 1

−1

1

(Ax)1

(Ax)2

The plot above shows Ax for all unit
vectors x, which traces out an ellipse
in R2. The vector x = v1 is mapped to
Ax = σ1u1 (blue), and this is the most
A stretches any unit vector; x = v2 is
mapped to Ax = σ2u2 (red), which
gives the smallest value of ‖Ax‖.

In Python, you can compute the matrix norm directly using
Numpy’s norm command:

normA = np.linalg.norm(A,2)

Here the 2 in the second argument is crucial: there are other ways
to define the norm of the matrix, and the 2 tells Python to use the
definition that we have just described. Of course, you could also
compute the norm by computing the SVD and taking the maximum
singular value:

U, S, Vt = np.linalg.svd(A)

normA = np.max(S)

6.2 Low-rank approximation

Perhaps the most important property of the singular value decompo-
sition is its ability to immediately deliver optimal low-rank approxi-
mations to a matrix. The dyadic form

A =
r

∑
j=1

σjujv
T
j

writes the rank-r matrix A as the sum of the r rank-1 matrices

σjujv
T
j .

Since σ1 ≥ σ2 ≥ · · · ≥ σr > 0, we might hope that the partial sum

k

∑
j=1

σjujv
T
j

will give a good approximation to A for some value of k that is much
smaller than r (mathematicians write k � r for emphasis). This is

71

especially true in situations where A models some low-rank phe-
nomenon, but some noise (such as random sampling errors, when
the entries of A are measured from some physical process) causes A
to have much larger rank. If the noise is small relative to the “true”
data in A, we expect A to have a number of very small singular val-
ues that we might wish to neglect as we work with A. We will see
examples of this kind of behavior in the next chapter.

For square diagonalizable matrices,

A = WΛW−1,

the eigenvalue decomposition can also lead to an expression for A as
the sum of rank-1 matrices:

A =
n

∑
j=1

λjwjŵ
T
j ,

where ŵT
j denotes the jth row of W−1. Note that if A has real entries, then

the SVD will only have real entries.
This is not generally the case for the
eigenvalue decomposition when A is a
nonsymmetric matrix.

Three key distinctions make the singular value decomposition a
better tool for developing low-rank approximations to A.

1. The SVD holds for all rectangular matrices, while the eigenvalue
decomposition only holds for square matrices that are diagonaliz-
able.

2. The singular values are nonnegative real numbers whose ordering

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

gives a natural way to understand how much the rank-1 matrices
σjujv

T
j contribute to A. In contrast, the eigenvalues will generally

be complex numbers, and thus lack the same natural order; it
is harder to understand the significance of each rank-1 matrix
λjwjŵ

T
j .

3. The eigenvectors are not generally orthogonal, and this can skew
the rank-1 matrices λjwjŵ

T
j away from giving good approxima-

tions to A. In particular, we can find that ‖wjŵ
T
j ‖ � 1, whereas

the matrices ujv
T
j from the SVD always satisfy ‖ujv

T
j ‖ = 1.

This last point is subtle, so let us investigate it with an example.
Consider

A =

[
2 100
0 1

]

with eigenvalues λ1 = 2 and λ2 = 1 and eigenvalue decomposition

A = WΛW−1 =

[
1 1
0 −1/100

] [
2 0
0 1

] [
1 100
0 −100

]

72

= λ1w1ŵT
1 + λ2w2ŵT

2

= 2
[

1
0

]
[1 100]

+ 1
[

1
−1/100

]
[0 −100]

= 2
[

1 100
0 0

]
+ 1

[
0 −100
0 1

]
.

Let us inspect individually the two rank-1 matrices that appear in the
eigendecomposition:

λ1w1ŵT
1 =

[
2 200
0 0

]
, λ2w2ŵT

2 =

[
0 −100
0 1

]
.

Neither matrix individually gives a good approximation to A:

A− λ1w1ŵT
1 =

[
0 −100
0 1

]
, A− λ2w2ŵT

2 =

[
2 200
0 0

]
.

Both rank-1 “approximations” to A leave large errors!

Contrast this situation with the rank-1 approximation σ1u1vT
1 given

by the SVD for this A. To five decimal digits, we have

A = UΣVT =

[
0.99995 −0.01000
0.01000 0.99995

] [
100.025 0

0 0.020

] [
0.01999 0.99980
−0.99980 0.01999

]

= σ1u1vT
1 + +σ2u2vT

2

= 100.025
[

0.99995
0.01000

]
[0.01999 0.99980]

+ 0.020
[−0.01000

0.99995

]
[−0.99980 0.01999]

= 100.025
[

0.01999 0.99975
0.00020 00.00999

]
+ 0.020

[
0.00999 −0.00020
−.99975 0.01999

]
.

Like the eigendecomposition, the SVD breaks A into two rank-1
pieces:

σ1u1vT
1 =

[
1.99980 100.00000
0.01999 0.99960

]
, σ2u2vT

2 =

[
0.00020 0.00000
−0.01999 0.00040

]
.

The first of these, the dominant term in the SVD, gives an excellent
approximation to A:

A− σ1u1vT
1 =

[
0.00020 0.00000
−0.01999 0.00040

]
.

The key factor making this approximation so good is that σ1 � σ2.
What is more remarkable is that the dominant part of the singular
value decomposition is actually the best low-rank approximation for
all matrices.

73

Definition 6.1. Let A = ∑r
j=1 σjujv

T
j be a rank-r matrix, written in

terms of its singular value decomposition. Then for any k ≤ r, the
truncated singular value decomposition of rank-k is the partial sum

Ak =
k

∑
j=1

σjujv
T
j .

Theorem 6.1 (Schmidt–Mirsky–Eckart–Young). Let A ∈ Rm×n. Then
for all k ≤ rank(A), the truncated singular value decomposition

Ak =
k

∑
j=1

σjujv
T
j

is a best rank-k approximation to A, in the sense that

σk+1 = ‖A−Ak‖ = min
rank(X)≤k

‖A− X‖.

It is easy to see that this Ak gives the approximation error σk+1, since

A−Ak =
r

∑
j=1

σjujv
T
j −

k

∑
j=1

σjujv
T
j =

r

∑
j=k+1

σjujv
T
j ,

and this last expression is an SVD for the error in the approximation
A− Ak. As described in Section 6.1, the norm of a matrix equals its
largest singular value, so

‖A−Ak‖ =
∥∥∥∥

r

∑
j=k+1

σjujv
T
k

∥∥∥∥ = σk+1.

To complete the proof, one needs to show that no other rank-k matrix
can come closer to A than Ak. This pretty argument is a bit too intri-
cate for this course, but we include it in the margin for those that are
interested.

Let X ∈ Rm×n be any rank-k matrix.
The Fundamental Theorem of Linear
Algebra gives Rn = R(XT) ⊕ N(X).
Since rank(XT) = rank(X) = k, notice
that dim(N(X)) = n − k. From the
singular value decomposition of A
extract v1, . . . , vk+1, a basis for some
k + 1 dimensional subspace of Rn. Since
N(X) ⊆ Rn has dimension n − k, it
must be that the intersection

N(X) ∩ span{v1, . . . , vk+1}
has dimension at least one. (Otherwise,
N(X) ⊕ span{v1, . . . , vk+1} would be
an n + 1 dimensional subspace of Rn:
impossible!) Let z be some unit vector
in that intersection: ‖z‖ = 1 and

z ∈ N(X) ∩ span{v1, . . . , vk+1}.
Expand z = γ1v1 + · · ·+ γk+1vk+1, so
that ‖z‖ = 1 implies

1 = zTz =

(k+1

∑
j=1

γjvj

)∗(k+1

∑
j=1

γjvj

)
=

k+1

∑
j=1
|γj|2.

Since z ∈ N(X), we have

‖A− X‖ ≥ ‖(A− X)z‖ = ‖Az‖,
and then

‖Az‖ =

∥∥∥∥
k+1

∑
j=1

σjujv
T
j z
∥∥∥∥ =

∥∥∥∥
k+1

∑
j=1

σjγjuj

∥∥∥∥.

Since σk+1 ≤ σk ≤ · · · ≤ σ1 and the uj
vectors are orthogonal,
∥∥∥∥

k+1

∑
j=1

σjγjuj

∥∥∥∥
2
≥ σk+1

∥∥∥∥
k+1

∑
j=1

γjuj

∥∥∥∥
2
.

But notice that
∥∥∥∥

k+1

∑
j=1

γjuj

∥∥∥∥
2

2
=

k+1

∑
j=1
|γj|2 = 1,

where the last equality was derived
above from the fact that ‖z‖2 = 1. In
conclusion, for any rank-k matrix X,

‖A− X‖2 ≥ σk+1

∥∥∥∥
k+1

∑
j=1

γjuj

∥∥∥∥
2
= σk+1.

(This proof is adapted from §3.2.3 of
Demmel’s text.)

You can construct low-rank approximations in Python in several
different ways. Suppose that the rank k of the approximation has
been defined. Then the following commands build up the best ap-
proximation from the dyadic form, using the np.outer command for
the outer product.

U, S, Vt = np.linalg.svd(A)

Ak = np.zeros(A.shape)

for j in range(0,k):

Ak = Ak + S[j]*np.outer(U[:,j],Vt[j,:])

Alternatively, one can skip the loop and build Ak via the reduced
form of its SVD.

74

Ak = U[:,0:k]@np.diag(S[0:k])@Vt[0:k,:]

or the slightly more efficient form

Ak = (U[:,0:k]*S[0:k])@Vt[0:k,:]

6.2.1 Compressing images with low rank approximations

Image compression provides the most visually appealing application
of the low-rank matrix factorization ideas we have just described. An
image can be represented as a matrix. For example, typical grayscale
images consist of a rectangular array of pixels, m in the vertical direc-
tion, n in the horizontal direction. The color of each of those pixels
is denoted by a single number, an integer between 0 (black) and 255
(white). (This gives 28 = 256 different shades of gray for each pixel.
Color images are represented by three such matrices: one for red, one
for green, and one for blue. Thus each pixel in a typical color image
takes (28)3 = 224 = 16, 777, 216 shades.)

Images are ripe for data compression: Often they contain broad
regions of similar colors, and in many areas of the image adjacent
rows (or columns) will look quite similar. If the image stored in A
can be represented well by a rank-k matrix, then one can approximate
A by storing only the leading k singular values and vectors. To build
this approximation

Ak =
k

∑
j=1

σjujv
T
j ,

one need only store k(1 + m + n) values. When k(1 + m + n) � mn,
there will be a significant savings in storage, thus giving an effective
compression of A.

original uncompressed image, rank = 480 Figure 6.1: A sample image: the
founders of numerical linear algebra
at an early Gatlinburg Symposium.
From left to right: Jim Wilkinson,
Wallace Givens, George Forsythe,
Alston Householder, Peter Henrici, and
Friedrich Bauer. This image is built into
MATLAB; access it via load gatlin.

75

Let us look at an example to see how effective this image com-
pression can be. The image in Figure 6.1 shows some of the key
developers of the numerical linear algebra algorithms we have stud-
ied this semester, gathered in Gatlinburg, Tennessee, for an impor-
tant early conference in the field. The image is of size 480× 640, so
rank(A) ≤ 480. We shall compress this image with truncated singular
value decompositions. Figures 6.3 and 6.4 show compressions of A
for dimensions ranging from k = 200 down to k = 1. For k = 200 and
100, the compression Ak provides an excellent proxy for the full im-
age A. For k = 50, 25 and 10, the quality degrades a bit, but even for
k = 10 you can still tell that the image shows six men in suits stand-
ing on a patterned floor. For k ≤ 5 we lose much of the quality, but
isn’t it remarkable how much structure is still apparent even when
k = 5? The last image is interesting as a visualization of a rank-1
matrix: each row is a multiple of all the other rows, and each column
is a multiple of all the other columns.

We gain an understanding of the quality of this compression by
looking at the singular values of A, shown in Figure 6.2. The first sin-
gular value σ1 is a about an order of magnitude larger than the rest,
and the singular values decay quite rapidly. (Notice the logarithmic
vertical axis.) We have σ1 ≈ 15, 462, while σ50 ≈ 204.48. When we
truncate the singular value decomposition at k = 50, the neglected
terms in the singular value decomposition do not make a major con-
tribution to the image.

Figure 6.2: Singular values of the 480×
640 Gatlinburg image matrix. The first
few singular values are much larger
than the rest, suggesting the potential
for accurate low-rank approximation
(compression).

76

truncated SVD, rank k = 200 truncated SVD, rank k = 100

truncated SVD, rank k = 50 truncated SVD, rank k = 25

Figure 6.3: Compressions of the Gatlin-
burg image in Figure 6.1 using trun-
cated SVDs Ak = ∑k

j=1 σjujv
T
j . Each of

these images can be stored with less
memory than the original full image.
The rank-25 image could be be useful
as a “thumbnail” sketch of the image
(e.g., an icon on a computer desktop).

To investigate this low-rank approximation a little more deeply,
let us introduce another image, a carved grotesque, shown in Fig-
ure 6.5. This grayscale image comprises 644× 500 pixels, suggesting
that rank(A) = 500. Figure 6.6 shows that singular values decay
much like those for the Gatlinburg matrix (Figure 6.2); indeed, the
grotesque’s first singular value is at least ten times larger than all the
others, with σ1 ≈ 8.84× 104 while σ2 ≈ 7.91× 103.

77

truncated SVD, rank k = 10 truncated SVD, rank k = 5

truncated SVD, rank k = 2 truncated SVD, rank k = 1

Figure 6.4: Continuation of Figure 6.4,
showing compressions of rank 10, 5, 2,
and 1. Note the striping characteristic
of low-rank structure.

Figure 6.5: A grotesque carved in a
door of the 16th century Church of
Santa Croce, Riva San Vitale, Switzer-
land.

Based on these singular values, we expect a strong low-rank ap-
proximation. Figure 6.7 shows rank-k truncated SVD approximations
for eight values of k. Indeed, given the dominant size of σ1, we see
the major structure of the frame and border evident even in the k = 1
compression.

To emphasize how the individual components σjujv
T contribute to

the sum

A =
r

∑
j=1

σjujv
T , (6.2)

we shall take a closer look at the image in Figure 6.5. To make this
point as clearly as possible, we introduce a new color map that shows
positive values in blue and negative values in red, as illustrated in

78

✵ ✶✵✵ ✷✵✵ ✸✵✵ ✹✵✵ ✺✵✵
✶✵

�

✶✵
✁

✶✵
✂

✶✵
✄

✶✵
☎

j

σj

Figure 6.6: Singular values of the
644× 500 Santa Croce grotesque. The
first singular value is ten times or more
larger than the others.

k = 128 k = 64 k = 32 k = 16

k = 8 k = 4 k = 2 k = 1

Figure 6.7: Rank-k truncated SVD
compressed versions of the Santa Croce
grotesque. (Close examination of the
original image shows numerous worm
holes, especially in the lower left of the
panel. Notice how these are reduced
when k = 128 and essentially disappear
when k = 64.)

Figure 6.8. (The image A has integer entries between [0, 255], but the
truncated SVDs Ak need not have integer entries, and the individual
terms σjujv

T
j can have negative entries.)

Figure 6.9 shows how this image is assembled from the individual
terms in the dyadic form of the singular value decomposition (6.2).

79

Since σ1 ≈ 8.84× 104 is so much larger than σ2 ≈ 7.91× 103, the
first term dominates (hence the dark blue color): the interior frame
around the face is already evident. The subsequent matrices σjujv

T
j

for j ≥ 2 add more modest corrections that fill in details of the image.
Some of these effects can be readily picked out: for example, σ3u3vT

3
adjusts for the row of carving at the top of the image; σ5u5vT

5 fills in
the grotesque’s nose. Since the singular values σj are decreasing as j
grows, these terms make smaller and smaller contributions.

-255

-128

0

128

255

Figure 6.8: The Santa Croce grotesque
with an extended color map to high-
light negative values (red).

A σ1u1vT
1 σ2u2vT

2 σ3u3vT
3

= + +

σ4u4vT
4 σ5u5vT

5 σ6u6vT
6

+ + +

+ · · · Figure 6.9: Construction of the image
A from the individual terms σjujv

T
j .

The first term makes a major contri-
bution; each subsequent term makes
a small adjustment, and these adjust-
ments diminish in significance as j
increases.

80

6.3 Principal Component Analysis

Linear algebra enables the analysis of the volumes of data that now
so commonly arise from applications ranging from basic science to
public policy. Such measured data often depends on many factors,
and we seek to identify those that are most critical. Within this realm
of multivariate statistics, principal component analysis (PCA) is a funda-
mental tool.

Linear algebraists often say, “PCA is the SVD” – in this section, we
will explain what this means, and some of the subtleties involved.

6.3.1 Variance and covariance

To understand principal component analysis, we need some basic
notions from statistics, described in any basic textbook. For a general
description of PCA along with numerous applications, see the text by
Jolliffe 1, whose presentation shaped parts of our discussion here. 1

The expected value, or mean, of a random variable X is denoted
E[X]. The expected value is a linear operation, meaning that for any
constant α ∈ R and random variables X and Y, we have

E[αX + Y] = αE[X] + E[Y].

Further, note that for the constant α ∈ R, E[α] = α.
The variance of X describes how much X is expected to deviate

from its mean,
Var(X) = E[(X− E[X])2],

which, using linearity of the expected value, takes the equivalent
form

Var(X) = E[X2]− E[X]2.

The covariance between two (potentially correlated) random variables
X and Y is

Cov(X, Y) = E[(X− E[X])(Y− E[Y])]

= E[XY]− E[X]E[Y].

with Cov(X, X) = Var(X). These definitions of variance and co-
variance are the bedrock concepts underneath PCA, for with them
we can understand the variance present in a linear combination of
several random variables.

Suppose we have a set of real-valued random variables X1, . . . , Xn

in which we suspect there may be some redundancy. Perhaps some
of these variables can be expressed as linear combinations of the oth-
ers – either exactly, or nearly so. At the other extreme, there may be
some way to combine X1, . . . , Xn that captures much of the variance

81

in one (or a few) aggregate random variables. In particular, we shall
seek scalars γ1, . . . , γn such that

n

∑
j=1

γjXj

has the largest possible variance. The definitions of variance and
covariance, along with the linearity of the expected value, lead to a
formula for the variance of a linear combination of random variables:

Var
(n

∑
j=1

γjXj

)
= E

[(n

∑
j=1

γjXj

)2
− E

[n

∑
j=1

γjXj

]2
]

= E

[(n

∑
j=1

γjXj

)2
−
(n

∑
j=1

γjE[Xj]
)2
]

= E

[
n

∑
j=1

n

∑
k=1

γjγkXjXk −
n

∑
j=1

n

∑
k=1

γjγkE[Xj]E[Xk]

]

=
n

∑
j=1

n

∑
k=1

γjγk E
[

XjXk − E[Xj]E[Xk]
]

=
n

∑
j=1

n

∑
k=1

γjγk Cov(Xj, Xk). (6.3)

You have seen double sums like this before. If we define the covari-
ance matrix C ∈ Rn×n having (j, k) entry

cj,k = Cov(Xj, Xk),

and let v = [γ1, . . . , γn]T , then the variance of the combined variable

Statistics texts typically denote the
covariance matrix by Σ. We deviate
from that notation, as it would clash
with the matrix of singular values –
which will soon make an appearance in
this discussion.

can be written in a beautifully compact way:

Var
(n

∑
j=1

γjXj

)
= vTCv.

Since the covariance function is symmetric: Cov(X, Y) = Cov(Y, X),
the matrix C is symmetric; it is also positive semidefinite. Why?
Variance, by its definition as the expected value of the square of a
real random variable, is always nonnegative. Thus the formula (6.3),
which derives from the linearity of the expected value, ensures that
vTCv ≥ 0. (Under what circumstances can this quantity be zero?)

We can write C in another convenient way. Collect the random
variables into the vector

X =




X1
...

Xn


 ∈ Rn.

82

Then the (j, k) entry of E[XXT]− E[X]E[X]T is

E[XjXk]− E[Xj]E[Xk] = Cov(Xj, Xk) = cj,k,

and so
C = E[XXT]− E[X]E[X]T .

6.3.2 Derived variables that maximize variance

Return now to the problem of maximizing the variance of vTCv. With-
out constraint on v, this quantity can be arbitrarily large (assuming C
is nonzero); thus we shall require that ∑k

j=1 γ2
j = ‖v‖2 = 1. With this

normalization, Theorem 4.4 immediately shows us how to maximize
the variance vTCv: v should be a unit eigenvector associated with the
largest magnitude eigenvalue of C; call this vector v1. The associated
variance, of course, is the largest eigenvalue of C; call it

λ1 = vT
1 Cv1 = max

‖v‖=1
vTCv.

The eigenvector v1 encodes the way to combine X1, . . . , Xn to maxi-
mize variance. The new variable – the leading principal component – is

vT
1 X =

n

∑
j=1

γjXj.

You are already suspecting that a unit eigenvector associated with
the second largest eigenvalue, v2 with λ2 = vT

2 Cv2, must encode the
second-largest way to maximize variance.

Let us explore this intuition. To find the second-best way to com-
bine the variables, we should insist that the next new variable, for
now call it wTX, should be uncorrelated with the first, i.e., Recall that X ∈ Rn here, so wTX ∈ R is

a scalar.
Cov(wTX, vT

1 X) = 0.

However, using linearity of expectation and the fact that, e.g., wTX =

XTw for real vectors,

Cov(wTX, vT
1 X) = E[(wTX)(vT

1 X)]− E[wTX]E[vT
1 X]

= E[(wTXXTv1)− E[wTX]E[XTv1]

= wTE[XXT]v1 −wTE[X]E[X]Tv1

= wT(E[XXT]− E[X]E[X]T
)
v1

= wTCv1 = λ1wTv1.

Hence (assuming λ1 6= 0), for the combined variables vT
1 X and wTX

Note that E[XT] = E[X]T .

Cv1 = λ1v1.

to be uncorrelated, the vectors v1 and w must be orthogonal, perfectly
confirming your intuition: the second-best way to combine the vari-
ables is to pick w to be a unit eigenvector v2 of C corresponding to

83

the second largest eigenvalue. Since the eigenvectors of a symmetric
matrix are orthogonal, we optimize over all vectors orthogonal to u1.
The associated variance of vT

2 X is thus

λ2 = max
‖w‖=1

w⊥span{v1}

wTCw.

Following this pattern, the kth best (uncorrelated) way to combine
the variables is vT

k X, where vk is the (orthonormal) eigenvector of C
associated with the kth largest eigenvalue; vT

k X has variance λk.

Key concept. Let X = [X1, . . . , Xn]T ∈ Rn collect n random variables,
with associated covariance matrix C ∈ Rn×n. Since C is a symmetric
positive-semidefinite matrix, it has real eigenvalues that we label

λ1 ≥ λ2 ≥ · · · ≥ λn

and corresponding orthonormal eigenvectors

v1, v2, · · · , vn.

The kth principal component is the aggregated variable

Yk := vT
k X.

The variables Y1, . . . , Yk are uncorrelated and have variance

Var(Yk) = Var(vT
k X) = vT

k Cvk = λk.

We learn much about our variables from the relative size of the vari-
ances (eigenvalues)

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

If some of the latter eigenvalues are very small, that indicates that
the set of n random variables can be well approximated by a fewer
number of aggregated variables. These aggregated variables are the
principal components of X1, . . . , Xn.

You might naturally ask, How many principal components do I need
to describe my data set? Often one looks at a plot of the eigenvalues
(for example, see Figure 6.11) and looks for a good cut-off. Since the
aggregate variables are uncorrelated,

Var
(n

∑
j=1

Yj

)
=

n

∑
j=1

Var(Yj) =
n

∑
j=1

λj.

We can thus regard the sum of the eigenvalues of C as a measure
of the total variance in the variables. The proportion of this total

84

variance captured by the first k principal components is thus

∑k
j=1 λj

∑n
j=1 λj

. (6.4)

If you want, say, to capture 75% of the variation, then pick k large
enough for the fraction (6.4) to exceed 0.75, and use the first k princi-
pal components. Figure 6.12 will show a plot of the fractions (6.4) for
a sample data set.

6.3.3 Approximate PCA from empirical data

In practical situations, one often seeks to analyze empirical data
drawn from some unknown distribution: the expected values and
covariances are not available. Instead, we will estimate these from the
measured data.

Suppose, as before, that we are considering n random variables,
X1, . . . , Xn, with m samples of each:

xj,k, k = 1, . . . , m,

i.e., xj,k is the kth sample of the random variable Xj. The expected
value has the familiar unbiased estimate

µj =
1
m

m

∑
k=1

xj,k.

Similarly, we can approximate the covariance

Cov(Xj, Xk) = E[(Xj − E[Xj])(Xk − E[Xk)].

One might naturally estimate this as

1
m

m

∑
`=1

(xj,` − µj)(xk,` − µk).

However, replacing the true expected values E[Xj] and E[Xk] with
the empirical estimates µj and µk introduces some slight bias into
this estimate. This bias can be removed by scaling, replacing 1/m by
1/(m− 1) to get the unbiased estimate

sj,k =
1

m− 1

m

∑
`=1

(xj,` − µj)(xk,` − µk), j, k = 1, . . . , n.

