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Abstract

We consider a class of Hamilton-Jacobi equations H(x, Du(x)) = 0 with no u-dependence, and conti-
nuity properties consistent with recent applications in queueing theory. Viscosity solutions are considered
in a compact polyhedral domain, with oblique derivative (Neumann-type) boundary conditions. Compar-
ison and uniqueness results are presented which use monotonicity of H(x, p) in the p variable, for values
of p in the appropriate sub- and superdifferential sets of the solution u(x). Several examples illustrate
the results.

1 Introduction

The theory of viscosity solutions to first order partial differential equations provides a satisfying approach
to Hamilton-Jacobi equations for many types of optimal control problems and differential games. Bardi and
Capuzzo-Dolcetta [4] give an extensive introduction to the basic theory and its application to a variety of
optimization problems. At the heart of the theory are the fundamental comparison and uniqueness results,
which idenitfy the optimal value function as the unique viscosity solution of the appropriate Hamilton-
Jacobi equation. Those comparison and uniqueness results generally depend on some monotonicity property
of the Hamiltonian H. For instance, in the case of discounted infinite horizon problems the Hamilton-Jacobi
equation includes a term λu (λ > 0 being the discount rate). This provides monotonicity in u which is the
key to the proof of the typical comparison result, such as [4, Theorem II.3.1].

In this paper we consider problems of the form

H(x,Du(x)) = 0,

in which the Hamiltonian H(x, p) has no u-dependence. It is well known that without some additional prop-
erty solutions may be nonunique. (See Example 6 below for instance.) Ishii [16] provides an approach which
assumes convexity of p 7→ H(x, p) and the existence of a special smooth subsolution ϕ. (See also [4, §II.5.3].)
The idea is to perturb the solutions by a (small) convex combination with ϕ to obtain “strict” solutions. A
basic comparison result for strictly separated sub- and supersolutions (very like our Lemma 2) implies the
desired inequality between the perturbed solutions. An elementary example is the eikonal equation

H(x, p) = |p| − h(x),

where h is continuous and strictly positive on the spatial domain Ω. This category of problems can also be
treated using the transformation of Kruz̆kov. This can be applied generally when there is a strictly positive
lower bound for the running cost L of (19) below. See Bardi and Soravia [5] and the references in [16]. Our
p-monotone approach is also applicable to such problems; see Example 2 below.

Another approach is that of Camilli and Siconolfi [6]. They are interested in equations of the form

H(x, p)− f(x) = 0



and seek to identify maximal subsolutions. (In some control problems this is the standard characterization
of the desired viscosity solution; see Soravia [19].) They obtain a definitive characterization of maximal
subsolutions in terms of a special singular solution property. Their approach is rather technical, using
convexity of the sets {p : H(x, p) − f(x) ≤ 0} and a special topology in Ω associated with them. Among
their few simple hypotheses on the Hamiltonian is the assumption that t 7→ H(x, tp) is strictly increasing
in t ∈ [0, 1] for all p. We note that this is essentially the p-monotone property that we exploit below. We
would comment that our results also provide a simple sufficient condition for a viscosity solution to be the
maximal subsolution, namely that it be a p-monotone supersolution.

We are motivated by a growing body of work using control problems and differential games for asymptotic
analysis of queueing networks. These problems often involve oblique-derivative boundary conditions on some
part of ∂Ω. (Although only Dirichlet conditions were considered in [16] and [6], presumably generalizations
are possible.) These examples typically do not have the convexity needed for either the approach of [16] or
[6]; see Examples 4 and 5 below. However the literature does contain some uniqueness results for certain
problems of this type. The germ of our p-monotone argument can be found in the proof of Theorem 5 of
Atar, Dupuis, and Schwartz [2] (see their (37)). Although it is not a viscosity solution result, the structured
verification theorem of Day [11] uses a “positive storage condition” which is related to p-monotonicity (as we
will see in Example 5). The essential feature underlying these results is monotonicity of t 7→ H(x, tp), not
necessarily for all p but just for those p = ζ ∈ D±u(x) that are not accounted for by the boundary conditions.
Our intent here is to develop comparison and uniqueness results based on this property for problems with
oblique derivative boundary conditions, such as are typical in queueing applications. This class of problems
also motivates our regularity hypotheses on H.

There are a few other comparison results in the literature which employ properties of the p-dependence
of H. For instance the development in Crandall, Ishii, and Lions [7] assumes a special test function µ(x)
exists for which λ 7→ H(x, p + λDµ(x)) −H(x, p) satisfies a certain lower bound.; see their (H2). We note
that such a hypothesis is entirely a property of the Hamiltonian, and depends on the existence of µ(x). In
general our notion of a p-monotone solution depends on the specific soltuion u(x), not solely on H.

In Section 2 we pose the specific type of boundary value problem we will address, using oblique-derivative
conditions on the boundary of a compact polyhedral domain. Section 3 presents a basic comparison result
(Lemma 2) for sub- and supersolutions to a pair of “strictly separated” equations. (That strict separation
generally implies a comparison result is well-known; see Crandall, Ishii, and Lions [8].) The p-monotone
results are then developed in Section 4. Our main result (Theorem 3) implies that when a p-monotone
solution exists it is the unique viscosity solution, the “complete solution” in the terminology of [4]. We
conclude by looking at several examples in Section 5.

2 Preliminaries and Hypotheses

We consider a domain Ω which is assumed to be a compact convex polyhedron in Rn, defined by a finite
collection of m linear constraints:

Ω = {x ∈ Rn : ni · x ≥ ci for each i = 1, . . . , m}. (1)

The ni are unit vectors and the ci constants. For x ∈ ∂Ω (the boundary of Ω) we define the set of active
constraints as

I(x) = {i : ni · x = ci},
and take I(x) = ∅ for x ∈ Ω◦ (the interior of Ω). We consider a closed subset T ⊆ Ω on which Dirichlet data
will be prescribed. This could be part of the boundary, but that it not necessary. Values for u are prescribed
on T by a continuous function g : T → R,

u(x) = g(x), x ∈ T . (2)

It will be convenient to use the notation

Ωδ = {x ∈ Ω : dist(x, T ) > δ}
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to refer to the part of Ω at least δ > 0 away from T . (We allow T = ∅, in which case Ωδ = Ω.) On the
rest of the boundary, ∂Ω \ T , we want to require oblique derivative boundary conditions using a collection
of vectors di, i = 1, . . . , m:

−di ·Du(x) = 0, i ∈ I(x). (3)

In Ω \ T itself we consider a Hamilton-Jacobi equation,

H(x,Du(x)) = 0. (4)

If T = ∂Ω, we have a standard Dirichlet problem. If T = ∅ we have a typical Neumann-type problem. In
general the problem is a mixture of these two types.

