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Abstract. We formulate a robust optimal control problem for a general nonlin-
ear system with finitely many admissible control settings and with costs assigned
to switching of controls. We formulate the problem both in an L2-gain/dissipative
system framework and in a game-theoretic framework. We show that, under ap-
propriate assumptions, a continuous switching-storage function is characterized as
a viscosity supersolution of the appropriate system of quasivariational inequalities
(the appropriate generalization of the Hamilton-Jacobi-Bellman-Isaacs equation for
this context), and that the minimal such switching-storage function is equal to the
continuous switching lower-value function for the game. Finally we show how a proto-
typical example with one-dimensional state space can be solved by a direct geometric
construction.
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1 Introduction

We consider a state-space system Σsw

ẏ = f(y, a, b) (1.1)

z = h(y, a, b) (1.2)
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where y(t) ∈ IRn is the state, a(t) ∈ A ⊂ IRp is the control input, b(t) ∈ B ⊂ IRm

is the deterministic unknown disturbance, and z(t) ∈ IR is the cost function. We
assume that the set A of admissible control values is a finite set, A = {a1, . . . , ar}.
The control signals a(t) are then necessarily piecewise constant with values in A. We
normalize control signals a(t) to be right continuous, and refer to the value a(t) as the
new current control and a(t−) as the old current control at time t. We assume that
there is a distinguished input index i0 for which f(0, a

i0, 0) = 0 and h(0, ai0, 0) = 0, so
that 0 is an equilibrium point for the autonomous system induced by setting a(t) = ai0

and b(t) = 0. In addition we assume that a cost k(ai, aj) ≥ 0 is assigned at each time
instant τn at which the controller switches from old current control a(τ−n ) = ai to
new current control a(τn) = aj. For a given old initial control a(0−), the associated
control decision is to choose switching times

0 ≤ τ1 < τ2 < . . . , lim
n→∞

τn =∞

and controls
a(τ1), a(τ2), a(τ3), . . .

such that the controller switches from the old current control a(τ−n ) to the new current
control a(τn) 6= a(τ−n ) at time τn, where we set

a(t) =

{
a(0−), t ∈ [0, τ1)
a(τn), t ∈ [τn, τn+1), n = 1, 2, . . . ,

if τ1 > 0 and

a(t) = a(τn), t ∈ [τn, τn+1), n = 1, 2, . . . ,

otherwise. We assume that the state y(·) of (1.1) does not jump at the switching
time τn, i.e., the solution y(·) is assumed to be absolutely continuous. The cost of
running the system up to time T ≥ 0 with initial state y(0) = x, old initial control
a(0−) = aj , control signal a for t ≥ 0, and disturbance signal b is given by

CT−(x, aj , a, b) =

∫ T

0

h(yx(t, a, b), a(t), b(t)) dt+
∑

τ : 0≤τ<T
k(a(τ−), a(τ)).

We have used the notation yx(·, a, b) for the unique solution of (1.1) corresponding to
the choices of the initial condition y(0) = x, the control a(·) and the disturbance b(·).
In the sequel we will often abbreviate yx(·, a, b) to yx(·) or y(·); the precise meaning
should be clear from the context.

As the running cost h(y(t), a(t), b(t)) + k(a(t−), a(t)), where a(t−) = aj if t = 0,
involves not only the value y(t) of the state along with the value of the control a(t)
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and the value of the disturbance b(t) at time t but also the value of the old current
control a(t−), it makes sense to think of the old current control a(t−) at time t as
part of an augmented state vector yaug(t) = (y(t), a(t−)) at time t. This can be
done formally by including a(t−) as part of the state vector, in which case a switching
control problem becomes an impulse control problem (see [10], where problems of this
sort are set in the general framework of hybrid systems). We shall keep the switching-
control formalism here; however, in implementing optimization algorithms, we shall
see that it is natural to consider augmented state-feedback controls (x, aj)→ a(x, aj)
rather than merely state-feedback controls x→ a(x) in order to obtain solutions. We
shall refer to such augmented state-feedback controls (x, aj)→ a(x, aj) ∈ A as simply
switching state-feedback controllers. Note that while the augmented-state is required
to compute the instantaneous running cost at time t, only the (nonaugmented) state
vector y(t) is needed to determine the state trajectory past time t for a given input
signal (a(·), b(·)) past time t.

The precise formulation of our optimal control problem is as follows. First of all,
for a prescribed attenuation level γ > 0 and given augmented initial state (x, aj), we
seek an admissible control signal a(·) = ax,j(·) with a(0−) = aj so that

CT−(x, aj , a, b) ≤ γ2
∫ T

0

|b(t)|2 dt+ U j
γ(x) (1.3)

for all locally L2 disturbances b, all positive real numbers T and some nonnegative-
valued bias function U j

γ(x) with U i0
γ (0) = 0. Note that this inequality corresponds to

an input-output system having L2-gain at most γ, where CT− replaces the L2-norm
of the output signal over the time interval [0, T ], and where the equilibrium point is
taken to be (0, ai0) in the augmented state space. The dissipation inequality (1.3)
then can be viewed as an L2-gain inequality, and our problem as the analogue of
the nonlinear H∞-control problem for systems with switching costs (see [17]). In
the open loop version of the problem, the control signal a(·) is simply a piecewise-
constant right-continuous function with values in A = {a1, . . . , ar}. In the switching
state feedback version of the problem, a(·) is a function of the current state and current
old control, i.e., one decides what control to use at time t based on knowledge of the
current augmented state (y(t), a(t−)). In the standard game-theoretic formulation of
the problem, a(·) is a nonanticipating function a(·) = αj

x[b](·) (called a strategy) of
the disturbance b depending also on the initial state x and initial old control value aj ,
i.e., for a given augmented initial state (x, aj), the computation of the control value
αj
x[b](t) at time t uses knowledge only of the past and current values of the disturbance

b(·). Secondly, we ask for the admissible control a with a(0−) = aj (with whatever
information structure) which gives the best system performance, in the sense that
the nonnegative functions U j(x) are as small as possible. A closely related problem
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formulation is to view the switching-control system as a game with payoff function

JT−(x, aj, a, b) =

∫
[0,T )

l(yx(t), a
j , a(t), b(t)), a(0−) = aj, j = 1, . . . , r,

where we view l(yx, a
j, a, b) as the measure given by

l(y(t), aj, a(t), b(t)) = [h(y(t), a(t), b(t))−γ2|b(t)|2] dt+k(a(t−), a(t))δt, a(0−) = aj ,

where δt is the unit point-mass distribution at the point t. In this game setting, the
disturbance player seeks to use b(t) and T to maximize the payoff while the control
player seeks to use the choice of piecewise-constant right-continuous function a(t) to
minimize the payoff. The switching lower value Vγ = (V 1

γ , . . . , V
r
γ ) of this game is

then given by

V j
γ (x) = inf

α
sup
b, T

JT−(x, aj, αj
x[b], b), j = 1, . . . , r (1.4)

where the supremum is over all nonnegative real numbers T and all locally L2-
disturbance signals b, while the infimum is over all nonanticipating control strategies
b → αj

x[b] depending on the initial augmented state (x, aj). By letting T tend to 0,
we see that each component of the switching lower value Vγ(x) = (V 1

γ (x), . . . , V
r
γ (x))

is nonnegative. Then by construction (V 1
γ , . . . , V

r
γ ) gives the smallest possible value

which can satisfy (1.3) (with V j
γ in place of U j

γ) for some nonanticipating strategy
(x, aj , b)→ αj

x[b](·) = a(·).
In the standard theory of nonlinear H∞-control, the notion of storage function for

a dissipative system plays a prominent role (see [17]). For our setting with switching
costs, we say that a nonnegative vector function Sγ = (S1

γ , . . . , S
r
γ) on IR

n is a switching
storage function for the system (1.1)–(1.2) and given strategy α

S
j(t2)
γ (yx(t2, α

j
x[b], b))− S

j(t1)
γ (yx(t1, α

j
x[b], b))

≤ ∫ t2
t1
[γ2|b(s)|2 − h(yx(s), α

j
x[b](s), b(s))] ds−

∑
t1≤τ<t2 k(α

j
x[b](τ

−), αj
x[b](τ))

for all y(0) = x ∈ IRn, b measurable with values in B, 0 ≤ t1 < t2
(1.5)

(where j(t) is specified by αj
x[b](t

−) = aj(t)). The control problem then is to find
the switching strategy α : (x, aj , b) → αj

x[b](·) which gives the best performance,
as measured by obtaining the minimal possible Sγ(x) = (S1

γ(x), . . . , S
r
γ(x)) as the

associated closed-loop switching storage function. Note that any switching storage
function may serve as the vector bias function Uγ = (U1

γ , . . . , U
r
γ ) in the L2-gain

inequality (1.3), if in addition Si0
γ (0) = 0. This suggests that the available switching-

storage function (i.e., the minimal possible switching storage function over all possible
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switching strategies) should equal the switching lower-value Vγ (1.4) for the game
described above. We shall see that this is indeed the case with appropriate hypotheses
imposed.

Our main results concerning the robust optimal switching-cost problem are as fol-
lows: Under minimal smoothness assumptions on the problem data and compactness
of the set B,

(i) V j
γ (x) ≤ mini 6=j{V i

γ (x) + k(aj , ai)}, x ∈ IRn, j = 1, . . . , r.

(ii) If continuous, Vγ is a viscosity solution in IRn of the system of quasivariational
inequalities defined in Section 2 (see (2.5)). (The precise definition of viscosity
subsolution, supersolution and solution will be given in Section 2.)

(iii) If Sγ = (S1
γ , . . . , S

r
γ) is a continuous switching-storage function for some strategy

α, then Sγ is a nonnegative, continuous viscosity supersolution of the SQVI
(2.5).

(iv) If Uγ = (U1
γ , . . . , U

r
γ ) is a nonnegative, continuous viscosity supersolution of the

SQVI (2.5) and Uγ has the property (i), then there is a canonical choice of
switching state-feedback control strategy αUγ : (x, aj , b) → αj

Uγ ,x
[b] such that

Uγ is a switching-storage function for the closed-loop system formed by using
the strategy αUγ ; thus,

U j
γ(x) ≥ sup

b, T
{
∫
[0,T )

l(yx(s), a
j , αj

Uγ ,x
[b](s), b(s))} ≥ V j

γ (x).

The switching lower-value Vγ, if continuous, is characterized as the minimal,
nonnegative, continuous viscosity supersolution of (2.5) having property (i)
above, as well as the minimal continuous function satisfying property (i) which
is a switching storage function for the closed-loop system associated with some
nonanticipating strategy αVγ .

The derivation of this characterization of Vγ presented in this paper is a direct
argument which parallels the argument given in [1] for the analogous result for optimal
stopping-time problems. An alternative derivation of this characterization relying on
a general comparison principle for viscosity super- and subsolutions of SQVI is given
in [2].

The usual formulation of the H∞-control problem also involves a stability con-
straint. We also prove that, under appropriate conditions, the closed loop system
associated with switching strategy αUγ corresponding to the nonnegative, continuous
supersolution Uγ of the SQVI is stable. The main idea is to use the supersolution Uγ
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as a Lyapunov function for trajectories of the closed-loop system. Related stability
problems for systems with control switching are discussed, e.g., by Branicky in [11].

