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Abstract. We consider piecewise smooth viscosity solutions to a Ham-
ilton-Jacobi equation, for which the Hamiltonian is the maximum of a
finite number of smooth concave functions. We describe the possible
types of “basic” singularities, namely jump discontinuities in the de-
rivative of either the solution or the Hamiltonian which occur across
a smooth hypersurface. Each such type of singularity is described in
terms of properties of the Hamiltonian and the classical characteristics
in the regions on either side of the singularity. Where appropriate, sin-
gular characteristic equations of the types developed by Melikyan are
formulated which can be used in constructions.

1. Introduction and Overview

We consider viscosity solutions of an equation F (x,∇u(x)) = 0 with
Hamiltonian F of max-concave type:

(1) F (x, p) = −min
i

Hi(x, p).

The Hi(x, p) (i = 1, . . . , k) are assumed smooth (C2) and convex in p for ev-
ery fixed x. Distributing the negative, F = maxi(−Hi) and p 7→ −Hi(x, p)
is concave for each i, x, explaining our choice of terminology “max-concave.”
Our goal is to identify the basic structures that are possible for codimen-
sion 1 singularities of piecewise smooth continuous viscosity solutions of
F (x,∇u(x)) = 0 in the interior of the state space. Similar considerations
are appropriate in the study of viscosity sense boundary conditions, but that
topic will be taken up elsewhere.

Hamilton-Jacobi equations with F of the form (1) arise in differential
games in which the minimizing player a(t) can choose from only a finite
number of different control settings, a(t) ∈ {1, . . . , k}, while the maximizing
player w(t) has a continuum of choices. Suppose for instance that the two
players jointly determine a state trajectory in R

n

(2) ẋ = f(x, a(t), w(t)); x(0) = x0.
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with resulting cost

J(x0, a(·), w(·)) =

∫ τ

0
L(x(s), a(s), w(s)) ds + g(x(τ)).

(Here τ is the time of first contact with some terminal set E, and g : E → R

is some given terminal cost function.) The (upper) value V of such a game
will typically satisfy F (x,∇V (x)) = 0 in the viscosity sense, where F is
given by (1), and the Hi are

(3) Hi(x, p) = sup
w

{〈p, f(x, i, w)〉 + L(x, i, w)} .

See [5]. Such Hi are p-convex and are often smooth, depending on assump-
tions about f and L. See Section 4 below for an example.

Problems of this type have been considered recently in queueing theory;
see [2], [3], [4], [8], [9] for instance. The minimizing controller a(t) corre-
sponds to some service priority decision, while w(t) models vagaries of the
load on the system. In some examples the value function has been deter-
mined through an explicit construction based on characteristic equations for
the Hi. For purposes of such constructions it is important to understand
the possible structures that singularities can take.

Section 2 will clarify what we mean by basic or “codimension 1” singulari-
ties, and explain some considerations related to the needs of constructing the
manifolds Γ which carry the singularities. An important tool for construct-
ing these manifolds is the method of singular characteristics. We provide a
very brief introduction, but refer to Melikyan’s monograph [11] for a more
extensive treatment. Section 3 contains our description of the different basic
singularity types. We use the existing terminology of “dispersal, ” “equivo-
cal,” “focal,” and “universal” surfaces, but also make a distinction between
upward, downward, and nonsingular switching singularities because these
are different from the point of view of viscosity solutions. In each case we will
discuss how the manifold Γ of singularities would typically be constructed.
In several cases this involves identifying a system of singular characteristics
which propagate along the singular surface. It is not our purpose to offer
new developments in the theory of singular characteristics, however. We
will be content to identify an appropriate system of singular characteristics
of one of the several standard types, but will not pursue the complications
associated with possible degeneracies of that system which might occur in
some examples. Finally in Section 4 we look at the extension of an example
from [8] which exhibits some of the singularities discussed in Section 3.

2. Basic Singularities and Singular Characteristics

The notion of viscosity solution allows highly nonsmooth, even discontin-
uous, functions u(x) to be considered as possible solutions. An exhaustive
study of all possible types of singularities is more than can be attempted
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here. We impose some simplifying hypotheses about the location and struc-
ture of the singularities, limiting our scope to what are called the “simplest
singularities” in [11].

2.1. Hypotheses for Codimension 1 Singularities. To be specific, we
consider an open set O ⊆ R

n decomposed as a disjoint union O = A∪Γ∪B,
where Γ is a smooth (C2) manifold of dimension n−1 separating the remain-
der of O into disjoint open sets A and B; see Figure 1. For x ∈ Γ, n(x) will
denote the unit normal vector to Γ, oriented to point from A into B. Our C2

hypothesis on Γ means that n(x) is C1. We assume that u(x) is a continuous

G
nHxL

A

x

B

Figure 1. O and Singular Surface

function of x ∈ O. We use uA(x) and uB(x) to denote the restrictions of u
to A and B and respectively. These are assumed to be C2. Their gradients
pA(x) = ∇uA(x) and pB(x) = ∇uB(x) are thus C1. We assume pA and pB

have continuous extensions to Γ. In some cases it is reasonable to assume
these extensions to Γ are smooth, and we will do so where needed for pur-
poses of developing the singular characteristic equations. This is discussed
in Section 2.3.1. We will also assume certain uniform monotonicity proper-
ties of Hi on Γ which allow us to clearly delineate between those cases where
smooth extensions of pA(x), pB(x) are reasonable and those where they are
not. This hypothesis is explained in Section 2.2.2 and

We assume that u(x) is a viscosity solution of

(4) −
k

min
i=1

Hi(x,∇u(x)) = 0.

The Hi : O × R
n → R are assumed C2 with p 7→ Hi(x, p) convex for each

x. The i ∈ {1, . . . , k} will be called the indices. Since singular surfaces Γ
often occur as the set of x where the minimizing index i in (4) changes, we
want to insist that such changes are confined to Γ. Thus we assume that
there is an index i = a (not necessarily unique) which achieves the mini for
all x ∈ A and a index i = b which achieves the mini for all x ∈ B. Thus for
all 1 ≤ i ≤ k we have

Ha(x, pA(x)) ≤ Hi(x, pA(x)) for x ∈ A;

Hb(x, pB(x)) ≤ Hi(x, pB(x)) for x ∈ B.
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It is possible that a = b even though pA(x) 6= pB(x) on Γ; see Section 3.2.1,
or that a 6= b even though pA(x) = pB(x) on Γ; see Section 3.3.