2.1 Continuity Hypothesis on the Hamiltonian

Appropriate continuity hypotheses for the Hamiltonian H are important. The examples we have in mind
use a Hamiltonian of the form (19) below, with f = f(a, b) independent of state and running cost L =
h(x) + `(a, b) with separate state and player comonents. This leads to a Hamiltonian of separated form,
H(x, p) = H0(p)− h(x). But all we really need are continuity hypotheses consistent with that. We assume
there exist m : [0,∞) → [0,∞) with m(0) = 0 and continuous at 0, and M : [0,∞)2 → [0,∞) with
M(0, R) = 0 and M(·, R) continuous at 0 for each R < ∞, such that for all x, y ∈ Ω and p, q ∈ Rd with
|p|, |q| ≤ R we have

|H(x, p)−H(y, q)| ≤ m(|x− y|) + M(|p− q|, R). (5)

2.2 Technical Hypotheses on Ω and di

The oblique derivative boundary conditions (3) are closely associated with the Skorokhod problem for Ω;
see Dupuis and Ishii [13]. Control problems for systems including a Skorokhod problem in their dynamics
are common in queueing theory, and lead to Hamilton-Jacobi equations with boundary conditions (3); see
Lions [17], Dupuis and Ishii [14], Day [10]. Although the Skorokhod problem does not appear in our results
below, hypotheses on from [13] regarding Ω and the di of the boundary conditions are important ingredients
for the proof of Lemma 2 below. For that purpose we assume the following.

• B-Hypothesis [13, Assumption 2.1]: There exists a compact, convex B ⊆ Rn with 0 ∈ B◦ and the
following property. If z ∈ ∂B and |z · ni| < 1 then ν · di = 0 for all unit outward normals to B at z. (ν
is an outward normal to B at z if ν · (z − x) ≥ 0 for all x ∈ B.)

• Coercivity Hypothesis: For each x ∈ ∂Ω, and any ai ∈ R,

∑

I(x)

aidi


 ·


∑

I(x)

aini


 ≥ 0, (6)

with equality only if ai = 0 for all i ∈ I(x). It is shown in Day [9] that this together with the B-
hypothesis implies [13, Assumption 3.1] concerning the existence of a discrete projection map. More-
over, it implies that, for each x ∈ ∂Ω, the di, i ∈ I(x) are linearly independent, which is needed for
Lemma 1 below. We might have assumed [13, Assumption 3.1] along with this linear independence
property, but (6) is a convenient sufficient condition for both, and is easy to verify in examples, since
it reduces to checking positive definiteness of a small number of matrices.

These hypotheses provide the following technical result, which will be needed for the proof of Lemma 2.

Lemma 1. Assume the B-Hypothesis and the Coercivity Hypothesis.

a) There exists a C1 function µ : Ω → [0, 1] with the property that di ·Dµ(x) < 0 whenever x ∈ ∂Ω and
i ∈ I(x).

b) There exists a C1 function ξ : Rn → [0,∞) with the properties that

i) ξ1/2 is a norm on Rd, and
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ii) for any x ∈ Rn and i = 1, . . . , m, x · ni ≥ 0 [≤ 0] implies di ·Dξ(x) ≥ 0 [≤ 0].

Proof. Part a) is Lemma 3.2 of [14]. Their hypothesis (B.6) follows from the independence of di, i ∈ I(x)
pointed out above. The other hypotheses are simple to check in our setting.

Part b) follows from arguments given in Atar and Dupuis [1], which we outline. (See their remark on
page 1109.) First, it is shown that the property of B is equivalent to an extended property, namely that if
z ∈ ∂B and ν is an outward normal to B at z, then

z · ni ≥ −1[≤ 1] implies di · ν ≥ 0[≤ 0].

(Although [1] only considers Ω = Rn
+, the extension argument based on Dupuis and Ramanan [15] applies

in general.) Next given that the set B exists, it is argued B can be assumed symmetric with a smooth
boundary, in the sense that the unit outward normal ν(x) is uniquely determined and continuous as a
function of x ∈ ∂B. Such a B determines a (smooth) norm on Rn, defined by

‖x‖B = inf{r > 0 : x ∈ rB}.

B is the closed unit ball with respect to ‖ · ‖B . We define ξ(x) = ‖x‖2B . It follows that ξ is C1, and for a
given x,

Dξ(x) = b‖x‖B ν,

where b = b(x) > 0 is a scalar function and ν the unit outward normal to B at z = x/‖x‖B ∈ ∂B. Therefore
if x · ni ≥ 0, then −1 < 0 ≤ z · ni, so that the extended property of B above implies di · ν ≥ 0, which in turn
implies di ·Dξ(x) ≥ 0. The other case is proven analogously, or by appeal to symmetry.

As a consequence of a), observe that there exists a constant µ0 > 0 such that

µ0 < −di ·Dµ(x) for all x ∈ ∂Ω, i ∈ I(x). (7)

2.3 Viscosity Solutions

In the proof of Lemma 2 we will use the generalization of (3) to

C − di ·Du(x) = 0, i ∈ I(x), (8)

where C is a constant. We want to state carefully what it means to be a viscosity sub- or supersolution of
(4) with boundary conditions (8) on Ω \ T . Note that the definitions will not refer to (2) on T ; we prefer to
express that directly by referring to “subsolutions with u(x) ≤ g(x) on T ” as needed.