Infinite-horizon optimal switching-control problems are discussed in [6, Chapter
III, Section 4.4] but with a discount factor in the running cost and no disturbance
term. Differential games with switching strategies and switching costs for the case of
finite horizon problems is discussed in [20] while the case of an infinite horizon with
both control and competing disturbance but with a discount factor in the running cost
is discussed in [21]. A more general formulation of the finite-horizon optimal control
and differential game problems, where a general (not necessarily discrete) measure is
allowed to enter both the dynamics and the running cost, is studied in [7]. These
authors, under their various assumptions, were able to show that the value function
is continuous and is the unique solution of the appropriate system of quasivariational
inequalities. However our formulation has no discount factor in the running cost, so
the running cost is not guaranteed to be integrable over the infinite interval [0,∞].
This forces the introduction of the extra “disturbance player” T in (1.4). We establish
a Dynamic Programming Principle for this setting and derive from it the appropriate
system of quasivariational inequalities (SQVI) to be satisfied by Vγ. Due to a lack
of positive discount factor and the presence of the extra disturbance player T , our
lower-value function Vγ probably in general is not continuous, and moreover cannot be
characterized simply as the unique solution of the SQVI as is the case for finite-horizon
problems and problems with a positive discount factor. Our contribution is to apply
the dynamic-programming method to a robust formulation of the optimal switching-
cost problem analogous to the standard nonlinear H∞-control problem; our results
(particularly the characterization of the switching lower value as the minimal viscosity
supersolution of the appropriate SQVI) parallel those of Soravia [18] obtained for the
standard nonlinear H∞-control problem (see also [12], [19] and [6, Appendix B] for
later, closely related refinements of the nonlinear H∞ results).

As explained in (iv) above, once we have found a viscosity supersolution (or
uniquely determined minimal viscosity supersolution) Uγ of the SQVI, the associated
control strategy αUγ which achieves the L2-gain inequality (1.3) (or, at the state-
space level, the dissipation inequality (1.5)) is easily found. For practical applications
there remains the problem of computing the minimal, nonnegative viscosity superso-
lution of the SQVI. There is an interesting connection between solutions of SQVIs
and solutions of variational inequalities (VIs) associated with optimal stopping-time
problems, namely: the solution of an SQVI is a fixed point of a map which assigns to
a given vector function the collection of solutions of a decoupled system of VIs, or, at
the level of value functions, the switching lower-value function for a switching-control
problem is a fixed point of the map which assigns to an r-tuple of nonnegative-
real valued functions the set of lower value functions for a decoupled collection of
stopping-time problems (with different terminal cost functions determined by the in-
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put vector function). In principle, it should therefore be possible to find the lower
value function for a switching-control problem by iteratively solving for the value
functions of a decoupled system of stopping-time problems, and thereby reduce solu-
tion of a switching-control problem to the iterative solution of decoupled systems of
VIs. This idea is discussed in [9] in the context of stochastic, diffusion problems, and
a similar connection existing between impulse-control problems and stopping-time
problems has been pointed out in [6, Chapter III, Section 4.3], where, in addition,
some convergence results concerning the associated iteration procedure are presented.
Thus one can view stopping-time problems as having pedagogical value as stepping
stones to the more complicated impulse-control and switching-control problems. In a
companion paper [1], we treat a deterministic robust-control version of such optimal
stopping-time problems.

For the case of a one-dimensional state space, we solve a simple example of
switching-control problem by a direct, geometric construction, and thereby bypass
the iterative procedure which uses the connection with stopping-time problems. A re-
lated example for the VI associated with an optimal stopping-time problem is treated
in [1].

Original motivation for our work arose from the problem of designing a real-time
feedback control for traffic signals at a highway intersection (see [3], [4]), where the
size of the cost imposed on switching can be used as a tuning parameter to lead
to more desirable types of traffic-light signalization. Also a positive switching cost
eliminates the chattering present in the solution otherwise.

The paper is organized as follows. In Section 2 we discuss assumptions and def-
initions. Section 3 presents the main results on the connection between value func-
tions (and storage functions) with systems of quasi-variational inequalities. Section
4 presents stability of the closed-loop switching control system. The final Section 5
discusses computational issues and gives explicit, geometric procedures for computing
lower-value functions for a prototypical one-dimensional example.

2 Preliminaries

Let A = {a1, a2, · · · , ar} be a finite set and let B be a compact subset of IRm containing
the origin 0. We consider a general nonlinear system Σsw (see (1.1)–(1.2)) with
a switching-cost function k. We make the following assumptions on problem data
f, h, k:

(A1) f : IRn ×A×B → IRn and h : IRn ×A×B → IR are continuous;

(A2) f and h are bounded on B(0, R)× A× B for all R > 0;
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(A3) there are moduli ωf and ωh such that

|f(x, a, b)− f(y, a, b)| ≤ ωf(|x− y|, R)
|h(x, a, b)− h(y, a, b)| ≤ ωh(|x− y|, R),

for all x, y ∈ B(0, R), R > 0, a ∈ A and b ∈ B;

(A4) |f(x, a, b)− f(y, a, b)| ≤ L|x− y| for all x, y ∈ IRn, a ∈ A and b ∈ B;

(A5) k : A× A→ IR and

k(aj , ai) < k(aj , ad) + k(ad, ai)

k(aj , ai) > 0

k(aj , aj) = 0,

for all ad, ai, aj ∈ A, d 6= i 6= j;

(A6) h(x, a, 0) ≥ 0 for all x ∈ IRn, a ∈ A.

The set of admissible controls for our problem is the set

A = {a(·) =
∑
i≥1

ai−11[τi−1,τi)(·) : [0,+∞)→ A| ai ∈ A; ai 6= ai−1 for i ≥ 1,

0 = τ0 ≤ τ1 < τ2 < · · · , τi ↑ ∞}
consisting of piecewise-constant right-continuous functions on [0,∞) with values in
the control set A, where we denote by τ1, τ2, . . . the points at which control switchings
occur. The set of admissible disturbances is B which consists of locally L2-functions
on [0,∞) with values in the set B:

B = {b : [0,∞)→ B |
∫ T

0

|b(s)|2ds <∞, for all T > 0}.

A strategy is a map α : IRn×A×B → A with value at (x, aj , b) denoted by αj
x[b](·). The

strategy α assigns control function a(t) = αj
x[b](t) if the augmented initial condition

is (x, aj) and the disturbance is b(·). Thus, if it happens that τ1 > τ0 = 0, then
a(t) = a0 = aj , for t ∈ [τ0, τ1). Otherwise a(t) = a1 6= aj , for t ∈ [0, τ2) = [τ1, τ2) and
an instantaneous charge of k(aj , a(0)) is incurred at time 0 in the cost function. A
strategy α is said to be nonanticipating if, for each x ∈ IRn and j ∈ {1, . . . , r}, for any
T > 0 and b, b̄ ∈ B with b(s) = b̄(s) for all s ≤ T , it follows that αj

x[b](s) = αj
x [̄b](s)

for all s ≤ T . We denote by Γ the set of all nonanticipating strategies:

Γ := {α : IRn × A× B → A | αj
x is nonanticipating for each x ∈ IRn and j = 1, . . . , r}.
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We consider trajectories of the nonlinear system{
ẏ(t) = f(y(t), a(t), b(t))
y(0) = x.

(2.1)

Under the assumptions (A1), (A2) and (A4), for given x ∈ IRn, a ∈ A and b ∈ B,
the solution of (2.1) exists uniquely for all t ≥ 0. We denote by yx(·, a, b) or simply
yx(·) the unique solution of (2.1) corresponding to the choice of the initial condition
x ∈ IRn, the control a(·) ∈ A and the disturbance b(·) ∈ B. We also have the usual
estimates on the trajectories (see e.g. [6, pages 97-99]:

|yx(t, a, b)− yz(t, a, b)| ≤ eLt|x− z|, t > 0 (2.2)

|yx(t, a, b)− x| ≤ Mxt, t ∈ [0, 1/Mx], (2.3)

|yx(t, a, b)| ≤ (|x|+
√
2Kt)eKt (2.4)

for all a ∈ A, b ∈ B, where

Mx := max{|f(z, a, b)| : |x− z| ≤ 1, a ∈ A, b ∈ B}
K := L+max{|f(0, a, b)| : a ∈ A, b ∈ B}.

For a specified gain tolerance γ > 0, we define the Hamiltonian function Hj :
IRn × IRn → IR by setting

Hj(y, p) := min
b∈B

{−p · f(y, aj, b)− h(y, aj, b) + γ2|b|2}, j = 1, . . . , r.

Note that Hj(y, p) < +∞ for all y, p ∈ IRn by (A2). Under assumptions (A1)-(A4),
one can show that the Hamiltonian Hj is continuous on IRn × IRn and satisfies

|Hj(x, p)−Hj(y, p)| ≤ L|x− y||p|+ ωh(|x− y|, R),
for all p ∈ IRn, x, y ∈ B(0, R), R > 0, and
|Hj(x, p)−Hj(x, q)| ≤ L(|x|+ 1)|p− q|, for all x, p, q ∈ IRn.

We now introduce the system of quasivariational inequalities (SQVI)

max{Hj(x,Duj(x)), uj(x)−min
i 6=j

{ui(x) + k(aj , ai)}} = 0, x ∈ IRn, j = 1, 2, . . . , r.

(2.5)

Definition 2.1 A vector function u = (u1, u2, . . . , ur), where uj ∈ C(IRn), is a vis-
cosity subsolution of the SQVI (2.5) if, for any ϕj ∈ C1(IRn),

max{Hj(x0, Dϕj(x0)), u
j(x0)−min

i 6=j
{ui(x0) + k(aj, ai)}} ≤ 0, j = 1, 2, . . . , r,
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at any local maximum point x0 ∈ IRn of uj−ϕj. Similarly u is a viscosity supersolution
of the SQVI (2.5) if for any ϕj ∈ C1(IRn)

max{Hj(x1, Dϕj(x1)), u
j(x1)−min

i 6=j
{ui(x1) + k(aj, ai)}} ≥ 0, j = 1, 2, . . . , r,

at any local minimum point x1 ∈ IRn of uj − ϕj. Finally u is a viscosity solution of
the SQVI (2.5) if it is simultaneously a viscosity sub- and supersolution.

3 Main Results

In this section we show the connection of the lower value function Vγ = (V 1
γ , . . . , V

r
γ )

(see (1.4)) (and a switching storage function) with the SQVI (2.5).
We begin with the application of the Dynamic Programming to this setting, and

then derive some properties of the lower value vector function Vγ (see (1.4)). We then
use these properties to show that Vγ , if continuous, is a viscosity solution of the SQVI
(2.5). Throughout this section, we assume that Vγ is finite.

Proposition 3.1 Assume (A1)-(A5). Then for j = 1, 2, . . . , r and x ∈ IRn, the
lower value vector function Vγ = (V 1

γ , . . . , V
r
γ ) given by (1.4) satisfies

V j
γ (x) ≤ min

i 6=j
{V i

γ (x) + k(aj , ai)}.