2.2. Classical Characteristics. Since u(x) is smooth on either side of Γ
(A or B) it can be described by classical characteristics there. The prop-
erties of these characteristics near Γ, specifically whether they approach or
leave Γ, whether they meet it transversely or tangentially, will be signifi-
cant in discussing the different singularity types. In differential games such
classical characteristics are typically trajectories of the state equations (2).
However the minus sign in (4) is important for the correct formulation of the
Hamilton-Jacobi-Isaacs equation in the viscosity sense. We need to be care-
ful to observe the effect of the sign on the connection between the forward
time directions for (2) and the classical characteristics.

The standard characteristic equations for x(t) and p(t) = ∇u(x(t)) asso-
ciated with F (x,∇u(x)) = 0 are

(5) ẋ =
∂

∂p
F (x, p), ṗ = − ∂

∂x
F (x, p).

Observe that in a region (such as our A or B) where F (x,∇u) = −Hi(x,∇u)
for a fixed index i, the state component of (5) is

ẋ =
∂

∂p
F (x,∇u(x)) = − ∂

∂p
Hi(x,∇u(x)) = −f(x, i, w∗),

the last equality being in the case of (3) with w∗ achieving the supremum. In
the context of (2) this would be a state trajectory in reverse time. In most
of the classical literature about singular surfaces for differential games, the
various singularity types are illustrated with pictures indicating the direction
of state trajectories in forward time; see [10], [11, Ch. 3]. We want to
maintain consistency with that literature, so that the forward time direction
indicated by the arrows in our figures (see the righthand pane of Figure 3 for
example) corresponds to the forward time direction in state equations such
as (2). For that reason, our illustrations below will indicate the direction
of motion along the reversed characteristics. In a region where F (x,∇u) =
−Hi(x,∇u) these are

ẋ = − ∂

∂p
F (x, p) =

∂

∂p
Hi(x, p),

ṗ = +
∂

∂x
F (x, p) = − ∂

∂p
Hi(x, p).

One can eliminate the negative in (4) by the change of dependent vari-
able v(x) = −u(x). The equivalent viscosity sense equation for v(x) is

F̃ (x,∇v(x)) = 0 where

F̃ (x, p) = −F (x,−p) = min
i

Hi(x,−p).
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This F̃ would naturally be called min-convex. Thus max-concave and min-
convex Hamiltonians are equivalent through this simple change of depen-
dent variable. However, it is still the reversed characteristics for F̃ which
correspond to the forward time direction in the state equations. Thus the
min-convex reformulation offers little advantage over the max-concave view
we have adopted.

Consider now the task of constructing the solution u(x) by means of clas-
sical characteristics. For a game as described in the introduction, initially
we would have the values u(x) = g(x) prescribed at points x = x(τ) in the
terminal set E, which is typically part of the boundary of the domain of u(·).
We would then integrate backwards in time along optimal trajectories x(t)
to determine the values of u(x) at points x = x(t) which occur earlier (t < τ)
on those trajectories. Because of the time reversal discussed above, this cor-
responds to following the characteristics forward in time. In other words
the forward characteristic direction indicates the direction of “information
flow” for purposes of the construction or calculation of solutions. Since the
arrows in our illustrations indicate the reversed characteristic direction, a
typical calculation will proceed by working its way upstream, against the
direction of the arrows in our illustrations. When we reach the singular
surface Γ, we can no longer simply follow the classical characteristics. How
we then proceed depends on the structure of the singularity. In some cases
(equivocal and universal surfaces) we will need equations describing the sin-
gularity which can be used to construct Γ and the discontinuity of ∇u(x)
across it before continuing with classical characteristics. The method of sin-
gular characteristics will supply us with such equations in several cases. In
other cases (dispersal and nonsingular equivocal surfaces) can can expect
the standard characteristics constructed prior to encountering Γ to be all
we typically need to construct it.

2.2.1. n-Monotonicity of Hi. A simple but very important observation con-
nects the direction of the (reversed) characteristics near Γ to properties of
the relevant Hamiltonian Hi. Suppose that x(t), p(t) = ∇u(x(t)) is a (re-
versed) characteristic on the A side of Γ, where by hypothesis F (x,∇u(x)) =
−Ha(x,∇u(x)):

ẋ =
∂

∂p
Ha(x, p), ṗ = − ∂

∂x
Ha(x, p),

and suppose that it contacts Γ at t0: x0 = x(t0) ∈ Γ, with p0 = p(t0). Then
we have

(6) 〈n(x0), ẋ(t0)〉 = 〈n(x0),
∂

∂p
Ha(x0, p0)〉 =

d

dρ
Ha(x0, p0 + ρn(x0))|ρ=0.

If this quantity is positive, then because n(x) points into B, we deduce that
x(t) ∈ A for t < t0 and x(t) → x0 ∈ Γ as t ↑ t0. In words, x(t) approaches
Γ on the A side. If the quantity is negative we can say x(t) departs from Γ
on the A side, meaning x(t0) ∈ Γ and x(t) ∈ A for t < t0. If the quantity is
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zero (and ẋ 6= 0) we can say x(t) contacts Γ tangentially. Thus the direction
of approach of a characteristic to Γ on the A side is determined by the
monotonicity of ρ 7→ Ha(x0, p0 +ρn(x0)) at ρ = 0. Similar statements apply
to characteristics on the B side, except for a sign change since n(x0) points
into, not out of, B.

We will say that Hi(x0, ·) is n-increasing [strictly] at p0 if the quantity
in (6) is nonnegative [positive]. Similarly, Hi(x0, ·) is n-decreasing [strictly]
at p0 if the quantity in (6) is nonpositive [negative]. Note that by our
hypotheses, ρ 7→ Hi(x0, p0 + ρn(x0)) is a smooth convex function. If (6)
is 0, we consider Hi(x0, ·) to be both n-increasing and n-decreasing, and
say Hi(x0, ·) is n-tangent at p0. We will see in Section 3 that the viscosity
solution property of u(x), x ∈ Γ, boils down to statements about the sign
of mini Hi(x0, pA(x0)+ ρn(x0)) for an appropriate range of ρ, establishing a
connection between viscosity solutions and these n-monotonicity properties
of the Hi.

2.2.2. Uniform n-Monotonicity Hypothesis. It is quite possible that (6) might
change sign as x0 varies over a singular surface. It is not our intent to study
how such transitions between different singularity types occur, only to iden-
tify the basic types of singularities that can persist over Γ, confined to some
neighborhood O. For that reason, we assume that the signs of

〈n(x),
∂

∂p
Ha(x, pA(x))〉 and 〈n(x),

∂

∂p
Hb(x, pB(x))〉

are constant over x ∈ Γ. In other words, each of these is assumed strictly
positive, identically zero, or strictly negative over Γ.