We will only consider continuous functions on u, v : Ω → R as possible solutions. For x ∈ Ω the
superdifferential set D+u(x) consists of those ζ ∈ Rn which occur as the value ζ = Dφ(x) for some C1

function φ : Rn → R with the property that u(x) − φ(x) ≥ u(y) − φ(y) for all y ∈ Ω sufficiently close to
x. For the correct viscosity-sense understanding of (8) it is important to note that x is a local maximum of
u− φ only relative to Ω. For x ∈ ∂Ω this means that even if u is smooth, D+u(x) can contain many ζ other
that Du(x) itself. (See Lemma 6 below.) Similarly, D−v(x) consists of ζ arising as ζ = Dφ(x) for some C1

function φ(x) such that v − φ has a local minimum at x relative to Ω. Following the standard terminology,
u(x) ∈ C(Ω) is called a subsolution of

H(x,Du(x)) = 0 on Ω \ T , with C − di ·Du(x) = 0 on ∂Ω \ T (9)

provided H(x, ζ) ≤ 0 holds for all ζ ∈ D+u(x) with either

i) x ∈ Ω◦ \ T or

ii) x ∈ ∂Ω \ T and C − di · ζ > 0 for all i ∈ I(x).

In other words at boundary points only one of the inequalities H(x, ζ) ≤ 0, C − di · ζ ≤ 0 (i ∈ I(x)) needs
to hold. It will be convenient to abbreviate this by writing

min
i∈I(x)

(H(x, ζ), C − di · ζ) ≤ 0 for all x ∈ Ω \ T and ζ ∈ D+u(x). (10)

The definition of a supersolution is obtained by reversing all the inequalities above, and considering ζ ∈
D−u(x) instead. We would replace (10) by maxi∈I(x)(H(x, ζ), C − di · ζ) ≥ 0.
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3 A Basic Comparison Result for Strictly Separated Equations

The task of this section is to establish a basic comparison result for oblique-derivative boundary conditions
(3) analogous to that of Ishii [16, Lemma 1] . The comparison argument of [2] is close to ours, and is the
source of our apprach to handling the boundary conditions.

Lemma 2. Assume that u, v ∈ C(Ω) with u ≤ g ≤ v on T , such that

a) u is a subsolution of H(x,Du(x)) + η+(x) = 0 on Ω \ T , with −di ·Du(x) = 0 on ∂Ω \ T .

b) v is a supersolution of H(x,Dv(x))− η−(x) = 0 on Ω \ T , with −di ·Du(x) = 0 on ∂Ω \ T .

where η± : Ω → R have the property that for each δ > 0,

inf
x∈Ωδ

η+(x) + inf
x∈Ωδ

η−(x) > 0. (11)

Then u(x) ≤ v(x) for all x ∈ Ω.

We will say that the u and v of this lemma are viscosity sub- and supersolutions to a strictly separated pair
of equations. Note that because of (11) this notion of strict separation depends on the choice of T .

Proof. Let 0 < cε < 1 be a family of constants with cε → 0 as ε ↓ 0. Near the end of the proof we will be
more specific about how cε should be chosen, but that detail is not needed yet. Given ε > 0 define

uε(x) = u(x)− cεµ(x), vε(x) = v(x) + cεµ(x),

where µ(x) is as in Lemma 1 above. It follows that ζε ∈ D+uε(x) iff ζ = ζε + cεDµ(x) ∈ D+u(x). Notice
that

−di · ζ = −di · (ζε + cεDµ(x)) ≥ −di · ζε + cεµ0,

where µ0 is as in (7). Therefore, the subsolution hypothesis of a) implies that for all ζ ∈ D+u(x),

min(H(x, ζε + cεDµ(x)) + η+(x), cεµ0 − di · ζε) ≤ 0.

In other words, uε is a subsolution of

H(x,Duε(x) + cεDµ(x)) + η+(x) ≤ 0 on Ω \ T , with cεµ0 − di ·Duε(x) ≤ 0 on ∂Ω \ T . (12)

Similarly, vε is a supersolution of

H(x,Dvε(x)− cεDµ(x))− η−(x) ≥ 0 on Ω \ T , with − cεµ0 − di ·Duε(x) ≥ 0 on ∂Ω \ T . (13)

Now suppose that supΩ(u(x)− v(x)) > 0. Then because µ(x) is bounded and cε → 0, there is a positive
constant ρ so that for all sufficiently small ε > 0

0 < ρ < sup
Ω

[uε(x)− vε(x)]. (14)

We now give a version of the usual argument leading to a contradiction. Define

Φε(x, y) = uε(x)− vε(y)− ε−1ξ(x− y),

where ξ(·) is as in Lemma 1, and let (xε, yε) ∈ Ω× Ω be a maximizing pair for Φε. By comparison to x = y
we have

Φε(xε, yε) ≥ ρ. (15)

From Φε(xε, xε) ≤ Φε(xε, yε) it follows that

ε−1ξ(xε − yε) ≤ vε(xε)− vε(yε). (16)
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Since v and µ are bounded, and 0 < cε < 1, it follows that vε is bounded (independent of ε). We deduce
that ξ(xε − yε) = O(ε). Since all norms on Rn are equivalent,

‖xε − yε‖ = O(ε1/2). (17)

Next, we claim that none of the limit points of xε (as ε ↓ 0) can be in T . Indeed, if (along a sequence of
ε ↓ 0) we had xε → z ∈ T then by (17) yε → z as well. It follows that

lim
ε

[uε(xε)− vε(yε)] ≤ g(z)− 0µ(z)− [g(z) + 0µ(z)] = 0.

Since v and µ are continuous, vε is equicontinuous with respect to ε. This together with (16) implies that
ε−1ξ(xε−yε) → 0. Therefore Φε(xε, yε) → 0, contrary to (15), and proving our claim. The claim means that
there exists δ > 0 so that xε, yε ∈ Ωδ for all sufficiently small ε. By hypothesis (11), there exists η0 > 0 so
that

η0 ≤ η+(xε) + η−(yε),

all ε > 0 sufficiently small.
Now uε(x)−

[
vε(yε) + ε−1ξ(x, yε)

]
is maximized at x = xε. Therefore ζε

.= ε−1Dξ(xε − yε) ∈ D+uε(xε).
Since Dξ is continuous and Ω is compact, it follows that

ζε = O(ε−1).

