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Abstract. Neumann or oblique derivative boundary conditions for viscosity solutions of Hamilton-Jacobi
equations are considered. As developed by P. L. Lions, such boundary conditions are naturally associated
with optimal control problems for which the state equations employ “Skorokhod” or reflection dynamics to
insure that the state remains in a prescribed set, assumed here to have smooth boundary. We develop con-
nections between the standard formulation of viscosity boundary conditions and an alternative formulation
using a naturally occurring discontinuous Hamiltonian which incorporates the reflection dynamics directly.
At points of differentiability, equivalent conditions for the boundary conditions are given in terms of the
Hamiltonian and the geometry of the state trajectories using optimal controls.

1. Introduction

P. L. Lions developed the notion of Neumann type boundary conditions for viscosity solutions of Hamilton-
Jacobi equations in [9]. The now standard expression of these is given in (16) below. He showed that this
provided the appropriate notion of solution for the Hamilton-Jacobi equations describing the value functions
of control problems or differential games involving reflected deterministic processes, often called Skorokhod
problems; see [6].

To discuss this we will work in the following setting. Assume that Ω ⊆ Rn is open with ∂Ω smooth and
unit outward normal n(x). Also given on ∂Ω is a smooth vector field γ : ∂Ω → Rn on ∂Ω, normalized by

(1) γ(x) · n(x) = 1.

Consider the velocity projection map defined by

π(x, v) =

{
v if x ∈ Ω
v − cγ(x) with c = (n(x) · v)+ if x ∈ ∂Ω.

Notice that c is the smallest nonnegative value for which n(x) · (v − cγ(x)) ≤ 0. Thus the effect of π(x, v) is
to correct v by adding the minimal nonnegative multiple of −γ(x) such that v−cγ(x) does not point outside
Ω̄. Suppose U ⊂ Rm is a closed set of control values and

f : Ω̄× U → Rn

is a controlled vector field. We are motivated by control problems whose state dynamics consist of f coupled
with the velocity projection map:

(2) ẋ(t) = π(x(t), f(x(t), u(t))); x(0) = x0.

This is what we refer to as Skorokhod dynamics. The result is a control system whose natural state space is
Ω̄. See Dupuis and Ishii [6] for discussion of the general Skorokhod problem, its relation to π(x, v), and the
equivalence of (2) with the formulation of (47) in [9].

For appropriate running cost functions L : Ω̄ × U → R a variety of control problems can be formulated
in which the goal is to minimize an integral of L(x(t), u(t)). The resulting value function V (x) will typically
be a viscosity solution of a Hamilton-Jacobi equation involving the Hamiltonian

(3) H(x, p) = sup
u
{−p · f(x, u)− L(x, u)} .

For instance Lions uses the example of an infinite horizon discounted problem

(4) V (x0) = inf
u(·)

∫ ∞

0

e−λtL(x(t), u(t)) dt,
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with positive discount rate λ. He showed that V will be the unique continuous viscosity solution of

(5) λV (x) + H(x,DV (x)) = 0 in Ω, γ(x) ·DV (x) = 0 in ∂Ω,

the boundary conditions being understood in the viscosity sense of (16) below. However, the usual dynamic
programming heuristics first suggest

(6) λV (x) + Hπ(x,DV (x)) = 0, x ∈ Ω̄

as the appropriate Hamilton-Jacobi equation, where Hπ is the reflected Hamiltonian

(7) Hπ(x, p) = sup
u∈U

{−p · π(x, f(x, u))− L(x, u)} .

Note that Hπ(x, p) = H(x, p) if x ∈ Ω, but they can be quite different for x ∈ ∂Ω. The formulation (6)
appears as [9, (53)] in Lions.

The assertions and arguments of Lions’ Theorem 12 imply that (5) and (6) are equivalent (in his context).
Indeed the value function representation (4) establishes the existence of solutions to (6). The last part of
the proof of Theorem 12 argues that any solution of (6) is also a solution of (5). Solutions of (5) are unique,
by his Theorem 11. Thus any solution of (5) must agree with the solution of (6) provided by (4). We hasten
to note however that this argument for equivalence depends on both the existence and uniqueness results.

Our goal in this paper is to explore the connections between the boundary condition formulation and the
reflected Hamiltonian formulation more directly, without recourse to uniqueness results for solutions or a
restriction to solutions which can be interpreted as value functions for some control problem. We carry out
our discussion for the simpler equation

(8) H(x,DV (x)) = 0.

It is well known that there is generally no uniqueness theorem for equations of this form, which lack a λV
or Vt term. (An instance of nonuniqueness is provided in Example 1 below.)

The specific problem formulations we will compare are the boundary condition formulation (14) and the
reflected Hamiltonian formulation (17) below. Our discussion of the relation between the two formulations
will not appeal to a control theoretic interpretation of the solutions. However the implications for control
problems is a primary motivation for our study. Specifically, we hope to understand what the boundary
conditions require in terms of the structure of the extremals associated with a solution V . Suppose that V
is a smooth solution. By by an extremal we mean a trajectory ẋ(t) = π(x(t), f(x(t), u∗(t)) where at each t,
u∗(t) achieves the maximum over u ∈ U of the expression

(9) −DV (x(t)) · π(x(t), f(x(t), u))− L(x(t), u),

which defines Hπ(x,DV (x)). The values u∗ that maximize this expression at a boundary point x are
the possible otimal controls when the system is at state x. We would like to be able to identify these
u∗ from properties of γ · DV (x), f(x, u∗) and other quantities, avoiding if possible the more complicated
nonlinear optimization problem (9). Hamilton-Jacobi equations with boundary conditions have arisen in
recent examples from queueing theory, where the Skorokhod problem mechanism arises naturally; see [2] and
[5] for instance. Work such as [5] in particular uses appropriate families of extremal trajectories to construct
the value function V . This motivates our interest in the connection between the boundary conditions and
the properties of extremals.

At interior points x ∈ Ω we have π(x, f(x, u)) = f(x, u) and so the optimal controls would be those u∗

which achieve the maximum of
−DV (x) · f(x, u)− L(x, u),

which defines H(x,DV (x)). If H is also smooth, we see that these maximizing u∗ satisfy

− ∂

∂p
H(x,DV (x)) = f(x, u∗).

Thus our extremal is a solution of
ẋ = − ∂

∂p
H(x,DV (x)).

This is the state component of the usual characteristic equations

ẋ = − ∂

∂p
H(x, p), ṗ =

∂

∂x
H(x, p).
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The classical method of characteristics associates each smooth solution V with the family of solutions to the
characteristic equations for which p(t) = DV (x(t)). Thus by considering extremals we will be characterizing
the boundary conditions (for smooth solutions) in terms the classical characteristics.

