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Abstract
We consider a class of controlled queue length processes, in which the control allocates each server’s

effort among the several classes of customers requiring its service. Served customers are routed through
the network according to (prescribed) routing probabilities. In the fluid rescaling, Xn(t) = 1

n
X(nt), we

consider the optimal control problem of minimizing the integral of an undiscounted positive running cost
until the first time that Xn = 0. Our main result uses weak convergence ideas to show that the optimal
value functions V n of the stochastic control problems for Xn(t) converge (as n → ∞) to the optimal
value V of a control problem for the limiting fluid process. This requires certain equicontinuity and
boundedness hypotheses on {V n}. We observe that these are essentially the same hypotheses that would
be needed for the Barles-Perthame approach in terms of semicontinuous viscosity solutions. Sufficient
conditions for these equicontinuity and boundedness properties are briefly discussed.

1 Introduction

A theme in recent work on queueing networks is the use of deterministic models as tools to study stability
and performance properties of stochastic scheduling and routing strategies. Suppose X(t) is the queue length
process for a queueing network and for each positive integer n consider the rescaled process Xn(t) = 1

nX(nt).
Fluid processes x(t) arise as deterministic (weak) limits of Xn(t) as n→∞. The fluid process x(t) inherits
a control structure from X(t), and the consideration of optimal control problems for it has been a fruitful
tool in the design of high-performance stochastic controls for the queueing process X(·). See Chen et. al. [5];
Meyn [18], [19], [17]; and Nazarathy and Weiss [22] for a sampling of recent work along these lines.

The two performance criteria which have most frequently been considered for fluid limits are

• the time-to-empty (or clearing time): τ0,

• the holding cost until empty
∫ τ0

0
c · x(t) dt, where c = (c1, . . . , cd), ci ≥ 0.

Here τ0 is the first time the fluid system is empty: x(τ0) = 0. These are instances of a general class of control
problems in which the objective is to minimize a cost functional of the form∫ τ0

0

L(x(t), u(t)) dt, (1)

where u(t) is the deterministic control governing the fluid process x(t). We would expect the fluid cost (1)
to agree with the limit as n→∞ of an analogous mean cost for the rescaled queueing processes:

E

[∫ τn0

0

L(Xn(t), Un(t)) dt

]
, (2)

∗This paper is an exposition of the results first presented in Fluid Limits of Stochastic Optimal Queueing Network Control
Problems, MTNS 2008, Blacksburg, VA, August 1, 2008.
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Un(t) being the stochastic control governing Xn(·), and τn0 the first time the state Xn(t) reaches 0. (In
the future we will drop the superscript n because we will view τ0 as a functional on path space, so that
τn0 = τ0(Xn(·)).) We refer to both (1) and (2) as time-to-empty problems.

Our purpose in the present paper is to establish convergence of the optimal value functions for the control
problems (2) to that of (1), as n→∞:

lim
n→∞

inf
Un(·)

E

[∫ τn0

0

L(Xn(t), Un(t)) dt

]
= inf
u(·)

∫ τ0

0

L(x(t), u(t)) dt. (3)

We will do this for a moderately general class of processes Xn (see Section 2) and under hypotheses on the
running cost L that includes the two particular choices above. (Allowing the cost to depend on the control
is relatively rare in the queueing literature. Chen et. al. [5] is one of the few references that consider a cost
of that type.) We will not consider techniques for constructing optimal controls u(·) or Un(·); we focus
exclusively on the mathematical issues associated with the convergence (3).

This convergence question has been answered previously for cost functionals using a fixed finite time
horizon (T <∞) or an infinite horizon with discounting (γ > 0):

Ex

[∫ T

0

L(Xn(t), Un(t)) dt

]
or Ex

[∫ ∞
0

e−γtL(Xn(t), Un(t)) dt
]
. (4)

See Kushner [16], Bäuerle [2], Nazarathy and Weiss [22], and also Pang and Day [23]. But so far as we
know the queueing literature has not considered the asymptotic behavior of the minimal value of (2), in
which there is no discounting and the upper limit is the stopping time τn0 rather than a fixed T . Additional
difficulties arise for such time-to-empty problems. For one thing, in the absence of discounting it is not
enough to establish weak convergence of the (optimally controlled) Xn(t) on each finite time interval [0, T ].
Some way to control the size of τn0 is also needed. Secondly, τn0 has very poor continuity properties as a
function of the paths Xn(·). Since the ideas of weak convergence are all based on the expected values of
continuous functionals, this is a difficulty for the analysis of

∫ τn0
0

L which is not present for the problems (4).
We note, however, that there is a body of work in the literature that connects the value function for

the fluid problem (1) to a different optimization problem for the queueing system X. We refer to several
studies concerned with minimizing the mean of a linear cost, c ·X, with respect to the system’s steady-state
distribution. The steady-state mean of c ·X generally has no dependence on initial condition, but is usually
analyzed using a so-called relative value function h(x). Two papers of S. Meyn, [20] and [21], consider the
sequence of relative value functions hn produced by policy iteration for the steady-state problem for X and
show that in a suitable renormalization they converge to a function h(x). It is shown that for large x,
h(x)/|x|2 approximates the fluid value function for our problem (1) above. (The minimum of

∫ τ0
0
c · x(t) dt

typically agrees with the minimum of
∫∞

0
c · x(t) dt, since once the fluid process reaches 0 it can typically be

held there permanently by the control: x(t) = 0 all t > τ0. (See the notion of “weak stability” as defined in
[7].) Our fluid value function appears in those references in the

∫∞
0
c · x(t) dt form.) We might also mention

Meyn’s paper [19], in which the purpose is to provide theoretical results (such as regularity and structural
properties) for the fluid value function to support various applications in the study of stochastic models,
again with reference to steady state performance criteria. In contrast to those studies, our concern here is
with the direct comparison of the optimal value functions for the stochastic and fluid versions of the same
time-to-empty cost, rather than connections of the fluid value function to steady-state optimization.

While motivated by queueing applications, we concentrate on (3) as a mathematical problem. We treat
it using general ideas of weak convergence of probability measures. For that reason we work in a somewhat
general stochastic control formulation, without using the workload and server allocation formulations that
are more specialized to queueing applications. The process Xn is defined using controlled point processes in
conjunction with a Skorokhod problem; see (12) below. The interpretation of Xn(t) = 1

nX(nt) as a rescaled
version of X(·) is retained only through the factors of n appearing in (5) and the rates for the controlled
point processes. The controls Un(t) can be any adapted (progressively measurable) processes. Because
in (3) the intent is to optimize separately for each value of n, there is no presumption that the Un(·) for
different n are related to each other as different rescalings of some common control for the original queueing
process X(·). Moreover, we do not limit ourselves to controls which are functions of the current state or any
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other particular structural form. We define the fluid process x(t) independently with its own control process
u(t). A benefit of the Skorokhod problem formulation (the Γ in (12)) is that nonnegativity of the process
components is not a constraint on the controls. Thus our formulation allows the controls Un(·) and u(·) to
be viewed as comparable objects in the common metric space of relaxed controls. This is the space in which
we utilize weak convergence results.