If it were the case that xε ∈ ∂Ω, then by definition of Ω we would have ni · (xε − yε) ≤ 0 for all i ∈ I(xε).
By property ii) of ξ in Lemma 1, it follows that di · ζε ≤ 0 for all i ∈ I(xε). Therefore

cεµ0 − di · ζε ≥ cεµ0 > 0.

Since we know xε /∈ T , (12) implies that

H(xε, ζε + cεDµ(xε)) + η+(xε) ≤ 0.

Arguing in the same way, from the fact that y = yε maximizes vε(y)−
[
ũ(xε)− ε−1ξ(xε − y)

]
we are led to

the conclusion that
H(yε, ζε − cεDµ(yε))− η−(yε) ≥ 0.

Therefore,
0 < η0 ≤ η+(xε) + η−(yε) ≤ H(yε, ζε − cεDµ(yε))−H(xε, ζε + cεDµ(xε)).

Now we know that for some constant K (independent of ε > 0), |ζε ± cεDµ| ≤ ε−1K. Our continuity
hypotheses on H(x, p) imply that the right side of the above expression is bounded above by

m(|xε − yε|) + M(2cε|µ|, ε−1K).

The first term converges to 0 because |xε − yε| → 0. We can choose cε ↓ 0 so that the second term → 0 as
well. For such choices we have a contradiction to the positive lower bound η0. This contradiction implies
that supΩ[u(x)− v(x)] ≤ 0, concluding the proof.

We comment that the hypothesis (11) could be replaced by infΩδ
[η+(x) + η−(x)] > 0 if we assume

continuity of (one of) the η±.

4 p-Monotone Uniqueness

We want to use monotonicity properties of H(x, p) in the p variable to produce the additional η±(x) terms
needed for application of Lemma 2. Intuitively, we want to use a property like

H(x, sζ) < H(x, ζ) for 0 < s < 1, and H(x, ζ) < H(x, sζ) for 1 < s.
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However, this is considerably stronger than needed for the proof. For the subsolution case, 0 < s < 1, we
don’t really need H(x, sζ) < H(x, ζ), only H(x, sζ) < 0 but holding uniformly on compacts disjoint from T .
We express this as

H(x, sζ) + ηs(x) ≤ 0

for some function ηs(x) which is uniformly positive on each Ωδ. Moreover, we only need these properties for
those ζ ∈ D+u(x) such that the inequality (10) is not satisfied by virtue of the −di · ζ terms. This can be
stated succinctly by saying that u(x) is a subsolution of

H(x, sDu(x)) + ηs(x) = 0 on Ω \ T , with − di ·Du(x) = 0 on ∂Ω \ T ,

which is what we need to invoke Lemma 2. The following definition is based on this weakened monotonicity
requirement.

Definition. A viscosity subsolution u(x) of

H(x,Du(x)) = 0 on Ω \ T , with − di ·Du(x) = 0 on ∂Ω \ T (18)

is called p-monotone if, for some δ0 > 0 and each 1 − δ0 < s < 1, there exists a function ηs : Ω → [0,∞)
with infΩδ

ηs > 0 for each δ > 0, so that u(x) is a subsolution of

H(x, sDu(x)) + ηs(x) = 0 on Ω \ T , with − di ·Du(x) = 0 on ∂Ω \ T ,

A viscosity supersolution v(x) of (18) is called p-monotone if, for some δ0 > 0 and each 1 < s < 1 + δ0,
there exists a function ηs : Ω → [0,∞) with infΩδ

ηs > 0 for each δ > 0, so that v(x) is a supersolution of

H(x, sDv(x))− ηs(x) = 0 on Ω \ T , with − di ·Dv(x) = 0 on ∂Ω \ T ,

A viscosity solution which is both a p-monotone subsolution and a p-monotone supersolution is called a
p-monotone solution.

We observe that p-monotonicity concerns sζ for s < 1 in the case of a subsolution, but 1 < s for a
supersolution. It is possible for a viscosity solution to have the p-monotone property in the supersolution
sense but not the subsolution sense. This would be a viscosity solution and a p-monotone supersolution, but
not a p-monotone solution.

We are ready now for our main theorem. The basic idea is that if u(x) is a subsolution then p-monotonicity
will imply that su(x) + (s − 1)c is a “strict” subsolution. (The constant term (s − 1)c is to insure that
su(x) + (s− 1)c ≤ g in case g(x) < 0. The fact that H has no u dependence allows us to add such constants
with impunity.) We then appeal to Lemma 2 and let s ↑ 1.

Theorem 3. Suppose u is a p-monotone subsolution of (9) with u ≤ g on T , and v is (any) supersolution
with g ≤ v on T . Then u(x) ≤ v(x) for all x ∈ Ω. Likewise if u is (any) subsolution and v is a p-monotone
supersolution with u ≤ g ≤ v on T , then u(x) ≤ v(x) for all x ∈ Ω. If (9) has a p-monotone solution V ,
then V is the complete solution (i.e. it is the unique solution, the maximal subsolution, and the minimal
supersolution).

Corollary 4. A viscosity solution which is a p-monotone supersolution is the maximal subsolution.

Proof. We focus on the p-monotone subsolution case. Let

−c = min
T

g(x).

On T we have u(x)+c ≤ g(x)+c. Since 0 ≤ g(x)+c it follows that (for any 0 < s < 1) s(u(x)+c) ≤ g(x)+c
on T . This is equivalent to

us(x) .= su(x) + (s− 1)c ≤ g(x), x ∈ T .