Hamilton-Jacobi equations with boundary conditions have arisen in recent examples from queueing theory,
where the Skorokhod problem mechanism arises naturally; see [2] and [5] for instance. Work such as [5] in
particular uses appropriate families of extremal trajectories to construct the value function V . This motivates
interest in the connection between the boundary conditions and the properties of extremals.

In Section 2 give a complete specification of our hypotheses, state more carefully the two notions of solu-
tion, and collect some elementary inequalities. In Section 3 the equivalence of the two notions is considered.
It is quite simple to show that a solution in the reflected Hamiltonian sense must be a solution in the bound-
ary condition sense; this is Theorem 1. Theorem 2 will show that the two notions of subsolutions are indeed
equivalent. To prove the analogous result for supersolutions, Theorem 3, we need to make stronger affine-
convex assumptions (AC) on the dynamics and running cost. These are satisfied in the recent applications
in queueing theory and our examples below. However, in the queuing theory applications Ω is generally
a convex polygon, in which case ∂Ω is not smooth but has numerous edges and corners. Moreover those
applications often lead to differential games rather than simple control problems. We have not attempted
to deal with those features here. (Some of our simpler results are easy to establish in that setting however,
as we will comment in Section 5.)

In Section 4 we assume that V is C1 solution of H(x,DV (x)) = 0. We will see that the two notions
of solution are equivalent under this hypothesis, without reference to (AC). We will be able to describe
the boundary conditions in terms of simple geometric properties of extremals and identify optimal control
values on ∂Ω. Section 5 will close with some comments on yet another formulation that occurs in the work
of Dupuis, Ishii and Soner [7].

2. Hypotheses and Preliminaries

We assume Ω ⊂ Rn is open with ∂Ω of class C2. (I.e. it is locally the level set of a C2 function with
nonvanishing gradient.) It follows that the unit outward normal n(x) is C1 on ∂Ω. We assume U ⊆ Rm is
closed (nonempty) and that f : Ω̄×U → Rn and L : Ω̄×U → R are continuous. In terms of these we define
the Hamiltonian H(x, p) as in (3) above. If U is unbounded we impose the growth condition

(10)
L(x, u)

1 + |f(x, u)| → +∞ as |u| → ∞, uniformly over |x| ≤ R, each R.

Our continuity hypotheses are weaker than those of Lions [9, (50)] in that no Lipschitz or modulus of
continuity assumptions are made on f(·, u), L(·, u), nor are they assumed bounded. On the other hand he
assumes nothing like our (10). Observe that the growth assumption implies that

(11)

−p · f(x, u)− L(x, u) ≤ |p| |f(x, u)| − L(x, u)

= −
(

L(x, u)
1 + |f(x, u)| − |p|

)
|f(x, u)| − L(x, u)

1 + |f(x, u)|
→ −∞ as |u| → ∞.

It follows that for |x| ≤ R and |p| ≤ R the supu in (3) can be restricted to a compact subset of U . As a
consequence, H : Ω̄× Rn → R is continuous, convex in p for each x ∈ Ω̄, and the set

(12) {(x, p, u) : H(x, p) = −p · f(x, u)− L(x, u)}
is nonempty and closed. When (x, p, u) is in this set, we say that u achieves the supremum in H(x, p).

Most of our results hold with no further hypotheses. However, for the supersolution equivalence result of
Theorem 3 below, we assume the following affine-convex structure:

(AC)

U is convex,

L(x, u) is convex in u for each x ∈ Ω̄,

f(x, u) = b(x) + G(x)u for some continuous functions b,G

We will only assume (AC) where explicitly stated.
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The vector field γ : ∂Ω → Rn is assumed C1 and, as we said above, normalized by γ(x) · n(x) = 1. The
velocity reflection map π described above can be expressed as follows: if x ∈ Ω then π(x, v) = v, and if
x ∈ ∂Ω then

π(x, v) = v − cγ(x), where c = max(0, n(x) · v)

=

{
v if n(x) · v ≤ 0
R(x)v if n(x) · v > 0

,(13)

where R(x) is the reflection matrix
R(x) = I − γ(x)nT (x).

It is easy to see that π(x, v) is continuous with respect to v. The normalization γ(x) · n(x) = 1 implies that
n(x)T R(x) = 0, from which we see that n(x) · π(x, v) ≤ 0 for all v. The reflected Hamiltonian Hπ is now
defined as in (7) above.

The viscosity solution property is based on the semidifferential sets of a function V , assumed to be
continuous on Ω̄. The semidifferential sets are defined in terms of smooth test functions, as follows. For
x ∈ Ω̄ we say ξ ∈ D+V (x) [D−V (x)] if ξ = Dφ(x) for some φ ∈ C1(Ω̄) such that x is a local maximum
[minimum] of V − φ relative to Ω̄. It is well known that both D±V (x) are closed. (See [3] for typical
arguments; e.g. Lemma 1.8 page 28.)

We now formulate the two versions of the Hamilton-Jacobi equation that we are interested in. First is
the boundary condition formulation:

(14) H(x,DV (x)) = 0 in Ω with γ(x) ·DV (x) = 0 on ∂Ω.

For interior points x ∈ Ω, we say V is a viscosity subsolution [supersolution] of (14) at x when

(15)
H(x, ξ) ≤ 0 for all ξ ∈ D+V (x),

[ H(x, ξ) ≥ 0 for all ξ ∈ D−V (x) ].

For boundary points x ∈ ∂Ω, we say V is a viscosity subsolution [supersolution] of (14) at x when

(16)
min(H(x, ξ), γ(x) · ξ) ≤ 0 for all ξ ∈ D+V (x),

[ max(H(x, ξ), γ(x) · ξ) ≥ 0 for all ξ ∈ D−V (x) ].

This provides the sense in which γ(x) ·DV (x) = 0 is understood for viscosity solutions.

Example 1. As an example of the above consider

f(x, u) = u; L(x, u) =
1
2
|x|2 +

1
2
|u|2,

with x = (x1, x2) ∈ R2 and U = R2. Take Ω = {x : x1 < 1}, so that n(x) = (1, 0) on ∂Ω. We take
γ(x) = (1, 0). The resulting Hamiltonian is

H(x, p) =
1
2
|p|2 − 1

2
|x|2.

We can easily write down several (smooth) solutions of H(x,DV (x)) = 0 in Ω:

VA(x) =
1
2
x2

1 +
1
2
x2

2

VB(x) =
1
2
x2

1 −
1
2
x2

2

VC(x) = −1
2
x2

1 −
1
2
x2

2

We can examine (16) directly for each of these. For VA we find that for an arbitrary x = (1, x2) ∈ ∂Ω,

D+VA(x) = {ξ = (ζ, x2) : ζ ≤ 1}
D−VA(x) = {ξ = (ζ, x2) : ζ ≥ 1}.