Section 2 describes the class of processes we consider, and develops their representation in terms of a
Skorokhod problem and fluid processes with a martingale perturbation. Section 3 describes the control
problems, including hypotheses on the running cost L, and formulates the space of relaxed controls.

With these preparations our convergence problem reduces to questions of continuity and weak conver-
gence in the space of relaxed controls. Half of the convergence we are after, Theorem 1, is essentially the
manifestation of a lower semi-continuity property. This is developed in Section 4. The full convergence result,
Theorem 2, is developed in Section 5. It depends on certain equicontinuity and boundedness hypotheses for
the sequence of value functions for the control problems (2).

Section 6 concludes with brief discussions of two issues. We consider the so-called Barles-Perthame
procedure based on the theory of viscosity solutions as an alternative to our weak convergence approach.
We observe that both the hypotheses and conclusions of Theorem 2 are essentially the same as what the
Barles-Perthame approach would require. Finally we consider how one might establish the equicontinuity
and boundedness hypotheses of Theorem 2. Lemma 11 presents sufficient conditions in terms of the original
queueing process X(t) = X1(t). We propose (but do not develop) an alternate approach which would
establish sufficiency in terms of the fluid limit process x(·) instead of X(·).

2 Process Representation

The class of queueing processes we consider is what might be called “controlled multi-class Jackson networks.”
There are d queues (or customer classes) indexed by i = 1, . . . , d and a number (K ≤ d) of servers. Server m
attends to the needs of a designated set Sm ⊆ {1, . . . , d} of the queues. Taken together Sm, m = 1, . . . ,K
partition the set {1, . . . , d} of queues. New customers arrive exogenously in queue i according to independent
Poisson processes with rates λi ≥ 0. The customers in queue i ∈ Sm each require (independent) exponentially
distributed amounts of service with mean 1/µi, but the server must allocate its effort among its constituent
queues. This allocation is indicated by control variables ui ≥ 0, subject to the constraint that

∑
i∈Sm ui ≤ 1

for each m. Thus the set of admissible control values is the compact, convex set

U = {u ∈ [0, 1]d :
∑
i∈Sm

ui ≤ 1 for each m}.

If u was held constant, a customer in queue i (once arriving at the head of the queue) would wait an
exponentially distributed amount of time with mean (uiµi)−1 for their service to be complete. Once complete,
the customer moves to another queue j with probability pij , or exits the network with probability

pi0 = 1−
d∑
j=1

pij .

In general u is not held constant but is replaced by a U-valued stochastic process U(t). The resulting queue
length process is X(t).

We want to consider a sequence (n = 1, 2, . . .) of such queueing processes resulting from the usual fluid
rescaling: Xn(t) = 1

nX(nt), each with its own control process Un(t). The goal is to choose each control
process to minimize a time-to-empty mean cost criterion of the type described above for Xn(·), and then
consider the convergence of the sequence of optimal costs in the limit as n → ∞. Our analysis is based in
expressing Xn(·) in terms of a Skorokhod Problem (12) applied to a martingale perturbation of a controlled
fluid process (9), and then use appropriate notions of weak convergence of the control processes. This is
the same approach as in Pang and Day [23]. However since random routing was not considered there, we
provide in this section a summary description of the Skorokhod representation (12) of Xn(·).
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2.1 Point Process Construction

Exogenous arrivals are given by independent Poisson point processes Ani (t) with intensities nλi, each of
which counts the number of arrivals in queue i occurring over (0, t]. Given a control process Un(t) ∈ U
(progressively measurable), the service events are generated by counting processes Nn

ij(t) (i = 1, . . . , d;
j = 0, 1, . . . d) with intensities given by npijµjU

n
j (t). The interpretation is that Nn

ij(t) counts the potential
number of services to queue i over (0, t] for which the served customer is routed i→ j (j = 0 corresponding
to exit). To be proper we should view the collection of (Ani , N

n
ij(t)) as a marked point process, with mark

space {1, . . . , d}∪({1, . . . , d} × {0, 1, . . . , d}). A mark of i corresponds to a new arrival in queue i and a mark
(i, j) to a service completion in queue i followed by an i→ j transition. Since the mark space is finite we can
view them as a collection of individual point processes, the only dependency being the correlation among
their intensities induced by the control process. The essential features are that there are no simultaneous
increments among the Ani (t), Nn

ij(t), and for any bounded previsible processes Ci(t), Cij(t) the following
are martingales:∫ t

0

Ci(s) dAni (s)−
∫ t

0

Ci(s)nλi ds,
∫ t

0

Cij(s) dNn
ij(s)−

∫ t

0

Cij(s)npijµjUni (s) ds; (5)

see Brémaud [4].
We emphasize that Nn

ij(t) is only the potential number of i → j service transitions since those services
which occur when Xn

i (t) = 0 need to be disregarded. The construction of the true Xn(t) from the Ani (t)
and Nn

ij(t) is the origin of the Skorokhod problem representation. Let

ei = (· · · 0,
i
1, 0 · · · )

be the standard unit vectors in Rd, and define the service event vectors by

δij = ej − ei, for j 6= 0,
δi0 = −ei.

When an i→ j service transition occurs, the state Xn is incremented by 1
nδij , and an exogenous arrival in

queue i increments the state by 1
nei. We can construct the resulting (scaled) queue length process as follows.

Xn(t) = x0 +
d∑
i=1

1
n
eiA

n
i (t) +

d∑
i=1

d∑
j=0

1
n
δij(Nn

ij(t)− Ñn
ij(t)), (6)

where Ñn
ij are the counting processes of suppressed spurious services:

Ñn
ij(t) =

∫ t

0

1{0}(Xn
i (s−)) dNn

ij(s).