Now ζs ∈ D+us(x) iff ζs = sζ for some ζ ∈ D+us(x). If x ∈ ∂Ω \ T and −di · ζs > 0 for all i ∈ I(x), then
−di · ζ > 0 for all i ∈ I(x), so by the p-monotone subsolution property for u(x),

H(x, ζs) + ηs(x) = H(x, sζ) + ηs(x) ≤ 0.
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The same inequality holds for x ∈ Ω◦. We conclude that us is a viscosity subsolution of

H(x,Dus(x)) + ηs(x) = 0 on Ω \ T , with − di ·Dus(x) = 0 on ∂Ω \ T .

We can now apply Lemma 2 to us and v, using η+(x) = ηs(x) for us and η−(x) ≡ 0 for v. The lemma
implies that us(x) ≤ v(x) all x ∈ Ω: for all 1− δ0 < s < 1,

su(x) + (s− 1)c ≤ v(x).

Letting s ↑ 1 implies u(x) ≤ v(x), as claimed. The supersolution case (using s ↓ 1) is analogous. The rest of
the assertions of the theorem and corollary are now elementary.

In general the p-monotone property may depend on the specific solution, since the definition only concerns
ζ ∈ D±u(x). However for some Hamiltonians all solutions (sub- or super-) will be p-monotone. We consider
in particular Hamiltonians associated with a running cost L(x, a, b),

H(x, p) = inf
b∈B

sup
a∈A

{−p · f(x, a, b)− L(x, a, b)} , (19)

still assuming the continuity hypotheses of Section 2.1 above. The next lemma shows that uniform positivity
of the running cost provides a simple sufficient condition for all solutions to have the p-monotone property.
(The argument is embedded in the proof of [2, Theorem 5].) When the lemma applies, Theorem 3 becomes
a simple comparison and uniqueness theorem for all viscosity solutions.

Lemma 5. Suppose that H(x, p) is given by (19), and that there exists a function σ : Ω → [0,∞) with the
property that 0 < infΩδ

σ(x) for each δ > 0 and for which

σ(x) ≤ L(x, a, b)

for all a ∈ A, b ∈ B, x ∈ Ω. Then every subsolution and every supersolution of (9) is p-monotone.

Note that since σ(x) is allowed to vanish on T , the choice of T may affect the applicability of the lemma.

Proof. Suppose that 0 < s < 1 and consider any ζ ∈ Rn. We have

−sζ · f(a, b)− L(x, a, b) = s [−ζ · f(a, b)− L(x, a, b)]− (1− s)L(x, a, b)
≤ s [−ζ · f(a, b)− L(x, a, b)]− (1− s)σ(x).

Taking infb∈B supa∈A yields H(x, sζ) ≤ sH(x, ζ)− (1− s)σ(x). Let ηs(x) = (1− s)σ(x). We have

H(x, sζ) + ηs(x) ≤ H(x, ζ),

holding for all ζ. It follows from this that any subsolution is a p-monotone subsolution.
The supersolution argument is analogous using 1 < s, ηs(x) = (s− 1)σ(x), with the appropriate inequal-

ities reversed.

5 Examples

We now discuss several examples, most taken from existing literature, which illustrate the applicability and
limitations of the above results. In all the examples the Hamiltonian has the form H(x, p) = H0(p) − h(x)
for which the hypotheses (5) are easy to verify . We omit those details, as well as the confirmations of the
B-Hypothesis and Coercivity Hypothesis.

Numerous optimal control or differential game problems have been posed for “fluid limits” of queueing
networks. The most common domain for these examples is the nonnegative orthant Ω = Rd

+. Being un-
bounded, this is outside the scope of our results above. Our first example makes the point that our main
result Theorem 3 can fail in unbounded domains.
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Example 1. In Day [10] an example in two dimensions was considered for the Hamiltonian

H(x, p) =
1
2
‖p‖2 − 1

2
‖x‖2. (20)

This arises as in (19) using

L(x, a, b) =
1
2
‖x‖2 +

1
2
‖a‖2, f(x, a, b) = a, (21)

with A = R2. (B is irrelevant.) With T = {(0, 0)} and σ(x) = 1
2‖x‖2 we see that Lemma 5 applies:

all viscosity solutions are p-monotone. The equation, however, was considered in the unbounded halfspace
Ω = {(x1, x2) ∈ R2 : x1 ≤ 1}, using d = (−1, 0) (= −γ(x) in the notation of [10]) for the boundary condition
on ∂Ω, and taking g(0, 0) = 0. If Theorem 3 were valid for unbounded domains, solutions would be unique.
However in [10] it was shown that both V (x) = 1

2x2
1 ± 1

2x2
2 are viscosity solutions.

The rest of our examples will use compact Ω as hypothesized. Examples 2–4 illustrate the applicability
of Lemma 5.

Example 2. The “eikonal” equation

|Du(x)| − h(x) = 0, u(x) = g(x) on ∂Ω,

with h(x) > 0 on Ω was cited above in reference to the approach of Ishii [16]. We simply observe that
H(x, p) = |p| − h(x) is obtained from (19) using f(x, a, b) = a, a ∈ A = {a : |a| ≤ 1} and L(x, a, b) = h(x).
(B is irrelevant.) Lemma 5 applies, so that all solutions are p-monotone and Theorem 3 provides the usual
comparison and uniqueness results for this Hamiltonian on bounded domains, for any choice of T .

Example 3. The doctoral dissertation of J. Menendez [18] considers an example using dynamics of the form

f(x, a, b) = λ−Ga, (22)

in a bounded rectangle Ω in two dimensions. The running cost L(x, a, b) = 1
2 |x|2 + 1.1 is strictly positive.

The control set A is compact and there is no dependence on b. This problem again falls within the scope
of Lemma 5 (regardless of T ), so that Theorem 3 applies to all viscosity solutions. Although [18] does
not employ viscosity solution techniques, our results above show that they would be a viable alternative
approach.

Example 4. A rather different problem is considered by Atar, Dupuis, and Shwartz [2]. Here a differential
game is studied which provides an asymptotic description of a risk-sensitive stochastic control problem. In
the stochastic control problem, reaching the target set T (∂oG in their notation) is viewed as an event to
be avoided, so the control attempts to maximize the time until this occurs. This becomes the maximizing
player in the limiting game. The minimizing player emerges from the asymptotic analysis as the limiting
representation of the random fluctuations.