If we let

xj =




xj,1
...

xj,m


 , j = 1, . . . , n,

85

then each covariance estimate is just an inner product

sj,k =
1

m− 1
(xj − µj)

T(xk − µk).

Thus, if we center the samples of each variable about its empirical

Here the notation xj − µj means:
subtract the scalar µj from all entries of
the vector xj.

mean, we can write the empirical covariance matrix S = [sj,k] as a
matrix product. Let

X := [(x1 − µ1) (x2 − µ2) · · · (xn − µn)] ∈ Rm×n,

so that
S =

1
m− 1

XTX. (6.5)

Now conduct principal component analysis just as before, but with
the empirical covariance matrix S replacing the true covariance ma-
trix C. The eigenvectors of S now lead to sample principal components.

Where is the connection to the singular value decomposition? No-
tice how we formed the sample covariance matrix S in equation (6.5).
Aside from the scaling 1/(m− 1), this structure recalls the first step
in our construction of the singular value decomposition earlier in
the chapter. We can thus arrive at the sample principal components

To compute the singular value decom-
position of some matrix A ∈ Rm×n,
start by computing the eigenvalues and
eigenvectors of ATA. In our setting, the
eigenvectors of S are the right singular
vectors of X.

by computing the singular value decomposition of the data matrix
X. This is why some say, “PCA is just the SVD.” We summarize the
details step-by-step.

1. Collect m samples of each of n random variables, xj,k for j =

1, . . . , n and k = 1, . . . , m. (We need m > 1; typically m� n.)

2. Compute the empirical means of each column, µk = (∑m
`=1 xk,`)/m.

3. Stacking the samples of the kth variable in the vector xk ∈ Rm,
construct the mean-centered data matrix

X = [(x1 − µ1) (x2 − µ2) · · · (xn − µn)] ∈ Rm×n.

4. Compute the (skinny) singular value decomposition X = UΣVT ,
with U ∈ Rm×n, Σ = diag(σ1, . . . , σn) ∈ Rn×n, and V =

[v1 · · · vn] ∈ Rn×n.

5. The kth sample principal component is given by vT
k X, where X =

[X1, . . . , Xn]T is the vector of random variables.

6. You can assess the importance of the various principal compo-
nents via the eigenvalues of S, given by λk = σ2

k /(m− 1). If these
eigenvalues decay rapidly as k increases, that is a sign that your
data can be well-represented by the first few principal compo-
nents.

86

A word of caution: when conducting principal component anal-
ysis, the scale of each column matters. For example, if the random
variables sampled in each column of X are measurements of physical
quantities, they can differ considerably in magnitude depending on
the units of measurement. By changing units of measurement, you
can significantly alter the principal components.

6.3.4 Clustering via PCA

PCA can be used to cluster data. To illustrate, we turn to a data set
comprising of chemical properties of Italian wines. The data set in-
cludes measurements of 13 different properties for 178 wines, giving
a data matrix X of dimension 178× 13. (The properties include: alco-
hol content, malic acid, ash, alcalinity of the ash, etc.) You can download the “Wine Data Set”

from the UCI Machine Learning Repos-
itory, https://archive.ics.uci.edu/
ml/datasets/wine. For more details
on this data set and the application of
eigenvector-based clustering to it, see:
M. Forina, C. Armanino, M. Castino,
and M. Ubigli. “Multivariate data anal-
ysis as a discriminating method of the
origin of wines,” Vitis 25 (1986) 189–201.

Each of these 178 wines comes from one of three grape varieties:
Barolo (nebbiolo grape), Grignolino, or Barbera. Now a bottle of
Barolo typically costs quite a bit more than the other two wines, so
it would be interesting to know if these high-end wines really can be
distinguished, chemically, from the others.

When working with a real data set, we must begin by preparing
the data. Since variables may be measured in different units, we be-
gin by computing the empirical mean of each variable, and dividing
by the mean (so that each variable now has mean 1). If you do not normalize your variables,

you risk having an extremely large
principal component dominated by one
single variable that happens to have
very large values.

With this normalization complete, conduct PCA as described
above: form the data matrix X and compute its dominant singular
values and singular vectors. Figure 6.10 shows the singular val-
ues of X, suggesting that the first two or three principal compo-
nents will dominate the others. Figure 6.11 shows the eigenvalues of
S = XTX/(m− 1), which obey λk = σ2

k /(m− 1). The squaring ac-
centuates the differences between the large and small singular values.
Illustrations like Figure 6.11, called scree plots, are commonly used by Using λk = σ2

k /(m− 1), we have

λ1 ≈ 0.608, λ2 ≈ 0.289,

λ3 ≈ 0.161, λ4 ≈ 0.089.

data scientists to decide how many principal components are worthy
of consideration.

Figure 6.12 helps us understand how much of the total variation in
the data is contained in the first k principal components. It plots the
ratio (6.4) using the eigenvalues of the empirical covariance matrix
S. By this measure, if you want to capture 75% of the variation in the
data, you would use the first three principal components (since the
data first exceeds 0.75 when k = 3).

How can we use principal components to cluster the data? Con-
sider the kth sample of data, described by the variables

x1,k, x2,k, , . . . , , x13,k.

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine

87

Denote the first right singular vector of X ∈ R178×13 by

v1 = [γ1, . . . , γ13]
T .

Then the variance-maximizing combination of the 13 variables is
given by

ξk :=
13

∑
j=1

γjxj,k.

Similarly, writing the second right singular vector of X as

v2 = [ω1, . . . , ω13]
T ,

define the second-best variance maximizing combination as

ηk :=
13

∑
j=1

ωjxj,k.

Here is the key idea: we have squeezed as much variance as possi-
ble from our 13 variables into 2 variables. Can we actually reduce the
dimension of our data set from those 13 variables down into the two
new variables?

(
x1,k, x2,k, . . . , x13,k

)
=⇒

(
ξk, ηk)

If λ3 = λ4 = · · · = λ13 = 0, then this would be a perfect compres-
sion of the variables. Of course in practice, the reduction is only ap-
proximate, but hopefully we have distilled the essential distinguish-
ing features of the 13 variables into those 2 consolidated variables ξk

and ηk. We can view (ξk, ηk) as a projection of the 13 dimensional data
onto a two-dimensional space. Many other projections are possible
(just take any two of the given variables), but the one from PCA is

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8

10

12

k

σk

Figure 6.10: Singular values of the
178 × 13 wine data matrix X (with
normalized columns).

88

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

λk

Figure 6.11: Eigenvalues of the 13× 13
matrix S = (m − 1)−1XTX for the
wine data set. Such eigenvalue plots
are called scree plots, as named by
Raymond Cattell in 1966, who sug-
gested a way of selecting the number
of important principal components
based on the elbow in the plot on the
left. (“Scree” means the pile of rocks
that often accumulate at the bottom of a
cliff: your leading singular values form
the cliff; the smaller singular values
form the rubble on the ground.)

“This straight end portion we began
calling the scree—from the straight line
of rubble and boulders which forms
at the pitch of sliding stability at the
foot of a mountain. The initial impli-
cation was that this scree represents a
“rubbish” of small error factors.”

— Raymond Cattell, 1966optimal (in the sense of maximizing variance). Figure 6.13 shows the
(ξk, ηk) projection for these 178 data points.

Recall that our goal is to identify if each of these samples is Barolo,
Grignolino, or Barbera. Can you see any clusters in Figure 6.13?
To help, we apply the k-means algorithm with k = 3 to this data. We used MATLAB’s kmeans imple-

mentation, running from 10 starting
configurations and keeping the best
clustering that results.

Figure 6.14 shows the results.
Conveniently enough, we have labeled data in this case, so we can

check if the clustering in Figure 6.14 did a good job of identifying the
three wine varieties. Figure 6.15 shows the results.

First of all, we notice that the three wine varieties really do look
quite distinct, when projected into the two-dimensional (ξk, ηk) PCA
coordinates. Even better, the k-means results match these pretty well:
k-means made a few mistakes, especially at the frontier between
Barolo and Grignolino, but overall it looks like we could do a de- Indeed, k-means draws a cleaner

boundary between these wines than we
see in reality.

1 2 3 4 5 6 7 8 9 10 11 12 13

0.25

0.5

0.75

0.9

1

k

∑k
j=1 λk

∑n
j=1 λk

Figure 6.12: Cumulative sum of the
eigenvalues of S = XTX/(m − 1),
normalized by the total sum. This
plot reveals the percentage of the total
variation is contained in the first k principal
components.

89

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

ξk

ηk

Figure 6.13: Projection of the wine data
set into the two variables defined by the
leading two principal components.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

ξk

ηk

Figure 6.14: Results of k-means cluster-
ing of the results in Figure 6.13.

cent job of identifying wine through the combined efforts of PCA
and k-means. (Whether, for this application, data science yields an
improvement over the traditional manner of careful testing with a
well-trained palate, I will let you be the judge. . . .)

The derivation above suggests that the PCA-derived variables
(ξk, ηk) should exhibit greater variance than we would find from just
picking a pair of the variables (say, (x1,k, x2,k). Figure 6.16 verifies this
intuition, projecting the 13-dimensional data onto just two coordi-
nates (we picked (1,2), (3,4), and (5,6)). (The color-coding refers to the
true wine varieties, as in Figure 6.15.)

90

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

ξk

ηk

Figure 6.15: Repetition of Figure 6.13,
but now color-coded according to the
wine variety specified in the data set.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
0

0.5

1

1.5

2

2.5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.6

0.8

1

1.2

1.4

1.6

0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x1,k (alcohol)

x 2
,k

(m
al

ic
ac

id
)

x3,k (ash)

x 4
,k

(a
lk

al
in

it
y

of
as

h)

x5,k (magnesium)

x 6
,k

(t
ot

al
ph

en
ol

s)

Figure 6.16: These three plots each
project the 13-dimensional wine data
set into two dimensions, just using the
given variables instead of the derived
variables from PCA. We see that these
pairs variables, on their own, do a poor
job of distinguishing the three classes of
wines.

6.4 Practical Computing: How Noise Affects the SVD

The notion of rank is central to linear algebra, but in the early years
of numerical computing, it became clear that a more nuanced under-
standing of rank would be necessary, to handle

We study linear algebra on a matrix A ∈ Rm×n whose entries are
real numbers. As there is an uncountably infinitude of real numbers,
every entry aj,k ∈ R can take on uncountably many values. When
working on a computer, we cannot implement such an rich number
system with infinitely many options. We settle instead for an ex-
cellent floating point number system, which has finitely many values
spaced logarithmically from the very small to the very large. When
we store a matrix on a computer, often aj,k is not one of these cho-
sen values in the number system, and so it is rounded – by a relative
amount around 10−16, to the closest value in the number system.

The floating point number system is not “closed under addition
and multiplication”, meaning that quantities like aj,k + ar,s and aj,kar,s

91

need not be in the number system: so the results of such operations
also need to be rounded. Through much careful and fruitful research,
we now know how to implement a good number system, and work
with algorithms in the presence of such small rounding errors. The favored number system, IEEE

floating-point arithmetic, is now almost
universally used. The design of this
system earned William Kahan the
Turing Award (1989). Our understand-
ing of the stability of algorithms in a
floating-point environment was pio-
neered by James Hardy Wilkinson,
also a Turing Award winner (1970).

The result is that we never really work with our matrix A ∈ Rm×n,
but instead with a nearby matrix

Â = A + E

for some small perturbation (you can think of it as noise) E ∈ Rm×n.
For good algorithms, we often have ‖E‖ ≈ 10−16‖A‖.

How does the perturbation E affect the rank?

6.5 Randomized algorithms for approximation of the SVD

6.6 Recommender systems

6.7 Principal Orthogonal Decomposition (POD)

6.8 Interpolative approximations

A ≈ CUR = CX = YR.

6.9 Afterword

The singular value decomposition was developed in its initial form
by Eugenio Beltrami (1873) and, independently, by Camille
Jordan (1874).2 2

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 7
Linear Systems, the Pseudoinverse,
and Ill-Posed Problems

Given mastery of the SVD and low-rank approximation, we are
now prepared to develop a fully mature understanding of systems
of linear equations. This understanding will develop in three steps of
increasing sophistication:

• appreciate when the linear system Ax = b has an exact solution;

• use the pseudoinverse to solve this more general problem: of all
solutions x ∈ Rn to the least squares problem

min
x∈Rn

‖b−Ax‖

find the one that minimizes ‖x‖;

• realize that for many important application problems, the pseu-
doinverse solution is prone to instability, and this can be remedied
through a class of techniques called regularization.

This chapter will revisit some ideas introduced in Sections 5.3 and 5.9,
as we focus deeply on Ax = b problems.

7.1 Linear systems

Let us begin with four trivial examples that illustrate the breadth of
the theory.

Example 7.1 (a unique solution exists). Consider the linear system
Ax = b, [

1 1
0 2

] [
x1

x2

]
=

[
1
2

]
.

© Copyright 2022 by Mark Embree. All rights reserved.

93

This system encodes two simple equations,

x1 + x2 = 1

2x2 = 2.

The first equation gives x2 = 1− x1, describing a line in the (x1, x2)

x

0 x1

x2

2x2 = 2

x2 = 1 − x1

The blue line shows the first equation
x1 + x2 = 1; the red line shows the
second equation, 2x2 = 2; the solution
x to Ax = b is the unique point
x = [0, 1]T where the blue and red lines
intersect.

plane (the blue line in figure on the right), while the second equation
simply gives 2x2 = 2, another line in the (x1, x2) plane (the red line).
These lines only intersect at a single point,

x =

[
x1

x2

]
=

[
0
1

]
,

the unique solution of Ax = b.

Example 7.2 (a unique solution exists). Suppose we add an addi-
tional equation to the last example,

x1 = 0,

which extends our Ax = b problem to



1 1
0 2
1 0



[

x1

x2

]
=




1
2
0


 .

Since A has more rows than columns, it cannot be invertible; how-
ever, it is still possible, in some situations, for Ax = b to have a unique
solution. The key here is that the new equation x1 = 0 is consistent
with the two preceding equations. The figure on the right shows this

0 x1

x2

2x2 = 2

x2 = 1 − x1

x1 = 0

The equation x1 = 0 adds the green
line. Since the blue, red, and green
lines all intersect at a common point
(x = [x1, x2]

T = [0, 1]T), a unique
solution exists to Ax = b.

scenario, adding the green line x1 = 0 that intersects the two pre-
ceding equations (in blue and red) at their common intersection: the
three equations are consistent, simultaneously satisfied by

x =

[
0
1

]
.

Example 7.3 (no solution exists). Suppose we instead supplemented
example 7.1 with the equation

x1 = 1,

extending the Ax = b problem to



1 1
0 2
1 0



[

x1

x2

]
=




1
2
1


 .

Now the new equation (again shown in green in the plot at the right)

0 x1

x2

2x2 = 2

x2 = 1 − x1

x1 = 1

The equation x1 = 1 adds the green
line. For Ax = b to have a solution, we
need all three of these lines to intersect
at a single point. Since that never
happens, Ax = b never has a solution.

94

does not pass through the intersection of the two original equations (blue
and red lines). For the system Ax = b to have a solution, all three
of the constituent scalar equations must be consistent, meaning they
must intersect in a single point in the (x1, x2) plane. That is never the
case here, so Ax = b has no solution. The system is overdetermined.

The situation is not hopeless: we can instead solve the least squares
problem

min
x∈Rn

‖b−Ax‖, (7.1)

which always has a solution. Using techniques explored in Sec-
tion 5.9 (see especially equation (5.18)) and unpacked in the next
section, since the columns of A are linearly independent we can solve
the least squares problem (7.1) by solving

ATAx = ATb,

i.e., [
2 1
1 5

] [
x1

x2

]
=

[
2
5

]
,

which has the unique solution (black star on the plot to the right)

?

0 x1

x2

2x2 = 2

x2 = 1 − x1

x1 = 1

The black star shows the solution
x+ = [5/9, 8/9]T to the least squares
problem (7.1); this point is not on any
of the three lines (so none of the three
equations x1 + x2 = 1, 2x2 = 2, x1 = 1
is satisfied exactly), but it is near these
lines.

that we will denote

x+ =

[
5/9
8/9

]
.

Example 7.4 (infinitely many solutions; unique minimum norm solu-
tion). Now adapt Example 7.1 by changing the (2, 2) entry of A:

[
1 1
2 2

] [
x1

x2

]
=

[
1
2

]
.

Now both scalar equations are equivalent,

x1 + x2 = 1

2x1 + 2x2 = 2.

In the plot on the right, we see the two equivalent conditions tracing

0 x1

x2

x2 = 1 − x1
2x2 = 2 − 2x1

The blue line shows the first equation
x1 + x2 = 1; the red line shows the
second equation, 2x2 = 2; the solution
x to Ax = b is the unique point
x = [0, 1]T where the blue and red lines
intersect.

out the same line, x2 = 1− x1. Any x on this line satisfies both scalar
equations, and hence solves Ax = b:

x =

[
x1

1− x1

]
.

The equation Ax = b has infinitely many solutions, and we say the system
is underdetermined.

In this case, we have the opportunity to impose an additional
condition on the solution so as to get a unique solution. In many

95

applications it is appealing to minimize ‖x‖, which is equivalent to
minimizing

‖x‖2 = x2
1 + x2

2.

For the specific solution to this problem, write out

‖x‖2 = (x1)
2 + (1− x1)

2 = 2x2
1 − 2x1 + 1,

take a derivative with respect to x1 and set to zero to find

x+ =

[
1/2
1/2

]
.

The plot on the right shows this point as a star; notice that it is sim-
ply the point on the line that is closest to the origin.

?x+
0 x1

x2

x2 = 1 − x1
2x2 = 2 − 2x1

The star shows the minimum norm
solution to Ax = b, given by x+ =
[1/2, 1/2]T .

Example 7.5 (no solutions; infinitely many least squares solutions).
Finally, consider a tweak to the last example, changing the second
entry of b: [

1 1
2 2

] [
x1

x2

]
=

[
1

4.5

]
.

Now the two scalar equations are contradictory:

x1 + x2 = 1

2x1 + 2x2 = 4.5.

These scalar equations describe lines that never intersect, and so there

0 x1

x2

x2 = 1 − x1

2x2 = 4.5 − 2x1

The two scalar equations describe lines
that never intersect: Ax = b has no
solution.

is no x ∈ R2 that satisfies both equations.
No worries: when we encountered this situation in Example 7.3 we

sought the least squares solution by solving the normal equations

ATAx = ATb,

which in this case amounts to
[

5 5
5 5

] [
x1

x2

]
=

[
10
10

]
.

But in this case a strange situation arises. The matrix ATA is not
invertible, so the normal equations – and hence the least squares
problem – has infinitely many solutions: any x = [x1, x2]

T that satisfies

5x1 + 5x2 = 10

will be least squares solution. Thus any vector

x =

[
x1

2− x1

]

96

minimizes ‖b− Ax‖. The plot on the right shows these solutions as
the black arrow. To verify that any such x really does solve the least

0 x1

x2

x2 = 1 − x1

2x2 = 4.5 − 2x1
x2 = 2 − x1

The thick black arrow denotes the
infinitely many solutions of the least
squares problem minx ‖b− Ax‖. Any
x on this black line gives the same
minimal value of ‖b−Ax‖.

squares problem, compute the residual

b−Ax =

[
1

4.5

]
−
[

1 1
2 2

] [
x1

2− x1

]

=

[
1− x1 − (2− x1)

4.5− 2x1 − 2(2− x1)

]
=

[
−1
0.5

]
,

which is indeed independent of x1.
Following the lead of Example 7.4, we can still get a minimum

norm solution by minimizing ‖x‖ over all solutions to the least
squares problem. For such solutions x,

‖x‖2 = (x1)
2 + (2− x1)

2 = 2x2
1 − 4x1 + 4,

which takes a minimum when x1 = 1, i.e,

x+ =

[
1
1

]
,

which is shown as a star on the plot on the right.

?x+

0 x1

x2

x2 = 1 − x1

2x2 = 4.5 − 2x1
x2 = 2 − x1

The black star shows the x with mini-
mum norm among the infinitely many
solutions of the least squares problem
minx ‖b−Ax‖.

This last example shows the most general scenario we can en-
counter when attempting to solve Ax = b. In the next section, we
will dive deeper into the mechanics illustrated by all the examples
in this section, developing a way to use the SVD to write down the
unique vector x+ that has minimum norm among all the vectors x
that minimize ‖b − Ax‖. Before developing this theory, let us con-
sider the five examples in this section using the language of elemen-
tary linear algebra. We use two principles.

• A solution x to Ax = b exists if and only if b ∈ R(A).

• A solution x to Ax = b is unique if and only if N(A) = {0}.

The flowchart in Figure 7.1 delineates the possibilities that follow
from these two principles.

When reading a flowchart, the
diamond-shaped boxes denote a de-
cision point: depending on the answer,
the flow proceeds in one direction or
the other.

The first statement follows immediately from the definition of the
column space (range):

R(A) = {Ax : x ∈ Rn}

means that R(A) is simply the collection of all vectors b for which
Ax = b has a solution.

97

Is b ∈ R(A)?
Does

N(A) = {0}?
Ax = b has a

unique solution

Ax = b has
no solution

Ax = b has
infinitely many

solutions

yes

no

yes

no

Figure 7.1: Decision process for ana-
lyzing if Ax = b has a solution x for a
given choice of A and b.The second statement follows from the fact that if z ∈ N(A), then

Az = 0, so for any solution x to Ax = b,

A(x + z) = Ax + Az = b + 0 = b,

and hence x + z is also a solution.

If N(A) = {0}, then we must have z =
0, and so x + z = x, and this procedure
does not create a new solution.

Let us interpret the examples in this section in light of these princi-
ples.

• Example 7.1: R(A) = R2 and N(A) = {0}, so Ax = b has a unique
solution for all b ∈ R2.

• Example 7.2: R(A) is a two-dimensional subspace of R3 with
b = [1, 2, 0]T ∈ R(A) and N(A) = {0}, so Ax = b has a unique
solution for this particular b.

• Example 7.3 uses the same A as the last example, but now b =

[1, 2, 1]T 6∈ R(A), and so Ax = b does not have a solution.

• Example 7.4: R(A) and N(A) are both one-dimensional subspaces
of R2. For b = [1, 2]T ∈ R(A) a solution exists, but it is not unique
since any vector z = ζ[1,−1]T ∈ N(A).

• Example 7.5 uses the same A as the last example, but now b =

[1, 4.5]T 6∈ R(A), so Ax = b does not have a solution.

7.2 The pseudoinverse

We now have a full understanding of the Ax = b problem; we now
seek a similarly complete understanding of the general least squares
problem.

98

Least Squares problem. Let A ∈ Rm×n and b ∈ Rm. Among all
x ∈ Rn that solve

min
x∈Rn

‖b−Ax‖,

find the x that minimizes ‖x‖.

In some applications, minimizing ‖x‖
could amount to minimizing energy.
Some settings would prefer to pluck
out a different x from all solutions of
the least squares problem. A popular
alternative is to minimize the number
of nonzeros in x, associated with sparse
approximation (compressive sensing); since
this goal is difficult to implement, one
instead minimizes the “one-norm”

‖x‖1 = |x1|+ · · ·+ |xn|.
This goal relates to LASSO regression, as
we will mention later in this chapter.

We will now develop a full solution to this problem, starting by re-
visiting the steps we traced out in Section 5.9 for the case where
rank(A) = n. Here we merely assume that rank(A) = r, which could
be less than n and m.

As in Section 5.9, start by decomposing b into the form

b = bR + bN

with bR ∈ R(A) and bN ∈ N(AT). Now we seek to minimize

This decomposition follows from the
FTLA (Theorem 5.5), since Rm =
R(A) ⊕N(AT). Recall also that since
R(A) ⊥ N(AT), the elements in this
decomposition of b are orthogonal:
bR ⊥ bN .

‖b−Ax‖, which is equivalent to minimizing

‖b−Ax‖2 = ‖(bR + bN)−Ax‖2

= ‖(bR −Ax) + bN‖2.

Note that bR − Ax ∈ R(A) and anything in R(A) is orthogonal to
bN ∈ N(AT), so we can invoke the Pythagorean Theorem (Theo-

Since bR ∈ R(A) and Ax ∈ R(A),
and R(A) is a subspace, we must have
bR −Ax ∈ R(A).

rem 2.1) to obtain

‖b−Ax‖2 = ‖bR −Ax‖2 + ‖bN‖2.

The choice of x cannot affect ‖bN‖2, which we can regard as the
unreachable part of the error. On the other hand, since bR ∈ R(A),
we can always find some x ∈ Rn such that Ax = bR. Here is the

Recall that R(A) = {Ax : x ∈ Rn},
so if bR ∈ R(A), it must equal Ax for
some x.

trick: we need to find this x while only having b without specifically
knowing bR. Thankfully a simple trick resolves the problem. If Ax =

bR, then
b−Ax = (bR −Ax) + bN = bN .

Since bN ∈ N(AT), premultiply this equation by AT to get

AT(b−Ax) = ATbN = 0.

Rearrange to get
ATAx = ATb, (7.2)

which, as we saw in Section 5.9, are called the normal equations.
In Section 5.9, we found x simply by inverting ATA:

x = (ATA)−1AT .