If we are given the initial state x0, Xn(·) is is determined constructively from Ani (·) and Nn
ij(·). Suppose

we know Xn on [0, t). Then we know Ñn
ij and consequently Xn(·) on [0, t]. These values remain unchanged on

[0, t+T ∗) where T ∗ is the next arrival or service time after t. Thus we know Xn(·) on [0, t+T ∗). We continue
this construction through the sequence of arrival or service times. Since the intensities are all bounded there
is no finite accumulation point for the sequence of arrival or service times, and so Xn is determined for all
0 ≤ t <∞. This construction implies that Xn(t) is a (progressive) function of Ani (t) and Nn

ij(t). We would
typically want the control process Un(t) to be a (progressive) function of Xn(t), and so considering Un(t) to
be a progressive process on the underlying space for Ani (t) and Nn

ij(t) includes such state-dependent controls
in particular. If we take Ω to be the canonical space of paths for our point processes and {Ft} the filtration
generated by Ani (t) and Nn

ij(t), the existence and uniqueness result of Jacod [15, Theorem 3.6] implies that
there exists a unique probability measure P on Ω with respect to which Ani (t) and Nn

ij(t) have the prescribed
intensities. In this way any progressively measurable U-valued control process Un(t) can be considered.
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Next we want to “center” the point processes in Xn(t). Using (5) we can write

Ani (t) = nλit+Mn
i (t)

Nn
ij(t) =

∫ t

0

nµipijU
n
i (s) ds+Mn

ij(t)

Ñn
ij(t) =

∫ t

0

nµipijU
n
i (s)1{0}(Xn

i (s−)) ds+ M̃n
ij(t),

where Mn
i (t), Mn

ij(t), and M̃n
ij(t) are all martingales. We substitute these expressions in in (6). Observe

that if we define the the mean service event vector

δ̄i =
d∑
j=0

pijδij ,

then
∑d
j=0 δijpij = δ̄i

∑d
j=0 pij . Using this fact we find that

d∑
i=1

d∑
j=0

δijÑ
n
ij =

d∑
i=1

δ̄i

d∑
j=0

Ñn
ij +

d∑
i=1

d∑
j=0

(δij − δ̄i)M̃n
ij .

After substitution and rearrangement (6) takes the following form.

Xn(t) = x0 +
∫ t

0

d∑
i=1

(
λiei + µiδ̄iU

n
i (s)

)
ds

+
d∑
i=1

1
n
eiM

n
i (t) +

d∑
i=1

d∑
j=0

1
n

(δ̄i − δij)M̃n
ij(t) +

d∑
i=1

d∑
j=0

1
n
δijM

n
ij(t)

−
d∑
i=1

δ̄i

d∑
j=0

Ñn
ij(t).

To express this more succinctly we define the controled velocity v : U → Rd by

v(u) =
d∑
i=1

(
λiei + µiδ̄iui

)
, (7)

and take

yn(t) = x0 +
∫ t

0

v(Un(s)) ds,

Mn(t) =
d∑
i=1

1
n
eiM

n
i (t) +

d∑
i=1

d∑
j=0

1
n

(δ̄i − δij)M̃n
ij(t) +

d∑
i=1

d∑
j=0

1
n
δijM

n
ij(t), and (8)

Y n(t) = yn(t) +Mn(t). (9)

In these terms we have

Xn(t) = Y n(t)−
d∑
i=1

δ̄i

d∑
j=0

Ñn
ij(t). (10)

We view Y n(t) as the result of perturbing yn(t) by the martingale Mn(t), and the subtracted term in (10)
wil be exactly the constraining process that connects Xn(t) and Y n(t) in terms of a Skorokhod Problem.
The next lemma is key for the fluid approximation of Lemma 2 below.
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Lemma 1. There exists a constant Cq so that for all control processes Un(·), all T > 0, and all ε > 0,

P

(
sup

0≤t≤T
‖Mn(t)‖ > ε

)
≤ CqT

nε2

Proof. Let M∗n(T ) = sup0≤t≤T ‖Mn(t)‖. By Doob’s L2 martingale inequality [24, Theorem 70.2] we have

P (M∗n(T ) > ε) ≤ 1
ε2
E[M∗n(T )2] ≤ 4

ε2
E[Mn(T )2].

By [4, Ch. III, T15] we can work out this second moment. Rather than writing it out in full, consider a
typical term from (8). For instance, since |Uni (s)| ≤ 1 we find that

1
n2
E[Mn

ij(T )2] =
1
n2
E

[∫ T

0

npijµjU
n
i (s) ds

]
≤ µiT

n
.

All other terms are similar in that they result in a bound of the form of a constant times T/n. We find that
E[M∗n(T )2] is bounded by a constant Cq times T/n. This establishes the lemma.

2.2 The Skorokhod Problem

A Skorokhod problem on G = Rd+, as formulated in [11], is determined by the selection of a set of constraint
vectors di, one for each coordinate face. The appropriate choices for us are the negated mean service event
vectors:

di = −δ̄i. (11)

These extend to the set-valued function on ∂G defined by

d(x) = {γ =
∑
i: xi=0

αidi : αi ≥ 0, ‖γ‖ = 1}.

For an “input” process or function ψ(t) ∈ Rd with ψ(0) ∈ G, the Skorokhod Problem asks for a pair of
functions φ(t) and η(t) satisfying the following:

• φ(t) = ψ(t) + η(t);

• φ(t) ∈ G;

• |η|(t) <∞ (total variation);

• |η|(t) =
∫

[0,t]
1∂G(φ(s)) d|η|(s);

• η(t) =
∫

[0,t]
γ(s) d|η|(s) for some (measurable) γ(t) ∈ d(φ(t)).

When well-defined, we denote φ(·) = Γ(ψ(·)). For our ψ(t) = Y n(t) we observe that φ(t) = Xn(t) solves the
Skorokhod problem with η(t) = −

∑d
i=1 δ̄i

∑d
j=0 Ñ

n
ij(t). Thus we can write

Xn(·) = Γ(Y n(·)). (12)

When the di satisfy certain technical conditions [11] it is known that the problem is well-posed for a large
class of ψ(·) including piecewise constant (like our Y n(·)) and absolutely continuous (like our yn(·)). We
simply assume that these technical conditions are satisfied by our (11). For application of our results to
any specific example, the conditions would need to be verified, as we illustrate in the example below. Those
conditions also imply that Γ is Lipschitz with respect to the uniform norm on the space of paths: there exists
a constant CΓ so that, for any 0 < T <∞,

sup
0≤t≤T

|φ(t)− φ̃(t)| ≤ CΓ sup
0≤t≤T

|ψ(t)− ψ̃(t)| (13)

whenever φ(·) = Γ(ψ(·)) and φ̃(·) = Γ(ψ̃(·)). (See [11, Theorem 2.2].)
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Example. Consider the single server with two queues illustrated in the following figure.

enter -X1 · · · - u1 - exit

-X2 · · · - u2 - exit

-

New arrivals only enter at queue 1. When customers in queue 1 are served they either proceed to queue 2 or
exit the system, each with probability 1/2. Served customers from queue 2 either return to queue 1 or exit
the system, each with probability 1/2. Thus we have routing probabilities

p11 = 0, p12 = p10 = 1/2; p22 = 0, p21 = p20 = 1/2.

The mean service event vectors are

δ̄1 =
1
2

(−1, 1) +
1
2

(−1, 0) = (−1, 1/2); δ̄2 =
1
2

(1,−1) +
1
2

(0,−1) = (1/2,−1).

The associated Skorokhod problem uses constraint directions d1 = −δ̄1, d2 = −δ̄2. The technical conditions
of [11] for well-posedness of the Skorokhod problem involve two properties of the matrix with columns di:

R =
[

1 −1/2
−1/2 1

]
.