2.3. Singular Characteristic Methodology. For many of the singularity
types considered below, we will be led to three equations which connect the
values of for u(x), p = pB(x) for x ∈ Γ:

(7) Fi(x, u, p) = 0, i = −1, 0, 1.

Typically one of these equations will be Hb(x, p) = 0, and the other two
describe the special features of a particular singularity type. (Dependence
on u will occur in some instances.) We need to use these equations to
construct Γ in examples. The method of singular characteristics provides a
generalization of the classical method of characteristics which is suitable for
this task.

To explain singular characteristics, consider again the method of clas-
sical characteristics, this time including u-dependence in the Hamiltonian.
Suppose we are interested in a smooth solution to a single equation

F (x, u(x),∇u(x)) = 0, x ∈ Ω,

Ω ⊆ R
n being some domain. Associated with the solution is the n-dimen-

sional manifold Σ in R
2n+1 consisting of the points

(x, u, p) = (x, u(x),∇u(x)), x ∈ Ω.
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We need F to vanish on this manifold, and the differential form du−〈p, dx〉
to vanish on its tangent space. The classical characteristic equations,

(8) ẋ = Fp, u̇ = 〈p, Fp〉 , ṗ = −Fx − pFu,

have the property that such a manifold Σ is an invariant set, in other words
if (x(0), u(0), p(0)) ∈ Σ then (x(t), u(t), p(t)) ∈ Σ in some interval of t values
containing 0. This allows Σ to be constructed from some lower dimensional
submanifold of it. See Arnold [1].

The situation for Γ and (7) is analogous. Associated with Γ and u is the
(n − 1)-dimensional manifold ΣΓ ⊆ R

2n+1 consisting of

(9) (x, u, p) = (x, u(x), pB(x)), x ∈ Γ.

The Fi of (7) must vanish on ΣΓ and the differential form du−〈p, dx〉 must
vanish on its tangent space. Apart from degeneracies, this leads to a system
of ODEs in R

2n+1 (unique up to a scalar multiple) for which ΣΓ is invariant,
and thus can be used to construct it from a submanifold of initial points.
This system takes the same form as (8), but with F replaced by the so-called
singular Hamiltonian H, defined by:

(10) µH = {F0, F1}F−1 + {F1, F−1}F0 + {F−1, F0}F1,

where µ = µ(x, u, p) is a non-zero homogeneity factor and {·, ·} is the Jacobi
bracket (Poisson if there is no u-dependence):

(11) {G, F} = 〈Gx + pGu, Fp〉 − 〈Fx + pFu, Gp〉 .

This bracket occurs for instance as the derivative of G(x, u, p) along the
characteristic curves (8):

(12) {G, F}(x(t), u(t), p(t)) =
d

dt
G(x(t), u(t), p(t)).

Antisymmetry, {F, G} = −{G, F}, is clear from (11) .
The homogeneity factor µ 6= 0 in (10) can be selected arbitrarily. Al-

though in general the choice would affect the characteristic vector field of H
significantly, on ΣΓ where Fi vanish it simply has the effect of rescaling the
time variable, so that the resulting characteristic equations on ΣΓ reduce to
a linear combination of the respective characteristic fields for Fi:

(13)

ẋ =
1

∑

−1

λi
∂

∂p
Fi

u̇ =
1

∑

−1

λi〈p,
∂

∂p
Fi〉

ṗ = −
1

∑

−1

λi(
∂

∂x
Fi + p

∂

∂u
Fi),

where λi are {F0, F1}/µ, {F1, F−1}/µ, {F−1, F0}/µ for i = −1, 0, 1 respec-
tively. These are the equations of singular characteristics for ΣΓ, to be called
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the MSC equations below. Given an initial point (x(0), u(0), p(0)) ∈ ΣΓ it
follows that (x(t), u(t), p(t)) ∈ ΣΓ, and in particular that u(t) = u(x(t))
and p(t) = pB(x(t)). In two dimensions (n = 2) we only need a single
(x(0), u(0), p(0)) ∈ ΣΓ to reconstruct ΣΓ locally.

These ideas are developed systematically in Melikyan [11]. The derivation
of (13) depends on two nondegeneracy hypotheses (called “noncharacteric-
ity” in [11]). First, on ΣΓ the Jacobi brackets {Fi, Fj} (i 6= j) should not
simultaneously vanish. Second, on the tangent space of ΣΓ the differential
forms dFi together with du−〈p, dx〉 should be linearly independent. It turns
out that taken together these are equivalent to the nonvanishing of the right
side(s) of (13) as a vector field on ΣΓ. See [11, Lemma 1.2]. We will assume
this to hold for the MSC equations derived for the various types of basic
singular surfaces Γ below, and not try to deal with what might happen at
rest points of (13).

2.3.1. Extension Hypotheses. Observe that for the right side of the system
(13) to satisfy the standard C1 hypothesis for (local) existence and unique-
ness we would want the Fi to be C2 in a neighborhood of Γ. In some cases
the Fi are constructed as Jacobi brackets of the Hi, so that we will want the
Hi to be C3 instead of just C2. In other cases the Fi will involve uA(x) or
pA(x) = ∇uA(x), so that we will want uA(x) to have a C2 or C3 extension
across Γ into the region B.

Suppose that Ha is strictly n-decreasing at (x, pA(x)) all x ∈ Γ, in other
words (6) is everywhere negative on Γ. Our hypotheses insure that uA(x)
extends continuously to Γ. If in fact it is C2 on Γ, then Γ with uA(x) and
pA(x) defined on it is a a noncharacteristic initial surface for the equation
Ha(x,∇uA(x)) = 0 and so by the standard theory there is a (unique) C2

extension of uA(x) into B, solving Ha = 0. (Actually a neighborhood of
Γ on the B side, but by reducing O we can assume this accounts for all
of B.) When this holds we will say that uA(x) satisfies the C2 extension
hypothesis. If in fact this extension is such that uA(x) is C3 throughout
O, we will say it satisfies the C3 extension hypothesis. If Hb is strictly n-
increasing at (x, pB(x)) all x ∈ Γ is strictly positive on Γ, the assumption
of a C2 extension of uB(x) to a solution of Hb(x,∇uB(x)) = 0 throughout
O is likewise an innocuous addition to our hypotheses, to be called the C2

extension hypothesis for uB(x).
If on the other hand Ha is n-tangent at pA(x) for all x ∈ Γ, we can not gen-

erally expect uA(x) to have a C2 extension across Γ. A hueristic argument
for this is the following. The Ha characteristics which cover A can be pa-
rameterized as xA(s, t), where t is the time parameter for the characteristic
equations and s = (s1, . . . , sn−1) parameterize some hypersurface of initial

points in A. Both ∂xA

∂(s,t) and ∂pA

∂(s,t) are well defined so long as xA(s, t) ∈ O.