However, if rank(A) = r < n, then ATA will not be invertible. We
encountered this situation in Example 7.5, where

ATA =

[
1 2
1 2

] [
1 1
2 2

]
=

[
5 5
5 5

]

99

is clearly not invertible. No surprise, the SVD will illuminate the path
forward. Recall the reduced, full, and dyadic forms:

A = UΣVT =
[

U U⊥
] [Σ 0

0 0

] [
VT

VT
⊥

]
=

r

∑
j=1

σjujv
T
j .

Since
Rn = R(AT)⊕N(A) = R(V)⊕R(V⊥),

any vector x ∈ Rn can be written as

This decomposition is another aspect of
the FTLA (Theorem 5.5); recall further
that R(AT) ⊥ N(A).

x = xR + xN = Vc + V⊥d =
r

∑
j=1

cjvj +
n

∑
j=r+1

dj−rvj,

where xR = Vc ∈ R(AT) and xN = V⊥d ∈ N(A), with c ∈ Rr and
d ∈ Rn−r. Find formulas for c and d, and we will have solved for x. The elements of c and d collect the co-

efficients of xR and xN expanded in the
bases {v1, . . . , vr} and {vr+1, . . . , vn}.We know that x must satisfy the normal equations (7.2). Into this

formula
ATAx = ATb

substitute the reduced SVD A = UΣVT and the decomposition
x = Vc + V⊥d to get

(UΣVT)T(UΣVT)
(
Vc + V⊥d

)
= (UΣVT)Tb.

Now distribute the transpose to get (UΣVT)T = (VT)TΣTUT = VΣUT ,
since Σ is a square diagonal matrix.

VΣUTUΣVT(Vc + V⊥d
)
= VΣUTb.

We can simplify this expression into beautiful form. Since the columns
of U (the left singular vectors) are orthonormal, UTU = I,

VΣ2VT(Vc + V⊥d
)
= VΣUTb.

Distribute across the expression for x to get

VΣ2VTVc + VΣ2VTV⊥d = VΣUTb.

Now the orthonormality of the right singular vectors ensures that
VTV = I and VTV⊥ = 0. These facts simplify the expression consid-
erably,

VΣ2c = VΣUTb,

wiping out d. Premultiply both sides first by VT to get

Σ2c = ΣUTb

and then by (Σ2)−1 = (Σ−1)2 to arrive, finally, at a clean expression Recall that Σ = diag(σ1, . . . , σr) ∈ Rr×r

is invertible, since the rank r equals the
number of nonzero singular values:

Σ−1 = diag(1/σ1, . . . , 1/σr).

for c ∈ Rr:
c = Σ−1UTb. (7.3)

100

What about d, the coefficients that reveal the piece xN = V⊥d in
N(A), that washed out of our calculation above? The vector d ∈ Rn−r

can be anything! Regardless of the choice of d,

x = Vc + V⊥d

= VΣ−1UTb + V⊥d (7.4)

will solve the normal equations ATAx = ATb, and hence the least
squares problem

min
x∈Rn

‖b−Ax‖.

Indeed, equation (7.4) describes the general form of all solutions to
the least squares problem.

We are hunting for the minimum norm solution of the least
squares problem. Since xR = Vc and xN = V⊥d are orthogonal,
we have

‖x‖2 = ‖xR + xN‖2 = ‖xR‖2 + ‖xN‖2,

where xN = V⊥d has

Here we use the Pythagorean Theorem
(Theorem 2.1) again.

‖xN‖2 = (V⊥d)T(V⊥d) = dTVT
⊥V⊥d = dTd = ‖d‖2.

Hence, to make ‖x‖ as small as possible,
we must choose d = 0, so that xN = V⊥d = 0.

We denote the minimum norm solution of the least squares problem

x+ = VΣ−1UTb =
r

∑
j=1

1
σj
(uT

j b)vj. (7.5)

Notice the matrix VΣ−1UT in this expression. If A is a square invert-

Invertible case, r = m = n :

A = U Σ VT

A−1 = V Σ−1 UT

ible matrix (r = m = n), then each of the U, Σ, and V matrices in the
SVD are square and invertible, and we have

Note that VTV = I and UTU = I imply
that (VT)−1 = V and U−1 = UT .

A−1 = (UΣVT)−1

= (VT)−1Σ−1U−1

= VΣ−1UT

Thus, in this special case of invertible A, equation (7.5) reduces to the
comforting form

x+ = VΣ−1UTb = A−1b.

Even for more general A (m, n, and r are not all the same)

the matrix VΣ−1UT acts like an inverse.

101

Is b ∈ R(A)?
Does

N(A) = {0}?
Ax = b has a

unique solution.

Ax = b has
no solution.

Find minimizer
of ‖b − Ax‖.

Ax = b has
infinitely many

solutions.

Does
N(A) = {0}?

min
x∈Rn

‖b−Ax‖
has infinitely

many solutions.

Among all the
solutions, find

the unique x that
minimizes ‖x‖.

min
x∈Rn

‖b−Ax‖
has a unique

solution.
x = A+b.

yes

no

yes

no

no

yes

Figure 7.2: Revisiting the Ax = b
flowchart from Figure 7.1, but now
adding in the least squares problem.
When infinite solutions exist, we pick
the unique one of minimal norm. We
shall see in the pages ahead that the
unique smallest norm solution can
always be written as x = A+x.

This motivates us to call this matrix the pseudoinverse of A, denoted

A+ = VΣ−1UT .

Just as it is sometimes helpful to write the SVD in dyadic form, we

General case (showing r < n < m):

A = U

Σ VT
}

r < n

A+ = V
Σ−1 UT

do the same for the pseudoinverse:

A+ =
n

∑
j=1

1
σj

vju
T
j

The dyadic formulas for A and A+ look very similar: A+ replaces σj

with 1/σj and swaps the roles of uj and vj. Notice that if A ∈ Rm×n,
then A+ ∈ Rn×m, so the pseudoinverse has the same shape as AT .
(Don’t confuse A+ with AT , they will generally be very different
objects!) See the sketch in the margin as an example.

Figure 7.2 expands the earlier flowchart for Ax = b problems
in Figure 7.1 to find the minimal norm solution of the general least

102

squares problem. The solution to all these problems can always be
written simply as

x+ = A+b.

Definition 7.1. Let A ∈ Rm×n be a rank-r matrix with (reduced and
dyadic) SVD

A = UΣVT =
r

∑
j=1

σjujv
T
j .

The pseudoinverse of A, denoted A+ ∈ Rn×m is

A+ = VΣ−1UT =
r

∑
j=1

1
σj

vju
T
j .

Despite its importance in mathematics
and statistics, the notation for the
pseudoinverse has not entirely setted
down; for example, you will sometimes
see A+ instead written as A† (read
“A-dagger”).

Let us shine a light on a few special examples.

• When A = 0 ∈ Rm×n, we have r = 0. How should we interpret the
formulas in Definition 7.1? We simply define

0+ = 0.

This formula might seem strange, but it makes sense if we insist
that x+ = A+b be the minimum norm solution to the least squares
problem: if A = 0, then ‖b − Ax‖ = ‖b‖: any x ∈ Rn solves
the least squares problem, and x+ = 0 = 0b is the solution with
minimal norm.

• If A ∈ Rn×n is a square, invertible matrix, then

A+ = A−1.

In this special case, AA+ = A+A = I ∈ Rn×n: the pseudoinverse is
the inverse.

• If A ∈ Rm×n has linearly independent columns (so r = n ≤ m), then
ATA is invertible (can you explain why?) and hence

A+ = (ATA)−1AT ,

agreeing with the formula for the pseudoinverse given in Sec-
tion 7.2. In this special case A+A = I ∈ Rn×n but, if n < m, then
AA+ 6= I ∈ Rm×m: the pseudoinverse is a “left inverse” of A but
not a “right inverse”.

• If A ∈ Rm×n has linearly independent rows (so r = m ≤ n), then
AAT is invertible (why?) and hence Can you derive this expression?

Hint: Substitute the reduced SVD
on the right and simplify to get the
formula for A+ in Definition 7.1.

A+ = AT(AAT)−1.

103

In this special case AA+ = I ∈ Rm×m but, if m < n, then A+A 6=
I ∈ Rn×n: the pseudoinverse is a “right inverse” but not a “left
inverse” of A.

Now we compute a few small pseudoinverse for the examples at the
start of this chapter.

Example 7.6 (Pseudoinverse for Examples 7.2 and 7.3). Examples 7.2
and 7.3 used

A =




1 1
0 2
1 0


 .

Since rank(A) = r = n = 2, we can use the simple formula

A+ = (ATA)−1AT

to arrive at

A+ =

[
4/9 −2/9 5/9
1/9 4/9 −1/9

]
.

Example 7.7 (Pseudoinverse for Examples 7.4 and 7.5). These exam-
ples used

A =

[
1 1
2 2

]

which has rank r = 1 and reduced SVD

A = UΣVT =

[
1/
√

5
2/
√

5

] [√
10
] [

1/
√

2 1/
√

2
]

.

The pseudoinverse is thus

A+ = VΣ−1UT =

[
1/
√

2
1/
√

2

] [
1/
√

10
] [

1/
√

5 2/
√

5
]

=

[
1/10 2/10
1/10 2/10

]
.

Let us emphasize the pseudo part of pseudoinverse. Notice that One can show that

AA+ = UUT

is an orthogonal projector onto R(U) =
R(A), while

A+A = VVT

is an orthogonal projector onto R(V) =
R(AT).

A+A =

[
1/2 1/2
1/2 1/2

]

while

AA+ =

[
1/5 2/5
2/5 4/5

]
,

so neither A+A nor AA+ agree with the identity: a consequence of
the fact that A as not full-rank, 1 = r < n = m = 2.

104

Let us wrap up this section by collecting the results for the problem
that motivated us.

Theorem 7.1. Let A ∈ Rm×n be a rank-r matrix with (reduced and
dyadic) SVD

A = UΣVT =
r

∑
j=1

σjujv
T
j .

Consider the least squares problem

min
x∈Rn

‖b−Ax‖.

• If r = n, the least squares problem has a unique solution, given by

x+ = A+b =
r

∑
j=1

uT
j b

σj
vj. (7.6)

• If r < n, the least squares problem has infinitely many solutions. Any
vector of the form

x =
r

∑
j=1

uT
j b

σj
vj +

n

∑
j=r+1

dj−rvj

minimizes ‖b−Ax‖ for any choice of d1, . . . , dn−r ∈ R.
Among these infinitely many solutions,

x+ = A+b =
r

∑
j=1

uT
j b

σj
vj (7.7)

Notice that the expressions for x+ given in (7.6) and (7.7) are identical.

7.3 An introduction to ill-posed problems

The pseudoinverse gives us the ultimate solution to linear systems
and least squares problems. But just before we begin to rest on our
laurels, we should look at one last example that will take a bit of the
shine off A+.

Example 7.8. (Sensitivity of the pseudoinverse) Recall Example 7.4,
[

1 1
2 2

] [
x1

x2

]
=

[
1
2

]
,

with infinitely many solutions

x =

[
x1

1− x1

]

105

from which we pick out the minimum norm solution

x+ = A+b =

[
1/10 2/10
1/10 2/10

] [
1
2

]
=

[
1/2
1/2

]
.

Suppose we tweak (2, 2) entry of A with a small perturbation (“noise”): Of course, application problems always
feature some kind of noise. At a mini-
mum, some noise stems from floating
point rounding error; in many settings,
such arithmetic noise is dwarfed by
more significant measurement errors.

Aε =

[
1 1
2 2 + ε

]
.

where ε > 0 is some small number. This change makes Aε invertible:

A+
ε = A−1

ε =

[
2/ε + 1 −1/ε

−2/ε 1/ε

]
.

Notice that small ε give very large entries in this matrix; for ε = 0.01,
we have

A+
.01 =

[
201 −100
−200 100

]
,

while for ε = 0.0001,

A+
.0001 =

[
20001 −10000
−20000 10000

]
.

The smaller ε gets, the larger the entries in the pseudoinverse!
In particular, we see that even though Aε → A as ε→ 0,

A+
ε does not converge to A+ as ε→ 0.

Apparently the pseudoinverse is not a continuous function of the ma-
trix entries.

To examine what is going on here in a (relatively) clean manner,
we will switch a more strategic perturbation. Now we will slightly

We could have done the same analysis
for the Aε given above, with very
similar results, but the SVD would be
more complicated.

disturb all entries of A and b:

Aε =

[
1 + 2ε 1− 2ε

2− ε 2 + ε

]
, bε =

[
1 + 3ε

2 + ε

]
.

Notice that all of these changes are still small when ε > 0 is small. As
before, Aε is invertible, with

A+
ε = A−1

ε =
1

10ε

[
2 + ε −1 + 2ε

−2 + ε 1 + 2ε

]
(7.8)

=

[
2/(10ε) −1/(10ε)

−2/(10ε) 1/(10ε)

]
+

[
1/10 2/10
1/10 2/10

]
.

This last decomposition is very suggestive: A+
ε consists of a large

piece that explodes when ε → 0 (the first matrix) followed by a con-
stant matrix independent of ε that actually equals the pseudoinverse

106

of the original (unperturbed) matrix, A+. In a sense, the piece of the
pseudoinverse that we want is swamped by the term that comes from
the noise.

For deeper insight, let us (naturally) turn to the SVD of Aε. The
dyadic form is

Aε =
√

10

[
1/
√

5
2/
√

5

] [
1/
√

2 1/
√

2
]
+ ε
√

10

[
2/
√

5
−1/
√

5

] [
1/
√

2 −1/
√

2
]

,

with singular values σ1 =
√

10 and σ2 = ε
√

10. The first term

σ1u1vT
1 =
√

10

[
1/
√

5
2/
√

5

] [
1/
√

2 1/
√

2
]

is precisely the unperturbed matrix A (see the SVD in Example 7.7),
while the second term

σ2u2vT
2 = ε

√
10

[
2/
√

5
−1/
√

5

] [
1/
√

2 −1/
√

2
]

,

is purely attributable to the noise. No problem: as ε → 0 this term
becomes increasingly insignificant.

The perturbation was carefully rigged
so these two terms separate so nicely, to
ease the presentation. In most cases, the
first term will have a small contribution
from ε that goes away as ε → 0, but
the phenomena discussed here occurs
essentially the same; the math is just
messier.

With the SVD in hand, we can readily compute the pseudoinverse:

A+
ε =

1
σ1

v1uT
1 +

1
σ2

v2uT
2

=
1√
10

[
1/
√

2
1/
√

2

] [
1/
√

5 2/
√

5
]
+

1
ε
√

10

[
1/
√

2
−1/
√

2

] [
2/
√

5 −1/
√

5
]

=

[
1/10 2/10
1/10 2/10

]
+

1
ε

[
2/10 −1/10
−2/10 1/10

]
.

The second term, which vanished as ε → 0 in the expression for Aε

since σ2 → 0, now blows up like 1/ε in A+
ε because of 1/σ2 → ∞.

Pause for a moment to appreciate the importance of this observation,
which reveals a major blemish on the heretofore pristine pseudoin-
verse and will occupy our attention in the rest of this chapter.

What implications does this property of the pseudoinverse have
for the solution of linear systems? We want to solve Aεxε = bε for xε.
Since Aε is invertible, we can use the formula in (7.8) to get

xε = A+
ε bε = A−1

ε bε =
1

10ε

[
2 + ε −1 + 2ε

−2 + ε 1 + 2ε

] [
1 + 3ε

2 + ε

]
=

[
1 + ε/2

ε/2

]
.

Recall that x+ = A+b was the minimum norm solution of the least
squares problem,

x+ =

[
1/2
1/2

]
.

107

Adding the perturbation gives the solution xε an entirely different
character:

xε =

[
1 + ε/2

ε/2

]
→
[

1
0

]
.

The figures on the right illustrates this difference. The solution xε

?x+
0 x1

x2

x2 = 1 − x1
2x2 = 2 − 2x1

The original problem Ax = b, has
infinitely many solutions with x2 =
1− x1, with the pseudoinverse solution
x+ = [1/2, 1/2]T minimizing ‖x‖.

?xε0 x1

x2

The perturbed problem Aεxε = bε has
a unique solution, xε = [1 + ε/2, ε/2]T ,
shown here with ε = 0.05.

?xε0 x1

x2

Repetition of the Aεxε = bε, but now
with ε = 0.01. The line becomes closer
but only intersect at one point xε, quite
distant from the pseudoinverse solution
x+ to the original problem.

to the perturbed solution is converging to a solution of the original
problem, but it is far from the minimum-norm solution x+ = A+b
given by the pseudoinverse of A.

The situation can even be worse than shown here. Suppose we
keep Aε the same but adjust bε strategically

bε =

[
1 + 2

√
ε

2−√ε

]
= b +

√
5εu2

with noise in the direction u2, the left singular vector associated with
the small singular value σ2 = ε

√
10. Now the (unique) solution to the

perturbed system is

xε =

[
1/2 + 1/(2

√
ε)

1/2− 1/(2
√

ε)

]
=

[
1/2
1/2

]
+

1√
ε

[
1/2
−1/2

]
. (7.9)

Take a moment to consider this solution. What happens as ε → 0?
Unlike the first perturbation to bε, the solution now grows extremely
large, simply because of the noise.

7.4 Statistics of least squares

7.5 Application: deblurring

The examples presented thus far seem quite sterile, cooked up to
exhibit pathology. We study this topic because it has tremendous
importance in applications. The general field is known as inverse
problems; prominent applications include all sorts of image processing
problems, from sharpening up astronomical images to detecting
tumor margins from medical scans.

Let us introduce these ideas with a simple example of deblurring a
one dimensional “image,” like the barcode discussed in Chapter 1. To
set the stage, we need a mathematical mechanism to blur an image.
Our “image” will be a function of one variable, f (s) for s ∈ [0, 1]. To For the barcode example, f (s) = 1

will correspond to a black bar, while
f (s) = 0 corresponds to a white bar. As
s goes from s = 0 to s = 1, f (s) jumps
from between 0 and 1: it has jump
discontinuities at every transition from a
black to white bar, and vice versa. See
page 3 in Chapter 1 for an illustration.

blur the image, we “convolve the image with a kernel function.” This is
a fancy way of saying that we integrate the product of f against some
other function h: ∫ 1

0
h(s, t) f (t)dt = b(s). (7.10)

We call h(s, t) the blurring kernel.

108

0 0.2 0.4 0.5 0.6 0.8 1

0

2.5

5

t

h(0.5, t)

Figure 7.3: The step function blurring
kernel h(s, t) given by (7.11) with
z = 0.1, shown at s = 0.5 for t ∈ [0, 1].
On the interval [s− z, s + z] the function
takes the value 1/(2z) = 5.

Let us take a simple concrete example: define

h(s, t) =

{
1/(2z), |s− t| ≤ z;

0, |s− t| > z.
(7.11)

The parameter z > 0 determines the nature of the blur. Figure 7.3
shows this kernel evaluated at the point s = 0.5 for z = 0.1. De-
creasing z will cause h(s, t) to be nonzero over a narrower interval in
t centered at s (but taller there, 1/(2z)).

Fix a point s ∈ [0, 1]. Away from the edges of the domain (i.e.,
when z ≤ s ≤ 1− z, this kernel (7.11) causes the integral (7.10) to take
the form

b(s) =
∫ 1

0
h(s, t) f (t)dt =

∫ s+z

s−z

(
1
2z

)
f (t)dt

=

∫ s+z
s−z f (t)dt

2z

=
area under f over [s− z, s + z]
width of interval [s− z, s + z]

.

Thus the integral is a moving average of f taken over a window of
width 2z centered at s. You can thus see how the integral in (7.10)
smooths, or blurs f : fine-scale changes in f are smeared out over the
averaging process.

In imaging applications, we measure the blurry b(s) function (with
a scanner, camera, telescope, etc.) and try to solve equation (7.10) for
the unknown f (t), the original object we seek. Thus solution process
should undo the blurring operation, that is, it should sharpen up the
image. However, we might be suspicious that this process could be
delicate. Two distinct objects might differ in fine-scale detail, but
this detail gets lost in the blur: the blurring operation maps two different
objects f1 6= f2 to very similar images b1 ≈ b2. The rest of this section
will explore how this potential sensitivity plays out in linear algebra.

109

7.5.1 Discretization turns calculus into linear algebra

Modern cameras store images digital information, recording color
intensity at n pixel values: we must cast the function b(s) for s ∈
[0, 1] into a vector b of n discrete values. To convert the calculus
problem (7.10) into a linear algebra problem, break the interval [0, 1]
into discrete points:

sj =
j− 1/2

n
, tk =

k− 1/2
n

, j, k = 1, . . . , n,

for some n ≥ 1. Then approximate the integral (7.10) by the simple
midpoint quadrature rule:

1
n

n

∑
k=1

h(sj, tk) fk = bj, j = 1, . . . , n, (7.12)

where bj = b(sj) and (hopefully) fk ≈ f (tk).

Arranging all n of the equations (7.12) for j = 1, . . . , n into matrix
form gives Af = b:

1
n




h(s1, t1) h(s1, t2) · · · h(s1, tn)

h(s2, t1) h(s2, t2) · · · h(s2, tn)

...
...

. . .
...

h(sn, t1) h(sn, t2) · · · h(sn, tn)







f1

f2

...

fn



=




b1

b2

...

bn




. (7.13)

Be sure to include the 1/n term in the
matrix A: that term is crucial to get the
scaling right.

7.5.2 An example

The kernel (7.11) illustrated in Figure 7.3 is a bit too crude. In many
applications, one prefers Gaussian kernels of the form

h(s, t) =
1√
πz

e−(s−t)2/z2
.

for some small constant z > 0. When s ≈ t, h(s, t) ≈ 1/(
√

πz); when

Scaling by 1/(
√

πz) ensures that∫ ∞
−∞ h(s, t)dt = 1. We are only inte-

grating from over t ∈ [0, 1], but the tails
of h(s, t) that we neglect would make
a very small contribution when z is
small and s is not near the edges of the
domain [0, 1].

|s− t| is large, h(s, t) ≈ 0. For illustrative purposes here will shall use
a simpler kernel, the “hat function” shown in Figure 7.4,

h(s, t) = max
(

0, 1− |s− t|/z
)

/z, (7.14)

whose behavior is similar to the Gaussian kernel.

For this experiment, we will use n = 1000 discretization points
over the interval s, t ∈ [0, 1]. First we will form a known f vector
and show how the operation b = Af does indeed blur f. Take as the
original object f (t) the function plotted in Figure 7.5. We have given
it a few sharp corners (“edges” in image processing) that we expect a

110

blurring operation to smooth out. Construct the vector f ∈ R1000 by
sampling f (tk) at the points tk = (k− 1/2)/n for k = 1, . . . , n = 1000,
and form the blurring matrix A ∈ R1000×1000 for the hat kernel (7.14)
with z = 0.05, using the structure given in (7.13).

Figure 7.6 compares f to the entries in b = Af. The vector b ∈
R1000 appears as red dots (fused into a continuous curve) with tk

on the horizontal axis and the kth entry of b on the vertical axis, to
facilitate comparison with f (t) over t ∈ [0, 1]. Indeed, the blurred
vector b smooths out the corners in f .

We now return to a concern we raised a few pages earlier. Can the
blurring operation take two functions, say f and f̃ , and blur them
into vectors b and b̃ that are very close together, as the cartoon in
Figure 7.7 suggests? (This property would have serious implications
for the deblurring process, which attempts to compute f as A−1b, as
we will discuss momentarily.)

Figure 7.8 confirms that the scenario envisioned in Figure 7.7
can indeed occur in practice. The left of Figure 7.8 shows the vector
f sampled from the function f in Figure 7.5, along with a second
sampled vector f̃. This new vector f̃ differs considerably from f, but
the changes (bottom of Figure 7.8) are fine in scale; the overall shape
of f and f̃ is the same. (Because of its many oscillations, we say the
difference is high in frequency.)

Now compare the blurred versions of f and f̃, denoted by b and b̃
and shown on the right side of Figure 7.8. To the eye, it is very difficult
to tell any difference between b and b̃ despite the significant difference
between f and f̃. The bottom-right plot confirms this: even though
f̃ differs from f by about 0.1, b̃ never differs from b by more than
0.0001, three orders of magnitude less!

7.5.3 Deblurring: a prototypical inverse problem

Thus far our example has taken a known object f, and created a
blurry version b. Rarely to we want to blur out an image; more of-
ten we want to take a blurring image acquired from our “camera”
and sharpen it up.

0 0.2 0.4 0.5 0.6 0.8 1

0

10

20

t

h(0.5, t)

Figure 7.4: The hat function blurring
kernel h(s, t) given by (7.14) with
z = 0.05, shown at s = 0.5 for t ∈ [0, 1].

111

0 0.2 0.4 0.6 0.8 1

0

0.5

1

t

Figure 7.5: The original “object”
described by the function f .

We hope to discover f by deblurring
the acquired image b.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

t

Figure 7.6: The function f (in blue),
compared with samples of the blurred
vector b = Af (in red), using the hat
function kernel (7.14) with z = 0.05,
discretized with n = 1000 points.

To deblur the image b, we could simply compute

f = A−1b.