First is Dupuis & Ishii’s Lipschitz Condition 2.1. For this it is sufficient to check the Harrison-Reimann
condition that Q = I −R have spectral radius less than one; see [12, II,Theorem 2.1]. For our example the
spectral radius is 1/2. Second is Dupuis & Ishii’s Existence Condition 3.1. For this it is sufficient that R be
positive definite ([11, Theorem 2.1]), which is true for our example.

2.3 Fluid Processes

Given a control process u(t) (stochastic or deterministic) we can form the associated fluid process:

x(t) = Γ(y(t)), where

y(t) = x0 +
∫ t

0

v(u(s)) ds.
(14)

The simplest type of control is a standard control. This refers to a (measurable) deterministic function
u : [0,∞) → U . But the same construction can be used for a stochastic control. If Un is the stochastic
control for Xn, this construction produces the fluid approximation to Xn:

Xn
fl (t) = Γ(yn(t)), where

yn(t) = x0 +
∫ t

0

v(Un(s)) ds.
(15)

Xn
fl is still a stochastic process, because Un is, but has absolutely continuous paths. It is the result of

dropping the martingale term in (9). The deterministic fluid process x(t) differs from Xn
fl only in the choice

of control process; otherwise their constructions are the same.
The asymptotic analysis of Xn(·) as n → ∞ is based on two fundamental observations. The second

is the continuity of Lemma 4 below. The first is that Xn ≈ Xn
fl in the limit, regardless of the control

sequence Un(·). To state this precisely we need to identify the appropriate topology on the space of paths.
We use DG to denote the set of all ψ : [0,∞) → G which are right continuous and have left limits. The
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subset of continuous paths is CG. On DG we use the metric topology using the Skorokhod metric ρ(·, ·),
defined in Ethier and Kurtz [13]. This makes DG a complete separable metric space. Uniform convergence
on compact time intervals implies convergence with respect to ρ (but not conversely). However on CG the
relative topology induced by ρ is the same as the topology of uniform convergence on compacts. Here is a
statement of the asymptotic equivalence of Xn(·) and Xn

fl (·).

Lemma 2. For any sequence Un(·) of stochastic controls and any T <∞, as n→∞ we have both

sup
0≤t≤T

‖Xn(t)−Xn
fl (t)‖ → 0 and ρ(Xn(·), Xn

fl (·))→ 0

in probability.

Proof. From the semimartingale decomposition (9) we have

sup
0≤t≤T

‖Y n(t)− yn(t)‖ = M∗n(T ),

where M∗n(T ) = sup0≤t≤T ‖Mn(t)‖, as in Lemma 1. Since Xn = Γ(Y n) and Xn
fl = Γ(yn), the Lipschitz

property (13) gives us
sup

0≤t≤T
‖Xn(t)−Xn

fl (t)‖ ≤ CΓM
∗n(T ). (16)

By the result of Lemma 1 we have that

P (sup
[0,T ]

‖Xn(t)−Xn
fl (t)‖ > ε) ≤ C2

Γ

CqT

ε2n
,

which gives convergence in probability of the uniform norm on each [0, T ]. This implies convergence of
ρ(Xn, Xn

fl ) to 0 in probability, as claimed.

3 The Control Problems

We now formulate the time-to-empty control problems whose convergence is our goal. We assume a running
cost function L : G× U → [0,∞) satisfying the following properties:

i) L : G× U → [0,∞) continuous,

ii) |L(x, u)− L(y, u)| ≤ CL‖x− y‖ for all x, y ∈ G and u ∈ U , and some constant CL,

iii) |L(x, u)| ≤ CL(1 + ‖x‖) for some constant CL.

iv) infu,‖x‖>ε L(x, u) > 0 for each ε > 0.

Actually iii) follows from i) and ii) using the compactness of U ; it need not be assumed separately. The
hypothesis iv) is especially important for our approach; see the details of the proof of Theorem 2.

Since the paths of Xn(t) and x(t) all belong to the space DG, we are going to view the emptying time τ0
as a functional on DG. For ψ(·) ∈ DG define

τ0(ψ(·)) = inf{t ≥ 0 : ψ(t) = 0}, (17)

with the understanding that τ0(ψ(·)) =∞ if ψ(t) 6= 0 for all t. Usually it is clear what we intend for ψ(·), and
so we will abbreviate both τ0 = τ0(Xn(·)) and τ0 = τ0(x(·)), relying on the context to make the distinction.

The control problems we consider are those of minimizing the following time-to-empty cost functionals.

Jn(x, Un(·)) = E

[∫ τ0

0

L(Xn(t), Un(t)) dt
]
, Xn(0) = x ∈ G;

J(x, u(·)) =
∫ τ0

0

L(x(t), u(t)) dt, x(0) = x ∈ G.
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As above Un(·) ranges over all progressively measurable U-valued processes and u(·) over all U-valued
measurable functions. These functionals are unbounded in general, and could take the value ∞ if for
instance τ0 =∞. The associated value functions are defined on G by

V n(x) = inf
Un(·)

Jn(x, Un(·)), V (x) = inf
u(·)

J(x, u(·)).

Our results will be stated in terms of the upper and lower semicontinuous envelopes of the sequence {V n}
of value functions, defined respectively for any x ∈ G as follows.

V ∗(x) = lim sup
n→∞
xn→x

V n(xn), V∗(x) = lim inf
n→∞
xn→x

V n(xn).

I.e. V ∗(x) is the maximal limit point of all sequences {V n(xn)} such that xn → x in G. From these definitions
it is easy to see that V ∗ is upper semicontinuous, V∗ is lower semicontinuous, and V∗ ≤ V ∗. Since 0 ≤ V n

we also have 0 ≤ V∗.

3.1 Relaxed Controls, Fluid Approximation, and Tightness

The merit of our formulation is that both standard and stochastic controls can be considered in a common
setting, the class of R of relaxed controls. A relaxed control ν ∈ R is a measure on [0,∞) × U with the
property that ν([0, T ] × U) = T for all T . Essentially a relaxed control replaces the single value u(t) of
a standard control by a probability measure on U for each t. A standard control u(·) corresponds to the
particular relaxed control defined by

ν(A) =
∫

1A(s, u(s)) ds, A ⊆ [0,∞)× U .

For a general relaxed control ν ∈ R the fluid process with initial condition x0 is the generalization of (14):

x(·) = Γ(y(·)), where

y(t) = x0 +
∫

[0,t]×U
v(u) dν(s, u).

(18)

We use the notation χx0,ν(·) = x(·) to refer to this particular fluid process. We will sometimes abuse notation
to express the integral in (18) succinctly as∫ t

0

v(u) dν .=
∫

[0,t]×U
v(u) dν(s, u).