Proof Fix a pair of indices i, j ∈ {1, . . . , r} with i 6= j. For a given x ∈ IRn, α ∈ Γ,
b ∈ B and T > 0, we have∫

[0,T )

`(yx(s), a
j, αj

x[b](x), b(s)) = k(aj , αj
x[b](0)) +

∫
[0,T )

`(yx(s), α
j
x[b](0), α

j
x[b](s), b(s))

= k(aj , αj
x[b](0))− k(ai, αj

x[b](0))

+ k(ai, αj
x[b](0)) +

∫
[0,T )

`(yx(s), α
j
x[b](0), α

j
x[b](s), b(s))

= k(aj , αj
x[b](0))− k(ai, αj

x[b](0)) +

∫
[0,T )

`(yx(s), a
i, αj

x[b](s), b(s))

≤ k(aj , ai) +

∫
[0,T )

`(yx(s), a
i, αj

x[b](s), b(s)) (3.1)

where the last inequality follows from (A5). By the definition of V j
γ (x), we have

V j
γ (x) ≤ sup

b∈B,T≥0

∫
[0,T )

`(yx(s), a
j, αj

x[b](s), b(s))
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for all α ∈ Γ. Taking the supremum over b ∈ B and T ≥ 0 on the right-hand side of
(3.1) therefore gives

V j
γ (x) ≤ k(aj , ai) + sup

b∈B,T≥0

∫
[0,T )

`(yx(s), a
i, αj

x[b](s), b(s)). (3.2)

Given any strategy α ∈ Γ, we can always find another α̃ ∈ Γ with α̃i
x[b] = αj

x[b] for
each b ∈ B, and, conversely, for any α̃ ∈ Γ there is a α ∈ Γ so that α̃i

x is determined
by α in this way. Hence, taking the infimum over all α ∈ Γ in the last terms on the
right hand side of (3.2) leaves us with V i

γ (x). Thus

V j
γ (x) ≤ k(aj, ai) + V i

γ (x).

Since i 6= j is arbitrary, the result follows. ♦
Theorem 3.2 (Dynamic Programming Principle) Assume (A1), (A2) and (A4).
Then, for j = 1, 2, . . . , r, t > 0 and x ∈ IRn, we have

V j
γ (x) = inf

α∈Γ
sup

b∈B, T>0
{
∫
[0,t∧T )

l(yx(s, a
j , αj

x[b], b), α
j
x[b](s), b(s)) +

1[0,T )(t)V
i
γ (yx(t, α

j
x[b], b)), αj

x[b](t
−) = ai}. (3.3)

where

l(y(s), aj, a(s), b(s)) := [h(y(s), a(s), b(s))− γ2|b(s)|2]ds+ k(a(s−), a(s))δs.

with a(0−) = aj.

Proof Fix x ∈ IRn, j ∈ {1, 2, . . . , r} and t > 0. We denote by ω(x) the right hand
side of (3.3). Let ε > 0. For any z ∈ IRn and any a` ∈ A, we pick ᾱ ∈ Γ such that

V `
γ (z) + ε ≥

∫
[0,T )

l(yz(s), a
`, ᾱ`

z[b](s), b(s)), ∀b ∈ B, ∀T > 0. (3.4)

We first want to show that ω(x) ≥ V j
γ (x). Choose α̂ ∈ Γ such that

ω(x) + ε ≥ sup
b∈B, T≥0

{∫
[0,t∧T )

l(yx(s), a
j, α̂j

x[b](s), b(s)) + 1[0,T )(t)V
i
γ (yx(t)), α̂

j
x[b](t

−) = ai
}

(3.5)

For each b ∈ B and T > 0, choose δ ∈ Γ so that

δjx[b](s) =

{
α̂j
x[b](s) s < t ∧ T

ᾱi
z[b(·+ t ∧ T )](s− (t ∧ T )) s ≥ t ∧ T

11



with z := yx(t ∧ T, α̂j
x[b], b) and ai := α̂j

x[b](t ∧ T ). Clearly, δjx is nonanticipating
because α̂j

x and ᾱi
z are. Note that

yx(s+ t ∧ T, δjx[b], b) = yz(s, ᾱ
i
z[b(· + t ∧ T )], b(·+ t ∧ T )), for s ≥ 0

Thus by the change of variables τ = s+ t ∧ T , we have∫
[0,T−(t∧T ))

l(yz(s), a
i, ᾱi

z[b(·+ t ∧ T )](s), b(s+ t ∧ T )) =

∫
[t∧T,T )

l(yx(τ), a
j, δjx[b](τ), b(τ))

(3.6)

As a consequence of (3.4), (3.5) and (3.6), we have

ω(x) + 2ε ≥ sup
b∈B, T>0

{
∫
[0,t∧T )

l(yx(s), a
j , α̂j

x[b](s), b(s))

+1[0,T )(t)

∫
[t∧T,T )

l(yz(s), a
i, ᾱi

z[b](s), b(s))}

= sup
b∈B, T>0

{
∫
[0,T )

l(yx(s), a
j, δjx[b](s), b(s))}

≥ inf
α∈Γ

sup
b∈B, T>0

{
∫
[0,T )

l(yx(s), a
j, αj

x[b](s), b(s))}

= V j
γ (x)

Since ε > 0 is arbitrary, we conclude that ω(x) ≥ V j
γ (x).

Next we want to show that ω(x) ≤ V j
γ (x). From the definition of ω(x), choose

b1 ∈ B and T1 ≥ 0 such that

ω(x)− ε ≤
∫
[0,T1∧t)

l(yx(s), a
j, ᾱj

x[b1](s), b1(s)) + 1[0,T1)(t)V
i
γ (yx(t)) (3.7)

where ᾱj
x is defined as in (3.4) and ᾱj

x[b1](t
−) = ai for some ai ∈ A. If t ≥ T1, we have

ω(x)− ε ≤
∫
[0,T1)

l(yx(s), a
j, ᾱj

x[b1](s), b1(s))

≤ sup
b∈B, T>0

{
∫
[0,T )

l(yx(s), a
j, ᾱj

x[b](s), b(s))}

≤ V j
γ (x) + ε,

where the last inequality follows from (3.4). If t < T1, we have

ω(x)− ε ≤
∫
[0,t)

l(yx(s), ᾱ
j
x[b1](s), b1(s)) + V i

γ (yx(t)). (3.8)
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Set z := yx(t, ᾱ
j
x[b1], b1). For each b ∈ B, define b̃ ∈ B by

b̃(s) =

{
b1(s) s < t
b(s− t) s ≥ t

and choose α̂ ∈ Γ so that

α̂z[b](s) = ᾱj
x [̃b](s+ t) for s ≥ 0.

By definition of V i
γ , choose b2 ∈ B and T2 > 0 such that

V i
γ (z)− ε ≤

∫
[0,T2)

l(yz(s), a
i, α̂z[b2](s), b2(s)).

Then, by change of variable τ = s+ t, we have

V i
γ (z)− ε ≤

∫
[t,t+T2)

l(yx(τ), a
j , ᾱj

x [̃b2](τ), b̃2(τ)) (3.9)

As a consequence of (3.8) and (3.9) we have

ω(x)− 2ε ≤
∫
[0,t)

l(yx(s), a
j, ᾱj

x[b1](s), b1(s)) +

∫
[t,t+T2)

l(yx(τ), a
j , ᾱj

x[̃b2](τ), b̃2(τ))

=

∫
[0,t+T2)

l(yx(τ), a
j , ᾱj

x [̃b2](τ), b̃2(τ))

≤ sup
b∈B, T>0

{
∫
[0,T )

l(yx(τ), a
j , ᾱj

x[b](τ), b(τ))}

≤ V j
γ (x) + ε,

where the last inequality follows from (3.4). Since ε > 0 is arbitrary, for both cases
we have ω(x) ≤ V j

γ (x) as required. ♦
Corollary 3.3 Assume (A1)-(A4). Then for each j ∈ {1, . . . , r}, x ∈ IRn and t > 0,
we have

V j
γ (x) ≤ sup

b∈B, T>0
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))}.

Proof Fix j ∈ {1, . . . , r}, x ∈ IRn and t > 0. Define α ∈ Γ by setting αj
x[b](s) = aj

for all s ≥ 0 for each b ∈ B. By Theorem 3.2, we have

V j
γ (x) ≤ sup

b∈B, T>0
{
∫ t∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))}. ♦
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Proposition 3.4 Assume (A1)-(A5). Suppose that for each j ∈ {1, . . . , r}, V j is
continuous. If V j

γ (x) < mini 6=j{V i
γ (x) + k(aj , ai)}, then there exists τ = τx > 0 such

that for 0 < t < tx

V j
γ (x) = sup

b∈B, T>0
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))}.

Proof We assume V j
γ (x) < mini 6=j{V i

γ (x) + k(aj , ai)}. From Corollary 3.3, we know
that

V j
γ (x) ≤ sup

b∈B, T>0
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))}, ∀t > 0.

Suppose there is a sequence {tn} with 0 < tn <
1
n
for n = 1, 2, . . . such that

V j
γ (x) < sup

b∈B, T>0
{
∫ tn∧T

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ 1[0,T )(tn)V

j
γ (yx(tn))}.

(3.10)

Let w(x, tn) be the right hand side of (3.10). For each tn, define εn = 1
3
[w(x, tn) −

V j
γ (x)]. As tn → 0 as n → ∞, from (3.10) we see that w(x, tn) → V j

γ (x) and hence
εn → 0 as n→∞. It follows that

V j
γ (x) + εn < w(x, tn)− εn (3.11)

Choose bn ∈ B and Tn ≥ 0 such that

w(x, tn)− εn ≤
∫ tn∧Tn

0

[h(yx(s), a
j, bn(s))− γ2|bn(s)|2]ds+ 1[0,Tn)(tn)V

j
γ (yx(tn))

(3.12)

By Theorem 3.2 choose αn ∈ Γ such that

V j
γ (x) + εn ≥

∫
[0,tn∧Tn]

l(yx(s), a
j , (αn)

j
x[bn](s), bn(s)) + 1[0,Tn)(tn)V

in
γ (yx(tn)), (3.13)

where (αn)
j
x[bn](t

−
n ) = ain ∈ A. From (3.11), (3.12) and (3.13), we have∫

[0,tn∧Tn) l(yx(s), a
j, (αn)

j
x[bn](s), bn(s)) + 1[0,Tn)(tn)V

in
γ (yx(tn))

<
∫ tn∧Tn
0

[h(yx(s), a
j , bn(s))− γ2|bn(s)|2]ds+ 1[0,Tn)(tn)V

j
γ (yx(tn)).

(3.14)
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This implies that (αn)
j
x[bn] jumps in the interval [0, tn∧Tn]. Without loss of generality

assume the number of switchings is equal to dn. If tn < Tn for infinitely many n, by
going down to a subsequence we may assume tn ≤ Tn for all n. From (3.13) we have

V j
γ (x) ≥ lim sup

n→∞
{
∫
[0,tn∧Tn)

l(yx(s), a
j, αj

x,n[bn](s), bn(s))

+1[0,Tn)(tn)V
in
γ (yx(tn)), α

j
x,n[bn](t

−
n ) = ain ∈ A}

= lim sup
n→∞

{
∫ tn

0

[h(yx(s), α
j
x,n[bn](s), bn(s))− γ2|bn(s)|2]ds

+
dn∑
m=1

k(am−1, am) + V in
γ (yx(tn)), α

j
x,n[bn](tn) = ain ∈ A}

= lim sup
n→∞

{
dn∑
m=1

k(am−1, am) + V in
γ (yx(tn)), α

j
x,n[bn](t

−
n ) = ain ∈ A

}
.