Moreover in A the Jacobian
∣

∣

∣

∂xA

∂(s,t)

∣

∣

∣
6= 0, but on Γ this Jacobian would vanish
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due to the tangency. In A, where we know pA(x) = ∇uA(x) is C1, we have

∂pA

∂x
=

∂pA

∂(s, t)

(

∂xA

∂(s, t)

)

−1

.

As xA → Γ the pA terms are well-behaved, but some terms of the inverse
xA-Jacobian blow up, so we can expect to encounter some singularities in
∂pA

∂x on Γ. (This blow up can be observed explicitly in some examples; see
for instance [9], specifically the ᾱl, āl equation at the top of page 286.)

3. Catalogue of Singularity Types

We come now to our primary task of identifying the possible basic singu-
larity types. Consider a specific x ∈ Γ. By continuity of u it follows that
pA(x) and pB(x) have a common component τ tangential to Γ; only the
normal components ρi = 〈n(x), pi(x)〉 can differ.

pA(x) = τ + ρan(x), pB(x) = τ + ρbn(x).

If ρa > ρb, we have an upward singularity as illustrated in Figure 2 and
discussed in subsections 3.1.*. The case of ρa < ρb corresponds to a down-
ward singularity as in Figure 8 and subsections 3.2.* below. If ρa = ρb but
the minimizing index is different on the two sides of Γ (a 6= b) we have a
nonsingular switching surface, discussed in subsections 3.3.*.

A singular surface Γ such that the (reversed) characteristics depart from Γ
on both sides is generally called a dispersal surface. These types are consid-
ered in subsections 3.*.1 below. Singular surfaces for which characteristics
approach Γ from one side and depart from it on the other are called equiv-
ocal surfaces and discussed in subsections 3.*.2. When the characteristics
approach Γ from both sides we have either a focal surface or a universal sur-
face (in the case of ρa = ρb). Subsections 3.*.3 are devoted to these cases.
According to our discussion at the end of Section 2.2, these characteristic
approach or departure properties are connected to the n-monotonicity prop-
erties of Hi(x, ·) for x ∈ Γ and i = a, b. For each case our typical figure will
consist of an plot (left panel) of ρ 7→ Hi(x, τ + ρn(x)) to illustrate these
monotonicity properties, and an illustration (right panel) of Γ indicating
the approach/departure/tangency of the (reversed) characteristics on either
side. See Figure 3 for instance.

Recall that a continuous function u(x) is a viscosity solution to the equa-
tion

(14) F (x,∇u(x)) = 0, x ∈ O

if for every test function ϕ ∈ C1 and every point x ∈ O at which u − ϕ
is a) a local minimum, or b) a local maximum, the following are satisfied
(respectively):

(15) a) F (x,∇ϕ(x)) ≥ 0, b) F (x,∇ϕ(x)) ≤ 0.
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Property (15a) is the supersolution property, and (15b) is the subsolution
property. See [5], [6]. Under our hypotheses, this reduces to the classical
notion of solution in A and B.

Ha(x, pA(x)) = 0, x ∈ A; Hb(x, pB(x)) = 0, x ∈ B.

The issue how (15) is to be satisfied for x ∈ Γ.

G

Ha
Hb

n

Figure 2. Upward Singularity for u(x)

3.1. Upward Singularities. The upward case corresponds to

ρb < ρa.

Clearly there are no smooth ϕ such that u − ϕ has local minima at x, so
the supersolution property holds vacuously. The set of p = ∇ϕ(x) such that

u−ϕ has a local maximum at x ∈ Γ is pB(x), pA(x), by which we mean the
line segment joining pB(x) to pA(x) in the p-plane:

p = τ + ρn(x), ρb ≤ ρ ≤ ρa.

The viscosity solution property is that F ≤ 0 for these p. For F as assumed
in (1) above, this means that for every p ∈ pB(x), pA(x) we have

Hi(x, p) ≥ 0 for all i.

At the endpoints we must have equality, Hi(x, pi(x)) = 0 for i = a, b, because
u(x) is a classical solution in A and B. Thus Hb(x, τ + ρn(x)) = 0 for
ρ = ρb and is nonnegative for ρb < ρ < ρa. This means that Hb(x, ·) is
n-increasing at pb(x). By similar reasoning Ha(x, ·) is n-decreasing at pa(x).
In particular, it is not possible for characteristics to approach Γ transversely
from either side; approach is only possible tangentially. (Departure can be
transverse, however.)

Unlike the downward singularities of the next section, the presence of
additional indices i other than a and b does not affect the possible geometries.
Once one of the geometries below is identified for a pair i = a, b, we simply
would need to verify Hi(x, τ +ρn(x)) ≥ 0 for ρa ≤ ρ ≤ ρb and any additional
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i 6= a, b to validate the viscosity solution. Consequently our illustrations
and discussion refer only to i = a, b. It is possible for a = b, but only if
Ha(x, ·) is n-tangent at both pA(x) and pB(x), which means Ha(x, ·) is not
strictly convex. The corresponds to a degenerate version in the dispersal
and equivocal cases.

3.1.1. Dispersal Surface. The simplest possibility is for the n-monotonicites
of Hi(x, ·) at pi(x) (i = a, b) to both be strict. Then we we must have
the configuration illustrated in Figure 3. The strict monotonicity requires
a 6= b. The (reversed) characteristics necessarily depart from Γ transversely

Ρb Ρa

Hb Ha

G

A B

Figure 3. Upward Dispersal Surface

on both sides. Recall that in constructions we will obtain uA(x) and uB(x)
by integrating backwards along the (reversed) characteristics. Thus we will
have both uA(x) and uB(x), and the Ha and Hb characteristic curves asso-
ciated with them respectively, in hand as we seek to identify Γ. If we make
the C2 extension hypotheses for both uA and uB (see Section 2.3.1), these
characteristic families will extend uA(x) and uB(x) to a neighborhood of Γ.
The singular surface will then be obtained simply as the intersection of the
graphs,

Γ = {x : uA(x) = uB(x)}.
Smoothness of Γ follows from the implicit function theorem. Curves x(t)
tracing Γ are characterized by ẋ ⊥ (pA(x) − pB(x)). Thus there is no prac-
tical need for MSC equations to describe Γ in this case.

Degenerate versions of this case (departure from Γ from both sides) are
possible if one or both of Hi(x, p) are n-tangent at pi(x). The case of tan-
gency for i = b but strict monotonicity for i = a is illustrated in Fig-
ure 4. Such a degenerate dispersal surface would still be discovered as

Ρb Ρa

Hb Ha

G

A B

Figure 4. Degenerate Dispersal Surface

one integrates the characteristic equations in both A and B backwards
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from initial conditions given elsewhere. Γ would occur both as the locus
of uA(x) = uB(x) and as an envelope of the characteristics on the B side.
The occurrence of such structure would simply be a remarkable coincidence,
but nothing more. Tangency for both i = a, b with departure from Γ on
both sides would be a doubly remarkable coincidence.