Observe that since U is compact and v(·) is continuous this integral is bounded by Bt for some constant
B, independent of the control. By the Lipschitz continuity of the Skorokhod map, it follows that

‖χx0,ν(t)‖ ≤ CΓ(‖x0‖+Bt). (19)

By definition V (x) is the infimum of
∫ τ0

0
L(χx,ν(t), u) dν over standard controls. However the infimum

over all relaxed controls in R amounts to the same thing.

Lemma 3. V (x) = infν∈R J(x, ν).

Proof. Consider any relaxed control ν. We can define its mean ν̄ by averaging the U component:∫ t

0

ν̄(s) ds =
∫

[0,t]×U
u dν(s, u).

Since U is compact and convex, ν̄(t) ∈ U almost surely, so that ν̄(·) is in fact a standard control. Because
the controlled velocity (7) is affine in u ∈ U the integral of v(u) with respect to a probability measure on

9



U is just v evaluted at the mean of the probability measure. Thus, although ν and ν̄ are not equivalent as
relaxed controls, they do produce the same fluid process:∫

[0,t]×U
v(u) dν(s, u) =

∫ t

0

v(ν̄(s)) ds.

In other words χx,ν(t) = χx,ν̄(t) and so

J(x, ν) =
∫ τ0

0

L(χx,ν(t), u) dν =
∫ τ0

0

L(χx,ν̄(t), u) dν̄ = J(x, ν̄).

The lemma is now clear.

A stochastic control U(·) corresponds to the R-valued random variable V defined by

V(A) =
∫

1A(s, U(s)) ds, A ⊆ [0,∞)× U .

Thus V is defined on the same underlying probability space as U(·). (The dependence on ω in the underlying
space Ω is suppressed in the notation.) We can use V to form a fluid process χx0,V(t) in the same way as
(18), also denoted χx0,U (t). The a-priori bound (19) holds for χx0,V(t) as well. In this notation our fluid
approximation (15) to Xn (with Xn(0) = xn) is denoted

Xn
fl (t) = χx0,Un(t).

The second fundamental observation for our analysis is that the map (x0, ν) 7→ χx0,ν(·) is continuous
from G×R into DG. The appropriate topology on R is what we might call “weak convergence on compact
time intervals”: νn V ν in R means that for each 0 ≤ T <∞ and bounded continuous φ : [0,∞)× U → R,∫

[0,T ]×U
φ(t, u) dνn(t, u)→

∫
[0,T ]×U

φ(t, u) dν(t, u)

It turns out that this topology makes R a compact metric space, and the standard controls u(·) are dense.
See [23] for more details. The continuity property is [23, Lemma 3.2], which we simply repeat here.

Lemma 4. The map (x, ν) 7→ χx,ν from G×R to DG is continuous.

Since stochastic controls are random variables taking values in the metric space R, the usual notion of
weak convergence applies to them. To say Vn converges weakly to some other random relaxed control V
means that

E[Φ(Vn)]→ E[Φ(V)] (20)

for every Φ : R → R which is bounded and continuous (with respect to the topology on R above). This is
denoted Vn ⇒ V. (Note that we use double arrow “⇒” for weak convergence of R-valued random variables,
and a triple arrow νn V ν to indicate convergence of a sequence in R.) We will only be interested in Vn
which are associated with stochastic controls Un(·). We will write Un(·)⇒ V to indicate weak convergence
directly in terms of the sequence of stochastic controls. The compactness of R means that every sequence
Vn is tight. We record this as a lemma for use in the proof of Theorem 1.

Lemma 5. For any sequence Un(t) of stochastic controls, there is a random relaxed control V and a subse-
quence n′ so that

Un
′
(·)⇒ V.

In light of the proof of Lemma 3 it might seem that we could work in the simpler space of standard controls,
with a stochastic control Un being a random standard control. However the standard controls are not closed
under weak convergence, so we would not have tightness and Lemma 5 would fail in that more narrow
setting.

We also point out that if xn → x in G and Vn ⇒ V in R, then (xn,Vn)⇒ (x,V) in G×R; see Billingsley
[3, Theorem 3.2].

We close this section with a technical result involving random limits of integration.
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Lemma 6. Suppose ηn and η′n are random variables, all bounded by T , with |ηn − η′n| → 0 in probability.
Then for any sequece of controls Un(·), as n→∞ we have

E

[ ∫ ηn

0

L(Xn(t), Un(t)) dt
]
− E

[∫ η′n

0

L(Xn
fl (t), Un(t)) dt

]
→ 0.

Proof. By our hypotheses on L,

|L(Xn(s), Un(s))− L(Xn
fl (s), Un(s))| ≤ CL‖Xn(s)−Xn

fl (s)‖.

Returning to the inequality (16) in the proof of Lemma 2 and the bound on E[M∗n(T )2] from Lemma 1, we
obtain

E[sup
[0,T ]

‖Xn(t)−Xn
fl (t)‖ ] ≤ CΓ

√
E[M∗n(T )2] ≤ CΓ

√
CqT/n.

From this we deduce

E

[ ∣∣∣∣∣
∫ T

0

L(Xn(t), Un(t)) dt−
∫ T

0

L(Xn
fl (t), Un(t)) dt

∣∣∣∣∣
]
≤ CLCΓ

√
Cq/nT

3/2. (21)

We can write∣∣∣∣∣
∫ ηn

0

L(Xn(t), Un(t)) dt−
∫ η′n

0

L(Xn
fl (t), Un(t)) dt

∣∣∣∣∣
≤
∫ ηn

0

|L(Xn(s), Un(s))− L(Xn
fl (s), Un(s))| dt+

∣∣∣∣∣
∫ η′n

ηn

L(Xn
fl (s), Un(s)) dt

∣∣∣∣∣ .
The mean of first term vanishes in the limit by (21). In the second, by virtue of (19) and our hypotheses on
L, the integrand is bounded independently of the control. So the mean of the second term is bounded by a
constant times E[|ηn−η|], which vanishes in the limit since |ηn−η′n| → 0 and the fact that |ηn−η| ≤ T .

4 Lower Semi-Continuity

The first of our main results says that the fluid value function is a lower bound for the limit of the scaled
stochastic value functions.

Theorem 1. V (x) ≤ V∗(x) for all x ∈ G.

This is essentially a consequence of the fact that the map

(ψ, ν) 7→
∫ τ0(ψ)

0

L(ψ(t), u) dν

is a nonnegative lower semi-continuous function on the space CG×R, using continuous paths ψ. However it is
not lower semicontinuous if we consider ψ in the larger path space DG. The proof of Theorem 1 must justify
the replacement of Xn by Xn

fl (asymptotically) in V n before invoking the above semicontinuity property.
We deal with the technicalities in a sequence of lemmas and corollaries leading up to the main proof.

Lemma 7. The functional τ0 : DG → [0,∞] is lower semicontinuous at each φ ∈ CG.