By using continuity of V in
γ and

∑dn
m=1 k(am−1, am) > k(aj, ain), we have

V j
γ (x) ≥ min

i 6=j
{V i

γ (x) + k(aj, ai)}

which contradicts one of the assumptions. If tn ≥ Tn for infinitely many n, again
without loss of generality we may assume tn ≥ Tn for all n. From (3.14) we have

lim infn→∞{
∫
[0,Tn]

l(yx(s), a
jαj

x,n[bn](s), bn(s))}
≤ lim supn→∞{

∫ Tn
0
[h(yx(s), a

j , bn(s))− γ2|bn(s)|2]ds},
or equivalently,

lim infn→∞{
∫ Tn
0
[h(yx(s), α

j
x,n[bn](s), bn(s))− γ2|bn(s)|2]ds+

∑dn
m=1 k(am−1, am)}

≤ lim supn→∞{
∫ Tn
0
[h(yx(s), a

j , bn(s))− γ2|bn(s)|2]ds}.
Thus

lim inf
n→∞

{
dn∑
m=1

k(am−1, am)

}
≤ lim sup

n→∞

{∫ Tn

0

h(yx(s), a
j , bn(s))ds

}
−

lim inf
n→∞

{∫ Tn

0

h(yx(s), α
j
x,n[bn](s), bn(s))ds

}
,

and in this case Tn → 0 as n→∞. Note that the integral terms tend to 0 uniformly
with respect to bn ∈ B as Tn → 0 due to the compactness assumption on B, the
uniform estimate (2.3), and the continuity assumption (A1) on h. Thus we have

lim inf
n→∞

{
dn∑
m=1

k(am−1, am)

}
≤ 0
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which contradicts (A5). ♦

Lemma 3.5 Assume (A1)- (A5) and V j
γ ∈ C(IRn), j = 1, . . . , r.

If V j
γ (x) < mini 6=j{V i

γ (x) + k(aj , ai)}, then there exists τ = τx > 0 such that

V j
γ (x) ≥ supb∈B{

∫ t

0
[h(yx(s), a

j, b(s))− γ2|b(s)|2]ds+ V j
γ (yx(t))}, ∀t ∈ (0, τx).

Proof From Proposition 3.4, choose τ = τx > 0 such that for all t ∈ (0, τ)

V j
γ (x) = sup

b∈B, T>0
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))}.

Thus

V j
γ (x) ≥ sup

b∈B, T>t
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))}

= sup
b∈B
{
∫ t

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ V j

γ (yx(t))}. ♦

Theorem 3.6 Assume (A1)-(A6) and V j
γ ∈ C(IRn), j = 1, . . . , r. Then Vγ is a

viscosity solution of the SQVI (2.5)

max{Hj(x,DV j
γ (x)), V

j
γ (x)−min

i 6=j
{V i

γ (x) + k(aj , ai)}} = 0, x ∈ IRn, j = 1, . . . , r.

(3.15)

Proof We first show that V j
γ is a viscosity supersolution of the SQVI (3.15). Fix

x0 ∈ IRn and aj ∈ A. Let ϕj ∈ C1(IRn) and x0 is a local minimum of V j
γ − ϕj . We

want to show that

max{Hj(x0, Dϕj(x0)), V
j
γ (x0)−min

i 6=j
{V i

γ (x0) + k(aj, ai)}} ≥ 0 (3.16)

We have two cases to consider

case 1 V j
γ (x0) = mini 6=j{V i

γ (x0) + k(aj , ai)}
case 2 V j

γ (x0) < mini 6=j{V i
γ (x0) + k(aj , ai)}.

If case 1 occurs, we have

max{Hj(x0, Dϕj(x0)), V
j
γ (x0)−mini 6=j{V i

γ (x0) + k(aj , ai)}}
≥ V j

γ (x0)−mini 6=j{V i
γ (x0) + k(aj , ai)}

≥ 0.
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If case 2 occurs, we want to show that Hj(x0, Dϕj(x0)) ≥ 0. Fix b ∈ B and set
b(s) = b for all s ≥ 0. From Lemma 3.5, choose t̄0 > 0 such that for t ∈ (0, t̄0)

V j
γ (x0)− V j

γ (yx0(t)) ≥
∫ t

0

[h(yx0(s), a
j , b)− γ2|b|2] ds. (3.17)

Since x0 is a local minimum of V j
γ − ϕj, by (2.3) there exists t̂0 > 0 such that

ϕj(x0)− ϕj(yx0(s), a
j, b(s))) ≥ V j

γ (x0)− V j
γ (yx0(s), a

j, b(s))), 0 < s < t̂0 (3.18)

Set t0 = min{t̄0, t̂0}. As a consequence of (3.17) and (3.18) , we have

ϕj(x0)− ϕj(yx0(t)) ≥
∫ t

0

[h(yx0(s), a
j, b)− γ2|b|2]ds, 0 < t < t0. (3.19)

Divide both sides by t and let t→ 0 to get

−Dϕj(x0) · f(x0, aj, b)− h(x0, a
j, b) + γ2|b|2 ≥ 0.

Since b ∈ B is arbitrary, we have Hj(x0, Dϕj(x0)) ≥ 0.

We next show that V j
γ is a viscosity subsolution of the SQVI (3.15). Fix x1 ∈ IRn

and aj ∈ A. Let ϕj ∈ C1(IRn) and x1 is a local maximum of V j
γ − ϕj. We want to

show that

max{Hj(x1, Dϕj(x1)), V
j
γ (x1)−min

i 6=j
{V i

γ (x1) + k(aj, ai)}} ≤ 0 (3.20)

From Proposition 3.1, V j
γ (x1) ≤ mini 6=j{V i

γ (x1) + k(aj, ai)}. Thus we want to show
that Hj(x1, Dϕj(x1)) ≤ 0.

We first consider the case V j
γ (x1) > 0. Let t > 0 and ε > 0. From Corollary 3.3,

choose b̂ = b̂t,ε ∈ B and T̂ = T̂t,ε ≥ 0 such that

V j
γ (x1) ≤

∫ T̂∧t

0

[h(yx1(s), a
j, b̂(s))− γ2|b̂(s)|2] ds+ 1[0,T̂ )(t)V

j
γ (yx1(t, b̂)) + εt (3.21)

In particular,

V j
γ (x1) ≤

∫ T̂∧t

0

[h(yx1(s), a
j, b̂(s))− γ2|b̂(s)|2] ds+ V j

γ (yx1(T̂ ∧ t, b̂)) + εt

and hence

V j
γ (x1)− V j

γ (yx1(T̂ ∧ t, b̂)) ≤
∫ T̂∧t

0

[h(yx1(s), a
j , b̂(s))− γ2|b̂(s)|2] ds+ εt (3.22)
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Since x1 is a local maximum of V j
γ − ϕj, by (2.3) we may assume that

ϕj(x1)− ϕj(yx1(s), a
j , b̂(s)) ≤ V j

γ (x1)− V j
γ (yx1(s), a

j, b̂(s)), 0 < s ≤ t (3.23)

Combine (3.22) and (3.23) to get

ϕj(x1)− ϕj(yx1(T̂ ∧ t, aj , b̂(t)) ≤
∫ T̂∧t

0

[h(yx1(s), a
j , b̂(s))− γ2|b̂(s)|2] ds+ εt. (3.24)

We next argue that, under the assumptions on f and h, it follows that (3.24) is
equivalent to

inf
b∈B
{−Dϕj(x1) · f(x1, aj, b)− h(x1, a

j, b) + γ2|b|2} · (T̂ ∧ t) ≤ ε t+ o(T̂ ∧ t) (3.25)

and that

lim sup
t→0

t

t ∧ T̂t,ε
= 1 (for each ε > 0). (3.26)

A similar point arises in the context of the robust stopping-time problem (see the
proof of Theorem 3.3 in [1]; for the sake of completeness we include the full argument
here.

Observe first that (2.3) and (A3) imply

|f(yx1(s), aj, b̂(s))− f(x1, a
j, b̂(s))| ≤ ωf (Mxs, |x|+Mxt0), for 0 < s < t0 (3.27)

and

|h(yx(s), aj, b̂(s))− h(x1, a
j , b̂(s))| ≤ ωh(Mx1s, |x|+Mx1t0), for 0 < s < t0 (3.28)

where t0 does not depend on ε, t or b̂. By (3.28), the integral on the right-hand side
of (3.24) can be written as∫ T̂∧t

0

[h(x1, a
j , b̂(s))− γ2|b̂(s)|2] ds+ o(T̂ ∧ t) as T̂ ∧ t→ 0.

Thus

ϕj(x1)− ϕj(yx1(T̂ ∧ t, aj, b̂(t)) ≤
∫ T̂∧t

0

[h(x1, a
j, b̂(s))− γ2|b̂(s)|2] ds+ εt + o(T̂ ∧ t).

(3.29)
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Moreover

ϕj(x1)− ϕj(yx1(T̂ ∧ t, aj , b̂) = −
∫ T̂∧t

0

d

ds
ϕj(yx1(s, a

j, b̂) ds

= −
∫ T̂∧t

0

Dϕj(yx1(s, a
j, b̂)) · f(yx1(s), aj, b̂(s)) ds

= −
∫ T̂∧t

0

Dϕj · f(x1, aj , b̂(s)) ds+ o(T̂ ∧ t) (3.30)

where we used (2.3), (3.27) and ϕj ∈ C1 in the last equality to estimate the difference
between Dϕj · f computed at yx1(s) and at x1, respectively. Plugging (3.30) into
(3.29) gives∫ T̂∧t

0

−Dϕj(x1) · f(x1, aj , b̂(s)) ds ≤
∫ T̂∧t

0

[h(x1, a
j, b̂(s))− γ2|b̂|2] ds+ εt + o(T̂ ∧ t).

Thus∫ T̂∧t

0

[−Dϕj(x1) · f(x1, aj , b̂(s))− h(x1, a
j , b̂(s)) + γ2|b̂(s)|2] ds ≤ εt+ o(T̂ ∧ t).

(3.31)

We estimate the left-hand side of this inequality from below to get next

inf
b∈B
{−Dϕj(x1) · f(x1, aj , b)− h(x1, a

j, b) + |γ|2|b|2} · (T̂ ∧ t) ≤ εt + o(T̂ ∧ t). (3.32)

and (3.25) follows.
We now write T̂t,ε in place of T̂ to emphasize the dependence of T̂ on t and ε. Note

that t
T̂t,ε∧t ≥ 1 for all t > 0 and hence lim supt→0

t
T̂t,ε∧t ≥ 1. We claim that in fact

(3.26) holds. Indeed, if not, then, for each fixed ε > 0, there would be a sequence of
positive numbers {tn} tending to 0 such that T̂tn,ε < tn and limn→∞ T̂tn,ε/tn = ρε < 1.
In this case, the inequality (3.21) becomes

V j
γ (x1) ≤

∫ T̂tn,ε

0

[h(yx1(s), a
j b̂(s))− γ2|b̂(s)|2] ds+ εtn

for all n, from which we get

V j
γ (x1)

tn
≤ 1

tn

∫ T̂tn,ε

0

[h(yx1(s), a
j, b̂(s))− γ2|b̂(s)|2] ds+ ε (3.33)
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for all n. From (2.3) and (A2) we have an estimate of the form h(yx(s), a
j, b̂(s)) ≤ Kx

for all s in a sufficiently small interval [0, δ) (independent of t and ε), and hence, for
n sufficiently large we have∫ T̂tn,ε

0

[h(yx1(s), a
j , b̂(s))− γ2|b̂(s)|2] ds ≤ Kx1Ttn,ε.

Plugging this into (3.33) gives

V j
γ (x1)

tn
≤ Kx1

T̂tn,ε
tn

+ ε.

