
Robust optimal stopping-time control for nonlinear
systems

Joseph A. Ball, Jerawan Chudoung and Martin V. Day
Department of Mathematics, Virginia Tech,

Blacksburg, VA 24061, USA (first and third author);
Department of General Engineering,

University of Illinois at Urbana-Champaign,
Urbana, IL 61801 (second author)

Abstract. We formulate a robust optimal stopping-time problem for a state-space
system and give the connection between various notions of lower value function for
the associated games (and storage function for the associated dissipative system) with
solutions of the appropriate variational inequality (VI) (the analogue of the Hamilton-
Jacobi-Bellman-Isaacs equation for this setting). We show that the stopping-time
rule can be obtained by solving the VI in the viscosity sense and a positive definite
supersolution of the VI can be used for stability analysis.

Key Words. variational inequality, viscosity solution, worst-case disturbance atten-
uation, differential game, value function, storage function, nonanticipating strategy,
state-feedback control, stopping-time rule

AMS Classification. Primary: 49J35; Secondary: 49L20, 49L25, 49J35, 93B36,
93B52

Abbreviated title. Stopping-time control.

1 Introduction

We consider state space systems of the form

Σst

{
ẏ(t) = f(y(t), b(t))
z(t) = h(y(t), b(t)),
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where y(·) ∈ IRn denotes the state, b(·) ∈ B ⊆ IRm denotes the deterministic unknown
disturbance on the system, and z(·) ∈ IR is the cost function. In addition we assume
that we are given a positive real-valued stopping cost function y → Φ(y) defined for
states y ∈ IRn. We consider the cost of running the system up to time T with initial
condition x, disturbance b and stopping time τ to be the quantity

CT (x, τ, b) =

∫ T∧τ

0

h(yx(s, b), b(s)) ds + 1[0,T ](τ)Φ(yx(τ, b)).

We have used the notations yx(s, b) for the solution of ẏ = f(y, b) with yx(0, b) = x,
1[0,T ] for the indicator function with value 1 if τ ∈ [0, T ] and 0 otherwise, and T ∧ τ
for min{T, τ}. (In the sequel we will often abbreviate yx(s, b) to yx(s); the precise
meaning should be clear from the context.) For a prescribed tolerance level γ > 0,
we seek a stopping-time rule τ ∈ [0,∞] so that

CT (x, τ, b) ≤ γ2

∫ T∧τ

0

|b(s)|2 ds + U(x) (1.1)

for all locally L2 disturbances b, all nonnegative real numbers T and some bias func-
tion U , i.e., a nonnegative real-valued function U with U(0) = 0. In the open loop
version of the problem, τ is simply a nonnegative extended real number. In the state-
feedback version of the problem, τ is a function of the current state in the sense that
one decides on whether to stop or continue at a given point in time t as a function
of the state vector y(t) at time t. In the standard game-theoretic formulation of the
problem, τ is taken to be a nonanticipating function of the disturbance b, i.e., one
decides whether τ ≤ t based solely on the information consisting of the initial state
x and the past of the disturbance b|[0,t]. The dissipation inequality (1.1) can then
be viewed as the analogue of the closed-loop system (with L2-norm of output signal
being taken to be CT (x, τ, b) for each finite-time horizon [0, T ]) having L2-gain of at
most γ. A refinement of the problem then asks for the control τ which gives the best
system performance, in the sense that the nonnegative function U(x) is as small as
possible. A closely related formulation is to view the stopping-time system as a game
with payoff function

JT (x, τ, b) =

∫ T∧τ

0

[h(yx(s, b), b(s))− γ2|b(s)|2] ds + 1[0,T ](τ)Φ(yx(τ, b))

where the disturbance player tries to use b(·) and T to maximize the payoff, while the
control player tries to use the stopping time τ to minimize the payoff. The control
decision at each moment of time is whether to stop and cut one’s losses (with penalty
Φ(yx(τ)) in addition to the accumulated running cost up to time τ), or to continue
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running the system (including the possibility of never stopping the system before the
disturbance stops it). As we shall introduce a variation on this game below, we shall
refer to this game as Game I.

We define a lower-value function for Game I as

W (x) = inf
τ
sup
b, T

{
1[0,T ](τx[b])Φ(yx(τx[b])) +

∫ T∧τx[b]

0

[h(yx(s), b(s))− γ2|b(s)|2] ds

}
(1.2)

where the supremum is over all nonnegative real numbers T and L2-disturbance sig-
nals b, while the infimum is over all nonanticipating control strategies (x, b) → τx[b]
satisfying 0 ≤ τx[b] ≤ ∞. Then by construction W (x) gives the smallest possible
value which can satisfy (1.1) (with W in place of U) for some strategy τ .

We now introduce a variation on Game I which we shall call Game II. For the rules
of Game II, the maximizing player no longer controls a cutoff time T but rather only
the disturbance b, while the minimizing player is constrained to play only nonantici-
pating stopping-time rules (x, b) → νx[b] with finite values (νx[b] < ∞ for all (x, b)),
and the payoff function is taken to be J∞(x, ν, b). In this formulation, the payoff is
guaranteed to be finite due to νx[b] < ∞ rather than from T < ∞. The lower value
function for Game II is then given by

V (x) := inf
ν
sup

b

{
Φ(yx(νx[b])) +

∫ νx[b]

0

[h(yx(s), b(s))− γ2|b(s)|2] ds

}
, (1.3)

where the infimum is over all finite-valued nonanticipating control strategies. From
the L2-gain perspective, V (x) is associated with the desire to optimize the perfor-
mance bound∫ ν

0

h(yx(s), b(s)) ds + Φ(yx(ν)) ≤ γ2

∫ ν

0

|b(s)|2 ds + U(x),

(over finite-valued stopping-time rules ν).
For the purposes of comparison, we also introduce the available storage function

Sa(x) associated with a disturbance-input to cost-output system (with stopping-time
options ignored)

Sa(x) := sup
b, T

{∫ T

0

[h(yx(s), b(s))− γ2|b(s)|2] ds

}
. (1.4)

The function Sa(x) is associated with the desire to optimize the standard performance
bound associated with L2-gain attenuation level γ for an input-output system (with
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all stopping options ignored)∫ T

0

h(yx(s), b(s)) ds ≤ γ2

∫ T

0

|b(s)|2 ds + U(x).

Under some technical assumptions, this available storage function Sa is a viscosity
solution in IRn of the Hamilton-Jacobi-Bellman equation (HJBE) H(x, DSa(x)) = 0,
where

H(x, p) := inf
b
{−p · f(x, b)− h(x, b) + γ2|b|2}.

Moreover if Sa is continuous, then it is characterized as the minimal, nonnegative,
continuous viscosity supersolution of the HJBE [19] (see [15] and [6] for earlier versions
and [7, Appendix B], [20] and [13] for further refinements).

In addition we introduce the notion of a stopping-time storage function S for a
closed-loop stopping-time system (with some particular stopping-time rule (x, b) →
τx[b] already implemented) with disturbance-input b, namely, a nonnegative function
x → S(x) such that

1(T,∞)(τx[b])S(yx(T, b))− S(x)

≤ ∫ T∧τx[b]

0
[γ2|b(s)|2 − h(yx(s), b(s))] ds − 1[0,T ](τx[b])Φ(yx(τx[b], b))

(1.5)

for all b ∈ B and T ≥ 0. If we set τx[b] = ∞ for all x ∈ IRn and b ∈ B, we recover
the notion of storage function (associated with L2-gain supply rate) introduced by
Willems (see [21] and [17]). The control problem then is to find the stopping-time rule
(x, b) → τx[b] which gives the best performance, as measured by obtaining the minimal
possible S(x) as the associated closed-loop storage function. This suggests that the
stopping-time available storage function Sst,a (i.e., the minimal possible stopping-
time storage function over all possible stopping-time rules) should be equal to the
lower-value function W for Game I; we shall see that this is indeed the case with
appropriate hypotheses imposed.

Our main results concerning the robust stopping-time problems are as follows:
under minimal smoothness assumptions on the problem data,

1. If the lower value function W for Game I is upper semicontinuous, then W is a
viscosity subsolution in IRn of the variational inequality (VI) given by

max{H(x, DV (x)), V (x)− Φ(x)} = 0, x ∈ IRn.

If W is lower semicontinuous, then W is a viscosity supersolution of the VI.
Thus if W is continuous, W is a viscosity solution of the VI. In fact, if W
is continuous, then W can be characterized as the the minimal, nonnegative,
continuous viscosity supersolution of the VI. (The precise definition of viscosity-
sense supersolutions, subsolutions and solutions will be given in Section 2.)
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2. If continuous, the lower value function V for Game II is a viscosity solution of
the VI. Moreover in certain cases V is characterized as the maximal viscosity
subsolution of the VI.