Proof. Suppose ψn(·)→ φ(·) is a convergent sequence in DG with respect to the Skorokhod metric, and that
φ(·) is continuous. Let sn = τ0(ψn(·)) and s∗ = lim inf sn. We want to show that τ0(φ(·)) ≤ s∗. It suffices to
assume s∗ < ∞ and, by passing to a subsequence we can assume sn → s∗. By definition of the Skorokhod
metric [13] there exists a sequence of strictly increasing continuous functions µn mapping [0,∞) onto itself
for which

sup
0≤t≤T

|µn(t)− t| → 0 and sup
0≤t≤T

|ψn(t)− φ(µn(t))| → 0 for every T <∞.

Since ψn(sn) = 0 we find that φ(µn(sn))→ 0. Since limµn(sn) = lim sn = s∗ and φ is continuous it follows
that φ(s∗) = 0 and, therefore, τ0(φ(·)) ≤ s∗.
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One way to characterize a lower semicontinuous function is as the pointwise limit of an increasing sequence
of continuous functions. Here is such a result for τ0.

Lemma 8. There exists a monotone increasing sequence of bounded nonnegative continuous functions σk :
DG → [0,∞) with σk ↑ τ0 on CG.

Proof. For each positive integer k we use an “inf-convolution” construction to define

σk(ψ) = inf
φ∈DG

{min(τ0(φ), k) + kρ(φ, ψ)} .

It is elementary that 0 ≤ σk ≤ min(τ0, k) and that σk ≤ σk+1. Since∣∣∣(min(τ0(φ), k) + kρ(φ, ψ))− (min(τ0(φ), k) + kρ(φ, ψ̃))
∣∣∣ = k|ρ(φ, ψ)− ρ(φ, ψ̃)| ≤ kρ(ψ, ψ̃),

it follows that
|σk(ψ)− σk(ψ̃)| ≤ kρ(ψ, ψ̃),

establishing continuity of σk.
Consider a fixed ψ ∈ CG. We know that τ0 is lower semicontinuous at ψ so, given ε > 0, there is δ > 0

such that
τ0(φ) > τ0(ψ)− ε whenever ρ(ψ, φ) < δ.

For these φ, we can say
min(τ0(φ), k) + kρ(φ, ψ) ≥ min(τ0(ψ)− ε, k).

For those φ with ρ(ψ, φ) ≥ δ, we have

min(τ0(φ), k) + kρ(φ, ψ) ≥ kδ.

Consequently, σk(ψ) ≥ min(τ0(ψ)− ε, k, kδ) and so we have

τ0(ψ)− ε ≤ lim inf
k→∞

σk(ψ) ≤ lim sup
k→∞

σk(ψ) ≤ τ0(ψ).

Since this holds for every ε > 0, we deduce that σk(ψ)→ τ0(ψ), completing the proof.

The following generalizes [23, Lemma 4.1] to continuous upper limits of integration.

Lemma 9. Suppose σ : DG → [0,∞) is a bounded continuous function. The following defines a bounded
continuous function on G×R:

(x, ν) 7→
∫ σ(χx,ν)

0

L(χx,ν(t), u) dν. (22)

Proof. Suppose xn → x in G and νn V ν in R. From Lemma 4 we know that σ(χxn,νn) → σ(χx,ν). Thus
for any s1 < σ(χx,ν) < s2, we have

s1 < σ(χxn,νn) < s2 for all large n. (23)

We know from [23, Lemma 4.1] that for all s ≥ 0

lim
n→∞

∫ s

0

L(χxn,νn(t), u) dνn =
∫ s

0

L(χx,ν) dν

and therefore, using L ≥ 0 and (23),∫ s1

0

L(χx,ν)(t), u) dν ≤ lim inf
n→∞

∫ σ(χxn,νn )

0

L(χxn,νn(t), u) dνn

≤ lim sup
n→∞

∫ σ(χxn,νn )

0

L(χxn,νn(t), u) dνn

≤
∫ s2

0

L(χx,ν)(t), u) dν

12



Letting s1 → σ(χx,ν)← s2, we conclude that

lim
n→∞

∫ σ(χxn,νn )

0

L(χxn,νn)(t), u) dνn =
∫ σ(χx,ν)

0

L(χx,ν)(t), u) dν.

This establishes the continuity of (22).

Lemma 10. The map (x, ν) 7→
∫ τ0

0
L(χx,ν(t), u) dν is lower semicontinuous on G×R.

This is an easy corollary of Lemmas 8 and 9.
We are ready now to prove the theorem of this section.

Proof of Theorem 1. Consider any sequence xn ∈ G with xn → x ∈ G. Our goal is to show that lim infn→∞ V n(xn) ≥
V (x). There exists a sequence of stochastic controls Un(·) with J(xn, Un(·)) ≤ V n(xn) + 1

n . By passing to
a subsequence (Lemma 5) we can assume that J(xn, Un(·)) → lim infn V n(xn) and that Un ⇒ V for some
R-valued random variable V.

Let σk be the sequence of bounded continuous functions of Lemma 8. As per that construction we can
assume σk ≤ k. Since σk(Xn) ≤ τ0(Xn) we have

lim
n→∞

J(xn, Un) ≥ lim inf
n→∞

E

[∫ σk(Xn)

0

L(Xn(t), Un(t)) dt

]
.

It follows from Lemma 6 that

lim inf
n→∞

E

[∫ σk(Xn)

0

L(Xn(t), Un(t)) dt

]
= lim inf

n→∞
E

[∫ σk(Xnfl )

0

L(Xn
fl (t), Un(t)) dt

]

= E

[∫ σk(χx,V)

0

L(χx,V , u) dV

]
.

The second equality is a consequence of the weak convergence (xn, Un) ⇒ (x,V) and the continuity from
Lemma 9. Then, since χx,V ∈ CG, we know that σk(χx,V) ↑ τ0(χx,V) as k →∞. Therefore we deduce that

lim inf V n(xn) ≥ E

[∫ τ0(χx,V)

0

L(χx,V(t), u) dV

]
= E[J(x,V)].

The right side is bounded below by the minimum over ν ∈ R. Using Lemma 3 we conclude that

lim inf V n(xn) ≥ V (x).

5 The Convergence Theorem

Now we turn to the reverse inequality: V ∗ ≤ V . This requires two additional hypotheses on the sequence
{V n}.

Definition. We say that {V n} is equicontinuous at 0 if for each ε > 0 there is a δε > 0 (independent of n)
so that

V n(x) < ε whenever n ∈ N, x ∈ G, and ‖0− x‖ < δε.

We say that {V n} is locally bounded if for each x ∈ G there is a δx > 0 and a finite Bx (independent of n)
so that

V n(y) ≤ Bx whenever n ∈ N, y ∈ G, and ‖x− y‖ < δx.
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Equicontinuity at 0 is equivalent to V ∗(0) = 0. Local boundedness is equivalent to saying that V ∗(x) < ∞
for each x ∈ G.