4



For ξ ∈ D−VA(x) we have γ(x) · ξ = ζ ≥ 1 so that the supersolution property (16) holds. For ξ ∈ D+VA(x)
with ζ ≤ 0 the subsolution property holds because γ(x) · ξ = ζ ≤ 0. For 0 < ζ ≤ 1 the subsolution property
requires H(x, ξ) ≤ 0. This we easily check, since

H(x, ξ) =
1
2
(ζ2 − 1) ≤ 0.

Thus VA is indeed a viscosity solution of (14).
A nearly identical calculation (x2 replaced by −x2 throughout) shows that VB is also a solution of (14).

This provides an example of the nonuniqueness of solutions to (14). We note that both VA and VB are
smooth, and in the context of smooth functions both the boundary condition formulation (14) and the
reflected Hamiltonian formulation (17) are equivalent. See Section 4.

For VC however the situation is different. Consider the supersolution property. We have

D−VC(x) = {ξ = (ζ,−x2) : ζ ≥ −1}.
If −1 < ζ < 0 we have γ(x) · ξ = ζ < 0 so the supersolution property requires H(x, ξ) ≥ 0. But we find

H(x, ξ) =
1
2
(ζ2 − 1) ≤ 0.

Thus VC is not a supersolution. (The subsolution property does hold however.) We will return to this
example in Section 4 to see how these solution properties can be checked geometrically in terms of associated
extremals.

Next we state the reflected Hamiltonian formulation:

(17) Hπ(x,DV (x)) = 0 for all x ∈ Ω̄.

V is defined to be a viscosity subsolution [supersolution] of (17) at x ∈ Ω̄ when

(18)
Hπ(x, ξ) ≤ 0 for all ξ ∈ D+V (x),

[ Hπ(x, ξ) ≥ 0 for all ξ ∈ D−V (x) ].

For either formulation, we say V is a viscosity solution in Ω̄ when it is both a subsolution and supersolution
at every x ∈ Ω̄. Note that for (18) and (15) are the same x ∈ Ω, because H(x, ·) = Hπ(x, ·). Thus to say V
is a solution (sub- or super- ) of (14) at all interior points is the same as in reference to (17); it reduces to
(15) for all x ∈ Ω in either case. We will usually refer to (14) when when talking exclusively about interior
points, understanding that there is no distinction. Our interest is in the connection between (18) and (16)
for boundary points x ∈ ∂Ω.

The structure of D±V (x) for x ∈ ∂Ω is important to our arguments. The hypothesis that ∂Ω is C2

implies that there exists a C2 function d(x) with the properties that d(x) > 0 for x ∈ Ω, and d(x) = 0 and
Dd(x) = −n(x) for x ∈ ∂Ω. (d(x) = dist(x, ∂Ω) near ∂Ω, smoothed in the interior. See [8, Appendix] for
details.) If φ ∈ C1(Ω̄) is such that V − φ has a local maximum at x ∈ ∂Ω, then V − (φ + λd) also has a
local maximum at x for any λ ≥ 0. Thus if ξ ∈ D+V (x) then ξ − λn(x) ∈ D+V (x) for all λ ≥ 0. Likewise,
if ξ ∈ D−V (x) then ξ − λn(x) ∈ D−V (x) for all λ ≤ 0.

Given ξ in either of D±V (x) and λ ∈ R, we will adopt the notation

ξλ = ξ − λn(x).

Thus ξ = ξ0. For ξ0 ∈ D+V (x) then our observations above say that ξλ ∈ D+V (x) for all λ ≥ 0. Define

λ+ = inf{λ : ξλ ∈ D+V (x)}.
Then −∞ ≤ λ+ ≤ 0. Since D+V (x) is closed, it follows that

ξλ ∈ D+V (x) for all finite λ ≥ λ+.

Analogously, For ξ0 ∈ D−V (x) define

λ− = sup{λ : ξλ ∈ D−V (x)}.
Then 0 ≤ λ− ≤ ∞ and

ξλ ∈ D−V (x) for all finite λ ≤ λ−.
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Consider any x ∈ ∂Ω and ξ0 in either of D±V (x). We define

λ∗ = γ(x) · ξ0.

The significance of λ∗ is that

(19)
γ(x) · ξλ > 0 iff λ < λ∗,

γ(x) · ξλ < 0 iff λ∗ < λ.

Notice also that as a consequence of n(x)T R(x) = 0 we have

(20) ξT
λ R(x) = ξT

λ∗ for all λ.

Suppose x ∈ ∂Ω and γ(x) · ξλ ≥ 0. For any v we know π(x, v) = v − cγ(x) for some c ≥ 0, and therefore

ξλ · π(x, v) ≤ ξλ · v.

It follows that H(x, ξλ) ≤ Hπ(x, ξλ). In this way we see that

(21)
H(x, ξλ) ≤ Hπ(x, ξλ) whenever λ ≤ λ∗,

Hπ(x, ξλ) ≤ H(x, ξλ) whenever λ∗ ≤ λ.

Next consider any λ1 ≤ λ2. For any v we have

(ξλ2 − ξλ1) · π(x, v) = (λ1 − λ2)n(x) · π(x, v) ≥ 0,

because n(x) · π(x, v) ≤ 0. Therefore ξλ2 · π(x, v) ≥ ξλ1 · π(x, v) for all v, which implies that Hπ(x, ξλ1) ≥
Hπ(x, ξλ2). In other words,

(22) λ 7→ Hπ(x, ξλ) is nonincreasing.

The following lemma is proven as Lemma 3 in Lions [9]. (In the subsolution case, our λ+ is the negative
of Lions’ λ0.)

Lemma 1. Assume V ∈ C(Ω̄) and x ∈ ∂Ω. If V is a viscosity subsolution of (14) in the interior then for
any ξ0 ∈ D+V (x) with −∞ < λ+ we have

H(x, ξλ+) ≤ 0.

Likewise, if V is a viscosity supersolution of (14) in the interior then for any ξ0 ∈ D−V (x) with λ− < ∞
we have

H(x, ξλ−) ≥ 0.

Again we remind the reader that the interior solution properties are defined by (15) for x ∈ Ω. The lemma
says that certain Hamiltonian inequalities on ∂Ω follow from solution properties on the interior, without any
express assumptions about the equation or conditions on the boundary.