3. Any locally bounded stopping-time storage function (for some stopping-time
strategy τ) is a viscosity supersolution of the VI; conversely, if U is any non-
negative continuous viscosity supersolution of the VI, then U is a stopping-
time storage function with stopping-time rule of state-feedback form given by
τU,x[b] = inf{t ≥ 0 : U(yx(t, b)) ≥ Φ(yx(t, b))}, and U ≥ W.

It also happens that a positive definite supersolution U of the VI can be used to prove
stability of the equilibrium point 0 for the system with zero disturbance ẏ = f(y, 0).
We also obtain the lower-value function W (x) explicitly for a prototype problem with
one-dimensional state space by a simple, direct, geometric construction.

The robust stopping-time control problem as formulated here can be viewed as
a stopping-time analogue of the nonlinear version of the standard problem of H∞-
control (see [14], [17]). For the nonlinear H∞-control problem, one is given a system
of the form

ẏ(t) = f(y(t), a(t), b(t)), y(0) = x. (1.6)

where y(t) is the state-variable and b(t) is the disturbance signal as in the stopping-
time problem, but the control is a locally L2 input signal a(t) with values in some
real Euclidean space IRp. The cost of running the system up to time T with initial
condition x, disturbance b and control a is taken to be the quantity

CH∞
T (x, a, b) =

∫ T

0

h(yx(s, a, b), b(s)) ds

(where y(t, a, b) is the solution of (1.6) with control input a(t), disturbance input
b(t) and initial condition y(0) = x). The goal of the H∞-control problem then is to
select a control signal a(t) (in state-feedback or nonanticipating strategy form) so as
to guarantee that the closed loop system has L2-gain at most equal to γ, i.e., that
the dissipation inequality

CH∞
T (x, a, b) ≤ γ2

∫ T

0

|b(s)|2 ds + U(x)

holds for all locally L2-disturbances b and finite times T for some nonnegative bias (or
storage) function U(x) with U(0) = 0. In addition, under appropriate hypotheses,
one can use the storage function U(x) as a Lyapunov function to prove that the
trajectories of the closed-loop disturbance-free (b = 0) system tend asymptotically
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to the equilibrium point 0 as time tends to infinity. The theory and results sketched
above for our stopping-time problem parallel the standard results concerning the
nonlinear H∞-control problem found, e.g., in [17] and [19].

Optimal stopping-time problems have a long history in probability theory. There
is an enjoyable introductory exposition in [11] and a more thorough treatment in [8],
[12] and [18]. Just as (deterministic) robust control has many analogies with classical
stochastic control, our idea here can be viewed as developing a deterministic robust
analogue of optimal stopping. A stochastic stopping-time game is formulated in [8,
Section 2.9], but with both players having only the option to stop the system (as
opposed to our setup with one player having an input-signal control and the other
player having a stopping-time option). A deterministic formulation of an optimal
stopping-time problem is discussed in Section III.4.2 of [7], but with a discounted
cost rather than dissipation inequality (e.g. (1.1)) and with no disturbance competing
with the control as in the robust approach.

Optimal stopping-time problems have a superficial resemblance to problems with
restricted state space in which a cost like our Φ(yx(τ)) is imposed at the exit time
τ from some prescribed domain Ω. See Chapter IV of [7] for instance. In optimal
stopping problems no such domain is prescribed. The analogous role is played by
Ω = {x : W (x) < Φ(x)}, which is only known implicitly in terms of the value
function W (x). The point of using some sort of variational inequality (VI), as we do
here, is to avoid any explicit reference to this domain and work in the full state space
IRn without regard to any prescribed domain of allowable states.

The derivation of the VI for the stopping-time problem is a direct application
of the method of dynamic programming standard in control theory. The technical
contribution here to the optimal stopping-time problem can be seen as parallel to
that of Soravia in [19] for the nonlinear H∞-control problem: to extend the game-
theoretic, dynamic-programming approach to the infinite-horizon setting where, due
to a lack of discount factor in the running cost, the running cost is not guaranteed
to be integrable over the infinite interval [0,∞). This forces the introduction of the
extra “disturbance player” T in (1.2) and (1.4) in the formulation of Game I (or of the
finiteness restriction for admissible stopping-time rules in the formulation of Game
II) and complicates many of the proofs.

Our original motivation for this study of robust optimal stopping-time problems
was as a simpler prototype of a robust control problem with switching costs; the robust
switching-cost problem is discussed in a separate publication [3]. The switching-cost
problem, in turn, was motivated by an application to robust, optimal feedback-control
of traffic signals (see [4], [5]), where the imposition of switching costs for change of
traffic-signal settings can be used as a tuning parameter for control of the traffic
signalization which also eliminates chattering in the optimal control.

The paper is organized as follows. Following the present Introduction, Section
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2 presents assumptions and definitions. Section 3 presents the main results on the
connection between value functions and solutions of variational inequalities; Section
3.1 handles the lower-value function W for Game I, Section 3.2 gives the results
concerning stopping-time storage functions, and Section 3.3 sketches the results for
the lower-value function V for Game II. Section 4 presents the state feedback robust
stopping control, together with an illustrative example with one-dimensional state
space where the value function and the associated feedback control are explicitly
computable.

Finally we would like to thank the anonymous referee for a number of comments
which led to improvements in the exposition.

2 Formulations and Definitions

We make the following assumptions on the problem data:

(A0) 0 ∈ B ⊆ IRm and B is closed;
f : IRn × B → IRn and h : IRn × B → IR are continuous;

(A1) f and h are bounded on B(0, R)× B for all R > 0;

(A2) there are moduli ωf and ωh such that

|f(x, b)− f(y, b)| ≤ ωf (|x − y|, R)

|h(x, b)− h(y, b)| ≤ ωh(|x − y|, R),

for all x, y ∈ B(0, R) and R > 0, where a modulus is a function ω : IR+ ×
IR+ → IR+ such that, for all R > 0, ω(·, R) is continuous, nondecreasing and
ω(0, R) = 0;

(A3) (f(x, b)− f(y, b)) · (x − y) ≤ L|x − y|2 for all x, y ∈ IRn and b ∈ B;

(A4) Φ : IRn → IR+ is continuous with positive values;

(A5) h(x, 0) ≥ 0 for all x ∈ IRn.

Remark 2.1 Note that assumption (A1) eliminates the linear-quadratic case (where
f is linear in y and b and h is quadratic in the components of y and b) if B is taken
to be an entire Euclidean space IRm. If B is restricted to a compact subset, e.g., a
large closed ball B(0, R) ⊂ IRm, then the assumptions (A0)–(A5) do apply in the
linear-quadratic case; this is sufficient for many applications.
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For a specified gain parameter γ > 0 we define the running cost function

l(x, b) := h(x, b)− γ2|b|2,

and the Hamiltonian

H(x, p) := inf
b∈B

{−p · f(x, b)− l(x, b)}. (2.1)

Note that H(x, p) < +∞ for all x, p ∈ IRn by (A1). Under assumptions (A0)-(A3),
we can show that H is continuous. (The proof is similar to that in [7, page 106].) Let
B denote the set of locally square integrable functions b : [0,∞) → B. We consider
B to be the set of admissible disturbances. We look at trajectories of the nonlinear
dynamical system

ẏ(s) = f(y(s), b(s)), y(0) = x ∈ IRn. (2.2)

Under the assumptions (A0), (A1) and (A3), for each b ∈ B and x ∈ IRn the solution
of (2.2) exists and is unique for all s ≥ 0. (The proof of this result is in III.5 of
[7].) The solution of (2.2) will be denoted by yx(s, b), or briefly by yx(s) if there is
no confusion. The basic estimates on yx are the following (for the proofs see Section
III.5 of [7]):

|yx(t, b)− yz(t, b)| ≤ eLt|x − z|, t > 0 (2.3)

|yx(t, b)− x| ≤ Mxt, t ∈ [0, 1/Mx], (2.4)

|yx(t, b)| ≤ (|x|+
√
2Kt)eKt, t > 0, (2.5)

for all b ∈ B, where

Mx := sup{|f(z, b)| : |x − z| ≤ 1, b ∈ B}
K := L + sup{|f(0, b)| : b ∈ B}.

For each b ∈ B and x ∈ IRn, a stopping-time rule τ associates a single time:
0 ≤ τx[b] ≤ +∞. The essential nonanticipating property of a stopping-time rule τ is
that, for every t ≥ 0, whenever two disturbances b and b̃ agree up to t,

b(s) = b̃(s) for all s ≤ t

then

1[0,t](τx[b]) = 1[0,t](τx[b̃]) for all x.
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In other words, knowing the history of b(s) for s ≤ t is enough to answer the question
of whether or not τx[b] ≤ t. We denote the set of stopping-time rules which have the
nonanticipating property by Γ, i.e.,

Γ := {τ : IRn × B → [0,+∞] : τ is nonanticipating}.