The problem fits our format in the case that all the arrival parameters λi are positive. (If some λi = 0
then different boundary conditions are to be used on some parts of ∂Ω \ T .) We recast their problem in
our notation. Ω (their G) is the rectangle ×d

1[0, zi] in Rd. T consists of the portion of the boundary where
xi = zi for one or more coordinate. The di are the −ṽi (below) for the respective faces ∂iΩ = {x : xi = 0}.
The maximizing player chooses the control b = (u1, · · · , ud) in a compact polygon B. The minimizing player
chooses a vector of rate perturbation factors a = (αλ

i , αµ
i : i = 1, · · · , d), with a ∈ A = [0,∞)2d. The state

dynamics are
f(x, a, b) =

∑
i

λiα
λ
i ei +

∑
i

uiµiα
µ
i ṽi,

where ei are the standard unit vectors in Rd, and ṽi are the service event vectors, ṽi = ei′ − ei, where i → i′

indicates the routing sequence in the network. The running cost is

L(x, a, b) = c +
∑

i

λi`(αλ
i ) +

∑
i

uiµi`(α
µ
i ),

where `(α) = α log(α)− α + 1.

Here c > 0 is a positive constant, λi > 0 and µi ≥ 0, so L(x, a, b) ≥ c. Thus the hypotheses of Lemma 5 are
satisfied once again, so that Theorem 3 applies to all viscosity solutions.
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Our last two examples are beyond the scope of Lemma 5, and the details are more involved. The following
lemma will assist us in checking the boundary conditions for (locally) smooth solutions.

Lemma 6. Assume the coercivity condition (6). Suppose x ∈ ∂Ω and u is continuously differentiable in a
neighborhood of x.

a) ζ ∈ D+u(x) iff ζ = Du(x) +
∑

i∈I(x) βini for some choice of βi ≥ 0. Analogously, ζ ∈ D−u(x) iff
ζ = Du(x)−

∑
i∈I(x) βini, some βi ≥ 0.

b) If −di · Du(x) ≤ 0 for all i ∈ I(x), then the viscosity subsolution property with boundary conditions
holds: for all ζ ∈ D+u(x),

min
i∈I(x)

(H(x, ζ),−di · ζ) ≤ 0.

Analogously, if −di ·Du(x) ≥ 0 for all i ∈ I(x), then for all ζ ∈ D−u(x),

max
i∈I(x)

(H(x, ζ),−di · ζ) ≥ 0.

Proof. The proof of a) is the first paragraph of the proof of [11, Theorem 2.1]. For b), suppose that
−di ·Du(x) ≤ 0 for all i ∈ I(x) and consider any ζ ∈ D+u(x). By a) we know that ζ = Du(x) +

∑
I(x) βini

with βi ≥ 0. We can assume some βi > 0 for some i ∈ I(x), else −di · ζ = −di ·Du(x) ≤ 0 follows directly.
Observe that ∑

I(x)

βi di · ζ =


∑

I(x)

βi di ·Du(x)


 +


∑

I(x)

βidi


 ·


∑

I(x)

βini


 .

By hypothesis, the first term on the right side is nonnegative. The last term is positive by the coercivity
hypothesis and our assumption that βi > 0 for some i. Therefore the left side is positive. This implies that
di · ζ > 0 for some i ∈ I(x). Consequently,

min
I(x)

(H(x, ζ),−di · ζ) ≤ 0,

regardless of the value of H(x, ζ). The supersolution case in b) is argued analogously.

Example 5. The recent papers [3], [12], and [11] of Day and others explore a robust control approach to
fluid queueing models, using state dynamics of the form

f(x, a, b) = b−Ga,

a compact control space A, and opposing quadratic costs for the state and “disturbance” b ∈ B = Rn:

L(x, a, b) =
1
2
‖x‖2 − 1

2
‖b‖2. (23)

The resulting Hamiltonian is

H(x, p) = sup
a∈A

p ·Ga− 1
2
‖x‖2 − 1

2
‖p‖2

=
1
2

sup
a∈A

(
‖Ga‖2 − ‖p−Ga‖2 − ‖x‖2

)
. (24)

Since ‖Ga‖, a ∈ A is bounded, we see from the second form that H(x, p) ≥ 0 implies a bound on ‖x‖.
Thus these problems are only reasonable to consider in bounded domains Ω. The examples in the literature
consider a bounded polygon Ω consisting of x ∈ Rd with xi ≥ 0 and η · x ≤ c for a particular vector
η. In [3] and [12] the boundary η · x = c is omitted from Ω and in its place an admissibility condition is
imposed on controls which prohibits the state from approaching this missing boundary. (See the “minimum
performance criterion” and its discussion in Section 2.4 of [12].) In [11] all of ∂Ω is included, consistent with
our formulation. Section 6 of [11] considers a specific example of the type considered here. We will need to
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take advantage of certain explicit calculations which would be cumbersome for that example. Instead we will
consider a simmple instance of the example(s) of [3, Sections 1–3], modified to include all of ∂Ω in accord
with our hypotheses here.

We let G be the 2 × 2 identiy matrix. (In [3] this corresponds to si = γ = 1.) The control set is
A = {(a1, a2) : 0 ≤ ai, a1 + a2 = 1}. The Hamiltonian (24) simplifies to

H(x, p) = max(p1, p2)−
1
2
‖x‖2 − 1

2
‖p‖2. (25)

We consider the planar domain
Ω = {x ∈ R2

+ : x1 + x2 ≤ r},
for r < 1. If r = 1 our Ω would be (the closure of) the domain considered in [3]. With r < 1 the domain
here is slightly smaller. This reduction of the domain is important for the p-monotone property. We identify
the faces and respective normal vectors as follows.