The careful reader may also observe that for x ∈ ∂Ω our definition (16) of subsolution requires that

H(x, ξ) ≤ 0 for all ξ ∈ D+V (x) with γ(x) · ξ > 0,

whereas the formulation in Lions [9, (39)] is slightly different:

H(x, ξ) ≤ 0 for all ξ ∈ D+V (x) with γ(x) · ξ ≥ 0.

An alternate formulation used by Lions is [9, (39’)], which in our notation may be expressed as

for each ξ ∈ D+V (x) there is min(0, λ∗) ≤ λ ≤ 0 such that H(x, ξλ) ≤ 0.

We will use yet another formulation in Section 3 below:

(23) H(x, ξλ) ≤ 0 for each ξ ∈ D+V (x) and all λ+ ≤ λ ≤ max(λ+, λ∗).

Obviously, [9, (39)] implies our (16). Both [9, (39’)] and (23) imply [9, (39)] because if γ(x) · ξ ≥ 0 then
λ∗ ≥ 0, so that for λ = 0 is the only possibility in [9, (39’)] and a possibility in (23). (Recall that λ+ ≤ 0 in
general.) So in either case we deduce H(x, ξ) = H(x, ξ0) ≤ 0.

Under the assumption that V is a subsolution in the interior, all of the above are equivalent. Lemma 1
is the key. The argument that [9, (39)] implies [9, (39’)] is given by Lions. The following lemma records the
equivalence of (16) and (23) for our use in Section 3.
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Lemma 2. Suppose V is a continuous subsolution of (14) in the interior and x ∈ ∂Ω. Then V is a
subsolution of (14) at x iff

H(x, ξλ) ≤ 0 for each ξ ∈ D+V (x) and all λ+ ≤ λ ≤ max(λ+, λ∗).

Likewise, if V is a continuous supersolution of (15) in the interior and x ∈ ∂Ω. Then V is a supersolution
of (14) at x iff

H(x, ξλ) ≥ 0 for each ξ ∈ D+V (x) and all min(λ−, λ∗) ≤ λ ≤ λ−.

Proof. We consider only the subsolution case, the supersolution case being analogous. Suppose V is a
continuous subsolution of (14) in the interior and x ∈ ∂Ω. We know that λ+ ≤ 0 and ξλ ∈ D+V (x) for all
λ+ ≤ λ. Therefore (16) implies

min(H(x, ξλ), γ(x) · ξλ) ≤ 0.

If λ+ ≤ λ < λ∗, we know from (19) that γ(x) · ξλ > 0, so that H(x, ξλ) ≤ 0. If λ+ < λ∗, this extends by
continuity to λ = λ∗. Lemma 1 says that this holds for λ = λ+, even if λ∗ ≤ λ+. These facts collectively
imply (23). The converse, that (23) implies (16), follows as indicated above. ¤

3. Equivalence Results

Our first result is that viscosity solutions of the reflected Hamiltonian formulation problem are necessarily
solutions of the boundary condition formulation. This is contained in the proof of Lions’ Theorem 12. We
copy the elementary proof from [5].

Theorem 1. Suppose that V ∈ C(Ω̄) is a viscosity subsolution [supersolution] of (17) at x ∈ ∂Ω. Then V
is a viscosity subsolution [supersolution] solution of (14) at x.

Proof. Consider ξ0 ∈ D+V (x). Then Hπ(x, ξ0) ≤ 0. Suppose γ(x) · ξ0 > 0. From (19) and (21) it follows
that H(x, ξ0) ≤ Hπ(x, ξ0) ≤ 0. Thus

min(H(x, ξ0), γ(x) · ξ0) ≤ 0.

Since this obviously holds if γ(x) · ξ0 ≤ 0, V is a subsolution of (14). The supersolution argument is
analogous. ¤

We are interested in a converse to Theorem 1. We will present the subsolution and supersolution parts
separately, since the the extra hypotheses (AC) are only needed for the supersolution part. Note that both
Theorems 2 and 3 assume that the sub- or supersolution properties hold in the interior as well as at the
individual boundary point.

3.1. Subsolutions.

Theorem 2. Suppose V ∈ C(Ω̄) is a viscosity subsolution of (14) in the interior and at x ∈ ∂Ω. Then V
is a viscosity subsolution of (17) at x.

Proof. Consider ξ0 ∈ D+V (x). Our goal is to show that

(24) Hπ(x, ξ0) ≤ 0.

By the hypotheses and Lemma 2 we know that

(25) H(x, ξλ) ≤ 0 for all λ+ ≤ λ ≤ max(λ+, λ∗).

We now deduce (24) from (25) in three cases, depending on the position of λ∗ relative to λ+ ≤ 0.
First, suppose λ∗ ≤ λ+ ≤ 0. Then

Hπ(x, ξ0) ≤ Hπ(x, ξλ+), by (22)

≤ H(x, ξλ+), by (21)

≤ 0, by (25).

The case of λ+ < λ∗ ≤ 0 is similar. We have

Hπ(x, ξ0) ≤ Hπ(x, ξλ∗), by (22)

= H(x, ξλ∗), by (21)

≤ 0, by (25).
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In the remaining case of λ+ ≤ 0 < λ∗, we claim that

(26) Hπ(x, ξ0) ≤ sup
0≤λ≤λ∗

H(x, ξλ).

Since (25) implies sup0≤λ≤λ∗ H(x, ξλ) ≤ 0, we see that (24) follows from (26).
To finish we need to establish (26), assuming 0 < λ∗. Observe that we can use (13) to break the supremum

defining Hπ(x, ξ) up into two halves, depending on the sign of n(x) · f(x, u).

Hπ(x, ξ0) = max(Q1, Q2),

where Q1 is the supremum of
−ξ0 · f(x, u)− L(x, u)

over u for which n(x) · f(x, u) ≤ 0, and Q2 is the supremum of

−ξ0 ·R(x)f(x, u)− L(x, u)

over u for which n(x)·f(x, u) > 0. Obviously, Q1 ≤ H(x, ξ0) and from (20), Q2 ≤ H(x,R(x)T ξ0) = H(x, ξλ∗).
Thus

max(Q1, Q2) ≤ max(H(x, ξ0),H(x, ξλ∗)) ≤ sup
0≤λ≤λ∗

H(x, ξλ),

proving (26). ¤

3.2. Supersolutions.

Theorem 3. Suppose V ∈ C(Ω̄) is a viscosity supersolution of (14) in the interior and at x ∈ ∂Ω. If the
hypotheses (AC) hold, then V is a viscosity supersolution of (17) at x.

The proof follows the same outline. However the analogue of (26) is harder to prove, requiring the additional
hypothesis (AC). We present that part of the argument separately as Lemma 3 following the main body of
the proof.