If b ∈ B is a disturbance, x ∈ IRn is an initial state and t > 0, then we may consider
yx(t, b) as a new initial state imposed at the time t. If τ ∈ Γ has the additional
property

τx[b] = t + τyx(t,b)[bt] for all b ∈ B and all x ∈ IRn with τx[b] ≥ t (2.6)

(where we have set bt(s) = b(t+s) for all b ∈ B), we shall refer to τ as a state-feedback
stopping-time rule. In this case, given that the system has continued running up to
time t, the decision of whether to stop immediately at time t or to continue can be
read off from the current value of the state y(t).

Let us introduce the notion of upper and lower semicontinuous envelope of a
function U : IRn → [−∞,+∞]. These two new functions are, respectively,

U∗(x) := lim sup
r→0+

{U(z) : |z − x| ≤ r}
U∗(x) := lim inf

r→0+
{U(z) : |z − x| ≤ r}.

It is well-known that if U is locally bounded, then U∗ ∈ LSC(IRn) and U∗ ∈ USC(IRn).
Now we are ready to give the definition of a viscosity solution of a variational inequal-
ity

max{H(x, DU(x)), U(x)− Φ(x)} = 0, x ∈ IRn. (VI)

Definition 2.2 A locally bounded function U : IRn → [−∞,+∞] is a viscosity sub-
solution of the VI in IRn if for any Ψ ∈ C1(IRn)

max{H(x0, DΨ(x0)), U(x0)− Φ(x0)} ≤ 0 (2.7)

at any local maximum point x0 ∈ IRn of U∗ − Ψ. Similarly, U is a viscosity superso-
lution of the VI in IRn if for any Ψ ∈ C1(IRn)

max{H(x1, DΨ(x1)), U(x1)− Φ(x1)} ≥ 0 (2.8)

at any local minimum point x1 ∈ IRn of U∗ − Ψ. Finally, U is a viscosity solution of
the VI if it is simultaneously a viscosity subsolution and supersolution.
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When U is continuous, the set of values DΨ(x0) occurring in (2.7) is usually called
the superdifferential of U at x0:

D+U(x0) = {DΨ(x0) : Ψ ∈ C1(IRn) such that U −Ψ has a local maximum at x0}.

The subdifferential D−U(x1) of values of DΨ(x1) occurring in (2.8) is defined analo-
gously. We note however that continuity of U is not assumed in the above definition.
This is the general definition of viscosity solution for functions U that might be dis-
continuous.

We shall need the following theorem in the exposition below. The proof is similar
to that of Theorem 3.6 in [13], and hence will be omitted. For this result we need a
strengthened local version of assumption (A3):

(A3′) For each x0 ∈ IRn and ε > 0, there is a constant K > 0 so that |f(x, b) −
f(y, b)| ≤ K|x − y| for all x, y ∈ B(x0, ε).

Theorem 2.3 Let Ω be an open subset of IRn and U ∈ C(Ω). Assume (A0), (A1),
(A2) and (A3′). If H(x, p) ≥ 0 for all x ∈ Ω and all p ∈ D−U(x), then

U(yx(ν, b))− U(yx(t, b)) ≥
∫ t

ν

l(yx(s), b(s)) ds,

for all b ∈ B, x ∈ Ω, 0 ≤ ν ≤ t < τx[b], where τx[b] := inf{t ≥ 0 : yx(t, b) �∈ Ω}.

Remark 2.4 The suggested proof of Theorem 2.3 from [13, Theorem 3.6] uses addi-
tional geometric notions and results from nonsmooth analysis (other than that of sub-
differential D−U(x) introduced here), such as the contingent epiderivative D↑U(x) of
U at x, the contingent tangent cone TEpi(U)(x, U(x)) to the epigraph Epi(U)(x, U(x))
of U at (x, U(x)), the equality Epi(D↑U(x)) = TEpi(U)(x, U(x)) (see Chapter 9 of [2]),
and application of a Viability Theorem from [2]. Under the stronger assumption that
l is bounded on Ω × B, the result of Theorem 2.3 follows via a purely test-function
approach using only ideas related to viscosity supersolutions as in [7, page 92].

3 Viscosity solutions of variational inequalities

In this section we derive the main results concerning the robust stopping-time problem
stated in the Introduction.
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3.1 The lower value function for Game I

Some simple inequalities are obvious from the definition of W . By using T = 0 (and
Φ ≥ 0) in the definition of W , we see that

W (x) ≥ 0. (3.1)

Using τ ≡ 0 gives

W (x) ≤ Φ(x). (3.2)

On the other hand, τ ≡ +∞ gives

W (x) ≤ Sa(x), (3.3)

where Sa is the available storage function given by (1.4).

Proposition 3.1 Assume (A0)-(A5). Then for x ∈ IRn and t > 0

W (x) ≤ sup
b∈B, T>0

{∫ T∧t

0

l(yx(s), b(s)) ds + 1[0,T )(t)W (yx(t, b))

}
(3.4)

≤ sup
b∈B

{∫ t

0

l(yx(s), b(s)) ds + W (yx(t, b))

}
(3.5)

Proof We begin with (3.4). By the definition of W for each ε > 0 there is a stopping-
time rule τ ε so that

W (z) + ε >

∫ T∧τε
z [b]

0

l(yz(s), b(s)) ds + 1[0,T ](τ
ε
z [b])Φ(yz(τ

ε
z [b])) (3.6)

for all z ∈ IRn, T > 0 and b ∈ B. Fix t > 0. For each b ∈ B, we define

bt(s) = b(s + t), s ≥ 0.

For τ ∈ Γ define τ̄ : IRn × B → IR+ ∪∞ by

τ̄x[b] = t + τyx(t,b)[bt].

It is easy to check that τ̄ has the nonanticipating property whenever τ does, and
hence τ̄ ∈ Γ for τ ∈ Γ.

Fix x ∈ IRn. By the definition of W , for each ε > 0 and τ ∈ Γ we may choose
Tτ,ε > 0 and bτ,ε ∈ B so that

W (x)− ε ≤
∫ Tτ,ε∧τx[bτ,ε]

0

l(yx(s), bτ,ε(s))ds + 1[0,T ](τx[b])Φ(yx(τx[bτ,ε])).
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We may specialize this general inequality to the case where τ is of the form τ̄ for
some τ ∈ Γ. In this case τ̄x[bτ̄ ,ε] ≥ t and we obtain

W (x)− ε ≤ ∫ Tτ̄ ,ε∧t

0
l(yx(s), bτ̄ ,ε(s)) ds

+1[0,Tτ̄ ,ε)(t)
{∫ Tτ̄ ,ε∧τ̄x[bτ̄ ,ε]

t
l(yx(s), bτ̄ ,ε(s)) ds + 1[t,Tτ̄ ,ε](τ̄x[bτ̄ ,ε])Φ(yx(τ̄x[bτ̄ ,ε]))

}
(3.7)

For t < Tτ̄ ,ε, by the change of variable ν = s − t we have∫ Tτ̄ ,ε∧τ̄x[bτ̄ ,ε]

t
l(yx(s), bτ̄ ,ε(s)) ds + 1[t,Tτ̄ ,ε](τ̄x[bτ̄ ,ε])Φ(yx(τ̄x[bτ̄ ,ε]))

=
∫ (Tτ̄ ,ε−t)∧τyx(t,bτ̄,ε)[(bτ̄ ,ε)t]

0 l(yyx(t,bτ̄ ,ε)(ν), (bτ̄ ,ε)t(ν)) dν
+1[0,Tτ̄ ,ε−t](τyx(t,bτ̄ ,ε)[(bτ̄ ,ε)t])Φ(yyx(t,bτ̄ ,ε)(τyx(t,bτ̄ ,ε)[(bτ̄ ,ε)t]))}

(3.8)

Apply (3.6) to the case

z = yx(t, bτ ,ε), b = (bτ,ε)t, T = Tτ ,ε − t.

Then (3.6) implies that the right hand side of (3.8) (with τ selected to be the τ ε as
in (3.6)) is bounded above by W (yx(t, bτε,ε)) + ε. From (3.7) we finally conclude that

W (x)− 2ε <
∫ T

τε,ε
∧t

0 l(yx(s), bτε,ε(s)) ds + 1[0,T
τε,ε

](t)W (yx(t, bτε,ε))

≤ supb∈B, T>0

{∫ T∧t

0
l(yx(s), b(s)) ds + 1[0,T )(t)W (yx(t, b))

}
.