Theorem 2. Suppose {V n} is equicontinuous at 0 and locally bounded. Then V is continuous in G and
V n → V uniformly on compacts.

Proof of Theorem 2. The argument below will show that V ∗ ≤ V . Since we already know V ≤ V∗ ≤ V ∗,
this will imply that V∗ = V = V ∗. Since V ∗ and V∗ are upper and lower semicontinuous respectively, it will
follow that V is continuous. If K ⊂ G is compact and V n did not converge to V uniformly on K, there
would exist a sequence xn ∈ K ∩G with xn → x but V n(xn) 6→ V (x). But since

lim supV n(xn) ≤ V ∗(x) = V (x) = V∗(x) ≤ lim inf V n(xn),

we know that V n(xn)→ V (x), a contradiction. Hence everything will follow from V ∗ ≤ V . Our task is thus
to show that

lim supV n(xn) ≤ V (x0), (24)

whenever xn ∈ G is a sequence with xn → x0 ∈ G.
The basic idea of the proof is this. The equicontinuity hypothesis means that V n is small (uniformly

in n) in a neighborhood of the origin, so that once Xn reaches such a neighborhood the remaining cost is
negligible, provided the control is well-chosen. The uniform boundedness hypothesis implies that V n(xn) is
bounded. Because of our hypothesis iv) on L, a bound on V n(xn) implies a bound on the time T is takes
for Xn to reach a neighborhood of the origin. The upshot is that V n(xn) is approximated by

∫ T
0
L, which

will converge by the lemmas above. The proof consists of the careful development of these ideas.
Consider a sequence xn → x0 in G and any ε > 0. By equicontinuity at 0 there is δε > 0 so that

V n(x) < ε whenever x ∈ G and ‖x‖ < δε.

This implies that V ∗(x) ≤ ε for all ‖x‖ < δε. Since V∗ ≤ V ∗, as a consequence of Theorem 1 have

V (x) ≤ ε whenever ‖x‖ < δε. (25)

From the locally bounded hypothesis it follows that V ∗(x0) <∞, from which we deduce V (x0) <∞ in the
same way. There exists a nearly optimal control u(·) for x0:

J(x0, u(·)) < V (x0) + ε.

Let xu(t) = χx0,u(·)(t) be the fluid path starting at x0 using control u(·). We have∫ τ0

0

L(xu(t), u(t)) dt = J(x, u(·)) <∞.

Because of our strict positivity hypothesis iv) on L, there is a finite T at which ‖xu(T )‖ ≤ δε/2. (If no such
T existed J(x, u(·)) would be infinite.) Let

A = 1 + sup
0≤t≤T

‖xu(t)‖.

Define a stochastic control Un(·) for Xn as follows. Starting from Xn(0) = xn use the deterministic
control u(·) (above) until the first time τA that either τA = T or ‖Xn(τA)‖ = A, whichever happens first.
Then for t > τA use a nearly optimal control from Xn(τA):

J(Xn(τA), Un(τA + ·)) < V (Xn(τA)) + ε. (26)

We make the following observations.

(a) V n(Xn(τA)) is bounded in n. This is because the possible values of Xn(τA) are limited to the compact
set {x ∈ G : ‖x‖ ≤ A} in conjunction with the local boundedness hypothesis.
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(b) P (τA < T ) → 0. In other words the probability that ‖Xn(·)‖ reaches A before time T vanishes in
the limit. We deduce this from Lemma 2 as follows. For t < τA we have Un(t) = u(t), and therefore
Xn

fl (τA) = xu(τA). Suppose τA < T . Then ‖Xn(τA)‖ ≥ A while ‖Xn
fl (τA)‖ = ‖xu(τA)‖ ≤ A − 1 by

definition of A. It follows that ‖Xn(τA)−Xn
fl (τA)‖ ≥ 1. This means that

P (τA < T ) ≤ P ( sup
0≤t≤T

‖Xn(t)−Xn
fl (t)‖ ≥ 1).

Lemma 2 tells us that this probability vanishes in the limit as n→∞.

(c) Xn(·) → xu(·) uniformly in probability on [0, T ]. As in item b), we know this holds on the interval
[0, τA] by Lemma 2 because Xn

fl and xu agree there. Since P (τA < T )→ 0, it holds on [0, T ] as well.

Now by a standard dynamic programming argument, using (26) we have

V n(xn) ≤ Jn(xn, Un) < E

[∫ τA

0

L(Xn(t), Un(t)) dt
]

+ E[V n(Xn(τA))] + ε. (27)

From Lemma 6 and observation (b) we deduce that

E

[∫ τA

0

L(Xn(t), Un(t)) dt
]
→
∫ T

0

L(xu(t), u(t)) dt.

From (b) and (c) it follows that Xn(τA) → xu(T ) in probability. Since ‖xu(T )‖ ≤ δε/2, we know that
V (xu(T )) ≤ ε by (25). Using (a) for dominated convergence, it follows that lim supE[V n(Xn(τA))] ≤ ε.
From (27) we can now conclude that

lim supV n(xn) ≤
∫ T

0

L(xu(t), u(t)) dt+ 2ε.

But by our choices above, we know∫ T

0

L(xu(t), u(t)) dt ≤ J(x0, u(·)) < V (x0) + ε.

Thus
lim supV n(xn) ≤ V (x0) + 3ε.

Since ε > 0 was arbitrary, this proves (24).

6 Further Remarks

We close by discussing the Barles-Perthame procedure as an alternative approach to proving Theorem 2,
and then how we might establish the boundedness and equicontinuity hypotheses of the theorem.

6.1 Comparison with the Barles-Perthame Procedure

An alternative to the weak convergence approach above is the so-called Barles-Perthame procedure, which
is based on semicontinuous viscosity solutions. General discussions of it can be found in the books of Bardi
and Capuzzo-Dolcetta [1] and Fleming and Soner [14]. In rough outline, the Barles-Perthame procedure
consists of the following steps.

1. Show that V is a viscosity solution to the appropriate Hamilton-Jacobi-Bellman equation with bound-
ary conditions on ∂G.

2. Show that V ∗ [V∗] is a sub- [super-] solution to the Hamilton-Jacobi-Bellman equation for V with
boundary conditions on ∂G.

3. Apply a comparison theorem for semicontinuous viscosity solutions to deduce that V ∗ ≤ V∗.
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4. Since V∗ ≤ V ∗, conclude that V ∗ = V∗ is the unique solution to the Hamilton-Jacobi-Bellman equation
for V in the first step and, therefore, agrees with V . Consequently, V is continuous and V n → V
uniformly on compacts (by the same argument as at the beginning of the proof of Theorem 2 above).