Figure 7.9 sketches out this process and highlights a major challenge:

With the kernel (7.14), the matrix A is
invertible, so A+ = A−1.

by smoothing out fine-scale details, the blurring operation can map
quite different f vectors to very similar b vectors, as seen in Fig-
ure 7.8. The blurring operation has essentially erased the fine-level
detail in B̃ f . This property is highly problematic when we reverse
the direction of the map in the inverse problem: small changes in the
acquired image b can result in very different sharpened images f! You can
imagine the kinds of noise that could make small changes to the b
vector acquired by our “camera.” A process like this is called an “ill-
posed inverse problem,” because the process of undoing the blurring
can effectively result in many different reasonable answers.

Figure 7.10 explore the practical implications of this ill-posedness.

Rn
R(A)

forward problem

f

f̃

A

A
b = Af

b̃ = Af̃

Figure 7.7: Cartoon of the blurring
process: the matrix A can map vectors
that are far apart to vectors that are
quite close together. We call this the
“forward problem”: A maps a known
vector f to its blurred version b = Af.

112

1 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1 100 200 300 400 500 600 700 800 900 1000

-0.1

0

0.1

1 100 200 300 400 500 600 700 800 900 1000
-0.0001

0

0.0001

f b

f̃ b̃

f− f̃ b− b̃

j j

j j

j j

Figure 7.8: Blurring maps vectors
closer together. Consider the two
vectors f and f̃ on the left, whose
difference, which is obvious to the eye,
is plotted in the bottom left. Despite
the differences between f and f̃, their
blurred versions b = Af and b̃ = Af̃
(shown on the right) look nearly identical.
Their difference, on the bottom right,
does not exceed 0.0001.

Start with the top-left plot, which deblurs the exact vector b via
f = A−1b, showing the result as yellow dots. (The true f (t) func-
tion is shown in blue underneath the yellow dots, for reference.) The
recovered f looks perfect to the eye, because we knew the exact func-
tion b.

In some settings – even using different
kernels in this one-dimensional deblur-
ring process – the inversion process is
so fragile that calculating f = A−1b
results in a ridiculous answer.

Suppose now that we inject a bit of noise in the process, and fol-
low this testing procedure.

• Take the exact solution f with kth entry fk = f (tk).

• Form the exact right-hand side b = Af by multiplying A against f.

Rn
R(A)

inverse problem

A−1b = f

A−1b̃ = f̃

A−1

A−1

b
b̃

Figure 7.9: Cartoon of the deblurring
process. We call this an “inverse prob-
lem” because it takes an acquired image
b and seeks to “invert” the blurring
process to get the original (unknown)
sharp image f = A−1b. Deblurring is
the prototypical example of an ill-posed
problem. Noise makes small changes to
b, which can get highly exaggerated by
the action of A−1: the inverse can map
nearby vectors b and b̃ to far off points f
and f̃.

113

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0 0.2 0.4 0.6 0.8 1

-2

0

2

4

0 0.2 0.4 0.6 0.8 1
-20

-10

0

10

20

no noise noise level 10−6

noise level 10−5 noise level 10−4

t t

t t

Figure 7.10: Recovered functions
fnoise = A−1bnoise. The noise level refers
to the standard deviation of random
noise added to the original b vector.

• Add Gaussian noise to the right-hand side,

bnoise = b + ε,

where the entries of ε ∈ Rn are Gaussian random variables with
mean 0 and small standard deviation. (The experiments in Fig-
ure 7.10 use standard deviation 10−6, 10−5, and 10−4.)

• Try to recover the exact f from the noisy data,

fnoise = A−1 bnoise.

Note that we compute all “A−1b”
type operations by solving a linear
system, which you can do via the
np.linalg.solve command.
You should not form the matrix A−1.

Figure 7.10 shows the results of three trials of this experiment with
different noise levels. Even with noise level as small as 10−6 the re-
sults are pretty shabby; indeed, the recovered fnoise resembles the f̂
vector in Figure 7.8. Increase the noise level by an order of magnitude
or two and the results are entirely useless!

7.5.4 The rise of the small singular values

To understand the results in Figure 7.10, let us revisit the inversion
operation. Please note that the discussion here goes through exactly
the same if A is not invertible and we are discussing instead the
pseudoinverse solution A+b. In this spirit, we continue the discus-
sion in terms of a rank-r matrix, even though our running example,
our particular blurring matrix has rank r = n.

Consider the standard Af = b problem. The inverse (or pseudoin-
verse) solution is given by

f =
r

∑
j=1

uT
j b

σj
vj. (7.15)

114

1 100 200 300 400 500 600 700 800 900 1000
10-6

10-4

10-2

100

k

σk

Figure 7.11: Singular values of the
1000× 1000 blurring matrix with the
hat function kernel shown in Figure 7.4.

The σj values in the denominator will be our primary concern: when
we invert singular values, the small σj terms become the dominant
1/σj terms! If the corresponding value of uT

j b is not correspondingly
small, these terms will come to dominate f.

Let us inspect the singular values of the blurring matrix A, shown
in Figure 7.11. Notice that the singular values decay rapidly, a drop
of six orders of magnitude from σ1 ≈ 1 to σ1000 ≈ 2× 10−6. Thus we
need to be concerned about the role of small singular values in the
solution formula (7.15).

Note that when b ∈ R(A), we can write

b = UUTb =
r

∑
j=1

(uT
j b)uj. (7.16)

This expansion leads to an observation that will be very important

The numbers uT
j b are the coefficients of

b expanded in the basis {uj} for R(A).

for our discussion going forward.

The scalars uT
j b ∈ R tell us how much the jth left singular vector uj

contributes to b.

Now using the formula A+ = VΣ−1UT derived in equation (7.7),
we have

f = VΣ−1UTb =
r

∑
j=1

(uT
j b

σj

)
vj. (7.17)

In most situations the true object f is modest in size, say ‖f‖ ≈ 1.

The numbers uT
j b/σj are the coeffi-

cients of f expanded in the basis {vj}
for R(AT).

Since the right singular vectors {v1, . . . , vr} are orthonormal,

‖f‖2 = fTf =

(r

∑
j=1

uT
j b

σj
vj

)T(r

∑
k=1

uT
k b
σk

vk

)

115

1 100 200 300 400 500 600 700 800 900 1000

10-10

10-5

100

1 100 200 300 400 500 600 700 800 900 1000
10-6

10-4

10-2

100

102

1 100 200 300 400 500 600 700 800 900 1000

10-10

10-5

100

1 100 200 300 400 500 600 700 800 900 1000
10-6

10-4

10-2

100

102

1 100 200 300 400 500 600 700 800 900 1000

10-10

10-5

100

1 100 200 300 400 500 600 700 800 900 1000
10-6

10-4

10-2

100

102

coefficients of b in {u j} basis coefficients of f in {v j} basis

no noise no noise

noise level 10−6 noise level 10−6

noise level 10−5 noise level 10−5

j j

j j

j j

uT
j b uT

j b

σj

uT
j b uT

j b

σj

uT
j b uT

j b

σj

Figure 7.12: Coefficients of b and f,
for three experiments from Figure 7.10.
The top plots use b and f = A−1b; the
middle plots use bnoise with standard
deviation 10−6; the bottom plots again
use bnoise but with standard deviation
10−5. Take special note of two features
as the noise increases from top to
bottom: (1) the noise impedes the
decay of the last coefficients uT

j b
on the left; (2) as a consequence, for
the noisy plots on the right we see
that last coefficients uT

j b/σj are on a
similar level as the leading coefficients,
significantly polluting the results seen
in Figure 7.10.

=
r

∑
j=1

r

∑
k=1

(uT
j b

σj

)(
uT

k b
σk

)
vT

j vk =
r

∑
j=1

(uT
j b

σj

)2

.

From this calculation we make an essential observation.

If the solution f is not large, say ‖f‖ ≈ 1, and the singular value σj is
small, then the corresponding value of uT

j b must also be small, to

keep (uT
j b/σj)

2 from making too large a contribution to ‖f‖2 ≈ 1.

Now we are prepared to make sense of the results in Figure 7.10.
Figure 7.12 reveals everything; study these plots carefully!

• In the absence of noise (top plots), the coefficients uT
j b decay over-

all quite steadily as j increases, with a big dip in values for the last
50 values of j. (This dip corresponds to an abrupt drop in the fi-
nal singular values of A in Figure 7.11.) When scaled by σj to give
the coefficients of f on the right, we also see an overall drop as j
increases. In particular, for the largest values of j, vj makes little
contribution to f.

• When noise is added (middle and bottom plots), the values of uT
j b

116

1 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

1 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

1 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

1 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

v1 v2

v3 v4

(v1)j

(v3)j

(v2)j

(v4)j

j j

j j

1 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

1 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

1 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

1 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

v997 v998

v999 v1000

(v997)j

(v999)j

(v998)j

(v1000)j

j j

j j

Figure 7.13: Right singular vectors
vk of the blurring matrix A for n =
1000 and with the kernel shown in
Figure 7.4. (Each plot shows 1000
blue dots, which are sufficiently close
together to look like smooth curves in
the top plots.) The first four singular
vectors (top) are low frequency: the
entries oscillate very gradually over
the 1000 entries. In contrast, the last
four singular vectors are high frequency,
oscillating wildly.

change quite a bit, especially for j > 900. The rapid drop for large
j seen in the noiseless case has gone away. As a consequence, on the
right we see large values of uT

j b/σj when j is large.

• For noise level 10−6, the trailing values of uT
j b/σj are still smaller

than the values for small j, and hence we can still see the correct
overall shape for f in Figure 7.10.

• For noise level 10−5, values of uT
j b/σj for large j dominate those

for small j, and hence in Figure 7.10 the recovered f has lost most
of the shape of the true solution.

• Look again at that top-left plot. The bottom coefficient uT
1000b is

quite small; if we add 10−5 to it, we have only made a perturbation
to b of that same size. However, when we divide that perturbed
value of uT

1000b by σ1000, suddenly we have overwhelmed all the
other coefficients that make up f.

One final wrinkle will complete our understanding.

In the noisiest examples shown in Figure 7.10, why do
the recovered values of f have that particular “football” shape?

117

Figure 7.13 shows eight right singular vectors vj of A, corresponding
to the four largest and four smallest singular values.

Look first at those top four plots: the dots we plot fuse together
into lines that resemble sine functions of increasing frequency; they
are very smooth. If our f is a smooth function, it should be well- Fourier analysis gives the mathematical

tools needed to make statements like
this precise.

approximated by a linear combination of smooth vectors like this.
Now look at the last four singular vectors. In contrast, these are

“high frequency” vectors. We can mostly see individual dots, oscil-
lating up and down often. They also have that distinctive “football”
shape, pinched at the ends. For the noisy examples in Figure 7.10, the
shape of these latter vj vectors dominate the combination of the early
vj vectors that captures the essence of the true f.

At this stage, we have fully analyzed the blurring example, at least
for our choice of blurring function. If you understand the reason for
the disappointing results in Figure 7.10, captured the essential difficulty of
ill-posed linear systems.

The natural next question:

Can we do anything to fix this problem?

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 8
Regularization for Ill-Posed Problems

We dedicated the last chapter to analyzing, solving, and cri-
tiquing the general least squares problem.

Least Squares problem. Let A ∈ Rm×n and b ∈ Rm. Among all
x ∈ Rn that solve

min
x∈Rn

‖b−Ax‖, (8.1)

find the x that minimizes ‖x‖.

Look back to Example 7.8 on page 104. Small perturbations of order
ε to A and b caused the solution x+ to change by large amounts. To
resolve this difficulty, your natural reaction might be: “Can’t we just
ignore the ε entries in A and b?” This shows good instinct, but we
would like a more systematic way to identify and neglect the “small”
entries in a system. Thankfully the singular value decomposition
provides just the right tools for the job.

This chapter presents two methods for addressing the sensitiv-
ity of the general least squares problem to small changes in A and
b. The first approach is natural: In the sum for the pseudoinverse
solution

x+ = A+b =
r

∑
j=1

uT
j b

σj
vj,

just truncate the sum so that j only runs up to k < r, instead of all the
way to r:

xk :=
k

∑
j=1

uT
j b

σj
vj,

thus omitting the smallest singular values that cause the biggest
problems, as seen in Section 7.5.4.

© Copyright 2022 by Mark Embree. All rights reserved.

119

The second, more nuanced, approach penalizes the least squares
objective function ‖b− Ax‖ by the norm of the solution ‖x‖, to pre-
vent situations like those seen in equation (7.9) and the bottom-right
of Figure 7.10. More precisely, given a regularization parameter λ > 0,
we will replace (8.1) with

min
x∈Rn

‖b−Ax‖2 + λ2‖x‖2.

By adjusting λ we can dial-in just the right amount of penalization to
give a good solution.

8.1 Regularization by truncating the SVD

The first approach summarized in (8.2) makes intuitive sense, but
we would like a deeper justification for truncating the sum. Start by
writing the dyadic form of the SVD of the rank-r matrix A ∈ Rm×n,

A =
r

∑
j=1

σjujv
T
j .

In the last chapter we showed that the pseudoinverse takes the form

A+ =
r

∑
j=1

1
σj

vju
T
j .

Now fix some k ≤ r, and recall that in Section 6.2, we computed
optimal rank-k approximations to A by truncating the SVD to the
first k terms in the sum,

Ak =
k

∑
j=1

σjujv
T
j , k ≤ r. (8.2)

As we saw in Section 6.2, the accuracy of this approximation is con-
trolled by the first neglected singular value:

‖A−Ak‖ =
∥∥∥∥

r

∑
j=k+1

σjujv
T
j

∥∥∥∥ = σk+1. (8.3)

If we regard Ak as a good approximation of A, then perhaps we can

The largest singular value of the error
matrix A−Ak is σk+1.

regard

A+
k =

k

∑
j=1

1
σj

vju
T
j

a good approximation of A+. On the surface this might look like a

Note that A+
k means (Ak)

+.

bad idea, since the error

‖A+ −A+
k ‖ =

∥∥∥∥∥
r

∑
j=1

1
σj

vju
T
j −

k

∑
j=1

1
σj

vju
T
j

∥∥∥∥∥ =

∥∥∥∥∥
r

∑
j=k+1

1
σj

vju
T
j

∥∥∥∥∥ =
1
σr

120

could be quite large. (Note that 1/σr is the largest singular value of
A+

k −Ak.) But our goal is not to approximate A+, but rather to obtain
an appealing solution to the least squares problem (8.1) that is more
robust to small changes in A and b. As usual, we use ur+1, . . . , um and

vr+1, . . . , vn to denote the extra vectors
that arise when we compute the full
SVD. To contrast with the box on the
left, recall that

R(A) = span{u1, . . . , ur},
N(AT) = span{ur+1, . . . , um},

R(AT) = span{v1, . . . , vr},
N(A) = span{vr+1, . . . , vn}.

Truncating the SVD changes the fundamental subspaces by shifting
vectors from R(A) to N(AT) and from R(AT) to N(A):

R(Ak) = span{u1, . . . , uk},
N(AT

k) = span{uk+1, . . . , um},

R(AT
k) = span{v1, . . . , vk},

N(Ak) = span{vk+1, . . . , vn}.

Note that rank(Ak) = k.

Suppose we wish to solve the least squares problem

min
x∈Rn

‖b−Ax‖, (8.4)

where A has some very small singular values that make the pseu-
doinverse solution derived in Section 7.2,

x+ = A+b =
r

∑
j=1

uT
j b

σj
vj, (8.5)

very large in norm. In fact, using the orthonormality of the right
singular vectors and the Pythagorean Theorem, we can compute

Let y = c1q1 + · · ·+ crqr for
orthonormal vectors q1, . . . , qr . Then
the Pythagorean Theorem implies that

‖y‖2 = ‖c1q1‖2 + · · ·+ ‖crqr‖2

= c2
1‖q1‖2 + · · ·+ c2

r‖qr‖2

= c2
1 + · · ·+ c2

r .
‖x+‖2 =

r

∑
j=1

(uT
j b)2

σ2
j

. (8.6)

While the pseudoinverse solution may lead to large ‖x+‖, recall that
is does have a virtue: it minimizes ‖b−Ax‖ over all x ∈ Rn. Since

b−Ax+ =
m

∑
j=r+1

(uT
j b)uj,

we can again use the Pythagorean Theorem, now with orthonormal-
ity of the left singular vectors, to see that

‖b−Ax+‖2 =
m

∑
j=r+1

(uT
j b)2. (8.7)

Suppose we replace A in the least squares problem (8.4) with the
truncated SVD Ak,

min
x∈Rn

‖b−Akx‖. (8.8)

121

The solution changes to

xk = A+
k b =

k

∑
j=1

uT
j b

σj
vj (8.9)

having smaller norm than ‖x+‖, since

This definition for xk only differs from
the formula (8.5) for x+ in the sum’s
upper limit: there it was r, here it is k.

‖xk‖2 =
k

∑
j=1

(uT
j b)2

σ2
j

. (8.10)

Truncating the SVD thus decreases the norm of the solution:

Similarly, the only difference with the
formula for ‖x+‖2 is the upper limit on
the sum.

‖x+‖2 − ‖xk‖2 =
r

∑
j=k+1

(uT
j b)2

σ2
j

.

We conclude that

‖xk‖ increases with k, and ‖xk‖ ≤ ‖x+‖.

By picking k so that σk is not too small, we can prevent ‖xk‖ from
being offensively large. But how well does xk satisfy the original least
squares problem we really want to solve? With the help of the SVD,
we can readily check:

Recall that, using Û ∈ Rn×n from the
full SVD,

b = ÛÛTb

=
m

∑
j=1

uju
T
j b =

m

∑
j=1

(uT
j b)uj.

‖b−Axk‖2 =

∥∥∥∥b−
(r

∑
i=1

σiuiv
T
i

)(k

∑
j=1

1
σj

vju
T
j b
)∥∥∥∥

2

=

∥∥∥∥b−
r

∑
i=1

k

∑
j=1

σi
σj

uiv
T
i vju

T
j b
∥∥∥∥

2

=

∥∥∥∥b−
k

∑
j=1

(uT
j b)uj

∥∥∥∥
2

=

∥∥∥∥
m

∑
j=k+1

(uT
j b)uj

∥∥∥∥
2

=
m

∑
j=k+1

(uT
j b)2.

Compare this expression to the error from the least squares prob-
lem induced by the pseudoinverse solution, as characterized in
equation (8.7). The residual ‖b − Axk‖ is always at least as big as Equation (8.7) for ‖b− Ax+‖2 differs

from the expression for ‖b − Axk‖2

only in the lower limit on the sum: for xk
we start at j = k + 1; for x+ we started
at j = r + 1.

‖b − Ax+‖, but perhaps it is not much larger if the omitted uT
j b

coefficients are small:

‖b−Axk‖2 − ‖b−Ax+‖2 =
r

∑
j=k+1

(uT
j b)2.

We conclude that

122

‖b−Axk‖ decreases with k, and ‖b−Ax+‖ ≤ ‖b−Axk‖.
In summary, using the truncated SVD can greatly reduce ‖xk‖ in (8.6)
by omitting the uT

j b/σj terms for small σj, but the increase in the
norm of the residual, ‖b − Axk‖ is comparatively modest, only
adding terms like uT

j b. (See Figure 7.12 for a comparison of uT
j b

and uT
j b/σj for a practical example.)

Compare the pseudoinverse solution

x+ =
r

∑
j=1

1
σj

vju
T
j b (8.11)

to the truncated SVD approximation

xk =
k

∑
j=1

1
σj

vju
T
j b (8.12)

for the least squares problem minx∈Rn ‖b−Ax‖:

• The norm of the truncated SVD solution is smaller:

‖xk‖2 = ‖x+‖2 −
r

∑
j=k+1

1
σ2

j
|uT

j b|2.

• The norm of the truncated SVD residual is larger:

‖b−Axk‖2 = ‖b−Ax+‖2 +
r

∑
j=k+1

|uT
j b|2.

In applications where σk+1, . . . , σr are small, the reduction in the
norm of the solution can yield much more physically realistic
answer by removing the artificial but overwhelming effects of noisy
data, while the modest increase in the residual is not such a big
concern.

8.1.1 Deblurring with truncated SVD regularization

Let us see how truncated SVD approximations perform in practice.
In the process, we hope to get some instinct for how we should select
the parameter k controlling the amount of truncation.

Again consider the blurring experiment explored in Section 7.5,
using the same matrix A of dimension n = 1000 with the blurring
kernel shown in Figure 7.4 with z = 0.05.

Recall the experiment shown in Figure 7.10. We took a known
function f, applied the blurring matrix A to get the “exact” image b,
then added noise to b to get bnoise. We investigated how the noise

123

0 0.2 0.4 0.6 0.8 1
-20

-10

0

10

20

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

k = 1000 k = 800

k = 250 k = 100

k = 50 k = 25

t t

t t

Figure 8.1: Recovered functions fk
using various values of k for the vector
bnoise with noise level 10−4 used in
Figure 7.10. For k = 1000 we have the
“exact” solution, which is dominated by
noise. SVD regularization gets a much
better solution; among these plots, one
might argue that k = 250 is “closest” to
the desired solution.

level affected the accuracy of the recovered solution. We pick up the
worst of these examples, where the Gaussian noise had standard
deviation 10−4 and the recovered f was nonsense.

To simplify notation in the rest of this example, we will simply use “b” to
refer to the noisy vector bnoise.

Let us try to recover f with better accuracy using the truncated
SVD solution

fk =
k

∑
j=1

(
uT

j b

σj

)
vj.

Figure 8.1 shows the results. You might expect that we would get the
best result for k just a bit smaller than n = 1000. In fact, we get good
results even for k = 25. Look back on the plot of the singular vectors

Perhaps this is not a surprise, given
the rapid decay of the initial singular
values seen in Figure 7.11.

in Figure 7.13. As j increases, the frequency (number of oscillations)
increases. No surprise, then, that as k increases and we include terms
involving vj for larger values of j, we start to see finer and finer oscil-
lations in the recovered fk. Of the examples plotted, perhaps k = 250
is the best. Notice that k = 800, which avoids the smallest 200 sin-

Picking the best k values is a nuanced
judgement that could benefit from the
insight of a domain scientist who is
looking for a particular feature in a
recovered image.

gular values, is already too large: the recovered solution is clearly
polluted by noise.

To help select an effective value of k, we draw the plot shown in

124

10-5 10-4 10-3 10-2 10-1 100 101 102

101

102

‖b−Afk‖

‖fk‖
k =

25
k =

50
k =

100

k =
250

k =
800

Figure 8.2: Plot illustrating the trade-
off between minimizing ‖b−Afk‖ and
controlling the norm of the solution,
‖fk‖, for k = 1, . . . , 999. (For k = 1000,
‖b−Afk‖ = 0 but ‖fk‖ is slightly larger
than the largest value shown here.)
The optimal value comes around the
“corner” of the L-shape in this plot.

Figure 8.2. In this diagram the horizontal axis shows the norm of
the residual, ‖b − Afk‖, while the vertical axis shows the norm of
the solution ‖fk‖. (Because these quantities can differ over orders of
magnitude, the axes are typically drawn with a logarithmic scale.)
Notice that neither of these axes shows k: we plot (‖b− Afk‖, ‖fk‖)
and must somehow indicate the k value associated with the resulting
plot. However, since the residual norms decrease monotonically with k

‖b−Af1‖ ≤ ‖b−Af2‖ ≤ · · · ≤ ‖b−Afn−1‖ ≤ ‖b−Af+‖

and the solution norms increase monotonically with k

‖f1‖ ≤ ‖f2‖ ≤ · · · ≤ ‖fn−1‖ ≤ ‖f+‖,

the plot must move from the bottom-right to the top-left as k in-
creases. We highlight the five values of k used in Figure 8.1. (Since
‖b−Af+‖ = 0 in this case, this point would fall off the axes shown.)

Notice that this plot has a prominent “L” shape: take k too small,
and the residual norm is quite large (bottom right). As we gradu-
ally increase k we tend to make great improvements to ‖b − Afk‖
while making small increases in ‖xk‖. Eventually, however, this
trend changes: we reach a stage where increasing k only decreases
‖b−Afk‖ slightly, while it significantly adds to ‖fk‖. In this regime,
we expect that we are adding those large uT

j b/σj coefficients that are
heavily influenced by the noise. We thus want to pick a k that occurs
somewhere near the bend in the “L” shape. (Notice that many values
of k fall between k = 250 and k = 800 in the plot.) Selecting k is some-
thing of an art, but one that can pay off with excellent solutions seen
in Figure 8.1.

125

8.1.2 Computing the SVD regularized solution

U,S,Vt = la.svd(A)

xk = (Vt[0:k,:].T)*(1/(S[0:k]))@(U[:,0:k].T@b)

8.2 Tikhonov Regularization (Ridge Regression)

The truncated SVD has great appeal: one must appreciate the sim-
plicity and potency of this approach, which seemed quite effective
for the deblurring example in Figure 8.1. However, to implement this
method we must first compute the singular value decomposition of
A, which can be a costly step when A is a large matrix. Often such
large matrices are “sparse,” meaning most entries are zero; when m
and n are both large, it could be quite an obstacle to compute even
the reduced form of the SVD of A. Another approach to taming
small singular values is equally intuitive but more computationally
appealing: Tikhonov regularization.