Since ε > 0 is arbitrary, the result follows.
To establsih the second inequality of the proposition, consider any b ∈ B and

0 < T < t. Define a new b̄ ∈ B by b̄(s) = b(s) for s ≤ T and b̄(s) = 0 for s > T . It
follows that yx(s, b(s)) = yx(s, b̄(s)) for 0 ≤ s ≤ T . For s > T we have

l(yz(s, b̄), b̄(s)) = h(yz(s, b̄), 0) ≥ 0.

Together with (3.1) it follows that∫ T∧t

0

l(yx(s), b(s)) ds + 1[0,T )(t)W (yx(t, b)) ≤
∫ t

0

l(yx(s), b̄(s)) ds + W (yx(t, b̄)).

This implies (3.5) and completes the proof. ♦

Proposition 3.2 Assume (A0)-(A4). If W (x) < Φ(x), then for each b ∈ B there
exists ρ = ρx,b > 0 such that for all t ∈ [0, ρ),

W (x) ≥
∫ t

0

l(yx(s), b(s)) ds + W (yx(t, b)).
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Proof Fix x ∈ IRn. By definition of W (x), for each ε > 0 there is a choice of strategy
τ ε ∈ Γ so that

W (x) + ε >

∫ T∧τε
x [̃b]

0

l(yx(s), b̃(s)) ds + 1[0,t](τ
ε
x [̃b])Φ(yx(τ

ε
x [̃b])) (3.9)

for all T ≥ 0 and all b̃ ∈ B.
We claim that for each b ∈ B there is a number ρb > 0 so that τ ε

x[b] > ρb for
all sufficiently small ε > 0. If not, then there is a b ∈ B and a sequence of positive
numbers {εn} with limit equal to 0 and with τ εn

x [b] tending to 0. Apply (3.9) with εn

replacing ε and with b in place of b̃, use the continuity of Φ and of yx(s) = yx(s, b)
along with the assumption that b is locally square-integrable to take the limit in (3.9)
as n → ∞ to arrive at W (x) ≥ Φ(x), contrary to assumption. We conclude that for
each b ∈ B there is a ρb > 0 so that τ ε

x[b] ≥ ρb for all ε > 0 as asserted.
Fix b ∈ B and choose any t ∈ [0, ρb). By definition of W (yx(t, b)), for any τ ∈ Γ

and for any ε > 0 there is a choice of Tτ,ε ≥ 0 and of bτ,ε ∈ B so that

W (yx(t, b))− ε ≤ ∫ Tτ,ε∧τyx(t,b)[bτ,ε]

0
l(yyx(t,b)(s), bτ,ε(s)) ds

+1[0,Tτ,ε](τyx(t,b)[bτ,ε])Φ(yyx(t,b)(τyx(t,b)[bτ,ε])).
(3.10)

In particular, (3.10) holds for all τ ∈ Γ for which τx[b] ≥ t. For any b̂ ∈ B, define
b̂′ ∈ B by

b̂′(s) =
{

b(s), for 0 ≤ s ≤ t

b̂(s − t), for s > t.

For any τ ∈ Γ with τx[b] > t, we may always find another τ ∈ Γ so that

τx [̂b
′] = τyx(t,b) [̂b] + t for all b̂ ∈ B.

From (3.10) we then get that, for any τ ∈ Γ with τx[b] ≥ t and any ε > 0,∫ t

0
l(yx(s), b(s)) ds + W (yx(t, b))− ε

≤ ∫ t

0
l(yx(s), b(s)) ds +

∫ Tτ,ε∧τyx(t,b)[bτ,ε]

0
l(yyx(t,b)(s), bτ,ε(s)) ds

+1[0,Tτ,ε](τyx(t,b)[bτ,ε])Φ(yyx(t,b)(τyx(t,b)[bτ,ε]))

≤ ∫ t

0
l(yx(s), b(s)) ds +

∫ (Tτ,ε+t)∧(τyx(t,b)[bτ,ε]+t)

t
l(yx(s), b′τ,ε(s)) ds

+1[t,Tτ,ε](τyx(t,b)[bτ,ε])Φ(yx(τyx(t,b)[bτ,ε])

=
∫ (Tτ,ε+t)∧τx[b′τ,ε]

0
l(yx(s), b′τ,ε(s)) ds + 1[0,Tτ,ε+t](τx[b

′
τ,ε])Φ(yx(τx[b

′
τ,ε]).

(3.11)

It is important to note that for any τ̃ ∈ Γ with τ̃x[b] > t, there is a τ̃ ′ in Γ with
τ̃ = τ̃ ′. To see this for a given τ̃ ∈ Γ we must find a τ̃ ′ ∈ Γ so that

τ̃ ′
x [̂b

′] =

{
τ̃x [̂b

′] on the one hand,

τ̃ ′
yx(t,b) [̃b] + t on the other hand,
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or
τ̃x [̂b

′] = τ̃ ′
yx(t,b) [̂b] + t

for all b̂ ∈ B. It is always possible to solve for such a τ̃ ′ due to the nonanticipating
property of τ̃ . We apply this observation in particular to the case τ̃ = τ ε where τ ε is
as in (3.9); thus, for each ε > 0 there is a τ ε′ ∈ Γ so that τ ε′ = τ ε.

If we now specialize (3.9) to the case where

T = Tτε′,ε + t, b̃ = b′τε′,ε,

we can continue the estimate in (3.11) (with the general τ replaced with τ ε′) to get∫ t

0
l(yx(s), b(s)) ds + W (yx(t, b))− ε

≤ ∫ (Tτε′,ε+t)∧τε
x[b′

τε′,ε]
0 l(yx(s), b′τε′,ε(s)) ds + 1[0,Tτε′,ε+t](τ

ε
x[b

′
τε′,ε])Φ(yx(τ

ε
x[b

′
τε′,ε]))

< W (x) + ε

where we used (3.9) for the last step. Since ε > 0 is arbitrary, the result follows. ♦

Theorem 3.3 Assume (A0)-(A5). If W is upper semicontinuous, then W is a vis-
cosity subsolution of the VI in IRn.

Proof Since W (x)−Φ(x) ≤ 0, it is enough to show that W is a viscosity subsolution
of H(x, DW (x)) = 0. It is generally true that viscosity sub- and super-solutions of a
Hamilton-Jacobi equation are (respectively) equivalent to sub- and super-optimality
principles in integrated form. Theorem 2.32 in Chapter III of [7] is a nice presen-
tation of such a result. Our (3.5) is the optimality principle naturally associated
with viscosity subsolutions of H(x, DW (x)) = 0. To apply the theorem of Bardi and
Capuzzo-Dolcetta to our W (x), define u(x) = −W (x), *(x, b) = −l(x, b), and take
λ = 0. With our b ∈ B replacing α ∈ A, their superoptimality principle is equivalent
to our (3.5), and u being a supersolution of their (2.40) is equivalent to W being a
subsolution of our H(x, DW (x)) = 0, as the reader may check. However we are only
assuming that W is upper semicontinuous, which means u is only lower semicontin-
uous. The stated hypothesis in [7] is that u is continuous. Nevertheless, examining
the relevant portion of the proof (which appears on page 105 of [7]), one finds that
lower semicontinuity of u is enough for the part of the argument required for our
proposition above. Lastly, they assume *(x, α) to be bounded, but we want to use
*(x, α) = γ2|α|2 − h(x, α), which is unbounded due to the γ2|α|2 term. This does not
effect their (2.13), since the common γ2|α|2 terms cancel, and our hypotheses on h
provide the needed estimate. Finally the * term in the second integral of their (2.17)
vanishes because λ = 0 for us. Thus their proof remains valid in our context. ♦
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Theorem 3.4 Assume (A0)-(A4). If W is lower semicontinuous, then W is a vis-
cosity supersolution of the VI in IRn.

Proof Fix x ∈ IRn. Let Ψ ∈ C1(IRn) be such that x is a local minimum point of
W∗ −Ψ. Since W is lower semicontinuous, we have

Ψ(x)−Ψ(z) ≥ W∗(x)− W∗(z) = W (x)− W (z), (3.12)

for all z in a neighborhood of x. We want to show that

max{H(x, DΨ(x)), W (x)− Φ(x)} ≥ 0.

If W (x) = Φ(x), the assertion is trivial. Suppose W (x) < Φ(x). We want to show
that H(x, DΨ(x)) ≥ 0. By Proposition 3.2, for each b ∈ B choose tb > 0 such that

W (x) ≥
∫ t

0

l(yx(s), b(s))ds + W (yx(t, b)), ∀t ∈ [0, tb) (3.13)

Fix an arbitrary b ∈ B and let yx(s) be the solution corresponding to the constant
disturbance b(s) = b for all s. Under our assumptions on f , there exists t1 ∈ (0, tb)
such that yx(s) is in the neighborhood of x for which (3.12) holds for all 0 < s ≤ t1.
From (3.12) and (3.13), we have

1

t
[Ψ(x)−Ψ(yx(t))] ≥ 1

t

∫ t

0

l(yx(s), b)ds, ∀t ∈ (0, t1).