Proof. Consider ξ0 ∈ D−V (x). Our goal is to show that

Hπ(x, ξ0) ≥ 0.

The hypotheses and Lemma 2 imply

(27) H(x, ξλ) ≥ 0 for all min(λ∗, λ−) ≤ λ ≤ λ−.

Since 0 ≤ λ− there are three cases. First, if 0 ≤ λ− ≤ λ∗, then

Hπ(x, ξ0) ≥ Hπ(x, ξλ−), by (22)

≥ H(x, ξλ−), by (21)

≥ 0, by (27).

Next, if 0 ≤ λ∗ < λ− then

Hπ(x, ξ0) ≥ Hπ(x, ξλ∗), by (22)

= H(x, ξλ∗), by (21)

≥ 0, by (27).

In the remaining case λ∗ < 0 ≤ λ− we appeal to Lemma 3 to complete the proof:

Hπ(x, ξ0) ≥ inf
λ∗≤λ≤0

H(x, ξλ) ≥ 0,

by virtue of (27). ¤

Lemma 3. If λ∗ < 0 and the hypotheses (AC) hold, then Hπ(x, ξ0) ≥ infλ∗≤λ≤0 H(x, ξλ).

The proof is quite different than for (26). Indeed λ 7→ H(x, ξλ) is convex, so that the supremum in (26) only
involved the endpoints. Here we need to consider interior minimizers as well.

8



Proof. By continuity there exists λ̄ which minimizes H(x, ξλ) over λ∗ ≤ λ ≤ 0.
Suppose that λ∗ < λ̄ ≤ 0. Then we can take a sequence λ∗ < λn < λ̄ with λn → λ̄. Since (12) is nonempty

there exist un with
H(x, ξλn

) = −ξλn
· f(x, un)− L(x, un).

Since H(x, ξλ̄) is minimizing,

−ξλn
· f(x, un)− L(x, un) = H(x, ξλn

) ≥ H(x, ξλ̄) ≥ −ξλ̄ · f(x, un)− L(x, un).

But this implies
−ξλn

· f(x, un) ≥ −ξλ̄ · f(x, un),

and therefore
n(x) · f(x, un) ≤ 0.

The growth property (11) and the closure of (12) allow us to take a convergent subsequence un′ → u−. It
follows that

H(x, ξλ̄) = −ξλ̄ · f(x, u−)− L(x, u−), and n(x) · f(x, u−) ≤ 0.

In particular, if λ̄ = 0 then π(x, f(x, u−)) = f(x, u−) and we can say

Hπ(x, ξ0) = Hπ(x, ξλ̄)

≥ −ξλ̄ · π(x, f(x, u−))− L(x, u−)

= −ξλ̄ · f(x, u−)− L(x, u−)

= H(x, ξλ̄),

completing the proof in the case of λ̄ = 0.
Next suppose λ∗ ≤ λ̄ < 0. We can argue similarly from a sequence λ̄ < λn < 0 with λn → λ̄ that there

exists u+ with
H(x, ξλ̄) = −ξλ̄ · f(x, u+)− L(x, u+), and n(x) · f(x, u+) ≥ 0.

The latter inequality implies π(x, f(x, u+)) = R(x)f(x, u+). Recall also from (20) that ξT
0 R(x) = ξT

λ∗ . Thus
if λ̄ = λ∗ we have

Hπ(x, ξ0) ≥ −ξ0 · π(x, f(x, u+))− L(x, u+)

= −ξ0 ·R(x)f(x, u+)− L(x, u+)

= −ξλ∗ · f(x, u+)− L(x, u+)

= H(x, ξλ∗),

completing the proof in the case of λ̄ = λ∗.
There remains the case of λ∗ < λ̄ < 0. Now both u− and u+ as described above exist. In this case we

invoke the hypotheses (AC), which imply that the set of u satisfying

H(x, ξλ̄) = −ξλ̄ · f(x, u)− L(x, u)

is convex. Using the linearity of f in u we can take a convex combination ū of u± for which

n(x) · f(x, ū) = 0.

That means that ξ0 · π(x, f(x, ū)) = ξ0 · f(x, ū) = ξλ̄ · f(x, ū), and so

Hπ(x, ξ0) ≥ −ξ0 · π(x, f(x, ū))− L(x, ū)

= −ξλ̄ · f(x, ū)− L(x, ū)

= H(x, ξλ̄),

completing the proof. ¤

We note for future reference that only the case of λ∗ < λ̄ < 0 required the extra hypotheses (AC).
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4. Smooth Solutions

We now restrict our attention to smooth functions: V ∈ C1(Ω̄). For either notion of solution it is necessary
that H(x,DV (x)) = 0 pointwise in Ω, and by continuity on ∂Ω as well. We are interested in understanding
the additional properties of V on ∂Ω that make it a viscosity solution of (17). For x ∈ ∂Ω and ξ0 = DV (x),
the differentiability of V at x implies that λ± = 0 and D±V (x) can be described completely:

(28)
D+V (x) = {ξλ : 0 ≤ λ}
D−V (x) = {ξλ : λ ≤ 0}.

An elementary consequence is that for smooth functions V , the viscosity interpretation of the reflected
Hamiltonian equation (17) is equivalent to the pointwise or classical interpretation. This is not the case for
(14); in Example 1 neither VA nor VB satisfy the boundary condition γ(x) ·DV (x) = 0 in a classical sense.

Theorem 4. Suppose V ∈ C1(Ω̄) and x ∈ ∂Ω. Then V is a viscosity subsolution [supersolution] of (17) at
x iff Hπ(x,DV (x)) ≤ 0 [ ≥ 0 ].

Proof. Let ξ0 = DV (x). Assume that Hπ(x, ξ0) ≤ 0. For 0 ≤ λ, (22) implies

Hπ(x, ξλ) ≤ Hπ(x, ξ0) ≤ 0.

By virtue of our identification of D+V (x) in (28), this means that V is a subsolution of (17) at x. Conversely,
if V is a subsolution of (17) at x, then since ξ0 ∈ D+V (x) it follows that Hπ(x, ξ0) ≤ 0. The supersolution
version is analogous. ¤

Our smoothness assumption also eliminates the need for (AC) in Theorem 3. However we need to
strengthen the hypothesis that V is a supersolution in the interior to the assumption that it is a solution in
the interior.

Theorem 5. Suppose V ∈ C1(Ω̄) and is a solution of (14) in the interior and a viscosity supersolution of
(14) at x ∈ ∂Ω. Then V is a viscosity supersolution of (17) at x.