The highlighted paragraph on page 122 describes conflicting ten-
sions that arise when solving ill-posed problems: we seek to make
the least-squares residual ‖b − Ax‖ as small as possible, while also
controlling the size of the solution ‖x‖. The fundamental problem
is that the x that minimizes ‖b − Ax‖ often gives large ‖x‖. We are
willing to accept a suboptimal x that gives a slightly larger ‖b − Ax‖
but a much smaller ‖x‖.

Why not combine these two goals into one optimization problem?
Replace the usual least squares problem

min
x∈Rn

‖b−Ax‖

with the penalized problem

min
x∈Rn

‖b−Ax‖2 + λ2‖x‖2 (8.13)

for some choice of the regularization parameter λ. Two fundamental
questions arise.

• How should one choose λ?

• Given λ, how does one find the optimal x in (8.13)?

We shall tackle these questions in reverse order.

8.2.1 Solving regularized least squares problems

Suppose A ∈ Rm×n with m ≥ n. Define the augemented matrix and
vector

Aλ =

[
A
λI

]
∈ R(m+n)×n, b̂ =

[
b
0

]
∈ Rm+n.

126

and consider the alternative least squares problem

Note that the matrix λI has size n× n,
while the zero vector in b̂ is of length n.

min
x∈Rn

‖b̂−Aλx‖. (8.14)

Perhaps it helps to look at the structure of Aλ and b̂ for a small ex-
ample. The general m = 3 and n = 2 case has the structure

A =




a1,1 a1,2

a2,1 a2,2

a3,1 a3,2


 , b =




b1

b2

b3


 ,

and so the augmented matrix and vector become

Aλ =

[
A
λI

]
=




a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

λ 0
0 λ




, b̂ =

[
b
0

]
=




b1

b2

b3

0
0




. (8.15)

We can solve the least squares problem (8.14) using the conventional
technology we studied in Chapter 7. In particular, we could simply
use the pseudoinverse to write down the solution

xλ = A+
λ b̂.

Before exploring this solution, we want to understand how the least
squares problem (8.14) relates to the penalized problem (8.13) that we
really want to solve. First note that for any x ∈ Rn,

b̂−Aλx =

[
b
0

]
−
[

A
λI

]
x =

[
b
0

]
−
[

Ax
λx

]
=

[
b−Ax
−λx

]
.

Square the norm of this residual and expand:

‖b̂−Aλx‖2 = (b̂−Aλx)T(b̂−Aλx)

=

[
b−Ax
−λx

]T [b−Ax
−λx

]

= [(b−Ax)T (−λx)T]

[
b−Ax
−λx

])

= (b−Ax)T(b−Ax) + (−λx)T(−λx)

= ‖b−Ax‖2 + λ2‖x‖2.

We have just shown that

‖b̂−Aλx‖2 = ‖b−Ax‖2 + λ2‖x‖2,

and so

127

the x ∈ Rn that solves the least squares problem (8.14)
also solves the penalized least squares problem (8.13).

Take a few moments to think about Aλ. To understand if (8.14) has
a unique solution, we need to understand the rank and null space of
Aλ. What is rank(Aλ)?

You can determine the rank in several ways; we will provide a
detailed discussion, as a review of the fundamental subspaces. (You
could jump to this conclusion more rapidly if you like.) It might help
to look back on the augmented matrix for the m = 3 and n = 2 case
in (8.15) for guidance.

Regardless of A, the last n rows of the augmented matrix

Aλ =

[
A
λI

]
,

which are just λI ∈ Rn×n with λ > 0, must be linearly independent.
We conclude that the dimension of the row space must satisfy

dim(R(AT
λ)) ≥ n.

However, since Aλ only has n columns, we must have

dim(R(Aλ)) ≤ n.

Since
dim(R(AT

λ)) = dim(R(Aλ)) = rank(A),

we conclude that
rank(Aλ) = n,

and so Aλ must have n linearly independent columns.
Now as a consequence of the Fundamental Theorem of Linear

Algebra (Theorem 5.5) or the rank-nullity theorem,

dim(N(Aλ)) = n− dim(R(AT
λ))

= n− rank(Aλ),

and so dim(N(Aλ)) = 0, and hence Aλ must have a trivial null space,

You might also study the rank of Aλ by
computing its singular values. Recall
that the singular values are square roots
of the eigenvalues of AT

λ Aλ. Since

AT
λ Aλ = ATA + λ2I,

you can see that the eigenvalues of
AT

λ Aλ are just the eigenvalues of ATA,
plus λ2: for if

ATAvj = σ2
j vj,

then

AT
λ Aλvj = (ATA+λ2I)vj = (σ2

j +λ2)vj.

Thus we see that for any nonzero λ,

jth singular value of Aλ =
√

σj + λ2 > 0,

even if σj = 0. Since Aλ has n nonzero
singular values, its rank must be n. The
right singular vectors vj of Aλ are also
the right singular vectors of A.

N(A)λ) = {0}.

Thus, referring to the flowchart in Figure 7.2, we conclude that the
least squares problem

min
x∈Rn

‖b̂−Aλx‖.

has a unique solution. Indeed, we can find that solution by solving
the normal equations

AT
λAλxλ = AT

λ b̂.

128

The left-hand side is

AT
λAλ = [AT λIT]

[
A
λI

]
= ATA + λ2I,

while the right-hand side has the simple form

AT
λ b̂ = [AT (−λI)T]

[
b
0

]
= ATb ∈ Rn.

Let us summarize where we now stand.

For any A ∈ Rm×n and λ 6= 0, define

Aλ =

[
A
λI

]
, b̂ =

[
b
0

]
.

The augmented matrix Aλ has

rank(Aλ) = n

and hence N(Aλ) = {0}. Thus the least squares problem

min
x∈Rn

‖b̂−Aλx‖.

has the unique solution

xλ = (AT
λAλ)

−1AT
λ b̂

= (ATA + λ2I)−1ATb,

which is also the unique solution to the penalized problem

min
x∈Rn

‖b−Ax‖2 + λ‖x‖2.

Let us example the formula for the exact solution

xλ = (ATA + λ2I)−1ATb.

We will work with the SVD of A, expressed in the dyadic form Equivalently, we could express xλ =

A+
λ b̂ and work out a formula for A+

λ .

A =
n

∑
j=1

σjujv
T
j . (8.16)

For convenience, we write this sum up to n, instead of the usual
r = rank(A). In the case that rank(A) < n: for j = r + 1, . . . , n,

• define σj = 0;

• let uj be a unit vector orthogonal to u1, . . . , uj−1;

• let vj be a unit vector orthogonal to v1, . . . , vj−1.

129

Recall that for V ∈ Rn×n with VTV = I,
we can write

I = VVT =
n

∑
j=1

vjv
T
j .

With this convention, the form (8.16) holds for any A ∈ Rm×n. We
can then write

ATA + λ2I =
n

∑
j=1

σ2
j vjv

T
j + λ2

n

∑
j=1

vjv
T
j =

n

∑
j=1

(σ2
j + λ2)vjv

T
j ,

which can be readily inverted:

(ATA + λ2I)−1 =
n

∑
j=1

1
σ2

j + λ2
vjv

T
j .

From this we can compute

xλ = (ATA + λ2I)−1ATb

=

(n

∑
j=1

1
σ2

j + λ2
vjv

T
j

)(r

∑
`=1

σ`v`u
T
`

)
b

=
r

∑
j=1

σj

σ2
j + λ2

(uT
j b) vj,

using orthogonality of the singular vectors, as usual. We summarize:

The unique solution to the regularized least squares problem

min
x∈Rn

‖b−Ax‖2 + λ2‖x‖2

is given by

xλ =
r

∑
j=1

σj

σ2
j + λ2

(uT
j b)vj. (8.17)

8.2.2 Filtering singular values

Contrast these three formulas:

pseudoinverse solution: x+ =
r

∑
j=1

1
σj
(uT

j b) vj

truncated SVD solution: xk =
k

∑
j=1

1
σj
(uT

j b) vj

Tikhonov solution: xλ =
r

∑
j=1

σj

σ2
j + λ2

(uT
j b)vj

All three of these “solutions” involve the terms (uT
j b)vj, but in each

case these terms are scaled by a different function of the singular value σj.

130

Indeed, these functions of the singular values distinguish the three
solutions. We can absorb them in the general form

x =
r

∑
j=1

φ(σj) (uT
j b) vj,

for different filter functions φ(·).
We can characterize these filter functions as follows:

pseudoinverse filter: φ(σ) =
1
σ

.

truncated SVD filter: φ(σ) =





1
σ

, σ ≥ σk;

0, σ < σk.

Tikhonov filter: φ(σ) =
σ

σ2 + λ2 .

Figure 8.3 illustrates these three filter functions (using SVD trunca-
tion for σk = 10−2 and Tikhonov parameter λ = 10−2).

Let us collect some helpful properties about the Tikhonov filter.

• The Tikhonov filter is always smaller than the pseudoinverse filter.
For all λ > 0,

σ

σ2 + λ2 <
1
σ2 .

• The Tikonov filter attains maximum value 1/(2λ) at σ = λ.
For the Tikhonov filter, notice that

φ′(σ) =
1

σ2 + λ2 −
2σ2

(σ2 + λ2)2 ,

and so solving φ′(σ) = 0 shows that the filter function attains its
maximum when

σ = λ, f (σ) =
1

2λ
.

• The Tikhonov filter converges to zero in the extremes σ→ 0 and σ→ ∞.
This property is easy to see from the formula

φ(σ) =
σ

σ2 + λ2 .

Notice that φ’s behavior as σ → ∞ is consistent with the filter
functions for the pseudoinverse and truncated SVD. However, the
Tikhonov filter’s behavior as σ → 0 (i.e., the way it handles small
singular values) is distinct: unlike the pseudoinverse filter, it does
not blow up; unlike the SVD truncation, it always allows even the
small singular values (and the corresponding right singular vector
vj) to exert some influence.

131

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

25

50

75

100

125 pseudoinverseφ(σ)

σ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

25

50

75

100

125 SVD truncation
deleting σ < 0.01φ(σ)

σ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

25

50

75

100

125 Tikhonov, λ = 0.01φ(σ)

λ

1
2λ

σ

Figure 8.3: Filter functions for the
standard pseudoinverse (φ(σ) = 1/σ,
top, and superimposed in red on
the other plots), the truncated SVD
regularization (middle, deleting all
singular values below σ ≤ 0.01), and
the Tikhonov regularization (bottom,
φ(σ) = σ/(σ2 + λ2) for λ = 0.01).

• As λ increases, the Tikhonov filter gets smaller.
For λ1 > λ2,

σ

σ2 + λ2
1
<

σ

σ2 + λ2
2

,

since the denominator is smaller on the right-hand side. Indeed, as
λ → ∞ with fixed σ > 0, φ(σ) → 0. This property suggests that by
taking λ too large, we will excessively suppress the size of xλ that
solves from the least squares problem

min
x∈Rn

‖b−Ax‖2 + λ‖x‖2.

As λ → ∞, the λ‖x‖2 term will dominate, driving xλ → 0. (We
will see a hint of this behavior in Figure 8.4.)

As λ → 0, the λ2‖x‖2 term exerts little influence on the least
squares problem, and xλ will be quite close to the pseudoinverse
solution x+.

132

8.2.3 Selecting the regularization parameter

How then should one select the regularization parameter λ to yield
the best results? One seeks to strike a perfect balance between keep-
ing ‖xλ‖ at a moderate size while making ‖b − Axλ‖ as small as
possible. One way to select λ is to create a plot with log ‖b − Axλ‖
on the horizontal axis, and log ‖xλ‖ on the vertical axis, sampled over
a wide range of λ values (varying over orders of magnitude). Often
this plot shows a distinct bend, as we will see momentarily in Fig-
ure 8.5. For many applications, the best choice for λ will yield values
of ‖b−Axλ‖ and ‖xλ‖ that land at the sharp bend in this “L curve.”

For many more details of regularization
problem, ranging from applications to
algorithms, we recommend the excel-
lent introductory book: P. C. Hansen,
Discrete Inverse Problems: Insight and
Algorithms, SIAM, Philadelphia, 2010.

8.2.4 Deblurring with Tikhonov regularization

Figure 8.4 applies Tikhonov regularization to our running example
of one-dimensional image deblurring with a blurring matrix A of
dimension n = 1000 generated from the hat-function kernel (7.4) with
z = 0.05. The right-hand side b was generated from adding Gaussian
noise (standard deviation 10−4) to the exact right-hand side A−1f for
known f. The yellow dots show how well Tikhonov regularization
recovers the exact f from the noisy right-hand side.

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

λ = 10−5 λ = 10−4

λ = 10−3 λ = 10−2

λ = 10−1 λ = 100

t t

t t

Figure 8.4: Recovered functions fλ

using various values of λ, for the vector
bnoise with noise level 10−4 used in
Figure 7.10.

133

10-5 10-4 10-3 10-2 10-1 100 101 102

101

102

‖b−Afλ‖

‖f+‖

‖fλ‖

λ = 100

λ =
10−

1

λ =
10−

2

λ =
10−

3

λ =
10−

4

λ = 10−5

Figure 8.5: The trade-off between
minimizing ‖b−Afλ‖ and controlling
the norm of the solution, ‖fλ‖: as λ
increases, so does the penalty on large
‖fλ‖ values; at the cost of increasing
the residual norm ‖b − Afλ‖. (Since
this problem has an exact solution
f+ = A−1b, ‖f+‖ forms an upper
bound on ‖fλ‖. The “optimal” value
of λ falls around the corner of this
“L curve”.

Study these plots to develop insight about the influence of the
regularization parameter λ on the recovered solutions.

• When λ is too small (10−5 and 10−4), the answer remains polluted
with noise, as in the case of the corresponding pseudoinverse
solution (bottom-right plot in Figure 7.10).

• When λ = 10−3 and λ = 10−2, the solutions quite nice. Notice
how well the 10−2 captures the triangular shape, in particular. For
λ = 10−1, the resolution of the edge of the rectangular portion on
the left degrades.

• When λ is too large (100 here), the solution is excessively sup-
pressed by the λ2‖f‖2 penalty term; the result is a poor approxi-
mation of the true solution.

Figure 8.5 shows that the choice of λ can be a challenge. The cor-
ner of this “L curve” comes somewhere between λ = 10−4 and
λ = 10−3. Figure 8.4 suggests that λ = 10−4 is still too small: the re-
covered solution still exhibits considerable noise. The solution looks
better with 10−3, but still shows consider chatter. Of the solutions
plotted in Figure 8.4, one might prefer λ = 10−2 as the “best approx-
imation”, even though the corresponding (‖b−Afλ‖, ‖fλ) point falls
a bit after the corner in the “L curve”.

8.2.5 Selecting the regularization parameter

For many ill-posed problems, like we observed in Figure 8.5, the plot
of ‖xλ‖ versus ‖b − Axλ‖ takes a distinctive shape resembling the
letter L, and hence such plots are called L curves.

Start at the top of this L. As you descend the vertical, ‖xλ‖ de-
creases while ‖b− Axλ‖ does not grow too much: a small compro-

134

mise in the size of the misfit ‖Bb − Axλ‖ amounts to a significant
reduction in the norm of the solution ‖xλ‖, allowing us to bring that
large large value under control. Now as you turn the corner, the
opposite occurs: ‖b − Axλ‖ increases rapidly, with little additional
reduction in ‖xλ‖: we gain little more control of the norm of the
solution while significantly increasing the misfit.

Thus, we seek λ that gives (‖b − Axλ‖, ‖xλ‖) near the corner of
the L. Here is the tricky part: ideally we would find this appealing λ

value without drawing the L curve, since drawing this plot requires us
to guess a suitable range [λmin, λmax], fill this interval with many λ

values, and then minimize ‖Aλx− b̂‖ for each of these λ. This com-
To draw the L curve, we would typi-
cally space these λ logarithmically be-
tween λmin and λmax, since the interval
typically spans several orders of magni-
tude, e.g., [λmin, λmax] = [10−6, 100].

putation becomes quite expensive; it can be expedited by computing
the SVD of A and using the formula

xλ =
r

∑
j=1

σj

σ2
j + λ2

(uT
j b)vj

to form each solution, rather than solving a least squares problem for
each value of λ.

Numerous techniques have been proposed for finding the bend in
the L curve more efficiently. Look back to Figure 8.5. You can view
this L curve as a function, a function that is always decreasing and
hence has a negative derivative. The bend in the curve occurs where
there is an abrupt change in the derivative from quite large in mag-
nitude to being quite small. Note one key subtlety: this “function”
is not a simple function with λ running on the horizontal axis, but
it is a function defined by plotting one function of λ (‖xλ‖) against
another (‖Axλ − b‖). Approximating this point calls for some careful
implicit differentiation.

For details, see P. C. Hansen, Discrete
Inverse Problems: Insight and Algorithms,
SIAM, Philadelphia, 2010.

We will instead discuss another method, one that requires more
intensive computations but gives some statistical motivation for the
choice of λ. The approach is based on cross-validation. This essence of

this approach, initiated by Golub, Heath, and Wahba (1979), is:

Pick the regularization parameter λ to be the value that minimizes
the influence of any single row b−Ax on the approximation xλ.

We shall sketch out only the simplest possible method in this vein.
Start by writing A by rows, with aT

j ∈ R1×n denoting the jth row, so
b−Ax has the form

b−Ax =




b1

b2
...

bm



−




aT
1

aT
2
...

aT
m




x.

135

Then the jth row of b−Ax is then bj − aT
j x.

For each value of λ, we will define a cross-validation score C(λ).
By this measure the “optimal” value of λ will be the one that mini-
mizes C(λ). Here is a sketch of the computation of C(λ).

Let A(j) ∈ R(m−1)×n and b(j) ∈ Rm−1 denote A and b with the jth
row and entry removed.

For every λ value:

• For each row j = 1, . . . , m of A:

– Solve the regularized least squares problem

min
x∈Rn

‖b(j) −A(j)x‖2 + λ2‖x‖2

with the jth row omitted; call the minimizer x(j)
λ .

– Compute how well the approximation x(j)
λ satisfies jth equation

(which was not used to find the approximation x(j)
λ):

rj,λ := bj − aT
j x(j)

λ .

• Then the cross-validation score for λ is the average of the squares
of the errors in the jth equations:

C(λ) :=
r2

1,λ + r2
2,λ + · · ·+ r2

m,λ

m
.

No doubt this algorithm appears extremely expensive: we are
solving m regularization problems of size (m− 1)× n for every value
of λ! Thankfully, all of these computations can be accelerated by
computing a single SVD of A and using some slick linear algebra,
the details of which are too much to dig into here. If one knows that

For details, see section 12.1.3 of G.
Golub and C. Van Loan, Matrix
Computations, 3rd ed., Johns Hopkins,
Baltimore, 1996.the minimal λ falls in some bracket, say [λmin, λmax], then one can

minimize C(λ), using, for example, the trisection algorithm.

Figure 8.6 shows the function C(λ) for the deblurring example.
This function attains a minimum value of λcv ≈ 1.206× 10−3. The so-
lution fλcv for this value puts (‖b−Afλcv‖, ‖fλcv‖) just after the bend
in the L curve, which agrees with the results shown in Figure 8.4.
The bottom plot in Figure 8.6 shows that λcv does indeed deliver a
nice solution, one that looks good to the eye but also has added sta-
tistical justification as the minimizer of the cross-validation objective
function.

136

10-6 10-4 10-2 100 102

10-9

10-6

10-3

100

λ
λcv

C(λ)

10-5 10-4 10-3 10-2 10-1 100 101 102

101

102

‖b−Afλ‖

‖f+‖

‖fλ‖
λcv
≈ 1.206×

10−
3

0 0.2 0.4 0.6 0.8 1

-1

0

1

2
λcv ≈ 1.206× 10−3

Figure 8.6: The cross-validation ob-
jective function C(λ) (top), attaining
its minimum at λcv ≈ 1.206× 10−3

for the deblurring example. This value
λcv gives (‖b− Afλ‖, ‖fλ‖) just after
the bend in the L curve (middle). The
resulting solution fλcv gives a good
approximation to the true solution
(bottom).

8.2.6 Computational complexity

We can solve the penalized least squares problem without computing
a singular value decomposition. If one of the problems in (??) has
a unique solution, the other does as well. We shall compute that
solution xλ using the conventional least squares problem (8.14).

Curiously, the default least squares solver in Python’s SciPy li-
brary, linalg.lstsq, solves generic least squares problems by com-

137

puting the SVD and effectively using pseudoinverse solution, com-
plete with a threshold for truncating small singular values. While
this algorithm benefits from favorable numerical properties, for many
problems methods based on the A = QR factorization will be a bit
faster.

8.2.7 History

The idea of “ridge regression” was introduced by Arthur Hoerl
(who was working at DuPont at the time) in the chemical engineering
literature in the 1960s, and then further investigated in a 1970 article Roger Hoerl writes that his father

was motivated by “the frequent occur-
rence of nonsensical estimates from
least squares multiple regression”,
which is precisely the reason we have
been exploring these ideas. (See R. Ho-
erl, “Ridge Analysis 25 Years Later,”
American Statistician 39 (1985) 186–192.)

by Hoerl and Kennard in Technometrics.

8.3 Blurring and deblurring in two dimensions

This section is a companion piece to Section 7.5, extending the math-
ematical framework for image deblurring into two dimensions and
hence applying to our usual notion of an “image.”

Digital images are matrices, with each entry corresponding to the
color value of a single pixel. We shall only consider a simple set-
up, square images with only one color intensity. As you read along,
consider how these ideas could be extended into rectangular images
and three color matrices for red, green, and blue.

As in the one-dimensional case, we base our model for blurring on
“images” that are functions of continuous variables. In particular, we
consider the true image to be a function

f (t(1), t(2))

of two variables that range over the unit interval:

0 ≤ t(1), t(2) ≤ 1.

The real number f (t(1), t(2)) describes the color intensity at the point
(t(1), t(2)) in the unit square. The first parameter t(1) gives the vertical
location, while the second parameter t(2) gives the horizontal location.

f (t(1), t(2))t(1)

1

0
t(2)0 1

When we acquire the image through a camera, the device effectively
blurs the true image, resulting in the blurred function

b(s(1), s(2)),

also evaluated on the unit square, 0 ≤ s(1), s(2) ≤ 1. How do we
model the transformation of the “true object” f into the blurred ver-
sion b?

138

Generalize the approach we used in one dimension, where the
blurred value b(s) is obtained by integrating f against the blurring
kernel h(s, t) over the entire domain t ∈ [0, 1]:

b(s) =
∫ 1

0
h(s, t) f (t)dt.

Follow the same principle in two dimensions. Now the integral must
traverse both 0 ≤ t(1) ≤ 1 and 0 ≤ t(2) ≤ 1 to cover the unit square:

b(s(1), s(2)) =
∫ 1

0

∫ 1

0
h
([

s(1)

s(2)

]
,

[
t(1)

t(2)

])
f (t(1), t(2)) dt(1) dt(2). (8.18)

Notice now that the blurring kernel h is a function of four variables.
We can consolidate the two pairs of arguments into the vectors

s =

[
s(1)

s(2)

]
, t =

[
t(1)

t(2)

]
.

Then we could define the Gaussian kernel

h(s, t) =
1

2πz2 exp
(−‖s− t‖2

2z2

)
(8.19)

where z is a parameter that controls the severity of blurring: the
larger z, the greater the influence remote values of f have on b, and
hence the stronger the blurring effect. Our examples in these notes

The parameter z controls the stan-
dard distributions in the multivariate
Gaussian distribution.

will use a kernel that is a two-dimensional generalization of the “hat
kernel” in (7.14); indeed this function

h(s, t) = max
(

0,
3

πz2

(
1− ‖s− t‖

z

))
(8.20)

describes a cone of radius z. Again, increasing z expands the cone’s

Since a right cone of radius z and
height h has volume πhz2/3, the
scaling factor of 3/(πz2) = h ensures
the cone has volume 1.

reach, and more remote values of f contribute to b: thus, more blur-
ring.

8.3.1 Discretization yields a matrix equation

As noted earlier, digital images are not functions of continuous vari-
ables, but rather are stored as discrete n × n arrays of pixels, which
we regard as a matrix F ∈ Rn×n:

(F)(j,k) = f j,k = f (tj, tk)

is the value of the (j, k) pixel, corresponding to the midpoints of the
pixel location:

tj =
j− 1/2

n
, tk =

k− 1/2
n

, j, k = 1, . . . , n.

Primitive bitmaps use only two colors
and hence f j,k only takes two values,
0 or 1. For grayscale images, f j,k is
an integer between 0 (black) and 255
(white).

139

Given that we only know f (t(1), t(2)) at certain discrete values
t(1) = tj and t(2) = tk, we naturally discretize the double inte-
gral (8.18) for b(s(1), s(2)) using two applications of the same mid-
point rule we used for one-dimensional problem in Section 7.5. Of
course, we want to evaluate the blurring function at the same pixel
locations use used for the true image, and so we define

s` =
`− 1/2

n
, sm =

m− 1/2
n

, `, m = 1, . . . , n.

Thus for `, m = 1, . . . , n, we approximate (8.18) via

b(s`, sm) ≈ b`,m =
1
n2

n

∑
j=1

n

∑
k=1

h
([

s`
sm

]
,

[
tj

tk

])
f j,k. (8.21)

Applying this approximation at each of the n2 pixels gives n2 linear
equations, which we naturally want to collect into matrix form. To
simplify the notation, define

hj,k,`,m := h
([

s`
sm

]
,

[
tj

tk

])
.