Let t → 0, we have

−DΨ(x) · f(x, b)− h(x, b) + γ2|b| ≥ 0.

Since b ∈ B is arbitrary, it follows that

H(x, DΨ(x)) = inf
b∈B

{−DΨ(x) · f(x, b)− h(x, b) + γ2|b|} ≥ 0. ♦

Corollary 3.5 Assume (A0)-(A5). If W is continuous, then W is a viscosity solu-
tion of the VI in IRn.

Remark 3.6 Let Sa be the available storage function for the disturbance-to-cost
system with stopping options ignored as in (1.4). Since Sa is a viscosity solution of
(HJE) in IRn, we have

H(x, D−(Sa)∗(x)) ≥ 0 and H(x, D+(Sa)
∗(x)) ≤ 0, x ∈ IRn.

Thus Sa is a viscosity supersolution of the VI. Moreover if Sa ≤ Φ, then Sa is a
viscosity solution of the VI.
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3.2 The stopping-time storage function

In this section, we collect our results concerning stopping-time storage functions de-
fined as in (1.5).

Theorem 3.7 Assume (A0)-(A4). Then a locally bounded stopping-time storage
function is a viscosity supersolution of the VI.

Proof Suppose that U is a stopping-time storage function with stopping-time rule
τU , i.e.∫ T∧τU,x[b]

0
h(yx(s), b(s)) ds + 1[0,T ](τU,x[b])Φ(yx(τU,x[b], b) + 1(T,+∞](τU,x[b])U(yx(T, b))

≤ γ2
∫ T∧τU,x[b]

0
|b(s)|2 ds + U(x) for all x ∈ IRn, b ∈ B and T ≥ 0.

(3.14)

Fix x ∈ IRn. Let Ψ ∈ C1(IRn) be such that x is a local minimum point of U −Ψ. We
want to show that

H(x, DΨ(x)) ≥ 0 or U(x)− Φ(x) ≥ 0.

If U(x) ≥ Φ(x), the result is obvious. It remains to show that H(x, DΨ(x)) ≥ 0 when
U(x) < Φ(x).

Fix an arbitrary b ∈ B. Set b(s) = b for all s ≥ 0. Choose xk ∈ IRn with
limk→∞ xk = x so that limk→∞ U(xk) = U∗(x). We claim: there is a δ > 0 so that
τU,xk

[b] > δ for all k sufficiently large. If the claim were not true, dropping down to
a subsequence if necessary, we would have limk→∞ tk = 0 where tk := τU,xk

[b]. From
(3.14) applied with a fixed T sufficiently large, we then would have

U(xk) ≥
∫ tk

0

l(yxk
(s), b) ds + Φ(yxk

(tk, b)). (3.15)

From the estimates (2.3)–(2.5) together with assumption (A3) and the assumed con-
tinuity of Φ, we see that limk→∞ Φ(yxk

(tk, b)) = Φ(x) and that l(yxk
(s), b) tends

uniformly to l(yx(s), b) in s on the interval [0, δ]. Hence we can take limits in (3.15)
to get

U∗(x) ≥ Φ(x).

As U(x) ≥ U∗(x) by definition of U∗, this contradicts our assumption that U(x) <
Φ(x), and the claim follows.

Hence, for 0 < t < δ, we may apply (3.14), this time with T = t, to get, for each
k sufficiently large,

U(xk) ≥
∫ t

0

l(yxk
(s), b) ds + U(yxk

(t, b)).
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Letting k tend to infinity and again using that l(yxk
(s), b) tends uniformly in s to

l(yxk
(s), b) on [0, t] and that yxk

(t, b) tends to yx(t, b) lead to

U∗(x) ≥
∫ t

0

l(yx(s), b) ds + lim inf
k→∞

U(yxk
(t, b)) (3.16)

≥
∫ t

0

l(yx(s), b) ds + U∗(yx(t, b)). (3.17)

We now can follow the standard procedure as in the proof of Theorem 3.4 to see that
H(x, DΨ(x)) ≥ 0 as desired. ♦

Remark 3.8 The proof of Theorem 3.7 is adapted from the proof of Proposition
3.2 in [13], where it is shown that, under certain conditions, the lower and upper
semicontinuous envelopes of a storage function is again a storage function for the
classical case (with no stopping options allowed).

Theorem 3.9 Let U : IRn → IR be a nonnegative continuous function and set

ΩU := {x ∈ IRn : U(x) < Φ(x)}. (3.18)

Assume (A0)-(A4) and (A3′). If U is viscosity supersolution of VI in IRn and the
stopping-time rule is given by

τU,x := inf{t : t ≥ 0 and yx(t, b) /∈ ΩU}, (3.19)

then U is a stopping-time storage function with stopping-time rule τU of state-feedback
form (see (2.6)), and U ≥ W . Thus if W is continuous, then W is characterized as the
minimal nonnegative continuous viscosity supersolution of VI, as well as the minimal
possible continuous closed-loop storage function over all possible stopping-time rules
τ ∈ Γ.

Proof Since yx(t + s, b) = yyx(t,b)(s, bt) (where bt(s) = b(t + s)), it is clear that τU as
defined in (3.19) satisfies the state-feedback property (2.6).

Suppose that x ∈ IRn \ ΩU . Then

U(x) ≥ Φ(x) (by definition of ΩU)

≥ W (x) (by (3.2))

and τU,x = 0 (by definition (3.19) of τU,x). The condition for U to be a stopping time
storage function ((1.5) with U in place of S) collapses to −U(x) ≤ −Φ(x) in case
τU,x = 0, and hence is verified in case x ∈ IRn \ ΩU .
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Suppose now that ΩU �= ∅ and let x ∈ ΩU . Since U and Φ are continuous, ΩU

is open; hence τU,x[b] > 0 for all b ∈ B. By Definition 2.2, H(x, p) ≥ 0 for all
p ∈ D−U(x). Hence by Theorem 2.3, we have

U(yx(t1, b)) ≥ ∫ t2
t1
[h(yx(s), b(s))− γ2|b(s)|2]ds + U(yx(t2, b))

for all b ∈ B, x ∈ ΩU , 0 ≤ t1 ≤ t2 < τU,x[b].

Let T ≥ 0. Take t1 = 0 and replace t2 by T ∧ t2 to get

U(x) ≥
∫ T∧t2

0

l(yx(s), b(s))ds + U(yx(T ∧ t2, b)), ∀t2 ∈ [0, τU,x[b]), ∀b ∈ B.

Letting t2 → τU,x[b], by continuity of U we get

U(x) ≥
∫ T∧τU,x[b]

0

l(yx(s), b(s))ds + U(yx(T ∧ τU,x[b])), ∀b ∈ B.

Since yx(τU,x[b]) ∈ ∂ΩU if τU,x[b] < ∞, we have

U(yx(T ∧ τU,x[b])) =

{
U(yx(τU,x[b])) for 0 ≤ τU,x[b] ≤ T,
U(yx(T )) for τU,x[b] > T

= 1[0,T ](τU,x[b])U(yx(τU,x[b])) + 1(T,+∞](τU,x[b])U(yx(T ))

= 1[0,T ](τU,x[b])Φ(yx(τU,x[b])) + 1(T,+∞](τU,x[b])U(yx(T )).

Thus

U(x) ≥
∫ T∧τU,x[b]

0

l(yx(s), b(s))ds + 1(T,+∞](τU,x[b])U(yx(T ))

+ 1[0,T ](τU,x[b])Φ(yx(τU,x[b])). (3.20)

This inequality verifies (1.5) (with U in place of S) for the case x ∈ ΩU . We conclude
that U is a stoping-time storage function with stopping rule τU as asserted.

Since the inequality (3.20) holds for all b ∈ B and all T ≥ 0 and U is nonnegative,
we have

U(x) ≥ supb∈B, T≥0{
∫ T∧τU,x[b]

0
l(yx(s), b(s)) ds + 1[0,T ](τU,x[b])Φ(yx(τU,x[b]))}

≥ infτ∈Γ supb∈B, T≥0{
∫ T∧τx[b]

0
l(yx(s), b(s))ds + 1[0,T ](τx[b])Φ(yx(τx[b]))}

= W (x).