Proof. Let ξ0 = DV (x). Inspecting the proof of Theorem 3 we see that (AC) was only needed for the
case of λ∗ < λ̄ < 0. Our hypotheses imply H(x, ξ0) = 0. Lemma 2 and the supersolution property imply
H(x, ξλ) ≥ 0 for all λ∗ ≤ λ ≤ 0. Thus λ = 0 minimizes H(x, ξλ) over λ∗ ≤ λ ≤ 0. I.e. λ̄ = 0. Therefore we
can conclude Hπ(x, ξ0) ≥ 0, without needing to resort to the extra hypotheses (AC). ¤

For V ∈ C1(Ω̄) which solves (14) in the interior, Theorems 1, 2, 4 and 5 show that V is a viscosity solution
of (14) al x ∈ ∂Ω iff Hπ(x,DV (x)) = 0. As explained in the introduction, we want to explore conditions
which are necessary and/or sufficient for this and which can be expressed in terms of f(x, u∗) for those u∗

which achieve the maximum in the expression

−DV (x) · f(x, u)− L(x, u)

defining H(x,DV (x)). Proceeding, we fix x ∈ ∂Ω and ξ0 = DV (x). We know from continuity and our
hypothesis that V is a solution in the interior that H(x, ξ0) = 0. Since λ± = 0, Lemma 2 tells us that the
subsolution property (25) is equivalent to

(29) H(x, ξλ) ≤ 0 for all 0 ≤ λ < λ∗,

holding vacuously if λ∗ ≤ 0. The supersolution property (27) is equivalent to

(30) H(x, ξλ) ≥ 0 for all λ∗ < λ ≤ 0,

holding vacuously if λ∗ ≥ 0. There are three cases to consider, depending on the sign of λ∗.

4.1. Case 1: γ(x) · DV (x) < 0. This is the case of λ∗ < 0, so that the subsolution inequality (29) holds
vacuously. Theorem 4 implies Hπ(x, ξ0) ≤ 0.

Suppose the supersolution inequality (30) holds. As in the proof of Lemma 3 above there exists a u∗ ∈ U
achieving H(x, ξ0) = 0 with

(31) n(x) · f(x, u∗) ≤ 0.
10
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Figure 1. Extremal for Case 1

Conversely, if such a u∗ exists then λ 7→ ξλ · f(x, u∗) is nondecreasing, and so for λ ≤ 0 we have

H(x, ξλ) ≥ −ξλ · f(x, u∗)− L(x, u∗)

≥ −ξ0 · f(x, u∗)− L(x, u∗)

= H(x, ξ0)
= 0,

which implies (30). Thus the supersolution property is equivalent to the existence of u∗ ∈ U achieving
H(x, ξ0) = 0 and satisfying (31).

Given that the supersolution property holds, we have Hπ(x, ξ0) = 0. In a control problem we also care
about the control values achieving the supu defining Hπ(x, ξ0), since these give the optimal control values
for (2) on ∂Ω. In this regard consider any u∗ as described above. Observe that (31) implies π(x, f(x, u∗)) =
f(x, u∗), and so

0 = −ξ0 · f(x, u∗)− L(x, u∗)

= −ξ0 · π(x, f(x, u∗))− L(x, u∗)

≤ Hπ(x, ξ0)

≤ H(x, ξ0), by (21)
= 0.

Thus the supu in Hπ(x, ξ0) = 0 is achieved by u∗. Conversely, for any u∗ ∈ U which achieves Hπ(x, ξ0) = 0
we find that (31) is necessary. Indeed otherwise n(x) · f(x, u∗) > 0 would imply that π(x, f(x, u∗)) =
f(x, u∗)− cγ(x) for some c > 0. Since γ(x) · ξ0 < 0 this leads to

ξ0 · π(x, f(x, u∗)) = ξ0 · (f(x, u∗)− cγ(x)) > ξ0 · f(x, u∗),

which produces a contradiction:

0 = Hπ(x, ξ0) = −ξ0 · π(x, f(x, u∗))− L(x, u∗) < −ξ0 · f(x, u∗)− L(x, u∗) ≤ H(x, ξ0) = 0.

Thus (31) holds, which means that u∗ achieves the supremum in H(x,DV (x)) as well. At such bound-
ary points any extremal has π(x, f(x, u∗)) = f(x, u∗); there are no active Skorokhod dynamics. Figure 1
illustrates the geometry of such an extremal.

Here are our conclusions in this case.

Lemma 4. Suppose that V ∈ C1(Ω̄) is a solution of (29) in the interior and that x ∈ ∂Ω is a boundary
point at which γ(x) ·DV (x) < 0. Then V is a subsolution of (14) at x. The supersolution property holds iff
there exists u∗ achieving the supremum in H(x,DV (x)) and for which

n(x) · f(x, u∗) ≤ 0.

These u∗ are precisely those which achieve the supremum in Hπ(x,DV (x)) = 0.
11



Example 2. We reexamine VC from Example 1 above. For x = (1, x2) ∈ ∂Ω we have ξ0 = DVC(x) = −x. So
γ(x) ·ξ0 = −1 < 0, placing this example in Case 1. Lemma 4 tells us that VC is a necessarily a supersolution,
but to be a subsolution we need to check that n(x) · f(x, u∗) ≤ 0 for some u∗ achieving H(x, ξ0) = 0. We
easily see that the unique u∗ achieving the supu in H(x, p) is u∗ = −p. Thus for p = ξ0 = −x we have u∗ = x
and so f(x, u∗) = x. Since n(x) · x = 1 6≤ 0, the subsolution property fails. We already knew this from our
calculations in Example 1. The point is that Lemma 4 gives the same conclusions without reference to the
semidifferential sets, using f(x, u∗) instead.

4.2. Case 2: γ ·DV (x) > 0. This is the case of λ∗ > 0, so the supersolution inequality (30) holds vacuously,
and Theorem 4 implies Hπ(x, ξ0) ≥ 0. Since H(x, ξ0) = 0, the convexity of λ 7→ H(x, ξλ) makes (29)
equivalent to

H(x, ξλ∗) ≤ 0.

Suppose (29) does hold and u∗ achieves the supremum in H(x, ξ0). Then for any 0 < λ < λ∗ we have that

−ξ0 · f(x, u∗)− L(x, u∗) = H(x, ξ0) = 0 ≥ H(x, ξλ) ≥ −ξλ · f(x, u∗)− L(x, u∗).

This implies that (ξ0 − ξλ) · f(x, u∗) ≤ 0 and therefore (31) again holds. As a consequence, π(x, f(x, u∗)) =
f(x, u∗). Therefore

0 = −ξ0 · f(x, u∗)− L(x, u∗) = −ξ0 · π(x, f(x, u∗))− L(x, u∗).