With this notation, we can arrange the n2 equations in (8.21) into

We have colored the indices here to
distinguish those that correspond to the
original object pixel value f j,k (in blue)
and the blurred pixel value b`,m (in red).

matrix form. For a concrete example we illustrate this form for n = 3:



b1,1

b2,1

b3,1

b1,2

b2,2

b3,2

b1,3

b2,3

b3,3




=
1
n2




h1,1,1,1 h2,1,1,1 h3,1,1,1 h1,2,1,1 h2,2,1,1 h3,2,1,1 h1,3,1,1 h2,3,1,1 h3,3,1,1

h1,1,2,1 h2,1,2,1 h3,1,2,1 h1,2,2,1 h2,2,2,1 h3,2,2,1 h1,3,2,1 h2,3,2,1 h3,3,2,1

h1,1,3,1 h2,1,3,1 h3,1,3,1 h1,2,3,1 h2,2,3,1 h3,2,3,1 h1,3,3,1 h2,3,3,1 h3,3,3,1

h1,1,1,2 h2,1,1,2 h3,1,1,2 h1,2,1,2 h2,2,1,2 h3,2,1,2 h1,3,1,2 h2,3,1,2 h3,3,1,2

h1,1,2,2 h2,1,2,2 h3,1,2,2 h1,2,2,2 h2,2,2,2 h3,2,2,2 h1,3,2,2 h2,3,2,2 h3,3,2,2

h1,1,3,2 h2,1,3,2 h3,1,3,2 h1,2,3,2 h2,2,3,2 h3,2,3,2 h1,3,3,2 h2,3,3,2 h3,3,3,2

h1,1,1,3 h2,1,1,3 h3,1,1,3 h1,2,1,3 h2,2,1,3 h3,2,1,3 h1,3,1,3 h2,3,1,3 h3,3,1,3

h1,1,2,3 h2,1,2,3 h3,1,2,3 h1,2,2,3 h2,2,2,3 h3,2,2,3 h1,3,2,3 h2,3,2,3 h3,3,2,3

h1,1,3,3 h2,1,3,3 h3,1,3,3 h1,2,3,3 h2,2,3,3 h3,2,3,3 h1,3,3,3 h2,3,3,3 h3,3,3,3







f1,1

f2,1

f3,1

f1,2

f2,2

f3,2

f1,3

f2,3

f3,3




.

We write this system as b = Af, with A ∈ Rn2×n2
. Even for a modest Make sure you do not forget the 1/n2

term in A, an easy mistake to make!number of pixels in each dimension, A can be quite large: even just
constructing A in the obvious way can take an extreme amount of
time, calling for slicker algorithms that exploit common properties
of blurring kernels. For example, the two kernels in (8.19) and (8.20)
only depend on

‖s− t‖ =
√
(s` − tj)2 + (sm − tk)2 =

1
n

√
(`− j)2 + (m− k)2,

so any entries hj,k,`,m of A having the values of ` − j and m − k will
be identical. This fact imparts tremendous structure to the matrix.
Indeed, for such kernels the matrix for n = 3 will have the structure

A =




A0 A1 A2

AT
1 A0 A1

AT
2 AT

1 A0


 , (8.22)

140

where A0, A1, A2 ∈ R3×3 denote the blocks demarcated by the
horizontal and vertical lines in the general form of A, above:

• A0 corresponds to k−m = 0;

• A1 corresponds to k−m = 1;

• A2 corresponds to k−m = 2.

The generalization of this structure, called symmetric block Toeplitz, to
the case of general n should be apparent from this pattern.

To write an efficient code to construct A ∈ Rn2×n2
for large n, one must

exploit this structure.

Figure 8.7 shows the nonzero pattern of the blurring matrix A
using the cone kernel function for several values of n and z. Notice a
few properties of these matrices:

• Since the cone blurring function is zero for pixels whose mid-
points are further than z apart, many entries in A are zero. The
smaller z, the more zeros. Matrices with many zeros are called
sparse, and the plots in Figure 8.7 illustrate the sparsity pattern of A.

1 20 40 60 80 100

1

20

40

60

80

100

nonzero pattern of A (n=10, z=0.25)

1 20 40 60 80 100

1

20

40

60

80

100

nonzero pattern of A (n=10, z=0.5)

1 80 160 240 320 400

1

80

160

240

320

400

nonzero pattern of A (n=20, z=0.25)

1 80 160 240 320 400

1

80

160

240

320

400

nonzero pattern of A (n=20, z=0.5)

Figure 8.7: Nonzero pattern of the
blurring matrix for the cone kernel
function, for n = 10 and n = 20 with
z = 0.25 and 0.50. As z increases, so
does the radius of the cone, and the
number of nonzeros in A.

141

(When building A, one need not waste effort computing these zero
entries. For large-scale problems, as we shall discuss in the next
chapter, one can exploit this zero structure to get fast algorithms.)

• The nonzero pattern is consistent with the tiling pattern described
in (8.22), though these plots do not indicate the values of the en-
tries of A, just the nonzero pattern.

• These matrices are banded, meaning they are zero for all diagonals
more than the bandwidth of A. The bandwidth increases with n
and z, although the ratio of the bandwidth to the matrix dimen-
sion n2 stays roughly constant.

8.3.2 An example of blurring

Let us see blurring in action, using the simple bitmap shown in Fig-
ure 8.8. This image comprises 80 × 80 pixels, which are assigned
values 0 and 1. The blurring matrix A ∈ Rn2×n2

thus has 802 = 6400
rows and columns, a large matrix despite the crude pixelation evi-
dent in the image.

0 20 40 60 80

0

20

40

60

80 0.0

0.2

0.4

0.6

0.8

1.0 Figure 8.8: A bitmap of 80× 80 pixels.

0 20 40 60 80

0

20

40

60

80 0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80 0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80 0.0

0.2

0.4

0.6

0.8

1.0

z = 0.05 z = 0.10 z = 0.20

Figure 8.9: Blurred versions of the
bitmap in Figure 8.8 using the cone
kernel (8.20) with parameters z = 0.05,
z = 0.1, and z = 0.2.

142

Figure 8.9 shows the effect of blurring on this image, using the
cone kernel (8.20) with three increasing values of z. Indeed as z in-
creases, the image becomes increasingly difficult to identify. Look at
that final image, which used z = 0.2. Could you discern that this is
a blurry image of Figure 8.8? Do we have any hope of recovering the
original image via

f = A−1b ?

8.3.3 A first attempt at deblurring

Our first attempt to deblur these images will simply apply A−1 to
find f from b. We will start with the “exact” b (formed via b =

0 20 40 60 80

0

20

40

60

80

deblurred image (noise 1.00e-06; z = 0.05)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

deblurred image (noise 1.00e-06; z = 0.10)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

deblurred image (noise 1.00e-06; z = 0.20)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

deblurred image (noise 1.00e-05; z = 0.05)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

deblurred image (noise 1.00e-05; z = 0.10)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

deblurred image (noise 1.00e-05; z = 0.20)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

deblurred image (noise 1.00e-04; z = 0.05)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

deblurred image (noise 1.00e-04; z = 0.10)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

deblurred image (noise 1.00e-04; z = 0.20)

0.0

0.2

0.4

0.6

0.8

1.0

z = 0.05 z = 0.10 z = 0.20

no
is

e
=

10
−

6
no

is
e

=
10
−

5
no

is
e

=
10
−

4

z = 0.10 z = 0.20

Figure 8.10: Recovered images using
A−1b, where b has been polluted
with Gaussian noise having standard
deviation noted in the title of each
plot. The blurring gets more severe
as z increases, and that has significant
implications on the quality with which
the images are recovered.

143

Af, since in this special test case we know the function f we are
trying to find) and then add Gaussian random noise with standard
deviation 10−6, 10−5, and 10−4. Figure 8.10 shows the results, for
increasing amounts of blurring (z = 0.05, 0.10, and 0.20. The effect
of the noise is obvious in all cases except the top left, which features
the least noise (10−6) and the least blurring (z = 0.05). As the noise
and blurring increases, the recovered f no longer resembles the true
image in Figure 8.8, but becomes increasingly dominated by static or
white noise.

By now we are not surprised to see such poor “solutions” to an
deblurring problem, and you hopefully suspect some culprits:

• The singular values of A probably show significant decay, with the
latter singular values quite small.

• This singular values probably decay faster as the blurring gets
stronger (recall the cartoon in Figure 7.9), consistent with the
degradation of the results from left to right in Figure 8.10.

• The right singular vectors vj associated with small singular values
σj probably have some static appearance, as we emerging and then
dominating the recovered f vectors.

Figure 8.11 shows the singular values of A for the three z values
we have been studying. Indeed, our instinct is confirmed: the sin-
gular values decay seven orders of magnitude, with an initial rapid
period of decay, followed by more gradual decay, and then a more
rapid tail off at the end. (Note the horizontal axis: we are looking at

1 1600 3200 4800 6400
k

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

sig
m

a_
k

singular values of blurring matrix

z=0.05
z=0.1
z=.2

Figure 8.11: Singular values of the
blurring matrix for n = 80 with the
three values of z = 0.05, 0.1, and 0.2.
As z increases, the matrix blurs more
strongly, and the singular values get
smaller.

144

0 20 40 60 80

0

20

40

60

80

right singular vector v_j, j = 1

0.050

0.025

0.000

0.025

0.050

0 20 40 60 80

0

20

40

60

80

right singular vector v_j, j = 2

0.050

0.025

0.000

0.025

0.050

0 20 40 60 80

0

20

40

60

80

right singular vector v_j, j = 4

0.050

0.025

0.000

0.025

0.050

0 20 40 60 80

0

20

40

60

80

right singular vector v_j, j = 50

0.050

0.025

0.000

0.025

0.050

0 20 40 60 80

0

20

40

60

80

right singular vector v_j, j = 100

0.050

0.025

0.000

0.025

0.050

0 20 40 60 80

0

20

40

60

80

right singular vector v_j, j = 200

0.050

0.025

0.000

0.025

0.050

0 20 40 60 80

0

20

40

60

80

right singular vector v_j, j = 6398

0.050

0.025

0.000

0.025

0.050

0 20 40 60 80

0

20

40

60

80

right singular vector v_j, j = 6399

0.050

0.025

0.000

0.025

0.050

0 20 40 60 80

0

20

40

60

80

right singular vector v_j, j = 6400

0.050

0.025

0.000

0.025

0.050

Figure 8.12: Singular vectors of A for
n = 80 and z = 0.2, vj ∈ Rn2

; the
vectors have been reshaped into n× n
matrices to facilitate comparison with
the images shown in this section. The
top rows shows v1, v2, v4 correspond-
ing to large singular values; the middle
rows shows v50, v100, and v200 corre-
sponding to middling singular values,
and the last row shows v6398, v6399,
and v6400 corresponding to the smallest
singular values.

n2 = 6400 singular values for each matrix. As z increases and the blur
becomes more severe, the singular values get smaller.

Figure 8.12 shows nine of the right singular vectors vj. These sin-
gular vectors are each column vectors of length n2, but we rearrange
them into an n × n matrix, just as we do for our image vectors, for
a deeper understanding of how these singular vectors contribute to
the deblurring process. The top row shows early singular vectors
(v1, v2, and v4), all of which exhibit little oscillation. The middle row
shows intermediate singular vectors (v50, v100, and v200), increas-
ing in frequency of oscillation as the index increases. The final row
shows the last three singular vectors (v6398, v6399, and v6400). Indeed,
as expected, these singular vectors exhibit the static pattern we saw
for the worst recovered f in Figure 8.10.

Figure 8.13 illustrates why our recovery efforts in Figure 8.10 went

145

1 1600 3200 4800 6400
j

10 7

10 5

10 3

10 1

101

coefficients of b (noise 1e-4) in u_j basis

1 1600 3200 4800 6400
j

10 4

10 2

100

102

coefficients of f (using b, noise 1e-4) in v_j basis

Figure 8.13: Magnitude of coefficients
|uT

j b| of b in the {uj} basis of left

singular vectors, and |uT
j b/σj of A−1b,

for b generated with Gaussian noise
having standard deviation 10−4 and
blurring parameter 0.2.

so wrong. We single out the worst of these examples, noise level
10−4 with blurring parameter z = 0.20. The left plot of Figure 8.13
examines the values |uT

j b| that arise in the expansion of b in the
orthonormal basis of left singular vectors:

b =
n2

∑
j=1

(uT
j b) uj.

As we expect, uT
j b is largest for the small j, and eventually falls off

roughly to the level of the noise, 10−4 that we inflicted upon b.
Contrast that left plot with the one on the right, which shows

|uT
j b|/σj, the expansion coefficients of the solution f in the orthonor-

mal basis of right singular vectors

f+ = A+b =
n2

∑
j=1

(
uT

j b

σj

)
vj. (8.23)

The left side of that the plot looks fine, as the coefficients for small
j dominate. But soon we reach the level where the singular value σj

decays below the value of uT
j b (which was elevated around 10−4 by

the noise), and the uT
j b/σj terms start increasing; eventually they

become large enough to overwhelm the good information contained
for smaller j values.

8.3.4 Deblurring with truncated SVD regularization

Figure 8.13 justifies our first strategy for regularization: from the
expansion (8.24) for the recovered solution, omit the terms corre-
sponding to small singular values:

fk =
k

∑
j=1

(
uT

j b

σj

)
vj. (8.24)

146

0 20 40 60 80

0

20

40

60

80

truncated SVD regularization, k = 100

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

truncated SVD regularization, k = 250

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

truncated SVD regularization, k = 500

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

truncated SVD regularization, k = 2000

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

truncated SVD regularization, k = 4000

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

truncated SVD regularization, k = 6000

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.14: Recovery of the case
with z = 0.2 blurring and noise level
10−4 using truncation based on the
first k terms of the singular value
decomposition.

How does this regularization by truncation to the first k terms of the
SVD perform for our example? Figure 8.14 illustrates the results for
six values of k.

Calibrate yourself to the dimension of the problem: the matrix A is
n2 × n2 = 6400× 6400, and the singular values shown in Figure 8.11
do not decay all that quickly. To the eye, the best of these truncated
SVD recoveries occurs for k = 2000, which might seem excessively
large but still includes less than a third of the singular values. If k
too small, we do not include enough of the singular vectors with
moderate frequency to make out the finer detail in the image; see
Figure 8.12. On the other hand, when k gets too large, we include
some of the terms for which uT

j b/σj was problematically large, corre-
sponding to static-looking singular vectors: hence the poor results for
k = 4000 and k = 6000.

Figure 8.15 shows an L-curve for SVD truncation.

8.3.5 Deblurring with Tikhonov regularization

Tikhonov regularization provides similarly strong recoveries,

fλ =
n2

∑
j=1

(
σj

σ2
j + λ2

uT
j b

)
vj,

147

10 3 10 2 10 1 100 101

|| b - A*f_k ||

102

4 × 101

6 × 101

2 × 102

||
f_

k
||

truncated SVD L curve for 2d deblurring example
Figure 8.15: L curve for truncated SVD
regularization

as shown in Figure 8.16. If λ is too small, the regularization insuffi-
ciently damps the problematic singular values, and the static dom-
inates. As λ increases we eventually get excellent recoveries, with
λ = 10−3 giving the best results of those shown here. If λ is too large,
then the penalty term λ2‖f‖2 suppresses the solution and we again
get poor recoveries that now look excessively smooth.

Figure 8.17 shows an L-curve for Tikhonov regularization. Our
favored solution, with λ = 10−3, falls just after the bend in the L.

148

0 20 40 60 80

0

20

40

60

80

Tikhonov regularization, lambda = 1.00e-06

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

Tikhonov regularization, lambda = 1.00e-05

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

Tikhonov regularization, lambda = 1.00e-04

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

Tikhonov regularization, lambda = 1.00e-03

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

Tikhonov regularization, lambda = 1.00e-02

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

Tikhonov regularization, lambda = 1.00e-01

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.16: Recovery of the case with
z = 0.2 blurring and noise level 10−4

using Tikhonov regularization, for six
values of the regularization parameter
λ.

10 4 10 3 10 2 10 1 100 101

|| b - A*f_lam ||

102

103

||
f_

la
m

 ||

L curve for 2d deblurring example
Figure 8.17: L curve for Tikhonov
regularization

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 9
Iterative methods for large linear systems

The blurring matrices we constructed in the last chapter for two-
dimensional images grew rapidly in dimension as the number of
pixels increased. An image comprised of n × n pixels led to a blur-
ring matrix A of dimension n2 × n2, so that our example with n = 80
gave 6400 × 6400 matrices. As matrices grow to such dimensions,
computations no longer appear to happen instantly; distinctions be-
tween the performance of algorithms, which might seem of academic
interest when A is of small dimension, suddenly become much more
acute: the difference between methods that take 1 minute (or 1 day)
versus 2 minutes (or 2 days) is rather stark.

Matrices of dimension 6400× 6400 start to approach the limit at
which we can comfortably compute with generic algorithms on mod-
ern laptops. By exploiting structure in A, one can often obtain results
much more quickly, though the algorithms grow in sophistication
and, potentially, numerical robustness.

9.1 Sparse matrices

Various structures are worth exploiting. Symmetry is the most com-
mon and simple property worth addressing, leading to significant
speedups for solving Ax = b and computing eigenvalues. Beyond
symmetry, the most important structure is sparsity. The definition of
a sparse matrix will be a bit fuzzier than our other definitions in these
notes. This famous numerical analyst James Hardy Wilkinson
informally defined a sparse matrix as “any matrix with enough zeros
that it pays to take advantage of them.” Implicit in this definition

Quoted on page 334 of J. R. Gilbert,
C. Moler, R. Schreiber, “Sparse
Matrices in MATLAB: Design and
Implementation,” SIAM J. Matrix Anal.
Appl. 13 (1992) 333–356.

is that some algorithms are quite sensitive to the location of these
nonzero entries, while others are relatively immune to that considera-
tion.

© Copyright 2022 by Mark Embree. All rights reserved.

150

We give a less punchy version of Wilkinson’s definition.

Definition 9.1. A matrix is sparse provided it has sufficiently many zero
entries to be worth exploiting by an algorithm. This assessment depends
not only on the number of nonzero entries, but also on their location in A
and how the algorithm operates upon A.

A matrix that is not sparse is called dense.

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

Figure 9.1: Location of nonzero en-
tries (the sparsity pattern) of two
50× 50 sparse matrices, both having
244 nonzero entries. The top example, a
banded matrix, has structure that is easy
to store and exploit in an algorithm; the
bottom example, with nonzeros scat-
tered arbitrarily throughout the matrix,
takes more overhead to store and is
hard for some algorithms to exploit.

Figure 9.1 illustrates two 50× 50 matrices that have the same num-
ber of nonzeros, but distributed differently throughout the matrix.
The top pattern is ideal: we can use compact storage and every algo-
rithm can take advantage of this structure. The second matrix, with
its nonzeros scattered throughout the matrix, requires a more general
sparse matrix data structure, and its structure is not favorable to all
algorithms. Despite that fact that it has so many zero entries, some
algorithms could be better off treating this as a dense matrix.

We have already encountered sparse matrices in these notes: Fig-
ure 8.7 showed the nonzero pattern for four blurring matrices. In
those cases, the nonzero entries correspond to the pixels that influ-
ence the blurring of a given pixel: the larger the blurring parameter z,
the more nonzero entries.

To further appreciate the origins of sparse matrices, we introduce
an antique example. In the late 16th century, the Oxford mathemati-
cian John Wallis (1616–1703) showed how one could build a flat
roof made up of interlocking short timbers. Figure 9.2 shows his de-
sign. To compute his design, Wallis developed a system of 25 linear
equations in 25 unknowns (with one free variable, T, a scaling factor;
set T = 1 to obtain the right-hand side).

Figure 9.3 shows these 25 equations. Notice that each of the equa-
tions only involves a couple of variables, reflecting the connections of
the beams in Figure 9.2. Setting the free variable T = 1, the first equa-

Figure 9.2: Wallis’s design for a flat
roof made of short interlocking timbers,
from page 953 of the first volume of his
Opera Mathematica, 1695.

151

Figure 9.3: Wallis’s system of 25 lin-
ear equations for the design of his flat
roof, in terms of the common scaling
factor T.

tion A = 1
2 T + 2

3 A + 1
3 C can be rearranged as

1
3 A− 1

3 C = 1
2 . (9.1)

Wallis was working more than 150 years before the development
of matrix technology; remarkably, he tackled his system by simpli-
fying individual equations and substituting. (Yes, he got the answer
perfectly correct – an amazing feat!) Had he written his system in a
matrix form, Wallis would have obtained the sparse matrix shown
in Figure 9.4. Effectively he solved his system using a kind of sparse
elimination.

We include this antique example not merely for historical interest,
but because it illustrates a more general idea:

sparsity reflects locality.

Whether the matrix describes the blurring of an image, the diffu-
sion of heat, or communication across a social network, when the
primary effects are localized, many entries of the matrix (especially
those describing the interaction of distant elements of the system) are
typically zero.

0 5 10 15 20 25
0

5

10

15

20

25

Figure 9.4: Location of nonzero entries
(the sparsity pattern) of A for Wallis’s
model of a flat roof of short interlocking
timbers. Only 69 of the 252 = 625
entries in A are nonzero, an average of
less than 3 nonzeros per row.

9.1.1 Dense direct solvers

Thus far we have implicitly been solving Ax = b using the algo-
rithms of dense linear algebra. All n2 entries of the matrix A ∈ Rn×n

are stored (including zeros), and the algorithms applied to A do not
check whether the entries they are manipulating are zero or not. The
most broadly applied of these algorithms require O(n3) operations to
solve Ax = b. The O(n2) storage and O(n3) operations severely limit
the size of n for which such methods are viable; typical modern com-
puters can handle n ≤ 5000 without much trouble, and n ≤ 10000 in
a stretch. Even for such n, and certainly for larger n, algorithms that

152

exploit matrix structure (such as sparsity) typically perform much
better.

9.1.2 Sparse direct solvers

Traditional dense matrix algorithms can be adapted to exploit spar-
sity in A. Sometimes such modifications are easy to implement:
for the banded structure seen in the top of Figure 9.1, one can solve
Ax = b using O(n) storage O(n) operations (provided the bandwidth
is fixed as n grows), a remarkable speedup over the dense approach.
Other modifications are rather more intricate, and are the subject of
active research: arbitrary sparsity patterns like the one in the bottom
of Figure 9.1 pose considerable challenge. These methods are some-
what invasive, in that they closely manipulate the entries in A; as the
algorithm proceeds, some entries of A that are zero (and hence not
stored) need to be filled in due to the arithmetic of Gaussian elimi-
nation. Such fill-in requires additional storage; how much depends
on the structure of A. In some cases the approaches numerical ana-
lysts use to preserve numerical stability (such as pivoting in Gaussian
elimination) work against the goal of preserving sparsity, and one must
strike a reasonable balance.

For many moderate size problems (n in the tens or hundreds of
thousands), sparse direct methods can solve Ax = b very efficiently.
Software implementations of these sophisticated variants of Gaussian
elimination are widely available and are the method of choice for
solving many Ax = b. Details are beyond the scope of these notes,
but we point interested students toward UMFPACK (Unsymmetric
Multi-Frontal PACKage), a leading implementation developed by
Tim Davis. One can access a sparse direct solver in Python via

scipy.sparse.linalg.spsolve

which can also serve as an interface to UMFPACK (provided you
have installed that solver).

9.1.3 Iterative methods

Iterative methods attempt to solve Ax = b in a rather less invasive
manner than sparse direct methods. In many cases A is only accessed
through the matrix-vector product operation (often called a matvec).
The kth iteration of the method generates an approximation xk to the
exact solution, with (hopefully) xk → x as k→ ∞.

We highlight some key advantages of iterative methods.

• A user need only simply a subroutine to compute the matvec Av
for a given v. The matrix A does not even need to be created or stored,
provided you have some other way to compute Av. This feature

153

makes iterative methods particularly compelling for large-scale
problems, where storing A can be very expensive.

• Iterative methods are generally easy to implement on parallel com-
puters. Typically one distributes blocks of n/p rows to each of p
different processors.

• After a modest number of iterations k, the iterate xk often approx-
imates the true solution x to a few digits of accuracy. In many
applications this limited accuracy is all that is needed. Direct
methods (be they sparse or dense) provide no digits of accuracy
until the very last stage of the computation, where they deliver x
(up to numerical errors).

Iterative methods are not a panacea: they often require some
choice of parameters to ensure convergence, and the rate of conver-
gence can be agonizingly slow in some cases; indeed some methods
even diverge.

We consider two main classes of iterative methods for Ax = b.

• Splitting methods (also called stationary iterative methods express A
as the sum of two pieces,

A = M−N,

where M is much easier to invert than A. The iteration then pro-

For example, choosing M to be the
main diagonal of A yields the Jacobi
method; other popular iterations, the
Gauss–Seidel and SOR methods, take
M to be upper triangular.ceeds as

xk+1 = M−1(Nxk + b
)
.

Convergence is measured through the residual

rk = b−Axk,

which one can show to obey the formula

rk = (NM−1)k r0.