We conclude that W , if continuous, is characterized as the minimal nonnegative
continuous viscosity supersolution of the VI, as asserted.
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Finally, if W is continuous, from Corollary 3.5 we see that W is a viscosity so-
lution of the VI, and hence in particular a viscosity supersolution. The first part of
Theorem 3.9 already proved then implies that W is a stopping-time storage function
with stopping-time rule τW . Moreover, if S is any continuous, stopping-time storage
function for some stopping-rule τ , from Theorem 3.7 we see that S is a viscosity
supersolution of the VI. Again from the first part of Theorem 3.9 already proved, we
then see that S ≥ W , and hence W is also the minimal, continuous stopping-time
storage function, as asserted. ♦
Remark 3.10 The proof of Theorem 3.9 shows that if U is a stopping-time storage
function for some stopping-rule τ , then it is also a stopping-time storage function for
the stopping-rule τU given by (3.19). When the stopping rule τU is used, then one
can easily check that the function U enjoys the following subordination property with
respect to Φ along trajectories of the system:

U(x) < Φ(x) =⇒ U(yx(t, b)) < Φ(yx(t, b)) for 0 ≤ t < τU,x[b];
U(x) ≥ Φ(x) =⇒ τU,x[b] = 0 for all b ∈ B.

3.3 The lower value function for Game II

Now we will show some inequalities satisfied by the lower value function V (x) for
Game II (see (1.3)), and use these inequalities to show that V is a viscosity solution
of the VI in IRn. For convenience, set

J(x, t, b) := Φ(yx(t)) +

∫ t

0

l(yx(s), b(s)) ds

∆ := {ν : IRn × B → [0,∞) : ν is nonanticipating},

where l(x, b) = h(x, b)− γ2|b|2. Thus V (x) = infν∈∆ supb∈B J(x, νx[b], b).

Proposition 3.11 Assume (A0)-(A4).

(i) Then V ≤ Φ. If (A5) also holds, then 0 ≤ V ≤ Φ.

(ii) Then

V (x) ≤ sup
b∈B

{
∫ t

0

l(yx(s), b(s)) ds + V (yx(t))}, for all t ≥ 0.

(iii) If V (x) < Φ(x), then for each b ∈ B there exists tb > 0 such that

V (x) ≥
∫ t

0

l(yx(s), b(s)) ds + V (yx(t, b)), ∀t ∈ [0, tb).
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Proof (i) Using ν ≡ 0 we have

V (x) ≤ Φ(x),

while using b ≡ 0 we have

V (x) ≥ inf
ν∈∆

{
∫ ν[0]

0

h(yx(s), 0)ds + Φ(yx(ν[0]))}
≥ 0,

since h is nonnegative by (A5) and Φ are positive by assumption.
(ii) Fix x ∈ IRn. For each ν ∈ ∆ and ε > 0 we may choose bν,ε ∈ B so that

V (x) < J(x, νx[bν,ε], bν,ε) + ε. (3.21)

Fix t > 0. For each b ∈ B, define bt by

bt(s) = b(s + t), s ≥ 0

Notice that yx(t, b) = yyx(t,b)(0, bt).
On the other hand, we may choose νε ∈ ∆ so that

V (z) + ε > J(z, νε
z[b], b) (3.22)

for all z ∈ IRn and b ∈ B. For ν ∈ ∆ define ν̄ : IRn × B → IR+ by

ν̄[b] = t + νyx(t,b)[bt].

One can easily check that ν̄ ∈ ∆ for each ν ∈ ∆. From the definition of J , we have

J(x, ν̄x[b], b) = Φ(yx(ν̄[b])) +
∫ ν̄[b]

0
l(yx(s), b(s)) ds

= Φ(yx(νyx(t,b)[bt] + t)) +
∫ t

0
l(yx(s), b(s)) ds

+
∫ νyx(t,b)[bt]+t

t
l(yx(s), b(s)) ds

=
∫ t

0
l(yx(s), b(s)) ds + Φ(yyx(t,b)(νyx(t,b)[bt]))

+
∫ νyx(t,b)[bt]

0
l(yyx(t)(α), bt(α)) dα

=
∫ t

0
l(yx(s), b(s)) ds + J(yx(t, b), νyx(t,b)[bt], bt)

(3.23)

If we specialize (3.23) to the case ν = νε (where νε is as in (3.22)) and specialize
(3.22) to the case z = yx(t, b) and b of the form bt, then (3.22) provides the estimate
on (3.23)

J(x, ν̄x[b], b) ≤
∫ t

0

l(yx(s), b(s)) ds + V (yx(t, b)) + ε (3.24)
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for all b ∈ B. If we specialize (3.24) to the case where b = bν̄,ε and apply (3.21) for
the case where ν is of the form ν̄, then (3.21) leads to

V (x) < J(x, ν̄x[bν̄,ε], bν̄,ε) + ε

≤
∫ t

0

l(yx(s), bν̄,ε(s)) ds + V (yx(t, bν̄,ε)) + 2ε

≤ sup
b∈B

{∫ t

0

l(yx(s), b(s)) ds + V (yx(t, b))

}
+ 2ε

Since ε is arbitrary, the result follows.
(iii) The proof of statement (iii) is similar to the proof of Proposition 3.2. ♦

Theorem 3.12 Assume (A0)-(A4). If upper semicontinuous, V is a viscosity sub-
solution of the VI. If lower semicontinuous, V is a viscosity supersolution of the VI.
Thus if continuous, V is a viscosity solution of the VI.

Proof First assume that V is upper semicontinuous. We want to show that V is a
viscosity subsolution of VI. Since V is upper semicontinuous by assumption, V ∗ = V .
Fix x ∈ IRn. Let Ψ ∈ C1(IRn) and x is a local maximum of V −Ψ. We want to show
that

max{H(x, DΨ(x)), V (x)− Φ(x)} ≤ 0 (3.25)

From (i) of Proposition 3.11, V (x) ≤ Φ(x). Thus we want to show that H(x, DΨ(x)) ≤
0. We proceed by contradiction. Suppose that

H(x, DΨ(x)) > δ > 0.

By the definition of H, we therefore have

−DΨ(x) · f(x, b)− h(x, b) + γ2|b|2 > δ, ∀b ∈ B. (3.26)

Choose R so that x ∈ B(0, R) and suppose that z is another point in B(0, R) and
b ∈ B. We shall need the general estimate

|[−DΨ(z) · f(z, b)− h(z, b)]− [−DΨ(x) · f(x, b)− h(x, b)]|
≤ |[−DΨ(z) + DΨ(x)] · f(z, b)|+ |DΨ(x) · [f(x, b)− f(z, b)]|
+|[−h(z, b) + h(x, b)]|

≤ ωDΨ(|z − x|, R)Mf,R + |DΨ(x)|ωf (|z − x|, R) + ωh(|z − x|, R)

(3.27)

where ωDΨ(·, R) is a modulus of continuity for DΨ(·) on B(0, R), where Mf,R is a
bound on f(z, b) for (z, b) ∈ B(0, R) × B, and where we use (A1) and (A2). By the
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continuity of the moduli ωDΨ(·, R), ωf (·, R) and ωh(·, R) at the origin, we deduce that
there is a δR > 0 so that

|z − x| < δR =⇒ |[−DΨ(z) · f(z, b)− h(z, b)]− [−DΨ(x) · f(x, b)− h(x, b)]| < δ/2.
(3.28)

Moreover, by (2.5) we know that there is a tx > 0 so that

0 ≤ s ≤ tx =⇒ |yx(s, b)− x| < δR for all b ∈ B.

We conclude that, for 0 ≤ s ≤ tx and for all b ∈ B, from (3.26) and (3.27) combined
with (3.28) we have

−DΨ(yx(s, b) · f(yx(s, b), b(s))− h(yx(s, b), b(s)) + γ2|b(s)|2
= [−DΨ(x) · f(x, b(s))− h(x, b(s)) + γ2|b(s)|2]
+ {[−DΨ(yx(s, b)) · f(yx(s), b(s))− h(yx(s), b)]
−[−DΨ(x) · f(x, b(s))− h(x, b(s))]}

≥ δ − δ/2 = δ/2 for 0 ≤ s ≤ tx.

(3.29)

Since x is a local maximum of V −Ψ, by (2.4) we may assume that tx > 0 also satisfies

V (x)− V (yx,b(s)) ≥ Ψ(x)−Ψ(yx(s, b)) for 0 < s < tx for all b ∈ B. (3.30)

For any t satisfying 0 < t ≤ tx we may integrate (3.29) from 0 to t to get

Ψ(x)−Ψ(yx,b(t)) >
δ

2
t +

∫ t

0

l(yx(s), b(s)) ds. (3.31)

As a consequence of (3.30) and (3.31), we have

V (x)− V (yx(t, b)) >
δ

2
t +

∫ t

0

l(yx(s), b(s)) ds for all b ∈ B

Thus

V (x) ≥ δ

2
t + sup

b∈B

{∫ t

0

l(yx(s), b(s)) ds + V (yx(t, b))

}
> sup

b∈B

{∫ t

0

[l(yx(s), b(s)) ds + V (yx(t, b))

}
which contradicts (ii) of Proposition 3.11.