Since (29) implies Hπ(x, ξ0) = 0, this means that u∗ also achieves the supremum in Hπ(x, ξ0) = 0.
We need to consider if there might be other ū achieving the supremum in Hπ(x, ξ0) = 0 for which

n(x) · f(x, ū) > 0. If so, π(x, f(x, ū)) = R(x)f(x, ū) so that

0 = −ξ0 ·R(x)f(x, ū)− L(x, ū)

= −ξλ∗ · f(x, ū)− L(x, ū)

≤ H(x, ξλ∗)
≤ 0.

Thus such a ū can only exist if H(x, ξλ∗) = 0 and must achieve this supremum. Conversely, if H(x, ξλ∗) = 0
and ū achieves this supremum, then we argue as above that

−ξλ∗ · f(x, ū)− L(x, ū) = H(x, ξλ∗) = H(x, ξ0) ≥ −ξ0 · f(x, ū)− L(x, ū).

Therefore (ξ0−ξλ∗)·f(x, ū) ≥ 0, which implies that n(x)·f(x, ū) ≥ 0. This in turn means that π(x, f(x, ū)) =
R(x)f(x, ū), so that

−ξλ∗ · π(x, f(x, ū))− L(x, ū) = −ξ0 ·R(x)f(x, ū)− L(x, ū) = H(x, ξλ∗) = 0.

Thus ū also achieves the supremum for Hπ(x, ξ0) = 0. The following collects these conclusions.

Lemma 5. Suppose that V ∈ C1(Ω̄) a solution of (14) in the interior and that x ∈ ∂Ω is a boundary point
at which γ(x) · DV (x) > 0. Then V is a supersolution of (14) at x. The subsolution property holds iff
H(x, ξλ∗) ≤ 0. Any u∗ which achieves the supremum in H(x, ξ0) has n(x) · f(x0, u

∗) ≤ 0 and achieves the
supremum defining Hπ(x, ξ0). If H(x, ξλ∗) < 0 there are no other u achieving the supremum in Hπ(x, ξ0).
If H(x, ξλ∗) = 0 then any ū which achieves the supremum in H(x, ξλ∗) has n(x) · f(x, ū) ≥ 0 and achieves
the supremum defining Hπ(x, ξ0). There are no u achieving the supremum in Hπ(x, ξ0) other than the u∗

and ū just described.

If H(x0, ξλ∗) < 0 the geometry of the extremals are the same as in Figure 1. However if H(x0, ξλ∗) = 0
there can be an additional boundary extremal through x with n(x) · f(x0, ū) > 0 so that ẋ = π(x, f(x, ū))
moves along ∂Ω with active Skorokhod dynamics, as illustrated in Figure 2.

Example 3. We reexamine VA from Example 1 above. For ξ0 = DVA(x) = (1, x2) we have

λ∗ = γ(x) · ξ0 = (1, 0) · (1, x2) = 1 > 0,

confirming that this falls in Case 2. Lemma 5 tells us that VA is a supersolution, and that to be a subsolution
we need H(x, ξλ∗) ≤ 0. We calculate

ξλ∗ = ξ − λ∗n(x) = (1, x2)− (1, 0) = (0, x2).

and H(x, ξλ∗) = − 1
2 ≤ 0, confirming the subsolution property. The calculation for VB works out similarly.
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Figure 2. Extremal and boundary extremal for Case 2

4.3. Case 3: γ(x) · DV (x) = 0. This is the case in which the boundary condition holds in the classical
sense. Let ξ0 = DV (x). Since λ∗ = 0, both of (29) and (30) now hold, and Hπ(x, ξ0) = 0. Moreover observe
that γ(x) · ξ0 = 0 is equivalent to ξT

0 R(x) = ξT
0 , so that ξ0 · π(x, v) = ξ0 · v for all v, which means that the

u∗ which achieve the minimum in Hπ(x, ξ0) are the same as those achieve the minimum in H(x, ξ0). For
consistency with the other cases, we state this as a lemma.

Lemma 6. Suppose that V ∈ C1(Ω̄) a solution of (14) in the interior and that x ∈ ∂Ω is a boundary point
at which γ(x) · DV (x) = 0. Then V is a viscosity solution of (14) at x and u∗ achieves the supremum in
Hπ(x,DV (x)) = 0 iff it does in H(x,DV (x)) = 0.

Notice that in the previous cases, λ 7→ H(x, ξλ) is nonincreasing on one side of λ = 0 or the other.
That may be the situation in the present case as well, in which event Hπ(x, ξ0) is again achieved by a u∗

with n(x) · f(x, u∗) ≤ 0, as illustrated in Figure 1. However in the present case it is also possible that
λ 7→ H(x, ξλ) be increasing at λ = 0. In that event, any u∗ achieving the maximum in H(x, ξ0) must satisfy
n(x) · f(x, u∗) > 0: for λ < 0 we must have

−ξλ · f(x, u∗)− L(x, u∗) ≤ H(x, ξλ) < H(x, ξ0) = −ξ0 · f(x, u∗)− L(x, u∗).

This implies (ξ0− ξλ) ·f(x, u∗) < 0, which implies n(x) ·f(x, u∗) > 0. Thus only in this case is it possible for
extremals x(t) to approach x ∈ ∂Ω from the interior Ω for increasing t, and then to follow ẋ = π(x, f(x, u∗))
on ∂Ω with nontrivial Skorokhod dynamics. Our final example provides an instance of this.

Example 4. We use the same f , L, H and Ω as in the previous examples, but now take γ(x) = (1, 1). We
wish to exhibit a solution for which extremals approach ∂Ω from the interior and then run along ∂Ω with
active Skorokhod dynamics. This is this is possible only in Case 3. Thus along ∂Ω we want γ ·DV (1, x2) = 0.
This implies that

DV (1, x2) = ρ(x2)(−1, 1)

for some function ρ(x2). From H(x,DV (x)) = 0 we obtain 2ρ(x2)2 = 1 + x2
2, which determines ρ(x2) up to

a ± sign. The optimal control is u∗ = −DV (x) = −ρ(x2)(−1, 1) on ∂Ω so that n(x) · f(x, u∗) = ρ(x2). Thus
for an example with n(x) · f(x, u∗) ≥ 0 we want ρ ≥ 0. We find therefore that

ρ(x2) = 2−1/2
√

1 + x2
2.