The method will converge provided all eigenvalues of the iteration
matrix NM−1 are smaller than one in magnitude. Unfortunately,
knowing whether this condition will hold for a given matrix A and
a given splitting A = M − N is often unclear. This uncertainty
restricts the utility of splitting methods, and has caused them to
fall from favor as general-purpose solvers in recent years, though
they remain important tools in certain domains (e.g., multigrid
algorithms).

• Polynomial iterative methods express xk in the form

xk = qk(A)b,

154

where qk is a polynomial of degree less than k. Such methods are
the focus of the next section of these notes. As we shall see, there
exists a good approach for selecting an optimal qk that ensures
convergence, though construction of this qk can be expensive.
Convergence can often be accelerated by choosing qk in a faster,
sub-optimal way, or modifying the problem (using a technique
called preconditioning; see Section 9.8) to make it better suited for
fast convergence.

9.2 Polynomial iterative methods: abstract framework

At their kth step, polynomial iterative methods produce an ap-
proximation xk ∈ Rn to the true solution x ∈ Rn of the linear system
Ax = b having the form

xk = qk(A)b, (9.2)

where qk is a polynomial of degree less than k.

Important note: these methods do
not actually construct xk by evaluating
qk(A)b at every k. They build up
xk in a much more efficient manner,
but this formula for xk provides a
framework for organizing, comparing
and analyzing these methods.

To assess convergence, one might naturally want to monitor the
error vector

ek := x− xk.

However, ek is not available: if we knew ek and xk, we could simply
create the true solution, x = ek + xk. Instead, we gauge convergence
through the residual vector

‖Brk := b−Axk.

Notice that Aek = rk, so if ‖rk‖ → 0, then ‖ek‖ → 0.
The residual can also be characterized using polynomials. Using

the polynomial expression (9.2) for xk,

rk := b−Axk

= b−Aqk(A)b

=
(
I−Aqk(A)

)
b

= pk(A)b,

where we have introduced the residual polynomial

pk(z) := 1− zqk(z).

Here z denotes a generic scalar variable, just used to express the
polynomial. Notice that the form of pk ensure that pk(0) = 1− 0 ·
qk(0) = 1.

155

The kth step of a polynomial iterative method constructs an
approximation xk to the solution x of the form

xk = qk(A)b,

where the iteration polynomial qk has degree less than k.

The residual rk := b−Axk can be written as

rk = pk(A)b,

where the residual polynomial

pk(z) = 1− zqk(z)

has degree k or less and satisfies

Pk(0) = 1.

While still remaining in this highly abstract framework, we can read-
ily develop a general-purpose convergence bound for polynomial
iterative methods that will serve us well in the rest of the chapter. For
simplicity, we shall assume that A is a symmetric matrix. Polynomial
iterative methods certainly also apply to nonsymmetric matrices, but
the convergence theory is quite a bit more subtle and remains an area
of active research.

Suppose A ∈ Rn×n is a nonsingular symmetric matrix. Then, as de-
tailed in Chapter 4, the matrix A can be written in the diagonalized
form

A = VΛVT =
n

∑
j=1

λjvjv
T
j ,

where the columns of V ∈ Rn×n are the orthonormal eigenvectors
v1, . . . , vn associated with the eigenvalues λ1, . . . , λn; the matrix Λ ∈
Rn×n has the eigenvalues on the main diagonal, and zero in all other
entries.

Since VTV = I for the square matrix V ∈ Rn×n, we must have that
V−1 = VT , and hence VVT = I. Thus we can write

b = VVTb = V(VTb) =
n

∑
i=1

(vT
j b)vj,

from which it follows (by the Pythagorean Theorem) that

The numbers vT
j b are the coefficients

of b expanded in the basis {vj} for Rn

formed by the eigenvectors of A.

‖b‖2 =
n

∑
j=1

(vT
j b)2. (9.3)

The iteration polynomial evaluated at A has a nice form in terms

156

of the eigenvalue decomposition of A:

qk(A) =
n

∑
j=1

qk(λj)vjv
T
j .

This form also leads to a nice expression for the residual polynomial
evaluated at A:

I−Aqk(A) = pk(A) =
n

∑
j=1

pk(λj)vjv
T
j

With this last expressions in mind, we can develop a bound on the
norm of the residual rk := b−Axk:

‖b−Axk‖2 = ‖rk‖2 = ‖pk(A)b‖2

=

∥∥∥∥
n

∑
j=1

pk(λj)(vT
j b)vj

∥∥∥∥
2

=
n

∑
j=1

(
pk(λj)

)2
(vT

j b)2

≤
(

max
1≤j≤n

(
pk(λj)

)2
) n

∑
j=1

(vT
j b)2

=
(

max
1≤j≤n

(
pk(λj)

)2
)
‖b‖2,

where this last step used (9.3). Dividing by ‖b‖2 and taking square
roots, we obtain the error bound

‖rk‖
‖b‖ ≤ max

1≤j≤n
|pk(λj)|.

Theorem 9.1. Let A ∈ Rn×n be a nonsingular symmetric matrix having
(real) eigenvalues λ1, . . . , λn. Then the residual rk induced by the kth
iterate xk = qk(A)b of the polynomial iterative method satisfies the bound

‖rk‖
‖b‖ ≤ max

1≤j≤n
|pk(λj)|,

for the residual polynomial pk(z) = 1− zqk(z).

9.3 Richardson’s method

Having set the abstract framework for polynomial iterative meth-
ods, it is time to get down to precise methods. The simplest such

157

algorithm, attributed to Lewis Fry Richardson (1881–1953), just
updates the iterate xk with a fixed multiple c ∈ R of the residual:

xk+1 = xk + crk. (9.4)

This expression does not immediately suggest that Richardson’s
method fits the template for a polynomial iterative method detailed
in the last section. A few steps of the method will make that polyno-
mial nature apparent. Start from x0 = 0, so that r0 = b− Ax0 = b,
and compute

x1 = x0 + cr0 = cb, r1 = b−Ax1 = (I− cA)b;

x2 = x1 + cr1 = cb + c(I− cA)b r2 = b−Ax2 = (I− cA)2b;
= (2cI− c2A)b,

x3 = x2 + cr2 r3 = b−Ax3 = (I− cA)3b.
= cb + c(I− cA)b + c(I− cA)2b
= (3cI− 3c2A + c3A2)b,

These few iterations reveal the structure of the iteration and residual
polynomials. For example, for k = 3 the iteration polynomial is

qk(z) = 3c− 3c2z + c3z2,

while the residual polynomial is

pk(z) = 1− zq(z) = (1− cz)3.

Indeed, for Richardson’s method the residual polynomial always
follows this simple form.

For Richardson’s method with fixed parameter c ∈ R, the
residual polynomial pk at step k takes the form

pk(z) = (1− cz)k. (9.5)

Example 9.1. Iterative methods are meant for large A, but we can
often get good insight about their behavior from small examples. In
that spirit, we will apply Richardson’s method to

A =

[
1 0
0 3

]
, b =

[
1
3

]
, (9.6)

corresponding to the exact solution

b =

[
1
1

]
.

Start with the initial guess x0 = 0, and set the iteration parameter
to c = 1/2. Apply the iteration (9.4) to compute a few iterates and
residuals.

158

x1 =

[
1/2
3/2

]
r1 =

[
1/2
−3/2

]

x2 =

[
3/4
3/4

]
r2 =

[
1/4
3/4

]

x3 =

[
7/8
9/8

]
r3 =

[
1/8
−3/8

]

x4 =

[
15/16
15/16

]
r4 =

[
1/16
3/16

]

The pattern is evident: xk → x while rk → 0 as k → ∞. (Indeed,
notice that the residual is perfectly cut in half at each step: ‖rk+1‖ =
1
2‖rk‖ for this tidy example.)

The parameter c = 1/2 played a crucial role in this convergence.
This parameter dictates the influence of the residual rk on the new
iterate xk+1 according to the update formula xk+1 = xk + crk. Small
values of c restrict the influence of rk, leading to slow convergence.
However, if c is too large, rk dominates xk+1, and the iteration can
even diverge. Figure 9.5 illustrates how the convergence behavior
depends on c.

We seek to understand how c controls convergence, to give some
guidance on how to select this parameter to optimize the conver-
gence rate.

0 5 10 15 20
k

10 4

10 1

102

105

108

1011

1014

||rk||

c=1/8 c=1/4 c=1/2 c=2/3 c=1 c=2

c = 2

c = 1

c = 2/3
c = 1/8
c = 1/4

c = 1/2

Figure 9.5: Evolution of ‖rk‖ as k in-
creases for six choices of the iteration
parameter c in Richardson’s method.
The choice c = 1/2 delivers the best
convergence; convergence slows as c
is decreased from this optimal value;
increasing c also leads to slower conver-
gence, or even divergence when c > 2/3.

159

9.3.1 Convergence of Richardson’s method

We can understand the convergence of Richardson’s method
(for symmetric A) by simply combining the general convergence
result for polynomial iterative methods in Theorem 9.1 with the for-
mula (9.5) for the residual polynomial for Richardson’s method,
yielding

‖rk‖
‖Bb‖ ≤ max

1≤j≤n
|1− cλj|k. (9.7)

The rate of convergence for this method,

ρ(c) := max
1≤j≤n

|1− cλj|, (9.8)

describes the fraction be which we expect the residual norm to de-
crease at every step:

‖rk+1‖ ≈ ρ(c)‖rk‖.
To get the fastest overall convergence, we seek the value of c that
makes ρ(c) as small as possible.

The plots in Figure 9.6 illustrate the residual polynomials pk(z) for
the first four iterations k = 1, 2, 3, 4, given four choices of c, for the
matrix (9.6) in Example 9.1. We can label the eigenvalues of A as

λ1 = 3, λ2 = 1.

1 0 1 2 3 4
z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

pk(z)

c = 0.25

k=1 k=2 k=3 k=4

1 0 1 2 3 4
z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

pk(z)

c = 0.50

k=1 k=2 k=3 k=4

1 0 1 2 3 4
z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

pk(z)

c = 0.70

k=1 k=2 k=3 k=4

1 0 1 2 3 4
z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

pk(z)

c = 1.00

k=1 k=2 k=3 k=4

Figure 9.6: Residual polynomial pk for
k = 1, . . . , 4 for Richardson’s method
applied to the problem in Example 9.1
with four values of the parameter c.

160

Each illustration includes a shaded band highlighting when |p(z)| <
1, and shows dots at pk(λj). For convergence, we seek to drive
pk(λj) → 0 as rapidly as possible as k increases. Consider these
four cases.

• When c = 0.25, the pk(1) is slow to converge, but pk(3) is quite
small.

• When c = 0.50, pk(1) = −pk(3): the magnitude of the polynomial
is perfectly balanced between the two eigenvalues, and conver-
gence is rapid and even.

• When c = 0.70, pk(1) gets small quicker than it did for c = 0.50,
but now pk(3) actually increases: the iteration diverges as k → ∞.
Note that convergence rate ρ(0.70) > 1.

• When c = 1.00, pk(1) = 0, but pk(3) is so large that these points do
not even show up on the plot. The method diverges quickly.

These illustrations signal a general principle for selecting the pa-
rameter c for a matrix A with positive real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

• The optimal value of c? will balance 1− cλj at the extreme eigen-
values of A:

1− c?λn = −(1− c?λ1).

• If 0 < c < c?, the method converges, but slower than with c?.

• If c? < c < 2/λ1, the method converges, but slower than with c?.

• If c? > 2/λ1, the method will diverge for most b.

We conclude this section by describing some advantages and disad-
vantages of Richardson’s method.

+ The algorithm is easy to implement.

+ It only accesses A through the matrix-vector product Axk.

− One needs to know the eigenvalues of A to pick c optimally.

− Convergence will be very slow when the eigenvalues of A are
spread over a large range.

− The iteration and residual polynomials have a rigid form, e.g.,

pk(z) = (1− cz)k.

161

A more flexible method would allow the parameter c to change at
each step, giving

pk(z) = (1− c1 z)(1− c2 z) · · · (1− ck z).

With such flexibility we could spread the cj values so that 1/cj

cover the eigenvalues of A in some way. Indeed, the GMRES algo-
rithm will give this ability, and implicitly select these cj parameters
without requiring knowledge of the eigenvalues of A.

While Richardson’s method gives a helpful introduction to polyno-
mial iterative methods, it is not generally regarded as a competitive
algorithm, given the alternatives described below.

9.4 Kaczmarz’s Method

See the SIAM Review article by Yair Censor (1981).

9.5 GMRES

Richardson’s method give a very simple iteration with a rigid
residual polynomial form, pk(z) = (1 − cz)k. We now explore a
method that permits a more general form for pk. The GMRES – Gen-
eralized Minimum RESidual – algorithm, swings for the fences: why
not use the best residual polynomial pz? GMRES seeks the poly-
nomial of degree k (or less) satisfying the normalization condition
pk(0) = 1 that minimizes

‖b−Axk‖ = ‖rk‖ = ‖pk(A)b‖;

that is,
‖rk‖ = min

deg(p)≤k
p(0)=1

‖p(A)b‖ = ‖pk(A)b‖.

Remarkably, we can find this optimal pk by solving a least squares
problem. Let us derive this idea in an idealistic setting, before dis-
cussing a practical implementation.

9.5.1 A theoretical derivation

At step k, every polynomial iterative method builds an iterate Bxk

having the form
xk = qk(A)b,

where qk is a polynomial of degree less than k. Let us write this poly-
nomial in the form

qk(z) = s0 + s1 z + s2 z2 + · · ·+ sk−1 zk−1.

162

Picking the k coefficients s0, s1, . . . , sk−1 is equivalent to selecting qk,
and, thus, xk. Notice that

xk = qk(A)b = s0 b + s1 Ab + s2 A2b + · · ·+ sk−1Ak−1b

∈ span{b, Ab, A2b, . . . , Ak−1b}. (9.9)

In light of this characterization, we can express xk as a linear com- The subspace in (9.9) is called a
Krylov subspace, named after Rus-
sian academician Aleksey Krylov.

bination of the vectors in this spanning set, or, equivalently, as a
matrix-vector product involving the Krylov matrix Kk ∈ Rn×k and the
vector s ∈ Rk of coefficients:

Kk =
[

b Ab A2b · · · Ak−1b
]
∈ Rn×k, s =




s0

s1
...

sk−1



∈ Rk.

Since xk = Kks, we can write

rk = b−Axk = b−AKks,

and so minimizing ‖rk‖ amounts to solving the least squares problem

min
s∈Rk
‖b− (AKk)s‖, (9.10)

where AKk ∈ Rn×k. By now you are experts in such least squares

As we will see in a moment, we always
have k ≤ n.

problems; after Chapter 7 can settle this optimization via the pseu-
doinverse:

s = (AKk)
+b. (9.11)

With this formula for s, we can write down the iterate as

xk = Kks (9.12)

and the associated residual as

rk = b−AKks.

Before going any further, let us observe that at some iteration
k? ≤ n, this procedure will produce the exact solution:

xk? = x = A−1b,

and so we only consider the case k ≤ n. To see this, let λ1, . . . , λn

denote the eigenvalues of A (which are all nonzero, since A is invert-
ible), and define the polynomial

pn(z) =
(
1− z/λ1

)(
1− z/λ2

)
· · ·
(
1− z/λn

)
;

this polynomial has degree n and satisfies pn(0) = 1. One can show
that pn(A) = 0. Since

For example, if A is symmetric with
eigendecomposition

A =
n

∑
j=1

λjvjv
T
j ,

then

pn(A) =
n

∑
j=1

pn(λj)vjv
T
j

= 0

since pn(λj) = 0 for each eigenvalue λj
of A.

163

‖rn‖ = min
deg(p)≤n

p(0)=1

‖p(A)b‖ ≤ ‖pn(A)b‖ = 0,

we see that 0 = rn = b − Axn and so Axn = b: so xn is the exact
solution. (It is possible that GMRES finds the exact solution sooner, at
k < n – this will happen, for example, if A = I – but we are assured
the GMRES must converge exactly by iteration k = n.)

To compute xk using the formula (9.12) would require us to solve
the least squares problem (9.10) involving the matrix AKk of dimen-
sion n× k, requiring quite a bit of work at each step. Before we worry
about this computational complexity, we will encounter even more
profound stability problems with this approach.

Before exploring these problems, let us capture a few observations
about the quality of this approximation.

Key properties of the GMRES Residuals

• The approximation subspace

Kk := span{b, Ab, A2b, . . . , Ak−1b}

from which GMRES extracts the residual-minimizing iterate
xk ∈ Kk expands as k increases, Kk ⊆ Kk+1, which implies that
xk+1 is at least as good an approximation as was xk, implying

‖rk+1‖ ≤ ‖rk‖. (9.13)

• Eventually k is increased enough so that Kk+1 = Kk; this must
happen at least when k = n (since Kk ⊆ Rn, it cannot have
dimension larger than n), if not before. At this stage, one can
show that xk equals the exact solution, with rk = b−Axk = 0.
Thus GMRES finds the exact solution in n steps or fewer. (In
practice, we hope GMRES provides an accurate estimate for k
much smaller than n.)

9.5.2 A fatal flaw with this implementation

The algorithm we have just proposed, summarized by the pseudoin-
verse formula

xk = (AKk)
+b,

has a fatal flaw that makes it entirely unsuitable in practice. Suppose
that A = AT has the eigendecomposition

A =
n

∑
j=1

λjvjv
T
j

164

0 5 10 15 20
j

10 3

101

105

109

1013

1017

1021

j

k = 4
k = 8
k = 12
k = 16
k = 20

Figure 9.7: Singular values of the
matrix AKk at k = 4, 8, 12, 16, 20, for the
matrix of dimension n = 91 in (9.14).

with eigenvalues ordered by decreasing magnitude

λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn > 0.

Here we have stipulated that all the eigenvalues of A are positive and
the largest of them is distinct, so λ1 > λj for j = 2, . . . , n.

Now consider the columns of the matrix

AKk =
[

Ab A2b A3b · · · Akb
]
∈ Rn×k.

We can express the pth column as a linear combination of the eigen-
vectors of A,

Apb =
n

∑
j=1

λ
p
j (v

T
j b)vj.

Since λ1 the largest magnitude eigenvalue, then (assuming vT
1 b 6= 0,

the term
λ

p
1 (v

T
1 b)v1

will increasingly dominate the formula for Apb:

the columns of AKk increasingly align with v1 as k increases.

Indeed, the vectors Apb are (up to
normalization) the iterates of the
power method, a simple algorithm for
computing the eigenvector associated
with the largest magnitude eigenvalue.Thus, the columns of AKk gradually drift toward linear dependence:

even if – strictly speaking – they remain linearly independent,

the singular values of AKk typically decay very rapidly.

The extent of this decay can be startling. Consider the simple diago-
nal matrix

A = diag(1, 1.1, 1.2, . . . , 9.9, 10) ∈ R91×91 (9.14)

with right-hand side vector b = [1, 1, . . . , 1]T . Figure 9.7 shows the
singular values of AKk for K = 4, 8, 12, 16, and 20. Consider the case

165

of k = 12: the singular values decay by roughly a factor of 10−15 from
σ1(AK12) to σ12(AK12). Given our experience in the last two chap-
ters, given such start singular value decay, we have little confidence
that a solution (AKk)

+b will be computed with any accuracy.

0 5 10 15 20
iteration

10 5

10 4

10 3

10 2

10 1

100

101

102

||rk||

Figure 9.8: Convergence of GMRES,
using the pseudoinverse formula
xk = (AKk)

+b to compute the iterates,
for the matrix A in (9.14). Numerical
instability becomes obvious around step
k = 13.

Does this singular value decay matter for the algorithm? Yes, in-
deed! Figure 9.8 shows that GMRES initially converges steadily up
to that k = 12 iteration. At that point, we see a noticeable increase in
the norm of the computed residual, violating the theoretical prop-
erty (9.13) that insists that convergence be monotone decreasing:

‖rk+1‖ ≤ ‖rk‖.

If this implementation of the minimum residual method fails for such
a simple matrix A, we can have no hope it will be reliable for the
kinds of large-scale linear systems to which we hope to apply this
algorithm. A better approach is needed.

9.5.3 A clever fix: the GMRES implementation

By this stage in the course your instinct by to “fix” the formula
xk = (AKk)

+b by applying singular value truncation or Tikhonov
regularization. In this case, there is a better approach:

reformulate the problem to avoid the instability.

For the image deblurring examples considered in the previous chap-
ters, the ill-posedness was fundamental to the blurring operation:
this blurring naturally maps distinct crisp images close together.

In our present setting, the singular value decay in AKk does not
capture a fundamental aspect of the minimum residual calculation;

166

rather, it simply reflects the fact that we chose a poor basis for the space
R(Kk). A more effective implementation of GMRES follows from
using a better basis for this subspace.

0 5 10 15 20
iteration

10 5

10 4

10 3

10 2

10 1

100

101

102

||rk||

basic implementation
orthonormal basis

Figure 9.9: Convergence of GMRES,
using the improved approach using
an orthonormal basis for the subspace
Kk , for the matrix A in (9.14). The
numerical stability issue that occurs
with the pseudoinverse solution is
avoided.

9.5.4 An acceleration for symmetric A

9.5.5 An compromise for nonsymmetric A: restarting

9.5.6 Convergence theory

A = diag(1, 2, 3, . . . , 19, 20) ∈ R20×20. (9.15)

9.6 Kaczmarz’s Method

9.7 Alternative iterations for nonsymmetric A

Bi-Conjugate Gradients (BiCG), Conjugate Gradients Squared (CGS),
Quasi-Minimum Residual (QMR), Transpose-Free QMR (TFQMR),
Bi-Conjugate Gradient Stabilized (BiCGSTAB), Induced Dimension
Reduction (IDR) methods

9.8 Preconditioning

167

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p k
(z

)

k = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p k
(z

)

k = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p k
(z

)

k = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p k
(z

)

k = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p k
(z

)

k = 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p k
(z

)

k = 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p k
(z

)

k = 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p k
(z

)

k = 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p k
(z

)

k = 9

Figure 9.10: GMRES residual polyno-
mials pk for the matrix A in (9.15) with
a random b vector.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
iteration, k

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

ro
ot

s o
f p

k(z
)

Figure 9.11: Roots of the GMRES resid-
ual polynomial pk for k = 1, 2, . . . , 20.
(For each value of k, the roots are dis-
played on a vertical line. The gray
horizontal lines show the eigenvalues
of A.) Notice how the roots “find” the
eigenvalues of A, though we have not
given GMRES any information about
these eigenvalues.

Matrix Methods for
Computational Modeling
and Data Analytics

Virginia Tech · Spring 2022

Mark Embree

embree@vt.edu

Ax=b
version of 28 October 2022

Chapter 10
Iterative methods for nonlinear optimization

Thus far we have focused on linear problems, but many
modeling problems give rise to another vital problem: minimizing a
nonlinear function. In the final component of these notes we give a
brief introduction to this expansive area.

10.1 Overview of nonlinear optimization

The field of optimization spans a tremendous variety of problems,
with specialized algorithms tailored to exploit the special properties
of each class. For example, the field includes optimization of

• Smooth functions f : Rn → R with no constraints;

• Smooth functions f : Ω→ R with constraints limiting Ω ⊂ R;

• Functions f : Rn → R such as

f (x) = ‖b−Ax‖2 + λ‖x‖1,

which does not have a derivative to some points x ∈ R;

‖x‖1 = |x1|+ · · ·+ |xn|

• Linear functions cTx subject to equality and inequality constraints;

• Functions f where some variables can only take integer values.

In these notes, we shall focus on the first class of problems: mini-
mization of smooth, multivariable functions in the absence of con-
straints. These notes were inspired by the important and highly rec-
ommended textbook Nonlinear Optimization by Jorge Nocedal and
Stephen J. Wright, which addresses many more details, and cov-
ers a far broader range of optimization problems.

© Copyright 2022 by Mark Embree. All rights reserved.

169

x1
3

2
1

0
1

2
3

x2
3

2
1

0
1

2
3

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

8

6

4

2

0

2

4

6

8

10

12

Figure 10.1: An example of a nonlinear
function of two variables, f : R2 → R

(the peaks function in MATLAB),
illustrated by a wireframe plot on the
left and a contour plot on the right.

10.2 Functions of several variables

Figure 10.1 shows a function f : R2 → R that we will use throughout
this chapter to illustrate basic concepts from nonlinear optimization.
This figure demonstrates two ways to visualize a function of two
variables: on the left, we think of the variables x1 and x2 as coordi-
nates on a map, the value of f (x) at x = [x1, x2]

T as the height of the
surface. While such views are only possible with n = 2 variables,
they inform the language with which we describe optimization algo-
rithms, e.g., going “downhill” toward the local minimum, or getting
caught on a “saddle point.” The plot on the right of Figure 10.1 is a
contour plot, showing lines where f (x) takes on a constant value that
can be read off the colorbar.

10.2.1 Taylor expansion in higher dimensions

For a smooth function f : R→ R of one variable, the Taylor expansion

f (x + p) = f (x) + p f ′(x) +
p2

2
f ′′(x) + · · ·

describes the behavior of f near the point x, i.e., for small |p|. Trun-
cating the Taylor series after the first three terms gives

φ(x + p) = f (x) + f ′(x)p +
1
2

f ′′(x)p2,

a quadratic polynomial in the variable p that interpolates f , f ′, and f ′′

at x, meaning that φ and its first two derivatives match those values
of f at x:

φ(x) = f (x), φ′(x) = f ′(x), φ′′(x) = f ′′(x).