We now assume that V is lower semicontinuous. The proof that V is a viscosity
supersolution of VI is similar to the proof of Theorem 3.4. By using (i) and (iii)
of Proposition 3.11, one can follow the proof there to show that V is a viscosity
supersolution of VI, and the result follows. ♦
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Proposition 3.13 Assume (A0)-(A4). Assume in addition: there is a continuous
B-valued function (x, p) → β(x, p) so that

H(x, p) = −p · f(x, β(x, p))− l(x, β(x, p)). (3.32)

Then, if Ṽ ∈ C1(IRn) is a subsolution of VI, then Ṽ ≤ V . Hence, under these
assumptions, if V ∈ C1(IRn), then V is the maximal smooth nonnegative subsolution
of VI.

Proof Since Ṽ ∈ C1(IRn) is a subsolution of VI, we have

H(x, DṼ (x)) ≤ 0 and Ṽ (x) ≤ Φ(x), ∀x ∈ IRn. (3.33)

Define β∗ : IRn → B by

β∗(z) = β(z, DṼ (z)) for z ∈ IRn.

Then β∗ is continuous in z ∈ IRn and from the first part of (3.33) we see that

−DṼ (z) · f(z, β∗(z))− h(z, β∗(z)) + γ2|β∗(z))| = H(z, DṼ (z)) ≤ 0 (3.34)

for all z ∈ IRn. By assumption β and DṼ are continuous; hence z → β∗(z) is
continuous on IRn and there exists a solution y∗

x(t) to the initial-value problem

ẏ(t) = f(y(t), β∗(y(t))), y(0) = x.

Note that we may regard t → b∗x(t) := β∗(y∗
x(t)) as an element of B for each x ∈ IRn,

and then y∗
x(t) = yx(t, b∗x(t)) for all t ≥ 0. From (3.34) we deduce

−DṼ (yx(t, b∗x(t)) · f(yx(t, b∗x(t)), b∗x(t))− h(yx(t, b∗x(t))) + γ2|b∗x(t)|2 ≤ 0. (3.35)

For ν ∈ ∆, integrate (3.35) from 0 to νx[b
∗
x] and use the second part of (3.33) to get

Ṽ (x) ≤
∫ νx[b∗x]

0

l(yx(s), b∗x(s))ds + Ṽ (yx(νx[b
∗
x], b∗x))

≤
∫ νx[b∗x]

0

l(yx(s), b∗x(s))ds + Φ(yx(νx[b
∗
x], b∗x))

≤ sup
b∈B

{
∫ νx[b]

0

l(yx(s), b(s)) ds + Φ(yx(νx[b], b))}.

Since this holds for each ν ∈ ∆, we have

Ṽ (x) ≤ inf
ν∈∆

sup
b∈B

{
∫ νx[b]

0

l(yx(s), b(s))ds + Φ(yx(νx[b], b))} = V (x)

and the result follows. ♦
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Remark 3.14 If one supposes only that Ṽ is a continuous subsolution of the VI, and
that, for each x ∈ IRn there is a bx ∈ B so that

D↑Ṽ (x)(−f(x, bx))− h(x, bx) + γ2|bx|2 = inf
b∈B

{D↑Ṽ (x)(−f(x, b))− h(x, b) + γ2|b|2}
(3.36)

where D↑Ṽ (x) is the contingent epiderivative of Ṽ at x (see the discussion in Remark
2.4), then one can follow the proof of Theorem 3.6 in [13] to deduce that

D↑Ṽ (−f(x, bx))− h(x, bx) + γ2|bx|2 ≤ 0.

Once we have this, by the Viability Theory argument in [13] we get

Ṽ (x) ≤ Ṽ (yx(ν, bx)) +

∫ ν

0

l(yx(s, bx), bx) ds

≤ Φ(yx(ν, bx)) +

∫ ν

0

l(yx(ν, bx), bx) ds

for all ν ≥ 0. (Here we use that Ṽ (x) ≤ Φ(x) for all x, a consequence of Ṽ being a
viscosity subsolution of the VI.) Hence (where we now drop the second argument in
yx),

Ṽ (x) ≤ inf
ν≥0

{
Φ(yx(ν)) +

∫ ν

0

l(yx(s), bx) ds

}
≤ sup

b∈B
inf
ν≥0

{
Φ(yx(ν)) +

∫ ν

0

l(yx(s), b(s)) ds

}
≤ inf

ν∈∆
sup
b∈B

{
Φ(yx(νx[b])) +

∫ νx[b]

0

l(yx(s), b(s)) ds

}
≤ V (x)

where the last inequality follows from the fact that the lower value function of the
static game is less than or equal to the lower value function of the differential game
(see, e.g., [7]). Thus, it follows that: under assumptions (A0)–(A4) and (A3′), if
for each continuous subsolution Ṽ of the VI and x ∈ IRn there is a bx ∈ B so that
(3.36) is satisfied and if V is continuous, then V is the maximal continuous nonneg-
ative subsolution of the VI. While this modification of Proposition 3.13 removes the
smoothness assumption on Ṽ , the hypothesis (3.36) is more difficult to verify than
(3.32) in Proposition 3.13.
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4 State feedback robust stopping-time control

The state feedback robust stopping-time control problem is to find a controller
K : y(·) → τ(·) and the smallest number γ∗ > 0 so that the closed-loop system with
stopping time (Σst, K) of Figure 1 where K(yx(t, b)) = τx[b] is γ∗-stopping dissipative
and stable.

b z

Σ

K

ystτ

Figure 1: the closed-loop stopping-time system (Σst, K)

Here, given a γ > 0, we say that the closed-loop system (Σst, K) is γ-stopping
dissipative if there exists a nonnegative real-valued function U with U(0) = 0 so that∫ T∧τx[b]

0

h(yx(s, b), b(s))ds ≤ γ2

∫ T∧τx[b]

0

|b(s)|2ds + U(yx(0, b)),

for all x ∈ IRn, all b ∈ B and all T ≥ 0. In general it is hard to solve for the optimal
γ∗, so we instead solve the suboptimal robust stopping-time control problem. The
suboptimal robust stopping-time control problem assumes that we are given a γ > γ∗
and seeks to find a controller K with some information structure so that the closed-
loop system (Σst, K) is γ-stopping dissipative and internally stable, i.e. stable for any
initial condition subject to zero disturbance b = 0. For the discussion of stability
in this section, we mostly specialize the general formalism to the case of b = 0; to
lighten the notation, we therefore contract the expression yx(s, 0) to yx(s) and τx[0]
to τx for the sake of easier reading.

For a fixed γ > 0, the result from Theorem 3.9 concludes that we can find a
controller K so that a closed-loop system (Σst, K) is γ-stopping dissipative by con-
structing a continuous, positive-definite, viscosity supersolution of the VI. Thus it
remains to show that the closed-loop system is internally stable. As in the classical
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case (see §3.2 of [17] and §4.5 of [10]), as we now demonstrate, it happens that a
continuous, positive-definite, viscosity supersolution of the VI can be used to prove
stability for the closed-loop system (Σst, K).

In general, given a closed-loop stopping-time system (Σst, K), we say that the
origin is a stable equilibrium point of the undisturbed stopping-time system ẏ = f(y, 0)
if

(a) y0(s) = 0 for all 0 ≤ s < τ0; and

(b) for each ε > 0 there exists δ = δ(ε) > 0 such that{ |x| < δ implies |yx(s)| < ε for all 0 ≤ s < τx;
furthermore, |x| < δ and τx = ∞ implies lims→∞ yx(s) = 0.

We shall need the following Lemma, sometimes referred to as “Barbălat’s lemma”, in
the proof of stability.

Lemma 4.1 If φ(·) : IR→ IR is nonnegative, uniformly continuous and
∫ ∞
0

φ(s) ds <
∞, then limt→∞ φ(t) = 0.

Proof See [1, 16].

We also assume the following conditions on the system Σst.

(A6)

{
For each T > 0, if b(t) = 0 and z(t) = 0 for all 0 ≤ t ≤ T ,
then y(t) = 0 for all 0 ≤ t ≤ T .

(A7)

{
If b(t) = 0 for all t ≥ 0 and limt→∞ z(t) = 0,
then limt→∞ y(t) = 0.

The conditions (A6) and (A7) are modifications of the usual notions of zero-state
observability and zero-state detectability, respectively, for nonlinear controlled systems
(see, e.g., p. 39 of [17]). For the case of linear systems, it is easy to see that these
notions correspond to the usual notions of observability and detectability.

Proposition 4.2 Assume (A0)-(A6). If U be a nonnegative, continuous viscosity
supersolution of the VI in IRn, then U(x) > 0 for all x �= 0.