Letting n tend to infinity and using the assumption that V j
γ (x1) > 0 leads to the

contradiction∞ ≤ Kxρε+ ε ≤ Kx+ ε <∞. Hence lim supt→0
t

t∧T̂t,ε = 1 for each fixed

ε > 0 and (3.26) follows.
We now can divide (3.32) by T̂ ∧ t > 0 and pass to the limit to get

inf
b∈B
{−Dϕj(x) · f(x, aj , b)− h(x, aj , b) + γ2|b|2} ≤ ε.

Since ε > 0 is arbitrary, we conclude that Hj(x,Dϕj(x)) ≤ 0.
It remains to handle the case V j

γ (x1) = 0. In this case we take b̂ ≡ 0 and use (A6)
and V j

γ ≥ 0 to see that

V j
γ (x1) = 0 ≤

∫ t

0

h(yx1(s), b̂)ds+ V j
γ (yx1(t))

=

∫ t

0

[h(yx1(s), b̂(s))− γ2|b̂(s)|2]ds+ V j
γ (yx1(t)),

for all t ≥ 0. Then it is straightforward to follow the procedure in the first part of
the proof to arrive at the desired inequality Hj(x1, Dϕj(x1)) ≤ 0. ♦

We next give a connection of a switching storage (vector) function with the SQVI
(3.15).

Theorem 3.7 Assume (A1)-(A5) and assume that S = (S1, . . . , Sr) is a continuous
switching storage function for the closed loop system formed by the nonanticipating
strategy α ∈ Γ. Then S is a viscosity supersolution of SQVI (3.15).

Proof. Fix x ∈ IRn and j ∈ {1, . . . , r}. Let ϕj ∈ C1(IRn) be such that x is a local
minimum of Sj − ϕj . Let b ∈ B. Set b(s) = b for s ≥ 0. Choose t1 > 0 so that

Sj(x)− ϕj(x) ≤ Sj(yx(s, α
j
x[b], b))− ϕj(yx(s, α

j
x[b], b)), for all 0 ≤ s ≤ t1. (3.34)

We have two cases to consider:
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case 1 : Sj(x) ≥ mini 6=j{Si(x) + k(aj , ai)},
case 2 Sj(x) < mini 6=j{Si(x) + k(aj , ai)}.
If case 1 occurs, then

max {Hj(x,Dϕj(x)), Sj(x)−mini 6=j{Si(x) + k(aj, ai)}}
≥ Sj(x)−mini 6=j{Si(x) + k(aj, ai)}
≥ 0.

If case 2 occurs, we claim that for each b̂ ∈ B there exists a t2 = t2(̂b) > 0 such that

αj
x [̂b](s) = aj for 0 ≤ s ≤ t2.

Indeed, if not, then, for each t > 0 there exists a b̄t ∈ B such that

αj
x [̄bt](τt) = aj(t) 6= aj for some τ, 0 ≤ τt < t. (3.35)

Since S is a switching storage function, we have

Sj(x)− Sj(t)(yx(t, α
j
x[̄bt], b̄t))

≥
∫ t

0

[h(yx(s), α
j
x[̄bt](s), b̄t(s))− γ2|b̄t(s)|2 ds+

∑
τ<t

k(aj(τ
−), aj(τ)).

By letting t tend to 0 along some subsequence if necessary, we get an index j(0+) so
that

Sj(x)− Sj(0+)(x) ≥ k(aj , aj(0
+)).

From (3.35) we see that this implies that j(0+) 6= j. Thus

Sj(x) ≥ min
i 6=j

{Si(x) + k(aj , ai)}

which gives a contradiction. Thus the claim is proved.
Since S is a switching storage function, we have

Sj(x)− Sj(t)(yx(t, α
j
x[b], b)

≥
∫ t

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2] ds for all 0 < t ≤ t2. (3.36)

Set t3 = min{t1, t2}. Then (3.34) and (3.36) imply that

ϕj(x)− ϕj(yx(t, α
j
x[b], b))

≥
∫ t

0

[h(yx(s), α
j
x[b](s), b)− γ2|b|2] ds for 0 < t < t3. (3.37)
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Divide (3.37) by t and let t tend to 0 to get

−Dϕj(x) · f(x, aj, b)− h(x, aj , b) + γ2|b|2 ≥ 0.

Since this inequality holds for an arbitrary b ∈ B, we have Hj(x,Dϕj(x)) ≥ 0 as
required. ♦

We now proceed to the synthesis of a switching-control strategy achieving the
dissipation inequality for a given viscosity supersolution U = (U1, . . . , U r) of SQVI
(3.15). Given a continuous nonnegative vector function U = (U1, . . . , U r) on IRn

satisfying the condition

U j(x) ≤ min
i 6=j

{U i(x) + k(aj , ai)} for all x ∈ IRn, j = 1, . . . , r,

we associate a state-feedback switching strategy αU : (y(t), aj)→ αj(y(t)) by the rule

αj(y(t)) =


aj if U j(y(t)) < mini 6=j{U i(y(t)) + k(aj , ai)};
any a` 6= aj such that U `(y(t)) + k(aj , a`) = mini 6=j{U i(y(t)) + k(aj , ai)},

otherwise.

(3.38)

In other words, the associated feedback switching strategy is: if the current state
is y(t) and the current old control is a(t−) = aj , then set a(t) = αj(y(t)). Such a
strategy can also be expressed as a nonanticipating strategy αU : (x, aj , b)→ αj

U,x[b];

explicitly for this particular case αU , we have α
j
U,x[b] is given by

αj
U,x[b](t) =

∑
n≥1

an−11[τn−1,τn)(t) for t ≥ 0 (3.39)

and αj
U,x[b](0

−) = a0 where

τ0 = 0, a0 = aj0 = aj

and for n = 1, 2, 3, . . .

τn[b] =


inf{t > τn−1 : U jn−1(yy(τn−1)(t− τn−1, ajn−1 , b(· − τn−1))

= mini 6=jn−1{U i(yy(τn−1)(t− τn−1, ajn−1 , b(· − τn−1)) + k(ajn−1, ai)}},
+∞ if the preceding set is empty,

an = ajn =


any al 6= ajn−1 such that

mini 6=jn−1{U i(yy(τn−1)(τn − τn−1), ajn−1 , b(· − τn−1))) + k(ajn−1 , ai)}
= U l(yy(τn−1)(τn − τn−1, ajn−1, b(· − τn−1))) + k(ajn−1 , al), if τn <∞;

undefined, if τn =∞.

(3.40)
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Note that if τ1 = τ0 = 0, there is an immediate switch from a0 to a1 at time 0 and
the n = 1 term in (3.39) is vacuous. Moreover by (A5), τn > τn−1 for τn−1 < ∞
and n > 1. To see this, we assume that τn = τn−1 < ∞ for some n > 1. From the
definition of τn−1 and τn, we would have

U jn−2(y(τn−1)) = U jn−1(y(τn−1)) + k(ajn−2 , ajn−1)

= U jn(y(τn−1)) + k(ajn−1, ajn) + k(ajn−2, ajn−1) (and hence jn 6= jn−2)

> U jn(y(τn−1)) + k(ajn−2, ajn)

≥ min
i 6=jn−2

{U i(y(τn−1)) + k(ajn−2 , ai)},

which gives a contradiction.

Theorem 3.8 Assume
(i) (A1)-(A5) hold.
(ii) U = (U1, . . . , U r) is a nonnegative continuous viscosity supersolution in IRn of
the SQVI (3.15)

max{Hj(x,DU j(x)), U j(x)−min
i 6=j

{U i(x) + k(aj, ai)}} = 0, x ∈ IRn, j = 1, . . . , r,

(iii) U j(x) ≤ mini 6=j{U i(x) + k(aj , ai)}, x ∈ IRn, j ∈ {1, . . . , r}.
Let αU be the state-feedback strategy defined by (3.38), or equivalently, the nonantic-
ipating disturbance-feedback strategy αU defined by (3.40). Then U = (U1, . . . , U r) is
a storage function for the closed-loop system formed by the strategy αU . In particular,
we have

U j(x) ≥ sup
b∈B, T≥0

{
∫
[0,T )

l(yx(s), a
j, αj

U,x[b](s), b(s))} ≥ V j
γ (x),

for each x ∈ IRn and aj ∈ A. Thus Vγ, if continuous, is characterized as the min-
imal, nonnegative, continuous, viscosity supersolution of the SQVI (3.15) satisfying
condition (iii), as well as the minimal continuous switching storage function satis-
fying condition (iii) for the closed-loop system associated with some nonanticipating
strategy αVγ .

Proof Let αj
U,x[b](t) be the switching strategy defined as in (3.40). We claim that

τn →∞ as n→∞.

If τn = ∞ for some n, then it is trivially true. Otherwise, since we observed just
before the statement of Theorem 3.8 that {τn} is a nondecreasing sequence, it would
follow that

lim
n→∞

τn = T <∞. (3.41)
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with 0 ≤ τn < T for all n. From (3.41), we have that {τn} is a Cauchy sequence, and
hence for all ν > 0 there is some n such that τn < τn−1 + ν. By the definition of τn,

U jn−1(yx(τn)) = U l(yx(τn)) + k(ajn−1 , al) for some al 6= ajn−1 (3.42)

(We have written yx(t) for yx(t, α
j
x[b], b).) By definition of τn−1, we have

U jn−2(yx(τn−1)) = U jn−1(yx(τn−1)) + k(ajn−2 , ajn−1). (3.43)

By (iii), we have

U jn−2(yx(τn−1)) ≤ min
i 6=jn−2

{U i(yx(τn−1)) + k(ajn−2, ai)}
≤ U l(yx(τn−1)) + k(ajn−2 , al) if l 6= jn−2

and hence

U jn−2(yx(τn−1)) ≤ U l(yx(τn−1)) + k(ajn−2 , al) (3.44)

if l 6= jn−2. If l = jn−2, (3.44) holds with equality (by (A5)), and hence (3.44) in fact
holds without restriction. From (3.43) and (3.44), we have

k(ajn−2 , ajn−1)− k(ajn−2 , al) ≤ U l(yx(τn−1))− U jn−1(yx(τn−1)) (3.45)

As a consequence of (3.42) and (3.45), we have

0 < k(ajn−2 , ajn−1) + k(ajn−1, al)− k(ajn−2 , al)

≤ U l(yx(τn−1))− U l(yx(τn)) + U jn−1(yx(τn))− U jn−1(yx(τn−1))

≤ ωl(ν) + ωjn−1(ν)

and hence (by the strict triangle inequality in (A5))

0 < mini,j,l : i 6=j 6=l
{
k(ai, aj) + k(aj, al)− k(ai, al)

} ≤ ω`(ν) + ωj(ν)

where in general ωj is a modulus of continuity for U j(yx(·)) on the interval [0, T ].
Letting ν tend to zero now leads to a contradiction, and the claim follows.

Hence αj
x[b](t) =

∑
an−11[τn−1,τn)(t) ∈ Γ. Since U is a viscosity supersolution of

the SQVI (3.15), we have Hjn(yx(s), DU jn(yx(s))) ≥ 0, in the viscosity-solution sense
for τn < s < τn+1. Thus (see [6, Section II.5.5]

U jn(yx(s))− U jn(yx(t)) ≥
∫ t

s

[h(yx(s), a
jn, b(s))− γ2|b(s)|2]ds,
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for all b ∈ B, τn < s ≤ t < τn+1. Letting s→ τ+n and t→ τ−n+1, we get

U jn(yx(τn))− U jn(yx(τn+1) ≥
∫ τn+1

τn

[h(yx(s), a
jn, b(s))− γ2|b(s)|2]ds, ∀b ∈ B.