3.1.2. Equivocal Surface. If we have n-tangency of Hi(x, ·) on at least one
side of Γ, other types of upward singular surfaces are possible. Suppose Hb

is n-tangent at pB(x), while Ha remains strictly n-decreasing at pA(x). This
makes it possible for the B-side characteristics to approach Γ, provided they
do so tangentially. This is illustrated in Figure 5. (The significant difference
from Figure 4 is the direction of the (reversed) characteristics in B.) In this
case Γ is an equivocal surface. (Other configurations producing equivocal
surfaces are found in Sections 3.2.2 and 3.3.2 below)

Ρb Ρa

Hb Ha

G

A B

Figure 5. Upward Equivocal Surface

One would construct such a solution by first integrating the Ha character-
istic equations from initial conditions given elsewhere to generate uA(x) and
pA(x) = ∇uA(x) in A up to and on Γ. Then one must apply the discontinu-
ity in ∇u(x) across Γ to obtain pB(x) on Γ and resume, integrating the Hb

characteristic equations into B. This is tricky in practice because the char-
acteristic equations in A offer no clue that the singular surface is present;
it is a globally determined feature. However, given that x ∈ Γ is such a
point, Γ can be “tracked” using the appropriate MSC equations. Suppose
we already know uA(x) and pA(x) in A∪Γ. Since the Ha characteristics for
uA(x) in A meet Γ nontangentially, it is reasonable to invoke the extension
hypothesis of Section 2.3.1 to extend the uA(x) and pA(x) across Γ into B,
still solving Ha = 0.

Our task is to identify Γ and the values of pB(x). In other words we need
to find the manifold ΣΓ of (9). We can identify three equations describing
ΣΓ under the circumstances we have assumed. First, for (x, u, p) ∈ ΣΓ we
have

u − uA(x) = 0.

Secondly, because p = pB(x) we must have

Hb(x, p) = 0.

Thirdly, we know that pB(x) − pA(x) is normal to Γ at x. The n-tangency
of Hb in Figure 5 means that the normal component of ∂

∂pHb(x, pB(x)) is
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= 0. It is therefore necessary that p = pB(x) satisfy

〈 ∂

∂p
Hb(x, p), p − pA(x)〉 = 0.

Viewing uA(x) and pA(x) as known functions, these give us three equations
(7) describing the manifold ΣΓ associated with our upward equivocal surface
Γ:

(16)

F1(x, u, p) = u − uA(x),

F0(x, u, p) = Hb(x, p),

F−1(x, u, p) = 〈 ∂

∂p
Hb(x, p), p − pA(x)〉.

(Notice that for F−1 to be C2 we need Hb and the extended uA(x) to be C3.
Then F1 is C2 as well.)

Equations (16) lead to a standard type of singular characteristic system;
see [11, (1.88)]. A simple calculation shows that

{F1, F0} = F−1,

which vanishes on ΣΓ, so the λ−1 term in (13) vanishes. Also, since Hb has
no u-dependence, the ∂

∂uF0 term vanishes. Provided {F1, F−1} 6= 0 we can
take it as the homogeneity factor µ. The MSC equations simplify to

(17)

ẋ =
∂

∂p
Hb, u̇ = 〈p,

∂

∂p
Hb, 〉,

ṗ = − ∂

∂x
Hb −

{F0, F−1}
{F−1, F1}

(p − pA).

It is only the last term of ṗ which makes (17) different from the Hb character-
istic system in B. (The expressions for {F0, F−1} and {F−1, F1} involve the
Hessian of uA(x) and second order partials of Hb. They are not particularly
illuminating, so we have not written them out.)

Having identified Γ and pB(x) defined on it, we would then use the stan-
dard Hb characteristic equations taking x ∈ Γ, u = uA(x), p = pB(x) as
initial conditions, and solve (forward) to obtain uB(x) and pB(x) for x ∈ B.
If the configuration we have described (Figure 5) is truly present, this will
complete the construction of u(x) and Γ in O. We will see an example of
this kind of equivocal surface in the example of Section 4 below.

A degenerate form of this case is possible, in which we also have tangency
for i = a. This is illustrated in Figure 6. In this case Γ would be easy
to locate as the envelope of the characteristics from the A side, so MSC
equations are not needed. With Γ and its normals n(x) in hand, we would
find pB(x) as pB(x) = pA(x)+ρn(x) for a scalar ρ < 0 determined by solving
Hb(x, pB(x)) = 0.
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Ρb Ρa

Hb Ha

G

A B

Figure 6. Degenerate Equivocal Surface

3.1.3. Focal Surface. The remaining basic upward singularity type occurs
when both Hi(x, ·) are tangent to 0 at pi(x) and the reversed characteristics
approach Γ tangentially on both sides; see Figure 7. This is typically called a
focal surface, and is the most difficult type of singular surface to construct.
One must simultaneously identify the x ∈ Γ and the pair pA(x), pB(x).
There are multiple equations that must hold on Γ:

Ha(x, pA(x)) = 0, Hb(x, pB(x)) = 0,

〈 ∂

∂p
Ha(x, pA(x)), pB(x) − pA(x)〉 = 0,

〈 ∂

∂p
Hb(x, pB(x)), pB(x) − pA(x)〉 = 0,

along with the fact that pB(x) − pA(x) is normal to Γ. This is outside the
scope of the standard method of singular characteristics, as we have sum-
marized it above. One approach involves a coupled pair of PDEs describing
pA(x) and pB(x) on Γ; see [12]. We cannot offer any further discussion of
constructive approaches here.

Ρb Ρa

Hb Ha

G

A B

Figure 7. Upward Focal Surface

3.2. Downward Singularities. We now turn our attention to singularities
of the “downward” type, as illustrated in Figure 8. The normal component
ρ of p must have an upward jump as we move across the singular curve Γ in
the normal direction:

ρa < ρb.

Now there exist no smooth ϕ so that u − ϕ has a local max at x. The
subsolution property is thus vacuous. The set of p = ∇ϕ(x) such that u−ϕ

has a local min at x is the line segment pA(x), pB(x). The supersolution
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G
Ha

Hb

n

Figure 8. Downward Singularity

property requires F ≥ 0 for these p. For F as assumed above, this means
that for each p in pA(x), pB(x) we must have

min
i

Hi(x, p) ≤ 0.