Proof Let x ∈ IRn. Since U is a nonnegative continuous viscosity supersolution of
the VI, we have

U(x) ≥
∫ T∧τx

0

h(yx(s), 0)ds + 1[0,T ](τx)Φ(yx(τx)) + 1(T,+∞](τx)U(yx(T )), (4.1)
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for all T ≥ 0, where τx = inf{t : t ≥ 0 and U(yx(t)) ≥ Φ(yx(t))}. In particular, if
τ0 < ∞, we may take x = 0 and T ≥ τ0 in (4.1) to get

U(0) ≥
∫ τ0

0

h(y0(s), 0) ds + Φ(0) (4.2)

≥ Φ(0). (4.3)

Thus U(0) < Φ(0) forces τ0 = ∞, and the last assertion of the proposition follows.
In particular, τ0 = ∞ if U(0) = 0 < Φ(0). For an arbitrary state vector x, from
the definition of τx and the assumption that Φ(x) > 0, we see that τx > 0 whenever
U(x) = 0.

Since U is nonnegative and Φ is positive, another consequence of (4.1) is

U(x) ≥
∫ T∧τx

0

h(yx(s), 0) ds. (4.4)

We next argue that U(x) = 0 forces x = 0, from which we get U(x) > 0 for
all x �= 0 as wanted. Assume therefore that U(x) = 0. As noted above, this forces
τx > 0. Furthermore, from (4.4) we get h(yx(s), 0) = 0 for all s ∈ [0, T ∧τx]. By (A6),
yx(s) = 0 for all s ∈ [0, T ∧ τx]. Thus x = yx(0) = 0 by (A6). ♦

The following is our main result on stability for the case of a stopping-time prob-
lem; for the parallel statement and proof for the standard nonlinear H∞-control prob-
lem (formulated, however, only for classical supersolutions of the associated Hamilton-
Jacobi inequality), see Lemma 3.2.1 in [17].

Theorem 4.3 Assume (A1)-(A5), (A3′) and (A7). If U is a nonnegative, continu-
ous, viscosity supersolution of the VI , U(x) > 0 for x �= 0 and U(0) = 0, then x = 0
is the stable equilibrium point of the undisturbed stopping-time system ẏ = f(y, 0).

Proof Set Ω := {x ∈ IRn : U(x) < Φ(x)}. By the continuity of U and Φ, Ω is open.
Since Φ is positive, U(0) = 0 < Φ(0) and thus 0 ∈ Ω. Choose δ̂ > 0 such that

B(0, δ̂) ⊂ Ω. (4.5)

Since U is a viscosity supersolution of the VI, we have

H(x, DU(x)) ≥ 0, x ∈ B(0, δ̂) in viscosity sense.

By Theorem 2.3, we have
U(x)− U(yx(t)) ≥

∫ t

0
h(yx(s), 0)) ds

for all x ∈ B(0, δ̂) and all 0 ≤ t ≤ τx,
where τx = inf{t ≥ 0 : U(yx(t)) = Φ(yx(t))}.

(4.6)
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Since h(·, 0) ≥ 0, we have

0 ≤ U(y0(t)) ≤ U(0) = 0, for all 0 ≤ t ≤ τ0.

Thus U(y0(t)) = 0 for all 0 ≤ t ≤ τ0. By the positive definite property of U , y0(t) = 0
for all 0 ≤ t ≤ τ0.

Next we want to show that for each ε > 0 there exists δ = δ(ε) > 0 such that
(1) if |x| < δ then |yx(t)| < ε for all 0 ≤ t ≤ τx, and (2) if |x| < δ and τx = ∞
then limt→∞ yx(t) = 0. Let ε > 0. Define rε = inf{U(x) | x ∈ ∂B(0, ε)}. Note that
rε > 0 because U(x) > 0 for x �= 0, U(0)=0 and 0 /∈ ∂B(0, ε). By the continuity of
U , choose 0 < δ ≤ min{ε, δ̂} (where δ̂ is chosen to satisfy (4.5)) such that if |x| < δ
then U(x) < rε. Thus for any x ∈ B(0, δ), by (4.6) we have

U(yx(t, 0)) +

∫ t

0

h(yx(s), 0) ds ≤ U(x) < rε, for all 0 ≤ t ≤ τx.

Since h(·, 0) ≥ 0, we have

U(yx(t)) < rε, for all 0 ≤ t ≤ τx.

We conclude that there is no t̄ ∈ [0, τx] such that yx(t̄) ∈ ∂B(0, ε), and hence by
connectedness yx(t) ∈ B(0, ε) for 0 ≤ t ≤ τx as required. Moreover if |x| < δ and
τx = ∞, then we have

U(yx(t)) +

∫ t

0

h(yx(s), 0)ds ≤ U(x), for all t ≥ 0.

Since U is nonnegative, we have∫ t

0

h(yx(s), 0)ds ≤ U(x) < ∞, for all t ≥ 0.

By the continuity of f and the boundedness of yx(·), it follows that yx(·) is uniformly
continuous, and so is h(yx(·), 0). By Lemma 4.1, limt→∞ h(yx(t)) = 0. By (A7), we
have limt→∞ yx(t) = 0. ♦

We conclude with discussion of a simple one-dimensional example for which the
minimal viscosity supersolution of the VI and associated feedback stopping-time strat-
egy are explicitly computable.

Example. Consider the one-dimensional state space system of the form

ẏ = −y + b,

z = y2,
(4.7)
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with gain rate

γ = 2. (4.8)

In a linear-quadratic robust control system such as this it would be typical to impose
no constraints on the disturbance values b ∈ B. However to satisfy our hypothesis
(A1) we will take

B = [−1, 1]. (4.9)

One may check that for |p| ≤ 2γ2 = 8 the Hamiltonian (2.1) is equal to

H(x, p) =
−1

16
p2 + px − x2. (4.10)

For |p| > 8 the constraint |b| ≤ 1 influences the infimum in (2.1), so that (4.10)
is incorrect. However in our example no values of |p| > 8 will occur. We take the
stopping cost to be

Φ(x) =
5

4
+ cos(4x). (4.11)

All hypotheses (A0)–(A5) are satisfied.
A plot of the minimal solution U(x) of (VI) (corresponding to the available stor-

age function), together with a plot of the preassigned stopping cost function Φ(x)
(the dashed curve), is given in Figure 2 below. Verification that the construction
described below leads to the minimal viscosity solution is straightforward, if one uses
the equivalent characterization

D+U∗(x) = {p ∈ IRn : lim sup
y→x

U∗(y)− U∗(x)− p · (y − x)

|x − y| ≤ 0}.

of the superdifferential D+U(x) for a continuous, piecewise C1 function U in terms of
the left and right derivatives of U , along with the analogous characterization of the
subdifferential D−U(x) (2.8); for details on these alternate characterizations, see for
instance Lemma 1.7 of Chapter II in [7].

We discuss only x > 0 in what follows. (By symmetry we will have U(x) = U(−x)
for x < 0.) First, observe that the minimal solution of H(x, p) = 0 is

p−(x) = (8− 4
√
3)x.

The minimal nonnegative solution of H(x, S ′(x)) = 0 is the available storage function
(1.4) for our system (4.7):

Sa(x) =

∫ x

0

p−(t) dt = (4− 2
√
3)x2.

29



x1x2 x3 x4 x5

0.5

1

1.5

2

Figure 2: Example solution of variational inequality

The initial segment of the solution is

U(x) = Sa(x) for 0 ≤ x < x1.

The value x1 = .723487 is determined by solving Sa(x1) = Φ(x1). Next, Step 2
extends the construction of U to

U(x) = Φ(x) for x1 ≤ x < x2.

The value of x2 is the first x > x1 at which H(x,Φ′(x)) < 0 fails. The value x2 =
.842313 is located by solving Φ′(x) = p−(x).

The construction now proceeds in Step 3, using U ′(x) = p−(x) or

U(x) = Φ(x2)− Sa(x2) + Sa(x) on an interval x2 ≤ x < x3,

where x3 is maximal such that U(x) ≤ Φ(x) for x2 ≤ x < x3. This turns out to be
x3 = 1.84258. Now we repeat Step 2 to find

U(x) = Φ(x) for x3 ≤ x < x4,

with x4 = 2.54367 the first solution of Φ′(x) = p−(x) beyond x3. Beyond x4 we take
another section with

U(x) = Φ(x4)− Sa(x4) + Sa(x) on an interval x4 ≤ x < x5,
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with x5 = 3.11278 determined again by U(x) = Φ(x). Finally, we find that Φ′(x) <
p−(x) for all x > x5. This means that the remainder of the definition of U is

U(x) = Φ(x) for x5 ≤ x.

The optimal stopping-time rule, as in Theorem 3.9, for this example is to stop at the
first instant the state y(t) enters the set

[x1, x2] ∪ [x3, x4] ∪ [x5,∞)

on which U(x) = Φ(x).

References
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