(3.46)

We also have

U jn(yx(τn+1)) = U jn+1(yx(τn+1)) + k(ajn, ajn+1), for τn+1 <∞. (3.47)

Adding (3.46) over τn ≤ T and using (3.47), we have

U j0(x) ≥
∫ T

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2]ds+

∑
τn≤T

k(an−1, an) + U jn(yx(T ))

≥
∫ T

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2]ds+

∑
τn≤T

k(an−1, an).

Since this inequality holds for arbitrary b ∈ B and T ≥ 0, we have

U j(x) ≥ sup
b∈B, T≥0

{∫
[0,T ]

l(yx(s), a
j, αj

x[b](s), b(s))

}
.

Thus U j(x) ≥ V j
γ (x). By Theorem 3.6, we know that Vγ is a viscosity supersolution of

the SQVI (3.15) if it is continuous. (Note that the proof of the viscosity-supersolution
property of Vγ in Theorem 3.6 does not use the assumption (A6).) Also Vγ has
the property (iii) by Proposition 3.1. Thus we conclude that, if continuous, Vγ is
the minimal, nonnegative, continuous, viscosity supersolution of SQVI (3.15) which
satisfies condition (iii)

The first part of this Theorem (Theorem 3.8) already proved then implies that Vγ
is a switching storage function. Moreover if S is any continuous, switching storage
function for some nonanticipating strategy αVγ , from Theorem 3.7 we see that S is a
viscosity supersolution of the SQVI (3.15). Again from the first part of this Theorem
already proved, we then see that S ≥ Vγ if S has the property (iii), and hence Vγ is
also the minimal, continuous switching storage function satisfying the condition (iii),
as asserted. ♦

4 Stability for switching-control problems

In this section we show how the solution of the SQVI (3.15) can be used for stability
analysis.
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We consider the system (1.1) – (1.2) with some control strategy α plugged in to
get a closed-loop system with the disturbance signal as the only input

Σsw

{
ẏ = f(y, αj

x[b], b), y(0) = x, a(0−) = aj

z = h(y, αj
x[b], b).

An example of such a strategy α is the canonical strategy αU (see (3.38) or (3.40))
determined by a continuous supersolution of the SQVI (3.15). Moreover, if Vγ =
(V 1

γ , . . . , V
r
γ ) is the vector lower-value function for the associated game as in (1.4) and

we assume that 0 is an equilibrium point for the autonomous system formed from
(1.1)–(1.2) by taking a(s) = ai0 and b(s) = 0 (so f(0, ai0, 0) = 0 and h(0, ai0 , 0) = 0),
then it is easy to check that V i0

γ (0) = 0. Furthermore, the associated strategy α = αVγ

has the property that

αi0
0 [0] = ai0 , (4.1)

so 0 is an equilibrium point of the closed-loop system Σsw with α = αVγ and a(0−) =
ai0 as well. Our goal is to give conditions which guarantee a sort of converse, starting
with any continuous supersolution U of the SQVI (3.15).

We first need a few preliminaries. The following elementary result can be found
e.g. in [16].

Lemma 4.1 If φ(·) : IR→ IR is a nonnegative, uniformly continuous function such
that

∫∞
0

φ(s) ds <∞, then limt→∞ φ(t) = 0.

We say that the closed-loop switching system Σsw is zero-state observable for
initial control setting aj if, whenever h(yx(t), α

j
x[0](t), 0) = 0 for all t ≥ 0, then

yx(t) = yx(t, α
j
x[0], 0) = 0 for all t ≥ 0. We say that the closed-loop system Σsw is

zero-state detectable for initial control setting aj if

lim
t→∞

h(yx(t), α
j
x[0](t), 0) = 0, implies that lim

t→∞
yx(t, α

j
x[0], 0) = 0.

The following proposition gives conditions which guarantee that a particular compo-
nent U j of a viscosity supersolution U = (U1, . . . , U r) be positive-definite, a conclusion
which will be needed as a hypothesis in the stability theorem to follow.

Proposition 4.2 Assume
(i) (A1)-(A6) hold;
(ii) Σsw is zero-state observable for some initial control setting aj;
(iii) U = (U1, . . . , U r) is a nonnegative continuous viscosity supersolution of the
SQVI (3.15)

max{Hj(x,DU j(x)), U j(x)−min
i 6=j

{U i(x) + k(aj , ai)}} = 0, x ∈ IRn, j = 1, . . . , r;
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(iv) U j(x) ≤ mini 6=j{U i(x) + k(aj , ai)}, x ∈ IRn, j = 1, . . . , r.
Then U j(x) > 0 for x 6= 0.

Proof Let x ∈ IRn. By Theorem 3.8, U is a storage function for Σsw if we use α = αU

given by (3.38) or equivalently, (3.40). Thus

U j(x) ≥
∫
[0,T )

l(yx(s), a
j, αj

U,x[0](s), 0) ds+ U j(T )(yx(T, α
j
U,x[0], 0))

≥
∫
[0,T )

l(yx(s), a
j, αj

U,x[0](s), 0) ds for all T > 0.

Since k is nonnegative, we have

U j(x) ≥
∫ T

0

h(yx(s), α
j
x[0](s), 0) ds, for all T ≥ 0.

Thus if U j(x) = 0, then h(yx(s, α
j
x[0], 0), α

j
x[0](s), 0) = 0 for all s ≥ 0 because h is

nonnegative by assumption (A6). Since Σsw is zero-state observable for initial control
setting aj, it follows that yx(s, α

j
x[0], 0) = 0 for all s ≥ 0. Thus x = yx(0, αx[0], 0) = 0.

Since U j is nonnegative, we conclude that if x 6= 0 then U j(x) > 0. ♦

Proposition 4.3 Assume
(i) (A1)-(A6) hold;
(ii) U = (U1, . . . , U r) is a nonnegative continuous viscosity supersolution of the
SQVI (3.15)

max{Hj(x,DU j(x)), U j(x)−min
i 6=j

{U i(x) + k(aj , ai)}} = 0, x ∈ IRn, j = 1, . . . , r;

(iii) U j(x) ≤ mini 6=j{U i(x) + k(aj , ai)}, x ∈ IRn, j = 1, . . . , r;
(iv) there is an i0 ∈ {1, . . . , r} such that U i0(0) = 0 and U i0(x) > 0 for x 6= 0.
(v) Σsw is zero-state detectable for all initial control settings aj ∈ A.
Then the strategy αU associated with U as in (3.38) or (3.40) is such that αi0

U [0](s) =
ai0 for all s and 0 is an equilibrium point for the system ẏ = f(y, ai0, 0). Moreover, 0
is a globally asymptotically stable equilibrium point for the system Σsw, in the sense
that the solution y(t) = yjx(t, α

j
U,x[0], 0) of

ẏ = f(y, αj
U,x[0], 0), y(0) = x

has the property that
lim
t→∞

yjx(t, α
j
U,x[0], 0) = 0

for all x ∈ IRn and all aj ∈ A.
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Proof Suppose that U i0(0) = 0 and U i0(x) > 0 for x 6= 0. Let T ≥ 0 and x ∈ IRn.
Since U is a storage function for the closed-loop system formed from (1.1)–(1.2) with
α = αU , we have

U i0(x) ≥
∫ T

0

h(yx(s), α
i0
x [0](s), 0) ds+

∑
τ<T

k(αi0
U,x(τ

−), αi0
U,x(τ)) + U j(T )(yx(T, α

i0
U,x[0], 0)).

(4.2)

Since h, k, U are nonnegative and U i0(0) = 0 by our assumptions, substitution of
x = 0 in (4.2) forces ∑

τ<T

k
(
αi0
U,0[0](τ

−), αi0
U,0[0](τ)

)
= 0.

This implies that αi0
U,0[0](t) = ai0 for all 0 ≤ t ≤ T . Thus

0 ≤ U j(T )(y0(T, α
i0
U,0[0], 0)) = U i0(y0(T, α

i0
U,0[0], 0)) ≤ U i0(0) = 0.

By the positive definite property of U i0 , we have y0(T, α
i0
U,0[0], 0) = 0. Since T ≥ 0 is

arbitrary, we conclude that 0 is a equilibrium point of the system ẏ = f(y, ai0, 0).
Next we want to show that 0 is a globally asymptotically stable equilibrium point

for the closed-loop switching system Σsw with α = αU . Again, from the storage-
function property of U = (U1, . . . , U r) for the system Σsw with α = αU , we have∫ T

0

h(yx(s), α
j
U,x[0](s), 0) ds ≤ U j(x) <∞ for all T > 0.

Thus limt→∞ h(yx(t, α
j
U,x[0], 0) = 0 by Lemma 4.1. By the detectability assumption

(v), we have limt→∞ yx(t, α
j
U,x[0], 0) = 0 as required. ♦

5 Computational issues

The results of Sections 3 reduce the solution of the robust optimal switching-control
problem to the solution of a SQVI (3.15). For these results to be useful, of course,
one must be able to compute solutions of such an equation, or more precisely for
our situation, the minimal viscosity supersolution of such a system of equations. In
this section we make a few general observations concerning these issues and give an
explicit, direct solution for a simple example with one-dimensional state space. For
examples with higher dimensional state space, more sophisticated numerical methods
are needed; this is an ongoing topic for future research.
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5.1 A connection between solutions of SQVIs and VIs

Suppose that U = (U1, . . . , U r), where U j ∈ C(IRn) for j = 1, . . . , r, is the minimal
viscosity supersolution of SQVI

max{Hj(x,DU j(x)), U j(x)−min
i 6=j
{U i(x) + k(aj, ai)}} = 0, j = 1, . . . , r. (5.1)

Then each U j can be interpreted as the minimal viscosity supersolution of the varia-
tional inequality (VI)

max{H(x,DU(x)), U(x)− Φ(x)} = 0

with Hamiltonian H equal to Hj and with stopping cost Φ equal to Φj = mini 6=j{U i+
k(aj , ai)}. This suggests defining an iteration map F as follows. Given an r-tuple
U = (U1, . . . , U r) of nonnegative real-valued functions, define a new r-tuple F (U) =
(F (U)1, . . . , F (U)r) of nonnegative real-valued functions by

F (U)j = the minimal viscosity supersolution of VI with H = Hj and Φ = Φj .

Note that U is the minimal viscosity supersolution of SQVI (5.1) if and only if F (U) =
U , i.e., if and only if U is a fixed point of F . Formally, one can solve the fixed point
problem by guessing a starting point U0 = (U1

0 , . . . , U
r
0 ) and then iterating

Un+1 = F (Un), n = 0, 1, 2, . . . .

If Un → U∞ and F is continuous, then from Un+1 = F (Un) one can take the limit
to get U∞ = F (U∞) from which we see that U∞ is a fixed point for F . For finite
horizon problems, or problems with a positive discount factor in the running cost,
the connection is a little cleaner, as in this situation one has a uniqueness theorem
for solutions of the relevant SQVI (5.1).

A similar remark giving a connection between the impulsive control problem and
the stopping time problem is given in [6, Chapter III Section 4.3], where some con-
vergence results are also given. It would be of interest to develop similar convergence
results for the SQVI (5.1) associated with an optimal switching-control problem.