170

Thus, the truncated Taylor series gives a polynomial model that
matches the behavior of f locally around the single point x ∈ R.
The quality of the model likely degrades as x + p gets farther from x.

A perfect generalization of the Taylor series exists, for functions
f : Rn → R of more variables. Naturally such an expansion will
require a multivariable generalization of the derivatives f ′(x) and
f ′′(x), called the gradient and Hessian of f .

Definition 10.1. Let f : Rn → R be continuously differentiable at
x ∈ Rn. Then the gradient of f at x is the vector of first partial
derivatives,

∇ f (x) =




∂

∂x1
f (x)

...
∂

∂xn
f (x)



∈ Rn.

If all second partial derivatives of f exist at x, the Hessian of f at x is the
matrix containing all second partial derivatives,

∇2 f (x) =




∂2

∂x2
1

f (x) · · · ∂2

∂xn∂x1
f (x)

...
. . .

...
∂2

∂x1∂xn
f (x) · · · ∂2

∂x2
n

f (x)



∈ Rn×n.

The (j, k) entry of the Hessian is

(
∇2 f (x)

)
j,k =

∂

∂xk
∇ f (x) =

∂2

∂xk∂xj
f (x).

If all these second derivatives are continuous at x, the mixed partial
derivatives match,

∂2

∂xk∂xj
f (x) =

∂2

∂xj∂xk
f (x),

and hence the Hessian is a symmetric matrix.

With these definitions in place, we can state the generalization of
the Taylor series to the multivariable setting.

Let f : Rn → R be smooth function at x ∈ Rn. For p ∈ Rn with
sufficiently small ‖p‖, we have the Taylor approximation

f (x + p) = f (x) + pT∇ f (x) +
1
2

pT∇2 f (x)p +O(‖p‖3). (10.1)

For our purpose it suffices to only
consider the Taylor expansion up
through the quadratic term involving
the Hessian. The next term in the
approximation, incorporating the third
derivatives, could be expressed using
an n × n × n tensor of mixed third
partial derivatives.

171

x1

3 2 1 0 1 2 3 x23 2 1 0 1 2 3

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Figure 10.2: The function from Fig-
ure 10.1 (blue), with its constant-order
approximation (red) that interpolates
f at the point x = [0.5,−1.25]T (black
dot).

Taylor series might seem obscure at first encounter, but they are a
fundamental tool of mathematical modeling. To help build your in-
tuition for the Taylor series, we will show examples of the Taylor
approximations of increasing quality. The most basic approximation
comes from the constant-order term,

f (x + p) ≈ f (x).

Here we regard x ∈ Rn as a fixed vector and p ∈ Rn as the variable.
The function

φ(x + p) = f (x)

is just a constant that passes through the f (x + p) surface when
p = 0. Figure 10.2 shows this approximation φ(x + p) = f (x) as a
red plane passing through f at x = [0.5,−1.25]T . This red plane only
gives an accurate approximation for very small ‖p‖; it entirely misses
f ’s prominent slope.

To capture that slope, add the first-order term into the approxima-
tion, now defining

φ(x + p) = f (x) + pT∇ f (x).

The function φ now traces out a plane whose slope (gradient) matches
that slope f at x:

φ(x) = f (x), ∇φ(x) = ∇ f (x).

Figure 10.3 shows this improved approximation, with the desired
slope matching at x = [0.5,−1.25]T .

On can obtain a more quantitative impression of this approxi-
mation by comparing contour plots for f and φ. Figure 10.4 shows

172

x1

3 2 1 0 1
2

3

x2

3
2

1
0

1
2

3

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x1

1.5
1.0

0.5
0.0

0.5
1.0

1.5 x22.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50

10

8

6

4

2

0

2

4

Figure 10.3: The function from
Figure 10.1 (blue), with its first-
order approximation at the point
x = [0.5,−1.25]T (red). The plot on the
right zooms in a bit closer near x.

lines of constant f (x) values in black, and with φ(x) at the same
values shown in red. (Since φ describes a plane, its contours are
straight lines.) In the immediate vicinity of the expansion point
x = [0.5,−1.25]T (black dot), the red and black contours align nicely.
Before long, this approximation degrades, and the black contours of
f fall away from the red contours of φ.

To get a better approximation still, extend φ through the addition

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

3.0

2.5

2.0

1.5

1.0

0.5

0.0

x 2

Figure 10.4: Contour lines of the
function from Figure 10.1 (black),
contrasted with the same contour lines
for the first-order Taylor approximation
at x = [0.5,−1.25]T (red). The plot on
the right zooms in around x.

173

x1

3 2 1 0 1
2

3

x2

3
2

1
0

1
2

3

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x1

1.5
1.0

0.5
0.0

0.5
1.0

1.5 x22.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50

10

8

6

4

2

0

2

4

Figure 10.5: The function from
Figure 10.1 (blue), with its second-
order approximation at the point
x = [0.5,−1.25]T (red). The plot on the
right zooms in a bit closer near x.

of the quadratic term,

φ(x + p) = f (x) + pT∇ f (x) +
1
2

pT∇2 f (x)p.

The graph of φ will be a paraboloid (opening up or down), or hy-
perbolic paraboloid (a saddle surface), depending on properties of
the Hessian described in Section 10.2.2. The surface will align with f
near x, matching f and its first two derivatives at x:

φ(x) = f (x), ∇φ(x) = ∇ f (x), ∇2φ(x) = ∇2 f (x).

Figure 10.5 gives two views of this quadratic approximation. These
plots immediately suggest an algorithm for minimizing f : Newton’s
method approximates the minimum of f with the minimum of its
quadratic approximation about some point xk, i.e., the minimum of
the red surface. This new point, called xk+1, will not typically be the
minimum of f , but under favorable conditions it will be closer to that
minimum than was xk. A quadratic approximation to f about xk+1

will provide an even better approximation.
Figure 10.6 compares contour plots of f and φ. Compare these

plots to the linear approximations in Figure 10.4. Near the black dot
at x = [0.5,−1.25]T , the red contours bend with similar curvature
as the contours of f , and the contours have very similar spacing
(reflecting the equal slope of the two surfaces). The quadratic model
is quite accurate near x, but away from x drifts away, attaining a
lower minimum value than f does. Moving x closer to the point

174

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3
x 2

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

3.0

2.5

2.0

1.5

1.0

0.5

0.0

x 2
Figure 10.6: Contour lines of the func-
tion from Figure 10.1 (black), contrasted
with the same contour lines for the
second-order Taylor approximation
at x = [0.5,−1.25]T (red). The plot
on the right zooms in around x. Note
how closely the contours match in the
vicinity of the expansion point x.

where f attains its minimum, we would hope and expect the Taylor
expansion to better capture the characteristics of f at its minimum.

As we shall see in the sections ahead, these Taylor approxima-
tions provide the key insights into f that guide the design of numeri-
cal methods for minimizing f .

10.2.2 Critical points and the behavior of f nearby

The Taylor expansion (10.1 deeply informs our task of minimizing
f : Rn → R, identifying properties that must be satisfied at a local
minimum point. Look back at the first-order approximations in Fig-
ure 10.3. The red plane f (x) + pT∇ f (x) has the same slope as f near
x, as encoded in the gradient vector

∇ f (x).

If this vector is nonzero, there is some direction at which

pT∇ f (x) < 0

and hence f cannot obtain a local minimum at such an x. The only
way that x can potentially be a local minimum is when the gradient is
the zero vector, ∇ f (x) = 0.

First Order Necessary Conditions for Optimality
Suppose f : Rn → R is continuously differentiable at x ∈ Rn.
If f attains a local minimum at x, then

∇ f (x) = 0.

175

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

8

6

4

2

0

2

4

6

8

10

12
Figure 10.7: Six critical points (marked
by stars) for the function illustrated
in Figure 10.1. The critical points
correspond to two local minima, two
saddle points, and two local maxima.

This key property, which must hold in order for x to be a minimizer
of f , clarifies our algorithmic task: we seek points x ∈ Rn where
∇ f (x) = 0.

Definition 10.2. Let f : Rn → R be continuously differentiable at
x? ∈ Rn. We say that x? is a critical point of f if the gradient of f at x?
is zero,

∇ f (x?) = 0.

Figure 10.7 identifies six critical points for the function shown
in Figure 10.1. Notice that only two of these critical points are local
minimizers: two are local maximizers, and two others are saddle points
where f increases in one direction but decreases in another. Clearly
being a critical point is only a necessary condition for optimality; it
is not sufficient. No surprise, a much deeper understanding can be
teased out from the next term in the Taylor series.

10.2.3 Learning from second order information

At a critical point x? ∈ Rn, f has zero gradient, and so the vari-
ation of the function is largely controlled by the Hessian matrix.
From (10.1) we have

f (x? + p) = f (x?) +
1
2

pT∇2 f (x?)p +O(‖p‖3).

To simplify the notation a bit, denote the Hessian at x? by

H := ∇2 f (x?).

176

For smooth f the Hessian is symmetric, and so it has the eigende-
composition

H =
n

∑
j=1

λjvjv
T
j

as detailed in Chapter 4. Then for any p ∈ Rn,

pTHp =
n

∑
j=1

λj(p
Tvj)(v

T
j p) =

n

∑
j=1

λj(v
T
j p)2. (10.2)

Take a moment to savor this equation, which unlocks our understanding of
multivariable functions in the proximity of a critical point.

Notice that (vT
j p)2 ≥ 0, and so the sign of the contribution of that

the jth term λj(vT
j p)2 makes to pTHp is controlled entirely by λj.

Returning to the Taylor expansion,

f (x? + p) = f (x?) +
1
2

(
n

∑
j=1

λj(v
T
j p)2

)
+O(‖p‖3),

we see that for sufficiently small ‖p‖, the value of f (x? + p) is dom-
inated by the Hessian term, whose eigenvalues thus control the local
increase or decrease.

• If all eigenvalues of H are positive, λ1, . . . , λn > 0, then for any
nonzero p ∈ Rn

pTHp =
n

∑
j=1

λj(v
T
j p)2 > 0

and so small changes p to x? increase the objective function,

f (x? + p) > f (x?),

and so x? is a local minimum.

When all eigenvalues of H = HT

are positive, then H is positive definite;
equivalently, pTHp > 0 for all p 6= 0.

• If all eigenvalues of H are negative, λ1, . . . , λn < 0, then for any
nonzero p ∈ Rn,

pTHp =
n

∑
j=1

λj(v
T
j p)2 < 0

and so small changes p to x? decrease the objective function,

f (x? + p) < f (x?),

and so x? is a local maximum.

When all eigenvalues of H = HT are
negative, we say H is negative definite.

• What if H has a mix of positive and negative eigenvalues? Then
the sign of pTHp will depend on p: some choices for p will give
f (x? + p) > f (x?) while others will give f (x? + p) < f (x?). In
such cases x? is neither a local minimum nor maximum; we call it
a saddle point.

177

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3
x 2

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x1

2.2

2.0

1.8

1.6

1.4

1.2

1.0

x 2

local minimum

λ1 = 32.4713
λ2 = 16.2393

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4
x1

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

x 2
saddle point

λ1 = 10.6549
λ2 = −9.8849

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4
x1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

x 2

local maximum

λ1 = −36.1728
λ2 = −20.1383

Figure 10.8: The arrows show eigen-
vectors of the Hessian at three critical
points: a local minimum (top: two
positive eigenvalues), a saddle point
(middle: one positive and one negative
eigenvalue), and a local maximum
(bottom: two negative eigenvalues).

178

We can squeeze a bit more insight out of the Hessian. Suppose we
nudge away from x? in the direction of the kth eigenvector of H, i.e.,
for some small ε > 0 choose

p = εvk.

Then by the orthonormality of the eigenvectors of the symmetric
matrix H,

pTHp =
n

∑
j=1

λj ε
2(vT

j vk)
2 = ε2λk,

and so
f (x? + εvk) = f (x?) + λk ε2 +O(ε3).

This formula means

This formula also hints at the compli-
cations that arise when the Hessian has
a zero eigenvalue: then one must look
inside the O(ε3) term (the third order
term in the Taylor series) to see how
f (x? + εvk) behaves.

the eigenvalue λk describes how fast or slow f (x? + p)
is changing in the p = εvk direction.

The larger |λk| is, the faster f (x? + εvk) is changing, and hence the
tighter the contour lines will be around x? in the vk direction. Fig-
ure 10.8 illustrates this behavior for a local minimum, a local maxi-
mum, and a saddle point. In these plots, the red eigenvectors point in
directions of increase (“uphill”) while the blue vectors point in direc-
tions of decrease (“downhill”). The length of the vector corresponds
to |λk|: the longer the vector, the tighter the contour lines.

10.3 Line search methods

Having studied properties of nonlinear functions, we are ready to go
looking for a critical point. Once a critical point has been found, we
could verify its minimality by computing the Hessian and checking if
its eigenvalues are positive.

We shall focus on a class of algorithms known as line search meth-
ods. These methods seek a minimum of f : Rn → R, starting from an
initial guess x0, via iterations of the form

xk+1 = xk + ck pk.

The vector pk ∈ Rn, called the search direction, is typically determined
by local properties of the function f around xk (e.g., the gradient
∇ f (xk)). The constant ck, the step length, controls how far the iterate
xk+1 steps in the pk direction.

The kth iteration of a line search method has two stages:

• determine the search direction pk ∈ Rn;

• determine the step length ck ∈ R, i.e., how far to step in the pk

direction.

179

10.3.1 Search direction selection

What makes for a good search direction pk? How can we determine a
good direction without too much computational effort? A reasonable
minimum requirement is that pk should point downhill.

Definition 10.3. Let f : Rn → R be continuously differentiable at
xk ∈ Rn. We say that p ∈ Rn is a descent direction for f at xk provided

pT∇ f (xk) < 0,

which amounts to
cos 6 (p,∇ f (xk)) ∈ [−1, 0),

and thus
6 (p,∇ f (xk)) ∈ (−3π/2,−π/2),

Consider all descent directions p of unit norm, ‖p‖ = 1, and suppose
we make a step of size εp for very small ε > 0. By the Cauchy–
Schwarz inequality (Theorem 2.3),

|(εp)T∇ f (xk)| ≤ ‖εp‖‖∇ f (xk)‖ = ε‖∇ f (xk)‖.

For the special direction

p = − ∇ f (xk)

‖∇ f (xk)‖
,

this inequality is sharp:

|(εp)T∇ f (xk)| = ε
‖(∇ f (xk))

T∇ f (xk)‖
‖∇ f (xk)‖

= ε‖∇ f (xk)‖.

Combining these observations with the Taylor series

f (xk + εp) = f (xk) + (εp)T∇ f (xk) +O(ε)2,

reveals that of all the choices we can make for the unit vector p, the
one that gives the most rapid decrease for small ε → 0 (so the linear
term dominates the O(ε2) terms) is the steepest descent direction that
points opposite the gradient. We typically remove the normalization
factor for notational convenience.

Definition 10.4. Let f : Rn → R be continuously differentiable at
xk ∈ Rn. The steepest descent direction for f at xk is the vector

p = −∇ f (xk).

The steepest descent direction looks like the best choice of pk for
a given value of xk, but there are a few reasons why we might prefer
other descent directions that are not locally optimal but eventually
lead to faster convergence.

180

• The gradient might be expensive to compute for complicated
f or large n, causing us to favor directions pk that are faster to
compute.

• For some problems, line search algorithms based on the steepest
descent direction can get stuck in a rut, repeating search directions
as the method steps down a narrow valley. Methods (like the
conjugate gradient algorithm) that force greater variety in the search
directions can lead to faster convergence.

10.3.2 Step-length selection

Once the search direction pk is selected, how should one choose the
step-length ck so the line-search method

xk+1 = xk + ck pk

converges as quickly as possible?
One might naturally think of defining a function

g(c) := f (xk + cpk) (10.3)

and minimizing g over all choices of c > 0. However, in many cases
this would involve optimizing a nonlinear function of the single
variable c ∈ R; to evaluate g(c) one must evaluate the n-variable
function f (xk + cpk), so finding this optimal c could be quite expen-
sive. Typically we settle for heuristics, which can be crude as setting
c to a constant value (e.g., the “learning rate” in machine learning
optimization), to the more elaborate techniques we next discuss.

One must balance two competing goals:

• We want ck to be sufficiently small that the local information at
x that informed the choice of pk (e.g., the Taylor series for f
expanded at xk) remains valid. Large values of ck are risky because
they might step into a region where f (xk + ck pk) is not much
smaller (or even larger) than f (xk).

• We want ck to be sufficiently large to make progress toward the
optimal point. Small values of ck are safe but can lead to glacial
convergence.

Optimization algorithms typically impose two conditions to ad-
dress these competing aims.

The sufficient decrease condition
Given a parameter ε (0 < ε < 1) and step direction pk, we say that a
step-length c satisfies the sufficient decrease (or Armijo) condition
provided

g(c) ≤ f (xk) + c
(

ε pT
k∇ f (xk)

)
. (10.4)

181

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
c

6

4

2

0

2

4

6

8

10
g(

c)

= 0.25

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
c

6

4

2

0

2

4

6

8

10

g(
c)

= 0.5

Figure 10.9: Illustration of the suffi-
cient decrease condition, comparing
two values of the parameter ε: ε = 0.25
(left) and ε = 0.50 (right). All val-
ues of c for which the blue curve
g(c) = f (xk + cpk) is under the green
line f (xk) + c

(
ε pT

k∇ f (xk)
)

satisfy the
condition (10.4).

This condition is most easily appreciated through pictures, as illus-
trated in Figure ??. The left-hand side of (10.4) is just the function
g(c) defined in (10.3). The right-hand side of (10.4) is a line that inter-
sects g(c) at c = 0 and has slope εpT

k∇ f (xk) (which is negative, since
pk is a descent direction). At c = 0, g′(c) will equal −pT

k∇ f (xk), and
so the factor ε (0 < ε < 1) modulates the slope, as seen in Figure ??.
The smaller ε, the larger the range of c values that will satisfy the
sufficient decrease condition.

Notice that arbitrarily small c > 0 values satisfy the sufficient
decrease condition, and thus we should add a second condition that
ensures we do not take too small a choice of c. This condition will
relate to the slope of the function g(c), which we can compute as

g′(c) = pT
k∇ f (xk + cpk).

The curvature condition
For a given step direction pk, we say the step length c > 0 satisfies
the Wolfe conditions provided

δg′(0) ≤ g′(c). (10.5)

This condition requires that g′(c) be at least factor of 1/δ larger
than the initial slope g′(0). Since g′(0) < 0, this will imply, for one
thing, that any c for which g′(c) > 0 satisfies the curvature condition.
Figure 10.10 shows g(c) with lines of slope δg′(0) drawn along g(c)
at a few values of c. If g(c) is less steep than these red lines, then c
satisfies the sufficient decrease condition. Study Figure 10.10, seeing
if you can identify the ranges of c values that satisfy the curvature
condition. Once you have worked out these values, turn forward to
Figure 10.11, where you can check your answer against the values of
c corresponding to the orange sections of the g(c) plot.

182

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
c

6

4

2

0

2

4

6

8

10
g(

c)
Figure 10.10: The curvature condition
for δ = 0.4. The red lines drawn along
g(c) have slope δg′(0). Step-lengths
c > 0 pass the curvature condition if
g′(c) is larger than δg′(0).

10.3.3 The Wolfe conditions

Clearly, we seek values of c that satisfy both the sufficient decrease
and curvature conditions, so we collect the two requirements together
in the Wolfe conditions.

The Wolfe conditions
Let pk be a descent direction for f : Rn → R at the point xk, and
define, for c > 0,

g(c) := f (xk + cpk)

having derivative

g′(c) = pT
k
(
∇ f (xk + cpk)

)
.

Let the parameters ε and δ satisfy

0 < ε < δ < 1.

we say that a step-length c satisfies the Wolfe conditions provided c
satisfies both the sufficient decrease condition

g(c) ≤ f (xk) + c
(

ε pT
k∇ f (xk)

)

and the curvature condition

δg′(0) ≤ g′(c).

Figure 10.12 shows, for our running example, the values of c that
satisfy both the Wolfe conditions, highlighted by the gray regions
on the plot. Notice that the curvature condition eliminates small
values of c that satisfy the sufficient decrease condition, while the
sufficient decrease condition eliminates the large values of c where

183

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
c

6

4

2

0

2

4

6

8

10
g(

c)
Figure 10.11: The sections of g(c)
colored in orange correspond to those
c values that satisfy the curvature
condition for δ = 0.4.

the local information that informed the model near c = 0 are no
longer describes the behavior of g(c).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
c

6

4

2

0

2

4

6

8

10

g(
c)

Figure 10.12: The Wolfe conditions:
The c values that fall in the gray regions
satisfy both the sufficient decrease
condition (ε = 0.25) and the curvature
condition (δ = 0.4).

10.4 Stochastic methods for large-scale problems

10.5 Newton’s Method

Given an approximation xk ∈ Rn to the minimum of f : Rn → R,
Newton’s method seeks to construct an improved estimate xk+1

of the minimum by optimizing the quadratic Taylor approxima-
tion (10.1) to f at xk:

φ(xk + p) = φ(xk) + pT∇ f (xk) +
1
2

pT∇2 f (xk)p. (10.6)

184

The goal is to find the value pk of p that minimizes φ(xk + p), and
use it to update the estimate to the minimum of f :

xk+1 = xk + pk.

To minimize φ, find its critical point: take the gradient of (10.6) with
respect to p to obtain

∇pφ(xk + p) = ∇p
(
φ(xk)

)
+∇p

(
pT∇ f (xk)

)
+∇p

(1
2 pT∇2 f (xk)p

)

= 0 +∇ f (xk) +∇2 f (xk)p.

The critical point pk of φ(xk + p) thus occurs when

∇2 f (xk)pk = −∇ f (xk).

Assuming the Hessian of f is invertible at xk, we can thus write

pk = −∇2 f (xk)
−1∇ f (xk).

Students typically first encounter
Newton’s method in a first calculus
class, where it arises as a method for
computing a zero of a single-variable
function f : R → R. One might recall
the formula

xk+1 = xk −
f (xk)

f ′(xk)
.

This algorithm readily extends to
minimization, which amounts to
finding zeros of f ′, i.e., points where
f ′(x) = 0. For this task the iteration
becomes

xk+1 = xk −
f ′(xk)

f ′′(xk)
.

Notice this as the perfect one-
dimensional analog of the for-
mula (10.7).

Starting from the initial guess x0 ∈ Rn, Newton’s method seeks a
local minimum of f : Rn → R through the iteration

xk+1 = xk −∇2 f (xk)
−1∇ f (xk), (10.7)

assuming the Hessian ∇2 f (xk) ∈ Rn×n is invertible at each step k.

The convergence of Newton’s method if famously delicate: when
x0 is sufficiently close to a local minimum, Newton’s method typi-
cally converges quadratically to that minimum, meaning that it

doubles the number of correct digits at each iteration.

This is much faster than typical line search algorithms. However, the
caveat that “ x0 is sufficiently close to a local minimum,” is crucial:
otherwise Newton’s method can behave erratically, converging to
other critical points or diverging altogether.

10.6 Trust region methods

	Introduction
	Prerequisites
	Some notation and basic matrix-vector operations

	The Geometry of Vector Spaces
	Inner and outer products, vector norms
	A best approximation problem
	Angles between vectors
	Projectors: surgical instruments of linear algebra

	Orthogonalization
	Subspaces and bases
	Orthogonalization
	Gram–Schmidt is QR factorization

	The Symmetric Eigenvalue Problem
	Computing eigenvalues and eigenvectors
	Eigenvalues and eigenvectors of symmetric matrices
	Symmetric positive definite matrices

	The Singular Value Decomposition
	Derivation of the singular value decomposition: Full rank case
	The dyadic form of the SVD
	A first application
	The Full SVD
	The Singular Value Decomposition: General mn case
	Modification for the case of m<n
	General statement of the singular value decomposition
	Connection to the four fundamental subspaces
	Revisiting linear systems

	Matrix Approximation via the SVD
	Matrix norms
	Low-rank approximation
	Principal Component Analysis
	Practical Computing: How Noise Affects the SVD
	Randomized algorithms for approximation of the SVD
	Recommender systems
	Principal Orthogonal Decomposition (POD)
	Interpolative approximations
	Afterword

	Linear Systems, the Pseudoinverse,and Ill-Posed Problems
	Linear systems
	The pseudoinverse
	An introduction to ill-posed problems
	Statistics of least squares
	Application: deblurring

	Regularization for Ill-Posed Problems
	Regularization by truncating the SVD
	Tikhonov Regularization (Ridge Regression)
	Blurring and deblurring in two dimensions

	Iterative methods for large linear systems
	Sparse matrices
	Polynomial iterative methods: abstract framework
	Richardson's method
	Kaczmarz's Method
	GMRES
	Kaczmarz's Method
	Alternative iterations for nonsymmetric A
	Preconditioning

	Iterative methods for nonlinear optimization
	Overview of nonlinear optimization
	Functions of several variables
	Line search methods
	Stochastic methods for large-scale problems
	Newton's Method
	Trust region methods