∂1Ω = {x ∈ Ω : x1 = 0}, n1 = (1, 0)
∂2Ω = {x ∈ Ω : x1 = 0}, n2 = (0, 1)

∂3Ω = {x ∈ Ω : x1 + x2 = r}, n3 = (−1/
√

2,−1/
√

2)

We take di = ni for all the faces. The target set will be the origin, T = {(0, 0)} with g(0, 0) = 0.
The constructions of [3] produce a C1 solution to H(x,Du(x)) = 0. We will see that this is a p-monotone

solution, even though Lemma 5 does not apply. We will indicate birefly how the viscosity solution properties
are verified, and then turn our attention to p-monotonicity. The solution is symmetric about the diagonal
x1 = x2. We confine our discussion to the lower-right half of Ω: 0 ≤ x2 ≤ x1 ≤ r. The analysis on the other
half follows by symmetry.

In the subregion 0 ≤ x2 ≤ x1 ≤ r the solution is most conveniently described in terms of the orthogonal
basis

µ = (1/2,−1/2), η = (1/2, 1/2).

(In the notation of [3, page 335], µ = µ1 = η{1}− η{1,2} and η = µ2 = η{1,2}.) The gradient Du(x) is related
to x in terms of parameters 0 ≤ t1 ≤ t2 ≤ π/2 by the expressions

x = sin(t1)µ + sin(t2)η, Du(x) = [1− cos(t1)]µ + [1− cos(t2)]η. (26)

The parameters can be eliminated to obtain the explicit expressions

u(x) = x1 −
1
4

(√
1− (x1 − x2)2(x1 − x2) + sin−1(x1 − x2)

+(x1 + x2)
√

1− (x1 + x2)2 + sin−1(x1 + x2)
)

,

∂u/∂x1 = 1− 1
2

(√
1− (x1 − x2)2 +

√
1− (x1 + x2)2

)
,

∂u/∂x2 =
1
2

(√
1− (x1 − x2)2 −

√
1− (x1 + x2)2

)
.

The parametric represenation is more convenient for most purposes. For instance, observe that for
p = Du(x), max(p1, p2) = p1 is equivalent to p · µ = 1

2 [1− cos(t1)] ≥ 0, which does hold. Therefore

H(x, p) = p1 −
1
2
‖x‖2 − 1

2
‖p‖2 = p · (µ + η)− 1

2
‖x‖2 − 1

2
‖p‖2. (27)

It is now straightforward to evaulate this, using the orthogonality of µ and η to confirm that H(x,Du(x)) = 0.
The explicit formulae provide the easiest way to check that

∂u/∂xi ≥ 0 for both i, (28)

because x2 ≤ x1, and
∂u/∂x2 = 0 when x2 = 0. (29)
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By Lemma 6 b), (29) implies that the viscosity boundary conditions are satisfied on ∂2Ω. On ∂3Ω we
have from (28) that −d3 ·Du(x) ≥ 0, so that the supersolution boundary condition is satisfied there, as well
as at the corner (r, 0).

The subsolution property on ∂3Ω and at the corner takes more careful examination. For these x we need
to identify the ζ ∈ D+u(x) for which −di ·Du(x) > 0 for all i ∈ I(x), and for these check that H(x, ζ) ≤ 0
holds. Consider the corner x = (r, 0) specifically. From the explicit formulas, Du(x) = (1−

√
1− r2, 0). By

Lemma 6, the ζ ∈ D+u(x) are
ζ = Du(x) + β2n2 + β3n3, βi ≥ 0.

One finds that the ζ with βi ≥ 0 and −di · ζ > 0 comprise the triangle in the ζ-plane with verticies (0, 0),
Du(x) = [1−

√
1− r2](1, 0), and [1−

√
1− r2](1

2 ,− 1
2 ). For future reference, notice that all such ζ satisfy

‖ζ‖ ≤ ‖Du(x)‖. (30)

What we need at the moment is that ζ1 ≤ 0 ≤ ζ2 so that just as in (27),

H(x, ζ) = ζ · (µ + η)− 1
2
‖x‖2 − 1

2
‖ζ‖2.

This works out as
H(x, ζ) =

1
2

(
−β2

2 +
√

2β3β2 − β3

(
β3 +

√
2
√

1− r2
))

,

from which one may verify that H(x, ζ) ≤ 0 for all βi ≥ 0. This confirms the viscosity subsolution property
at the corner.

For x ∈ ∂3Ω with x2 ≤ x1 < r the calculations are similar but simpler. The ζ ∈ D+u(x) with −d3 · ζ > 0
are ζ = Du(x) + β3n3 with

0 ≤
√

2β3 < 1− cos(t2). (31)

Since n3 = −
√

2η we have
ζ = [1− cos(t1)]µ + [1− cos(t2)−

√
2β3]η. (32)

Notice that implies (30) again holds. Since µ · ζ = µ ·Du(x) ≥ 0 we can again work out

H(x, ζ) = ζ · (µ + η)− 1
2
‖x‖2 − 1

2
‖ζ‖2

=
−1
2

β3[
√

2 cos(t1) + β3] ≤ 0, since β3 ≥ 0.

The completes the verification that u(x) is a viscosity solution to our problem.
We now consider p-monotonicity. Note that due to the −‖b‖2 term, there is no finite lower bound for the

L of (23). Thus Lemma 5 does not apply. Even so, we will see that u(x) is a p-monotone solution. Observe
that for any s > 0, we have max(sζ1, sζ2) = smax(ζ1, ζ2). As a consequence we have the following identity.