In other words, for each ρa ≤ ρ ≤ ρb these is some index i for which
Hi(x, τ + ρn(x)) ≤ 0. We also have Hi = 0 at the endpoints: i = a for
ρa and i = b for ρb. Indices i other than those which give the minimum are
completely irrelevant for such a viscosity solution. A single i = a = b could
be responsible for the minimum for all p ∈ pA(x), pB(x) as in Figure 10. In
other situations two or more i may be involved, as illustrated in Figure 9.
The case of a focal surface, Section 3.2.3, while possible for a single i, will
typically require at least three distinct indices i = a, b, c; see Figure 11.

Ρa Ρb

Figure 9. Multiple Minimizing Indices

3.2.1. Dispersal Surface. This is the case in which Ha(x, ·) is n(x)-decreasing
at pA(x) and Hb(x, ·) is n(x)-increasing at pB(x). Figure 10 illustrates,
assuming strict monotonicites and using a common index a = b. However it
is possible for a 6= b, with yet other i involved to achieve mini Hi ≤ 0 as in
Figure 9. Strict monotonicity for the endpoints implies that the (reversed)
characteristics depart from Γ (transversely) on both sides. As in the other
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Ρa Ρb

G

A B

Figure 10. Downward Dispersal Surface

dispersal surfaces above, Γ would easily be identified in a construction as the
set where uA(x) = uB(x), the ui obtained by integrating the characteristic
equations from initial data elsewhere. Degenerate versions are possible, with
n-tangency at either or both ends. As in Section 3.1.1, these would be merely
remarkable coincidences of the locus of Γ = {x : uA(x) = uB(x)} with the
envelope(s) of the characteristics on one (or two) sides.

3.2.2. Equivocal Surface. This is the case in which Hi(x, ·) is n(x)-decreasing
at p = pi(x) for both i = a and i = b, leading to another type of equiv-
ocal surface. The typical case in which both n-monotonicities are strict is
illustrated in Figure 11.

Ρa Ρb

Hb Ha

G

A B

Figure 11. Downward Equivocal Surface

Just as for the previous type of equivocal surface, the presence of Γ may be
difficult to recognize in calculations. Once its presence is suspected however,
MSC equations allow Γ to be tracked from initial points x0 ∈ Γ. Assume
uA(x) and pA(x) are already in hand for the A side of Γ. For the non-
degenerate case, assume the n-monotonicity of Ha at pA(x) is strict. The
geometry of the singularity implies the following equations for u = uA(x)
and p = pB(x) on the B side of Γ:

Ha′(x, p) = 0, Hb(x, p) = 0, and u − uA(x) = 0.

Here a′ = a if as in Figure 11 there are no indices other that a, b involved.
If however the situation is as in Figure 12, a′ is the index for the minimizing
Hi for the interval (ρb − ǫ, ρb) just to the left of ρb in the figure. We now
form the MSC equations (13) using

F0 = Hb, F−1 = Ha′ , F1(x, u, p) = u − uA(x).

For F1 to be C2 we need to invoke the C2 extension hypothesis for uA(x), as
described in Section 2.3.1. This is another common type of singular surface;
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Ρa Ρb

Hb

Ha'

Figure 12. Downward Equivocal Surface with Multiple Indices

see [11, (1.95)]. Taking the homogeneity factor to be

µ = {F0, F1} + {F1, F−1} = {Hb, F1} − {Ha′ , F1},
the resulting system of singular characteristics can be written

(18)
ẋ = λ1

∂

∂p
Ha′ + λ2

∂

∂p
Hb, u̇ = λ1〈p,

∂

∂p
Ha′〉 + λ2〈p,

∂

∂p
Hb〉,

ṗ = −λ1
∂

∂x
Ha′ − λ2

∂

∂x
Hb − ({Ha′ , Hb}/µ)(p − pA(x)),

where

λ1 = {Hb, F1}/µ, λ2 = −{Ha′ , F1}/µ.

Degenerate versions are possible. Tangency on the B side corresponds to

0 = 〈p − pA(x),
∂

∂p
Hb〉 = {F1, F0},

which implies λ1 = 0 as well. If present, this should just emerge as the MSC
equations generate Γ. If Ha is n-tangent at pA(x) (all along Γ) then Γ is an
envelope for the A-characteristics and we would identify it by that property.

3.2.3. Focal Surface. A focal surface occurs if the characteristics approach
Γ from both sides. This requires that Ha(x, ·) is n-increasing at pA(x) and
that Hb(x, ·) is n-decreasing at pB(x). If these are strict monotonicities, then
a 6= b and at least one additional index i is needed to account for mini Hi ≤ 0
for ρa ≤ ρ ≤ ρb, as illustrated in Figure 13. Once again, degenerate versions
are possible if n-tangencies occur for Ha or Hb. As for the upward focal
surface of Section 3.1.3, the construction of such a surface requires a system
of simultaneous equations for Γ and both pA(x), pB(x) for x ∈ Γ, which is
beyond the scope of the standard type of MSC equations. We refer again to
[12].

3.3. Nonsingular Switching Surfaces. We assumed above that pA(x) 6=
pB(x) for x ∈ Γ. We now consider the possibilities in which pA(x) = pB(x),
x ∈ Γ. This makes u(x) a C1 function throughout O = A ∪ Γ ∪ B and a
classical solution of our equation F (x,∇u(x)) = 0. But there still can be a
significant singularity if the minimizing index changes across Γ: a 6= b. In
this case we will refer to Γ as a nonsingular switching surface. These can be
viewed as limiting versions of certain cases above in which ρb − ρa → 0.
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Ρa Ρb

Ha Hb

Hi

G

A B

Figure 13. Downward Focal Surface

3.3.1. Dispersal Surface. This is the limiting version of the dispersal surface
of Section 3.1.1. Ha(x, ·) is n-decreasing at pA = pB(x) while Hb(x, ·) is
n-increasing. Figure 14 illustrates the structure in the case of strict mono-
tonicites. As always, degenerate versions are possible in which one or the
other of Hi is n-tangent. As for all other dispersal surfaces, Γ would be iden-
tified as Γ = {x : uA(x) = uB(x)} with both uA and uB determined from
classical characteristics with initial conditions elsewhere. No MSC equations
are necessary. (In fact it is also necessary that Hb(x, p(x)) = Ha(x, p(x))
holds on Γ, making this type of singularity overdetermined, and thus unlikely
to occur.)