5.2 Optimal switching-control problem with one-dimensional
state space

In this subsection we consider an optimal switching cost problem with one-dimensional
state space. While in principle it should be possible to solve the problem by using the
construction in [1] to perform each iterative step in the procedure outlined in Section
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5.1, it turns out that, for the example which we discuss here, one can solve explicitly
by a direct, geometric, noniterative procedure which we now describe.

We consider the special case of the general problem where there are only two
controls A = {a1, a2}, with respective system dynamics given by

f(y, a1, b) = −y + b; f(y, a2, b) = −µ(y − 1) + b.

(A value for the parameter µ > 1 will be specified below.) We take the output to be
simply the squared state

h(y, a, b) = y2

and the switching cost to be given by a parameter β > 0:

k(a1, a2) = k(a2, a1) = β; k(a1, a1) = k(a2, a2) = 0.

All the hypotheses (A1)-(A6) are satisfied. All other assumptions are satisfied with
the exception that B = IR is not compact; to alleviate this difficulty, one can restrict
B to a large finite interval [−M,M ]; to live with this restriction, one must adjust
the definition of the hamiltonian functions H1(x, p) and H2(x, p) in the discussion to
follow. We will construct a solution to the SQVI (5.1) for this example via a variation
of the algorithm presented in [1]; rather than proving that the solution so constructed
is the minimal nonnegative supersolution of SQVI (5.1), we verify directly that it is
the lower value function Vγ = (V 1

γ , V
2
γ ) of the switching-control differential game (2.1).

Because we will take µ > 1, for large |y| the control a2 will drive the state toward
0 more strongly than a1. However the origin is stable only if a1 used when |y| is small.
Thus we would expect an optimal strategy to switch to a2 for y away from the origin,
but then back again to a = 1 near the origin. The details of this will be determined
by our solution (V 1, V 2) to SQVI (5.1) .

The two Hamiltonian functions work out to be

H1(x, p) = px− x2 − 1

4γ2
p2

H2(x, p) = µp(1− x)− x2 − 1

4γ2
p2.

These are both instances of the general formula

H(x, p) = inf
b
{−(g(x) + b) · p− x2 + γ2b2} (5.2)

= −pg(x)− x2 − 1

4γ2
p2

= (γg(x))2 − x2 −
(

1

2γ
p+ γg(x)

)2
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where g(x) = −x for a1 and g(x) = −µ(x − 1) for a2. Provided |x| < γ|g(x)| the
equation H(x, p) = 0 has two distinct real solutions:

p±(x) = −2γ2g(x)± 2γ
√
γ2g(x)2 − x2.

We will use pa±(x) (a = 1, 2) to refer to these specifically for our two choices of g(x).
Observe that H(x, p) ≤ 0 if and only if p ≤ p−(x), p ≥ p+(x), or |x| > γ|g(x)|. This
will be important for working with (5.8) below. Note also that the infimum in (5.2)
is achieved for b∗ = 1

2γ2
p. When p = p±(x) in particular we have

f(x, a, b∗) = g(x) +
1

2γ2
p±(x)

= ±1

γ

√
γ2g(x)2 − x2,

which will be positive (negative) in the case of p+ (p−, respectively). Moreover, since
H(x, p±(x)) = 0, we will have

(g(x) + b∗) · p±(x) + x2 = γ2(b∗)2.

These observations will be important in confirming the optimality of our switching
policy below. The expressions for p1±(x) have a simple composite expression: with

ρ = γ2 − γ
√
γ2 − 1

we have

2ρx =

{
p1−(x) if x ≥ 0
p1+(x) if x ≤ 0.

(5.3)

We now exhibit the desired solution of the SQVI (5.1) for the following specific
parameter values:

µ = 3, β = .4, γ = 2. (5.4)

Let

W 1(x) = ρx2

W 2
−(x) =

∫
p2−(x) dx, for x ≥ 1.2

W 2
+(x) =

∫
p2+(x) dx, for x ≤

6

7
.
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(One may check that for our parameter values p2±(x) is undefined for 6
7
< x < 1.2.)

Using values x2 ≈ −1.31775, x1 = 3/2, x3 ≈ 2.55389 we can present the lower value
function(s) for our game:

V 2(x) =


W 2

+(x) + C0 for x < 0
β +W 1(x) for 0 ≤ x ≤ x1
W 2
−(x) + C1 for x1 < x,

(5.5)

where the constants C0, C1 are chosen to make V 2 continuous, and

V 1(x) =


β + V 2(x) for x ≤ x2
W 1(x) for x2 < x < x3
β + V 2(x) for x3 ≤ x.

(5.6)

Graphs are presented in Figure (1). Our arguments below depend on a number of
inequalities involving DV a as defined by (5.6), (5.5). For brevity, we will verify several
of them graphically rather than algebraically.

x2 x1 x3

1

2

3

4

5

Figure 1: V 1 (solid) and V 2 (dashed)

The procedure for constructing (5.6), (5.5), and the significance of the particular
values x1, x2, x3, will become apparent as we now work through the verification of
SQVI (5.1). Observe that SQVI (5.1) is equivalent to the following three conditions
for each a ∈ {1, 2}. (Here a′ will generically denote the other value of a: a′ = 3− a.)

V a(x) ≤ β + V a′(x), for all x, (5.7)

Ha(x,D+V a(x)) ≤ 0, for all x, (5.8)

Ha(x,D−V a(x)) ≥ 0, for those x with V a(x) < β + V a′(x), (5.9)
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where D+V a(x) refers to the superdifferential of V a at x and D−V a(x) refers to the
subdifferential of V a at x. The superdifferential D+V a(x) can be characterized as the
set of all possible slopes ϕ′(x) for a smooth test function ϕ such that V a − ϕ has a
local maximum at x; similarly the subdifferential D−V a(x) is characterized as the set
of all possible slopes ϕ′(x) for a smooth test function ϕ such that V a(x) − ϕ has a
local minimum at x (see [6, page 29]). At points x where both V 1 and V 2 are smooth,
these conditions can be expressed more explicitly as: Necessarily |V 1(x)−V 2(x)| ≤ β.

1. If V 1(x) − V 2(x) = β, then (V 1)′(x) = (V 2)′(x) =: q(x) (since V 1 − V 2 has a
maximum at x), and

H1(x, q(x)) ≤ 0, H2(x, q(x)) = 0.

2. If V 1(x)− V 2(x) = −β, then similarly, (V 1)′(x) = (V 2)′(x) =: q(x) and

H1(x, q(x)) = 0, H2(x, q(x)) ≤ 0.

3. If |V 1(x)− V 2(x)| < β, then both

H1(x, (V 1)′(x)) = 0, H2(x, (V 2)′(x)) = 0.

There are a number of other cases, depending on whether x is a smooth point for
one or both of V 1 and V 2 and on the relative sizes of the one-sided derivatives of V a

at x if x is a nonsmooth point for V a. We will work these conditions out as they are
needed.

We begin the construction by noticing that our choice of h(y, a, b) = y2 makes
the system both zero-state observable and detectable (for any control strategy), so
that Propositions 4.2 and 4.3 apply. In particular, for the optimal control and the
disturbance b ≡ 0 the system must converge to 0 for all initial states x and initial
control values a. Since a1 is the only control value which stabilizes the system at
0, it seems clear that, near x = 0, V 1(x) must be the available storage function
W 1(x) associated with the fixed control a1. If one starts with the control a2 and if
x > 0 is close to 0, it is optimal to switch immediately to control a1: the system will
have to switch to a1 eventually in order to reach x = 0 and will only drive up the
cost in |x| by switching later. Hence for x > 0 and close to 0, we expect to have
V 2(x) = β +W 1(x) = β + V 1(x). On the other hand, if we start with control a2

and initial state x < 0 and small in magnitude, we do better to use a2 to drive us to
the origin and then switch to a1 to keep us at the origin. This leads us to conclude
that, for small x with x < 0, V 2(x) is the minimal solution of H2(x, (V 2)′(x)) = 0
with initialization V 2(0) = β. By such direct qualitative reasoning we deduce that
the form of (V 1(x), V 2(x)) for x in a neighborhood of the origin 0 is as asserted.
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For x close to the origin and positive, we are in case (2): we need to check
H1(x, q(x)) = 0 while H2(x, q(x)) ≤ 0, where the q(x) is the common value of (V 1)′(x)
and (V 2)′(x), or p1−(x). The first equation holds trivially while the second holds as a
consequence of p1−(x) < p2−(x) for 0 ≤ x < δ for some δ > 0.

Calculation shows that the first δ for which this latter equality fails is δ = x1 =
3/2, where p1−(x) and p2−(x) cross. At this stage, we arrange that (V

2)′(x) be equal
to p2−(x) instead of p1−(x) while (V

1)′(x) continues to equal p1−(x) to the immediate
right of x1. Note that the continuation of V 2(x) defined in this way is smooth through
x1. In this way we have arranged that both Hamilton-Jacobi equations are satisfied
(Ha(x, (V a)′(x)) = 0 for a = 1, 2). The only catch is to guarantee that we maintain
|V 1(x)− V 2(x)| ≤ β. This condition holds for an interval to the right of x1 since we
have V 1(x1)− V 2(x1) = −β while (V 1)′(x)− (V 2)′(x) = p1−(x)− p2−(x) ≥ 0.

Calculation shows that the first point to the right of x1 at which |V 1(x)−V 2(x)| <
β fails is the point x3 where V 1(x) − V 2(x) = β; if we continue with the same
definitions of V 1(x) and V 2(x) to the right of x3, we get V

1(x)− V 2(x) > β for x to
the immediate right of x3. To fix this problem, to the immediate right of x3 we arrange
that (V 2)′(x) still be equal to p2−(x) but now set V 1(x) = V 2(x) + β. Then points
to the immediate right of x3 are smooth for both V 1 and V 2 and the applicable case
for the check of a viscosity solution at such points is case (1). Trivially we still have
H2(x, (V 2)′(x)) = H2(x, p2−(x)) = 0 while H1(x, (V 1)′(x)) = H1(x, p2−(x)) ≤ 0 since
necessarily V 1(x)−V 2(x) is increasing at x3 from which we get p1−(x)−p2−(x) > 0 on
an interval containing x3 in its interior. At the point x3 itself, we have D

+V 2(x3) =
{p2−(x)} = D−V 2(x3) while D−V 1(x3) = ∅ and D+V 1(x3) = [p2−(x3), p

1
−(x3)]. To

check that (V 1, V 2) is a viscosity solution of SQVI (5.1) at x3 one simply checks
that (i) H2(x3, (V

2)′(x3)) = H2(x3, p
2
−(x3)) = 0 and (ii) H1(x, p) ≤ 0 for all p ∈

[p2−(x3), p
1
−(x3)].

The discussion for x < 0 is quite similar to the above. To the immediate left of 0,
(V 1)′(x) is taken equal to p1+(x) rather than to p1−(x), while (V

2)′(x) is taken equal to
p2−(x). Thus 0 is a smooth point for V 2(x). For points x to the immediate left of 0, we
have Ha(x, (V a)′(x)) = 0 for a = 1, 2, so the only remaining issue for (V 1, V 2) to be a
viscosity solution at such points is the inequality |V 1(x)−V 2(x)| ≤ β. To verify this,
one can check that V 1(0)−V 2(0) = −β and (V 1)′(x)−(V 2)′(x) = p1+(x)−p2+(x) < 0 on
an interval −δ < x < 0. We maintain these definitions of V 1(x) and V 2(x) as x moves
to the left away from the origin until we reach the point x2 where V

1(x)− V 2(x) =
β and continuation of these definitions for x to the left of x2 would lead to the
unacceptable inequality V 1(x) − V 2(x) > β. For x to the left of x2 we let V 2(x)
continue to follow p2+(x) while we set V

1(x) = V 2(x) + β. To the left of x2 we then
have H2(x, (V 2)′(x)) = H2(x, p2+(x)) = 0 while H1(x, (V 1)′(x)) = H1(x, p2+(x)) ≤ 0
since we still have p2+(x) > p1+(x) for x < 0; this verifies that (V 1, V 2) is a viscosity
solution of SQVI (5.1) for x < x3. At x = x3, one checks the viscosity solution
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conditions by noting that H2(x3, (V
2)′(x2)) = H2(x2, p

2
+(x2)) = 0 and H1(x2, p) ≤ 0

for all p ∈ D+V 1(x2) = [p1+(x2), p
2
+(x2)].