We want to compare the requirements of this procedure with the hypotheses of our Theorem 2 above. For
that purpose we refer to the development of the Barles-Perthame procedure in Dupuis, Atar, and Shwartz
[10]. They apply the procedure to study the problem of maximizing the first time that a queueing process
exits a specified region G. Although there are many differences between their problem and ours, their
paper does develop the Barles-Perthame procedure in a queueing process setting, and provides a reasonable
indication of how that approach would work if developed for our problem. One prerequisite of the approach
is to know that V ∗(x) <∞, which is our local boundedness hypothesis. This requires some argument based
on the particulars of the problem before either approach can be applied. (In the case of [10], such an upper
bound is provided by their Lemma 2.) Similar remarks apply to V∗, but this is trivial for our problem since
V n ≥ 0.

The appropriate boundary conditions for our time-to-empty control problem consist of a Dirichlet con-
dition V (0) = 0 and oblique-derivative boundary conditions on ∂G \ {0}. The subsolution interpretation of
the Dirichlet condition for V ∗ is simply that V ∗(0) ≤ 0. Since V∗(0) ≥ 0 this is the same as our hypothesis
of equicontinuity at 0: V ∗(0) = 0. This too must be argued based on particulars of the problem at hand. (In
[10] Lemma 2 establishes Lipschitz continuity of the V n with a constant independent of n, which provides
equicontinuity everywhere.) The supersolution interpretation is that V∗(0) ≥ 0, which is again trivial in our
context.

The appropriate Hamilton-Jacobi-Bellman equation for our problem would be

H(x,DV (x)) = 0,

where the Hamiltonian H(x, p) is defined by

H(x, p) = sup
u∈U
{−p · v(u)− L(x, u)} .

For Hamiltonians of this type (lacking direct dependence on the solution value V (x)), viscosity solution
comparison results (as needed in step 3 above) depend on additional special features of H. Developing an
appropriate viscosity comparison result would be the primary task in treating the problem of the present
paper by the Barles-Perthame procedure.

Our point then is that the equicontinuity and uniform boundedness hypotheses of Theorem 2 would also
need some problem-specific verification for the Barles-Perthame approach, just as they do here, and the
conclusion of that approach would be the same as our Theorem 2.

6.2 Sufficient Conditions for Equicontinuity and Local Boundedness

The following lemma provides a sufficient condition for the hypotheses of equicontinuity at 0 and local
boundedness required by Theorem 2. Consider the original (unrescaled) queueing process X(t) = X1(t) in
G. The idea is that if there exist controls for which the means of τ0 and

∫ τ0
0
X(t) dt satisfy appropriate

polynomial bounds in the initial condition x = X(0), then when passed through the fluid rescaling we obtain
upper bounds on V n(·) which imply the desired equicontinuity and boundedness properties. The proof
uses the fact that the Skorokhod map Γ is invariant with respect to rescaling: for any constant c > 0, if
φ(·) = Γ(ψ(·)) and ψc(t) = 1

cψ(ct), then

φc(·) = Γ(ψc(·)) where φc(t) =
1
c
φ(ct). (28)

(The fact that G is a cone is important here. One can check (28) from the definition of the Skorokhod
problem in Section 2.2.)

Lemma 11. Suppose there are constants c0, c1 so that for each nonzero initial position x ∈ G there exists a
stochastic control Ux(t) for which the resulting queueing process X(t) = X1(t) satisfies the following moment
bounds:

Ex[τ0] ≤ c0‖x‖, Ex

[∫ τ0

0

‖X(t)‖ dt
]
≤ c1‖x‖2.

16



Then {V n} is equicontinuous at 0 and locally bounded.

In general the hypotheses require two separate bounds. However, inspection of the proof shows that
if the running cost is bounded, L(x, u) ≤ C, then just the bound on E[τ0] would be enough. Likewise, if
L(x, u) ≤ C‖x‖ then just the quadratic bound would do.

Proof. Given xn ∈ G, let Xn(t) = 1
nX(nt) with X(0) = x0 = nxn, where X1(·) uses the control Ux0 of the

hypotheses. We have τ0(Xn) = 1
nτ0(X), and Xn(t) is subject to the stochastic control Un(t) = Ux0(nt). We

have

V n(xn) ≤ Exn
[∫ τ0(Xn)

0

L(Xn(t), Un(t)) dt

]

≤ CLExn
[∫ τ0(Xn)

0

1 + ‖Xn(t)‖ dt

]

= CLEx0

[∫ τ0(X)

0

(1 +
1
n
‖X(s)‖) 1

n
ds

]

= CL

(
1
n
Ex0 [τ0(X)] +

1
n2
Ex0 [

∫ τ0

0

‖X(s)‖ ds
)

≤ CL
(

1
n
c0‖nxn‖+

1
n2
c1‖nxn‖2

)
= CL(c0‖xn‖+ c1‖xn‖2).

This estimate implies both equicontinuity at 0 and local boundedness.

In simple cases it is possible to simply exhibit a control for which the moment bounds required by the
lemma can be verified directly. In the spirit of using the fluid process as a tool for the study of the stochastic
process X(t) we would like to be able to use x(·) to verify the applicability of Theorem 2. It appears that
such a result will be possible, based on the moment estimates of Dai and Meyn [8]. For brevity we only
describe the general ideas and leave it to interested readers to explore the details more fully.

Our general process (Section 2) is a special case of the multiclass network considered in [8]. Their results
provide moment bounds for the original queueing process X(t) under the hypothesis that the corresponding
fluid limit process x(t) is stable, meaning that τ0 < ∞ for each initial condition x0. (See their Definition
3.3.) This connection requires some sort of agreement between controls used for X(·) and for x(·). In their
formulation that is assured by hypotheses on the structure of the controls. Their analysis applies to several
general types of control, including preemptive-resume priority rules (see [6] for more description). These are
simply state feedback controls of a particular form. Suppose that there does exist such a policy for which
the resulting fluid process is stable. (In some cases it is known that the traffic intensity condition implies the
existence of such a stabilizing priority policy. For instance Dai and Weiss [9] have shown that for reentrant
lines both LBFS and FBFS will do this, both of which are preemptive-resume priority rules.) Proposition
5.3 of [8] then implies upper bounds

Ex

[∫ τC(δ)

0

1 + ‖X(t)‖p dt

]
≤ cp+1(1 + ‖x‖p+1), (29)

where τC(δ) is the stopping time inf{t ≥ δ : X(t) ∈ C}. The proposition from [8] guarantees the existence
of C and δ > 0 for which (29) holds for all p ≥ 1. This bound is not exactly what we need to invoke our
Lemma 11, but it is close. We suggest that, by using the preemptive-resume priority rule of (29) as a starting
point, controls Ux can be constructed which satisfies the hypotheses of Lemma 11. If this is indeed possible,
then it will show that Theorem 2 holds whenever the fluid process x(t) is stabilizable by a preemptive-resume
priority rule.
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