Ρ

Ha Hb

G

A B

Figure 14. Nonsingular Dispersal Surface

3.3.2. Equivocal Surfaces. If both Hi are n(x)-decreasing at pA = pB, we
have an equivocal surface, as in Figure 15. A degenerate version, in which Hb

is n-tangent, Figure 16, can be viewed as a limiting version of Section 3.1.2.
With uA(x) and pA(x) in hand (from the A-side characteristics initiated
elsewhere), we can locate Γ simply as the locus of

Hb(x, pA(x)) = 0,

so no MSC equations are needed. Section 4.2 below provides an example.

3.3.3. Universal Surface. This final type of nonsingular switching surface is
the limiting version of the focal surface of Section 3.2.3, with characteristics
approaching Γ from both sides. With the additional property that pA(x) =
pB(x), as we have here, this is called a universal surface. We have Ha(x, ·)
n-increasing at pA(x) = pB(x), while Hb(x, ·) is n-decreasing at the same
value. Figure 17 illustrates for strict monotonicities. (The additional i 6= a, b
of Figure 3.2.3 is now irrelevant.)
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Ρ
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Figure 15. Nonsingular Equivocal Surface

Ρ

Hb

Ha
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Figure 16. Degenerate Nonsingular Equivocal Surface

Ρ

Hb Ha

G

A B

Figure 17. Universal Surface

In this situation (like the focal surfaces above) we have neither uA(x)
or uB(x) to work with in developing MSC equations that can be used in
constructing Γ. However, since pA(x) = pB(x) on Γ there is only one p
value associated with each x ∈ Γ. This puts us back in the situation of
determining a manifold ΣΓ as in (9), for which MSC equations are a suitable
tool. Two equations are clearly necessary for x ∈ Γ and the corresponding
p = pA(x) = pB(x):

(19) F1 = Ha(x, p) = 0, F0 = Hb(x, p) = 0

A third equation follows from the assumed approach to Γ by the (reversed)
characteristics on both sides and the change in minimizer from Ha to Hb as
we cross Γ. On the A side the (reversed) Ha characteristics move from the
interior of A to points of contact with Γ. We have Hb − Ha ≥ 0 in A and
Hb −Ha = 0 on Γ. Therefore the derivative of Hb −Ha along the (reversed)
Ha characteristic must be nonpositive at the point where the characteristic
meets Γ:

0 ≥ d

dt
(Hb − Ha)(x(t), p(t)) = −{Hb − Ha, Ha} = −{Hb, Ha}.
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(We have used (12) to evaluate the total derivative along the characteristic,
with the negation for the time reversal, and the the fact that {Ha, Ha} = 0
due to antisymmetry.) Thus {Hb, Ha} ≥ 0 at points of ΣΓ. Reversing the
roles of Ha and Hb, the same argument applies on the B side, implying that
−{Hb, Ha} = {Ha, Hb} ≥ 0. We conclude that {Hb, Ha} = 0 on ΣΓ. This is
our third equation for ΣΓ:

(20) F−1 = {Hb, Ha} = 0.

The MSC system for these Fi is again a familiar one; see [11, (1.90)]. Note
that in reference to (13) we have {F0, F1} = F−1 = 0 on Γ, so that the λ−1

terms drop out of (13) on Γ. A convenient choice of homogeneity factor is
µ = {F1, F−1} + {F−1, F0}. The MSC system (13) is then

(21)
ẋ = λ0

∂

∂p
Hb + λ1

∂

∂p
Ha, u̇ = λ0〈p,

∂

∂p
Hb〉 + λ1〈p,

∂

∂p
Ha〉,

ṗ = −λ0
∂

∂x
Hb − λ1

∂

∂x
Ha,

Such universal surfaces have occurred frequently in recent examples from
queueing theory. We will see one in Section 4.1 below. (One also occurs as
“F” in [8, Figure 4], although no details are provided there.)

4. An Example

We mentioned in the introduction that recent asymptotic studies of queu-
ing networks have led to consideration of differential games whose HJI equa-
tions are of the max-concave form here. In this section we look one such
example in which some singular surfaces of the types mentioned above occur.
This is an extension of the example described in Section 6 of [8]. In that
work the problem was considered only in the small triangular region of the
first quadrant below the dashed line in Figure 18 below. One reason for the
domain restriction was that the discussion of [8] was limited to smooth solu-
tions. Here we consider the extension of that solution to the larger region of
the first quadrant covered by the characteristics illustrated in Figure 18. In
this larger region singularities do occur. We are not interested in identifying
this particular solution as the unique solution to some precisely formulated
differential game, or in discussing the associated boundary conditions on
the coordinate axes. Rather we are only interested in observing that this
example exhibits some of the singularity types described above.

The example is planar: n = 2. There just two indices: i = 1, 2. The Hi

are determined as in (3) using

f(x, i, w) = w − gi, L(x, i, w) =
1

2
|x|2 − 1

2
|w|2,

where the gi are the vectors

g1 = (2, 1), g2 = (1/2, 2).
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This gives

Hi(x, p) =
1

2
|p|2 − 〈p, gi〉 +

1

2
|x|2

Using these we form the max-concave Hamiltonian (1).

0.5 1 1.5 2

0.5

1

1.5

2

A

B

C

D
E F

Figure 18. Queueing Example

Figure 18 shows the family of characteristics from which the solution of
interest is constructed. We discuss below the several singular characteristics
evident here.

4.1. A Universal Surface. The line separating regions B and C is a uni-
versal surface Γ as described in Section 3.3.3. It is easily located by solving
the three equations (19) and (20) algebraically.

H1 = 0, H2 = 0, {H1, H2} = 0.

Working out the bracket, we find

0 = {H1, H2} = 〈x, g1 − g2〉.
We also find that

0 = H2 − H1 = 〈p, g1 − g2〉.
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Thus on the manifold ΣΓ associated with Γ both x and p are constrained to
the 1-dimensional subspace of R

2 orthogonal to g1 − g2. A convenient basis
vector for this subspace is the following convex combination of gi:

(22) η = λ0g1 + λ1g2 =
7

13
(2, 3), λ0 = 5/13, λ1 = 8/13.

This has the property that

〈η, g1〉 = 〈η, η〉 = 〈η, g2〉.
Along Γ we have x = cη and p(x) = bη for scalars c, b. Plugging into

Hi(x, p(x)) = 0 implies b = 1 −
√

1 − c2. (The alternate choice of b =

1 +
√

1 − c2 does not correspond to the solution pictured in the figure.)
This completely determines ΣΓ as a (nonlinear) manifold in R

5 whose x-
projection Γ into R

2 is the ray from the origin generated by η. The graphs
of Hi in the normal direction to Γ at such (x, p(x)) are precisely as illustrated
in Figure 17, with a = 2 on the left or C side and b = 1 on the right.