H(x, sζ) = sH(x, ζ) + (s− 1)
[
1
2
‖x‖2 − s

2
‖ζ‖2

]
. (33)

Consider the supersolution p-monotonicty proerty first. As observed above, −di ·Du(x) ≥ 0 on all boundary
faces, so that only the interior points are involved in the p-monotonicity supersolution property. Since
H(x,Du(x)) = 0, we see from (33) that p-monotonicity requires that

0 <
1
2
‖x‖2 − s

2
‖Du(x)‖2 (34)

for x 6= 0 and s ≈ 1. For s = 1 this is the positive storage condition [3, (2.25)] and [11, (33)], which was
important for the verification results obtained there. Here we are interested in 1 < s. The parametric
respresentation of Du(x) allows us to check (34) directly:

1
2
‖x‖2 − s

2
‖Du(x)‖2 =

1
4
[sin(t1)2 − s(1− cos(t1))2] +

1
4
[sin(t2)2 − s(1− cos(t2))2].
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Now 0 ≤ tt ≤ t2 and 1
2 sin(t2) = η ·x ≤ r/2. Thus ti ≤ sin−1(r) < π/2, since r < 1. It is elementary to check

that there exists δ0 > 0 so that
sin(t)2 − s(1− cos(t))2 > 0

for all 0 ≤ t ≤ sin−1(r) and all 0 < s < 1 + δ0. This implies that (34) holds and so u(x) is indeed a
p-monotone supersolution, using

ηs(x) = (s− 1)
[
1
2
‖x‖2 − s

2
‖DV (x)‖2

]
.

Finally, consider the subsolution p-monotone property. Based on (33), for s − 1 < 0, we need to know
that, for ζ ∈ D+u(x) with −di · ζ > 0 all i ∈ I(x),

0 <
1
2
‖x‖2 − s

2
‖ζ‖2.

But we observed in (30) above that for all such ζ, ‖ζ‖ ≤ ‖Du(x)‖, and so

1
2
‖x‖2 − s

2
‖ζ‖2 ≥ 1

2
‖x‖2 − s

2
‖DV (x)‖2.

Thus we can again use

ηs(x) = (s− 1)
[
1
2
‖x‖2 − s

2
‖DV (x)‖2

]
,

which is strictly positive on Ω \ T , as shown above.
In summary, u(x) is a p-monotone viscosity solution and hence the complete solution of our problem.

Finally we offer a new example which exhibits nonuniqueness of solutions when no p-monotone solution
exists, but for which comparisons based on p-monotonicity properties are still possible.

Example 6. We return to the Hamiltonian (20) but consider the cube

Ω = {(x1, , x2) : 0 ≤ xi ≤ 1}.

We number the boundary faces as

∂1Ω = {x ∈ Ω : x1 = 0}, ∂2Ω = {x ∈ Ω : x2 = 0},
∂3Ω = {x ∈ Ω : x1 = 1}, ∂4Ω = {x ∈ Ω : x2 = 1},

The normals are n1 = (1, 0), n2 = (0, 1), n3 = (−1, 0), n4 = (0,−1); and we take di = ni for all faces.
Consider the target set consisting of the two off-diagonal corners: T = {(1, 0), (0, 1)}, taking g = 1

2 at both
corners.

It is elementary to check that V (x) = 1
2 (x2

1 + x2
2) is a classical solution of 0 = H(x,DV (x)) in the

interior of Ω. A second solution W is illustrated in Figure 1. It is symmetric about the diagonal line
Γ = {x ∈ Ω : x1 = x2}, but is nondifferentiable on Γ (and at the corners in T ). In the upper left triangle,
0 ≤ x1 ≤ x2 ≤ 1 it is constructed from the family of characteristics (illustrated in the left pane of Figure 1)

ẋ = Hp(x, p) = p; x(0) = (0, 1)
ṗ = −Hx(x, p) = x; p(0) = (cos(θ),− sin(θ)), 0 ≤ θ ≤ π/2
ẇ = p · ẋ; w(0) = 1/2 = g(x(0)),

and extended by symmetry across Γ. It turns out that both V and W are viscosity solutions of H(x,Du(x)) =
0 in Ω \ T with −di · Du(x) = 0 on ∂Ω \ T and u = g on T . Moreover V satisfies the oblique derivative
boundary conditions at the points of T as well. The verification of these assertions is similar to those of the
previous example; we omit them form brevity.

In light of Theorem 3 neither V nor W can be a p-monotone solution. Lemma 5 does not apply here
since x = (0, 0) does not belong to T and L of (21) has no positive lower bound at this point. In fact,
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neither V nor W is a p-monotone solution in either the sub- or supersolution senses. In order for V to be a
p-monotone subsolution we would need, for 0 < s < 1, a function ηs(x) > 0 (off T ) with

H(x, sDV (x)) ≤ −ηs(x), x ∈ Ω◦.

Now

H(x, sp) = s2 1
2
‖p‖2 − 1

2
‖x‖2 = s2H(x, p) +

s2 − 1
2

‖x‖2.

Since H(x,DV (x)) = 0,

H(x, sDV (x)) =
s2 − 1

2
‖x‖2.

Thus we would need s2−1
2 ‖x‖2 ≤ −ηs(x) to be uniformly negative in a neighborhood of (0, 0). This is clearly

not possible. The same argument applies to W , if we keep x off the diagonal. For the supersolution case,
we would need s2−1

2 ‖x‖2 ≥ ηs(x) to be uniformly positive in a neighborhood of (0, 0), which is likewise
impossible.

In Figure 2 we have plotted both solutions V and W . It is apparent that V ≤ W . This can be deduced
from Theorem 3 by considering the enlarged target set T ′ = {(0, 0), (0, 1), (1, 0)}. Now Lemma 5 does
apply; both V and W are p-monotone for this T ′. If we take g(0, 0) = 0 = V (0, 0), then V is the complete
solution of the problem, but since W (0, 0) = 1 > g(0, 0), W is only a supersolution. Thus V ≤ W follows
from the comparison theorem. If instead we take g(0, 0) = 1, then W is the complete solution. We obtain a
supersolution by adding a constant to V : Ṽ (x) = 1+V (x). In that case Ṽ ≥ g on T , so that the comparison
theorem implies V + 1 ≥ W .

Also consider the target set T ′′ = {(0, 0)} consisting of the origin alone, with g(0, 0) = 0. As above
Lemma 5 applies, so that V is the complete solution. According to Theorem 3, there can can be no
other viscosity solutions. Adding a constant, W − 1 conforms to g at the origin. But investigation of the
corners (0, 1) and (1, 0) shows that the supersolution condition fails there (details omitted). It is however a
subsolution, which implies W − 1 ≤ V , as we already deduced above.
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