It should be possible to verify that any deviation from this construction which
maintains the property that (V 1, V 2) is a viscosity supersolution leads to a larger
(V 1, V 2); Theorem 3.8 (apart from the technical gaps that we have searched only
through all piecewise C1 viscosity supersolutions rather than through all lower semi-
continuous viscosity supersolutions and that B = IRis not compact) then implies that
(V 1, V 2) constructed as above is the lower-value function for this switching-control
game. Instead we now give an alternative direct argument that (V 1, V 2) is indeed the
lower value function.

The strategy α∗ associated with our solution (5.5), (5.6) is easy to describe in
state-feedback terms. Define the switching sets

S1 = {x : V 2(x) = β + V 1(x)} = [0, x1],

S2 = {x : V 1(x) = β + V 2(x)} = (−∞, x2] ∪ [x3,∞).

The strategy α∗ will instantly switch from a = 1 to a = 2 whenever y(t) ∈ S2, and
instantly switch from a = a2 to a = a1 whenever y(t) ∈ S1. Otherwise α

∗ continues
using the current control state. Theorem 3.8 would imply that V a

γ ≤ V a, where V a
γ

are the lower values. We will prove directly that in fact V a
γ = V a, and that our

strategy α∗ is optimal. To be precise, we shall show that for any j and any strategy
α ∈ Γ

V j(y(0)) ≤ sup
b∈B

sup
T>0

{∫ T

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2] ds+

∑
τi≤T

k(ai−i, ai)

}
.

(5.10)

Moreover, for our strategy α∗, (5.10) will be an equality for all x, j. The key to this
is the existence of a particular “worst case” disturbance, as described in the following
proposition. This proposition is intended only in the context of the particular example
and parameter values described above.

Proposition 5.1 For any x ∈ IRn, j ∈ {1, 2} and strategy α ∈ Γ, there exists a
disturbance b∗ = b∗

αj
x
∈ B with the property that

b∗(t) =
1

2γ2
(V αj

x[b
∗])(t))′(yx(t, αj

x[b], b)),

holds for all but finitely many t in every interval [0, T ].
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Proof Suppose j, α ∈ Γ and an initial point x ∈ IRn are given. Begin by considering
the solution of

ẏ = f(y, aj,
1

γ2
(V j)′(y)); y(0) = x. (5.11)

For j = 2 the right side is C1, so the solution is uniquely determined. For j = 1,
the right side has discontinuities at x2 and x3, but since f(x, aj , 1

γ2
(V 1)′(x)) does

not change sign across the discontinuities, the solution is again uniquely determined.
Graphs of f(y, aj, 1

γ2
(V j)′(y)) are provided in Figures 2 and 3 below. (We comment

that although the graphs appear piecewise linear, they are not. Figure 2 is linear
only for 0 < x < x1 and Figure 3 is only linear for x2 < x < x3, as inspection of the
formulas shows.) Since yẏ < 0 for sufficiently large |y|, it is clear that the solution of
(5.11) is defined for all t ≥ 0. Observe also for j = 1 that, for any solution of (5.11),
there is at most one value of t for which y(t) is at one of the discontinuities of (V 1)′.
Thus (V j)′(y(t)) is undefined for at most a single t value.

-1 1 2 3

-6

-4

-2

2

4

6

Figure 2: Plot of f(x, 2, 1
2γ2

DV 2(x)).

Now consider the disturbance b(t) = 1
γ2
(V j)′(y(t)). The control αj

x[b](t) produced
for this disturbance will only take the value j on the initial interval: 0 = τ0 ≤ t ≤ τ1.
We define b∗(t) = b(t) = 1

γ2
(V j)′(y(t)) for these t. At t = τ1 the control αj

x[b] will

switch from j to j′. We therefore redefine y(t) for t > τ1 as the solution of

ẏ = f(y, j′,
1

γ2
(V j′)′(y))
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Figure 3: Plot of f(x, 1, 1
2γ2

DV 1(x)).

with initial value y(τ1) as already determined. Likewise, redefine b(t) = 1
γ2
(V j′)′(y(t))

for t > τ1. Because we have not changed b on [0, τ1], the nonanticipating property of
strategies insures that αx[b](t) for t ≤ τ1 and τ1 remain the same for this revised b.
Using the new b, the control αj

x[b](t) determines the next switching time τ2. We know
that τ1 < τ2 ≤ ∞ and αj

x[b](t) = j′ for τ1 < t ≤ τ2. We now extend our definition of
b∗ with b∗(t) = b(t) for τ1 < t ≤ τ2. At τ2 the control switches again, back to j. So we
now redefine y(t) and b(t) for t > τ2 by taking y(τ1) as already determined, solving

ẏ = f(y, j,
1

γ2
(V j)′(y))

and redefining b(t) = 1
γ2
(V j)′(y(t)) for t > τ2. For t ≤ τ2 the values of b(t), α

j
x[b](t),

and y(t) remain unchanged, again by the nonanticipating hypothesis. We now identify
the switching time τ3 associated with α

j
x[b](t), and extend our definition for τ2 < t ≤ τ3

using b∗(t) = b(t). At τ3 the control will switch again to j
′, so continue our redefinition

process again for t > τ3.
Continuing this redefinition and extension process, we produce the desired distur-

bance b∗(t) and state trajectory y(t) associated with the control αj
x[b

∗](t) satisfying
the requirements of the proposition. The only conceivable failure of this construction
would be if the switching times τi which are generated in the construction were to
have a finite limit: lim τi = s < ∞. Our hypotheses on the strategy α disallow this
however, for the following reason. If it were the case that lim τi = s <∞, then extend
our definition of b∗ in any way to t ≥ s, say b∗(t) = 0. By hypothesis, αj

x[b
∗] is an

admissible control in A, which means in particular that its switching times τi do not
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have a finite accumulation point. But extension of b∗ for t > s does not alter the
switching times τi < s, by the nonanticipating property again. This would mean that
α[b∗] does have an infinite number of switching times τi < s, a contradiction. Finally,
by our comments above, on each interval [τi, τi+1] there is at most a single t value at

which (V αj
x[b

∗])′(t) is undefined. Thus there are at most a finite number of such t in
any [0, T ]. ♦

Consider now any strategy α ∈ Γ, initial position x = y(0) and associated distur-
bance b∗ be as in the proposition. On any time interval [τi, τi+1] between consecutive
switching times, (5.8) and the fact that b∗(t) achieves the infimum in (5.2) for x = y(t)
and p = (V ai)′(x) implies that (for all but finitely many t)

d

dt
V ai(y(t)) ≥ (γb∗(t))2 − h(y(t), ai, b

∗(t)).

Thus for any τi < t ≤ τi+1 we have

V ai(y(t))− V ai(y(τi)) ≥
∫ t

τi

γ2|b∗|2 − h ds.

Across a switching time τi we have from (5.7)

V ai − V ai−1 ≥ −β = −k(ai−1, ai).
Adding these inequalities over τi ≤ T we see that

V α[b∗](T )(y(T ))− V α[b∗](0)(y(0)) ≥ −
{∫ T

0

[h− γ2|b∗|2] ds+
∑
τi≤T

k(ai−1, ai)

}
.

A rearrangement of this gives

V α[b∗](T )(y(T )) +

{∫ T

0

[h− γ2|b∗|2] ds+
∑
τi≤T

k(ai−1, ai)

}
≥ V α[b∗](0)(y(0)). (5.12)

When we consider α∗ specifically, we recognize that

Hai(y(t), (V ai)′(y(t))) = 0

(where we set in general Hai = H i and V ai = V i for i = 1, 2) for t between the τi,
and at τi

V ai+1 − V ai = −β = −k(ai+1, ai).

This means that (5.12) is an equality for α∗ specifically.
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To finish our optimality argument we will show that for α in general above, as
T →∞ we must have either y(T )→ 0 and α[b∗](T )→ 1, or else∫ T

0

[h− γ2|b∗|2] ds+
∑
τi≤T

k(ai−1, ai)→ +∞. (5.13)

In the case of α∗ specifically, we will have the former possibility. Since V 1(0) = 0 and
is continuous, these facts imply (5.10) as claimed. The verification of these asserted
limiting properties depends on some particular inequalities for (V a)′(x) as determined
by (5.6), (5.5). First, we assert that, for both a = 1 and a = 2,

h(x, a, b∗)− γ2|b∗|2 = |x|2 − 1

4γ2
[(V a)′(x)]2 > 0, for x 6= 0. (5.14)

Moreover |x|2 − 1
4γ2

[(V a)′(x)2 has a positive lower bound on {x : |x| ≥ ε} for each
ε > 0. Instead of what would be a very tedious algebraic demonstration of this, we
simply offer the graphical demonstration in Figure 4. For the parameter values (5.4)
we have plotted b∗ = 1

2γ
(V a)′(x) (solid lines) and q = x (dashed lines) as functions of

x. The validity of (5.14) is apparent.

x2 x1 x3 x2 x1 x3

Figure 4: Graphical verification of (5.14) for DV 1 (left) and DV 2 (right)

The other fact we need is that for a = 2 and the corresponding disturbance b∗(t),
the state-dynamics does not have an equilibrium at 0. This is easy to see, because
at x = 0 we have b∗ = 1

2γ2
(V 2)′(0) = 0, but f(0, a2, b∗) = −µ + b∗. A graph of

f(x, a2, b∗) = −µ(x− 1) + 1
2γ2

(V 2)′(x) is provided in Figure 2, where we see a unique
equilibrium just beyond x = 1.

In the case of a = 1 however, ẋ = f(x, a1, 1
2γ2

(V 1)′(x)) has a unique globally
asymptotically stable equilibrium at x = 0, as is evident in Figure 3.

We turn then to the verification of the assertion of (5.13) or its alternative: assum-
ing (5.13) to be false we claim that y(T )→ 0 and α[b∗](T )→ 1. By the nonnegativity
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from (5.14) we must have both∑
τi<∞

k(ai−1, ai) <∞, and

∫ ∞

0

[h− γ2|b∗|2] dx <∞. (5.15)

The first of these implies that there are only a finite number of switches; α[b∗](t) = ai
∗

is constant from some time on. It is not possible that i∗ = 2 because in that case y(t)
would be converging to the positive equilibrium of Figure 2, which implies by (5.14)
that, as t→∞,

h(y(t), ai∗, b
∗(t))− γ∗|b∗(t)|2 → C > 0.

This contradicts the second part of (5.15). Therefore i∗ = 1, which shows that
α[b∗](T ) → 1. But since α[b∗](t) = 1 from some point on, the stability illustrated
in Figure 3 means that y(t) → 0 as claimed. This completes our verification of the
optimality of the strategy α∗.
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