The extremal x(t) = (1, x2(t)) running along the boundary is

ẋ = π(x, u∗)

= π(x, (ρ(x2),−ρ(x2)))

= (ρ(x2),−ρ(x2))− cγ, where c = ρ(x2)

= (0,−2ρ(x2)),

The solution (unique up to time translation) is

(32) x(t) = (1,− sinh(
√

2t)).
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Integrating ∂
∂x2

V (1, x2) = ρ(x2) gives V on ∂Ω:

V (1, x2) =
1

2
√

2

(
x2

√
1 + x2

2 + sinh−1(x2)
)

+ C

We take C = 0. We extend V into the interior of Ω using the characteristic equations:

ẋ = −p; x(0) = (1, x2)

ṗ = −x; p(0) = (−ρ(x2), ρ(x2)).

Since p(t) = DV (x(t)) we propagate V along the characteristics using

d

dt
V (x(t)) = p(t) · ẋ(t) = −|p(t)|2; V (x(0)) =

1
2
√

2

(
x2

√
1 + x2

2 + sinh−1(x2)
)

.

A collection of the resulting characteristics are plotted in Figure 3. A typical extremal ẋ = f(x, u∗) follows
a characteristic curve as it runs through the interior, and upon meeting the boundary follows the boundary
extremal (32) downward.

Although the characteristic equations are not difficult to integrate, it does not appear possible to present
a closed form expression for V (x), since that would require solving for the parameters x2, t in x = x(t) for a
given x ∈ Ω. Secondly, the characteristics only provide a smooth V in a neighborhood of ∂Ω. A complicated
singularity arises as we follow them further into the interior.
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-0.75
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-0.25
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0.75

1

Figure 3. Characteristics for Example 4

5. Closing Remarks

We have assumed that ∂Ω is smooth and, since we only contemplated control problems (not games), that
H(x, p) is convex in p. Some of what we have said generalizes to the case in which Ω is a convex polygon
and the more general H of a differential game. Theorem 1 part a) of [5] generalizes Theorem 4, and part b)
generalizes Theorem 1.

We close with some comments on the work of Dupuis, Ishii and Soner [7]. They consider a problem of
exponential asymptotics for exit probabilities of a queueing system, arriving at a Hamilton-Jacobi equation
with boundary conditions and associated control problem to characterize the key limiting function. However
the processes they consider are not associated with a pure Skorokhod problem. Even at smooth boundary
points multiple constraint directions γ(x) are involved, corresponding to independent components of the
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control. Rather than a single boundary condition like our γ(x) · DV (x) = 0, each constraint direction
is associated with a modified version of the Hamiltonian. These different Hamiltonians are combined at
boundary points using a minimum or maximum similar to our (16); see (33) below. However we can
compare their formulation to ours if we consider just boundary points in a smooth face of Ω (say their Γ2,
where x2 = 0) and set one of their jump rate parameters to 0 (say γ = 0) so that only one jump direction is
capable of of exiting across the boundary face, and consequently only a single constraint direction is relevant
(γ(x) = (1,−1), associated with their β).

In our notation the control can be considered in terms of two independent components:

u = (u0, u1).

The state velocity and running cost both depend separately on u0 and u1:

f(x, u) = f0(u0) + f1(u1),

L(x, u) = L0(u0) + L1(u1).

To make this more specific, using our notation on the left and theirs on the right (see [7] (3.3a)),

u0 = t2

u1 = (t1, t4, t5)

f0(u0) = βt2vβ

f1(u1) = λt1vλ + αt4vα + µt5vµ

L0(u0) = βh(t2)

L1(u1) = λh(t1) + αh(t4) + µh(t5),

where h(t) is the entropy-cost

h(t) =

{
t ln(t)− t + 1 for t ≥ 0
+∞ for t < 0,

and the individual jump vectors are (see [7] Figure 2)

vβ = (1,−1)

vλ = (1, 0)

vα = (−1, 0)

vµ = (−1, 1).

To make L finite valued, take U = [0,∞)4. The (interior) Hamiltonian works out to be (see [7] (2.8a))

H(x, p) = βg(−p · vβ) + λg(−p · vλ) + αg(−p · vα) + µg(−p · vµ),

where our p replaces their (p, q) and
g(s) = es − 1.

For the face Γ2 the outward normal is n(x) = (0,−1) and our constraint vector would be

γ(x) = vβ .

Not all these specifics are important for what we have to say. The key features are the separation of f and
L with respect to u0 and u1, that n(x) · f1(u1) ≤ 0 and that f0(u0) is a nonnegative scalar multiple of γ(x).

The modified Hamiltonian for Γ2 is

H∂,2(x, p) = sup
u1

{−p · f1(u1)− L1(u1)} .

In contrast to our (16), their formulation of the viscosity-sense boundary conditions is (see (2.19b))

(33)
min(H(x, ξ),H∂,2(x, ξ)) ≤ 0 for all ξ ∈ D+V (x),

[ max(H(x, ξ),H∂,2(x, ξ)) ≥ 0 for all ξ ∈ D−V (x) ].

The Appendix in [7] explains why (33) implies our (16). Our observation in the next paragraph is that
(33) in turn follows from (18) above. Thus their formulation falls between the two we have considered here.
Moreover the definitions of f(x, u) and L(x, u) satisfy the affine-convex hypotheses (AC), so that Theorem 3
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implies the equivalence of all three formulations (locally on the smooth face Γ2; the corners are outside the
scope of our treatment here).

Finally we argue that (18) implies (33), as claimed above. Consider the subsolution assertion for ξ0 ∈
D+V (x), x ∈ Γ2. If ξ0 · γ(x) ≥ 0, then just as in the proof of Theorem 1 above it follows that H(x, ξ0) ≤
Hπ(x, ξ0). Suppose then that ξ0 · γ(x) < 0. We claim that H∂,2(x, ξ0) ≤ Hπ(x, ξ0). To see this consider any
u1 and take u0 = 1. This makes L0(u0) = 0 and f(x, u) = βvβ + f1(u1). Since n(x) · f1(u1) ≥ 0, it follows
that for u = (1, u1)

π(x, f(x, u)) = cvβ + f1(u1) for some 0 ≤ c ≤ β,

and therefore
−ξ0 · f1(u1) ≤ −ξ0 · (cvβ + f1(u1)) = −ξ0 · π(x, f(x, u)).

Thus for u = (1, u1) we have

−ξ0 · f1(u1)− L1(u1) ≤ −ξ0 · f(x, u)− L(x, u).

Taking the supremum only with respect to u1 on the left produces H∂,2(x, ξ0) while the supremum over all
u = (u0, u1) on the right gives Hπ(x, ξ0). We find that

H∂,2(x, ξ0) ≤ Hπ(x, ξ0),

and therefore for all ξ0 ∈ D+V (x) we have

min(H(x, ξ0),H∂,2(x, ξ0)) ≤ Hπ(x, ξ0).

Thus a subsolution of (18) must also be a subsolution of (33). The supersolution assertion being analogous,
this concludes our argument.
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