Although we did not need the MSC equations (21) to construct ΣΓ, it is
a simple matter to check them. With a = 2, b = 1 the x and p-equations
work out as

ẋ = λ0(p − g1) + λ1(p − g2)

ṗ = −λ0x − λ1x,

where λ0 = {F1, F−1}/µ and determined from λ1 = {F−1, F0}/µ are

{F1, F−1} = 〈g1 − g2, p − g2〉, {F−1, F0} = 〈g1 − g2, g1 − p〉, µ = |g1 − g2|2.
With p = bη we find that λ0 = {F1, F−1}/µ and λ1 = {F−1, F0}/µ work out
to be exactly the constant values used in (22) above. The differential equa-
tions for x = cη and p = bη reduce to equations for the scalar coefficients:

ċ = b − 1, ḃ = −c.

The solution corresponding to our ΣΓ is

c(t) = − sin(t), b(t) = 1 − cos(t), t ∈ (−π/2, 0).

4.2. A Nonsingular Equivocal Surface. The construction of the solu-
tion in regions E, F, and D depends on p(x) for x = (0, x2) on the vertical
axis. The determination of these values involves the use of special singular
characteristic equations associated with oblique derivative boundary con-
ditions. The interested reader may consult [8], [7] for more on this. For
our purposes here we simply exhibit the appropriate values of p(x) on the
vertical axis:

p(0, x2) =
1

2

(

3 −
√

9 − 2x2
2

)

(1, 1) (vector with equal components).

This satisfies H1(x, p(x)) = 0 for x = (0, x2). With these as initial condi-
tions, the region E is then covered by H1 characteristics producing uE(x) and
pE(x) = ∇u(x) in that region. However i = 1 is minimizing (0 = H1 ≤ H2)
only in a neighborhood of the vertical axis, not in the full region covered by
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these characteristics. As in Section 3.3.2, the locus of 0 = H2(x, pE(x)) is a
nonsingular equivocal curve Γ with the structure illustrated in Figure 15. A
portion of this curve is visible in Figure 18 as the boundary between regions
E and D, below the point x∗ ≈ (.20, 1.22) marked with a solid dot. The
characteristics which cross this singular curve below x∗ are continuous in p,
pD(x) = pE(x), and continue into region D with H2 minimizing. However,
if we observe the H-plots (as on the left in Figure 15) moving x ∈ Γ upward
toward x∗ we observe that the Hb (b = 2) graph flattens out, approach-
ing the situation of Figure 16. The plots are provided in the top row of
Figure 19, with the lower left plot being for x∗ itself.

x*=H0.2, 1.22 L

H1

H2

x=H0.23, 1.41 L

H1

H2

x=H0.04, 0.26 L

H1
H2

x=H0.15, 0.88 L

H1

H2

Figure 19. “Bifurcation” of Equivocal Surface

4.3. An Upward Equivocal Surface. At the point x∗ we have a sort
of bifurcation in the H-plot. The situation here is a limiting version an
an upward equivocal surface as in Section 3.1.2, Figure 5, in which ρb =
ρa. With pE(x) in the role of pA, we now extend Γ beyond (above) x∗

so as to satisfy equation (16) (with p = pE(x∗) at x∗ itself). The result
of this extension appears above x∗ in Figure 18 as the boundary between
regions E and F, with a typical H-plot in the lower right of Figure 19. The
characteristics in region F are those using H2 with initial conditions on Γ
and the p values for the H2 side of Γ as produced by our solution of (16).

The location of Γ itself is determined by solving the MSC equations (17)
with the initial point x0 = x∗ and p0 = pE(x∗). However, for this particular
example we can use (16) to develop a simpler two dimensional system de-
scribing Γ, instead of the four dimensional system resulting from (17). Given
uE(x) and pE(x) for x ∈ Γ, we seek the value p = pF (x). We know that
p − pE(x) is is normal Γ. Our equation for Γ will simply be an expression
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of ẋ ⊥ (p − pE(x)). The second equation of (16) can be expressed as

0 = H2(x, p) =
1

2

[

|p − g2|2 − (|g2|2 − |x|2)
]

=
1

2

[

|p − g2|2 − r(x)2
]

, where r(x) = (|g2|2 − |x|2)1/2.

In other words,
|p − g2| = r(x).

The third equation of (16) says

0 = 〈 ∂

∂p
H2(x, p), p − pE(x)〉 = 〈p − g2, p − pE(x)〉.

In the plane, these two equations determine p up to one of two possibilities.
A trigonometric calculation leads to the expression

(23) p − g2 =
r(x)

|pE(x)(x) − g2|2
·

[

r(x) +
√

2H2(x, pE(x))

−
√

2H2(x, pE(x)) r(x)

]

(pE(x) − g2).

(For the alternate solution the signs of the off-diagonal terms are reversed.
The Γ resulting from that turns out to be untenable, because it lies far-
ther to the right, requiring u = uE to be used beyond the region in which
H1(x, pE(x)) ≤ H2(x, pE(x)) holds.) Since p−g2 is orthogonal to p−pE(x),
the right side of (23) is tangent to Γ. So we can simply take the right side
of (23) as the definition of a vector field Φ(x). Γ is then obtained by solving
ẋ = Φ(x) with the bifurcation point x∗ as the initial condition.

Actually, the construction described at the beginning of Section 4.2 doesn’t
produce pE(x) as an explicit function of x, but rather as an expression in
terms of a pair of parameters: s parameterizing the vertical axis, and t pa-
rameterizing the solution of the H1 characteristic in region E starting from
the point on the boundary with parameter value s. Let xE(s, t) refer to the
parameterization of the state variable x associated with this family of H1

characteristics. We must solve our ODE for Γ using its description in this
parameterization:

∂xE(s, t)

∂(s, t)

[

ṡ
ṫ

]

= Φ(xE(s, t)).

Computing and then inverting an explicit expression for ∂xE(s,t)
∂(s,t) produces

the actual ODE which when solved (numerically) produces a parametric
description of Γ in the form xE(s(τ), t(τ)).

In summary, the construction of this solution in regions E, F, and D begins
with computing u along the vertical axis to obtain the values of u and p = ∇u
satisfying certain boundary conditions [8] on that axis, then extending into
the interior using conventional characteristics until the equivocal curve(s) on
the right boundary of region E is reached. The lower portion of that curve
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is a nonsingular equivocal or “switching” curve; p is extended across it by
continuity. The upper portion of that curve is a singular equivocal curve
which is located by the MSC equations (reformulated in parameter space)
and which prescribes the p discontinuity across the curve. Once past the
switching/singular curve, conventional characteristics provide the extension
through regions D and F. This illustrates how our study of singularity struc-
tures for viscosity solutions and their MSC descriptions can be important
for explicit solutions in particular examples.
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