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Abstract. We generalize the analysis of Ball, Day and Kachroo [2] to a fluid model of a single server
re-entrant queue. The approach is to solve the Hamilton-Jacobi-Isaacs equation associated with optimal
robust control of the system. The method of “staged” characteristics is generalized from [2] to construct
the solution explicitly. Formulas are developed allowing explicit calculations for the Skorokhod problem
involved in the system equations. Such formulas are particularly important for numerical verification of
conditions on the boundary of the nonnegative orthant. The optimal control (server) strategy is shown to
be of linear-index type. Dai-type stability properties are discussed. A modification of the model in which
new “customers” are allowed only at a specified entry queue is considered in 2 dimensions. The same optimal
strategy is found in that case as well.

1. Introduction

A robust control approach to the design of service disciplines for queueing systems was initiated by Ball,
Day and Kachroo [2]. That paper, largely motived by applications to vehicular traffic systems, considered
a fluid model of the single server with no re-entry. In Section 4 of [2] the 2-queue version of that system
was modified so that the served output of the first queue becomes input to the second queue, forming
the simplest example of what is called a re-entrant line in queueing system literature [11]. In this paper
we develop the same general approach for the n-dimensional version of the fully re-entrant single server,
illustrated in Figure 1.
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Figure 1. Re-entrant Server

There is much current interest in developing optimal service strategies for queueing systems. The volume
by Kelly and Williams [9] includes several articles addressing this. Although queueing models are gener-
ally integer-valued and stochastic, Dai [4] and others have developed connections between the stability of
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stochastic queuing systems and their deterministic fluid limits. Thus optimal strategies for fluid models
are recognized as significant for stochastic models. Fluid models for a large class of queueing systems can
be described by equations of the general form (5) introduced in Section 2 below. We pursue the same ro-
bust control approach as in [2] for such models. Much of what we present here is a further development
of ideas from that paper. In particular, Section 2.1 gives explicit representations of the velocity projection
map π(x, v) of the Skorokhod reflection mechanism which comes into play when one or more queues are
empty. Section 3 develops the construction of the value function for our control problem. Here, as in [2],
the construction proceeds without regard to the Skorokhod dynamics on the boundary of the nonnegative
orthant. (In more general multiple server examples the Skorokhod dynamics will play a more decisive role.)
Even so, the solution we construct must be shown to satisfy various inequalities associated with optimality
with respect to the Skorokhod dynamics on the boundary. We do not provide a deductive proof of these
inequalities, but rely instead on a system of numerical confirmation for individual test cases in Section 4. The
explicit representations of π(x, v) are important for this, and for the optimality argument of Section 5. The
version of that argument given here improves on the one in [2] in that it applies to all admissible strategies,
not just those of state feedback form.

Our model allows new arrivals and unserved departures in the form of an exogenous load qi(t) for each
xi; see (1) below. In some queueing applications this feature would be inappropriate. For instance in typical
re-entrant lines, new arrivals only occur at a specified entry queue and departures only as service is completed
at a designated final queue. In Section 6 we will look at the the 2-dimensional case of our model under the
more restrictive assumption that exogenous arrivals are only allowed in the entry queue x1. This requires a
number changes in our calculations. But we find that this change to the model does not effect the resulting
optimal service policy.

2. The Model and Approach of Optimal Control

We describe in this section the general model formulation and performance criteria that we will use. Fluid
models for a large class of queueing systems can be described by equations of the nominal form

ẋ(t) = q(t) −Gu(t).(1)

The state variable is n-dimensional: x = (x1, . . . , xn) ∈ Rn. For queueing models x(t) must remain in the
nonnegative orthant, K in (4) below. For that purpose we will couple (1) with Skorokhod problem dynamics,
resulting in (5) below. The term q(t) is the load on the system due to new arrivals (or unserved departures
if qi(t) < 0). The service allocation is specified by the control function u(t) whose values are taken from
a finite set U0 ⊆ Rm of possible service control settings. For purposes of an adequate existence theory for
solutions to (5) we relax this to allow u(t) to be taken from the convex hull

U = conv U0.(2)

For our single-server examples we will simply take U0 = {e1, . . . , en}, the standard unit vectors in Rn. Thus
u ∈ U has coordinates ui ≥ 0 with

∑
ui = 1. The matrix G converts u(t) to the appropriate vector of

contributions to ẋ. For the case to be considered here (Figure 1) G will be the lower triangular matrix

G =




s1 0 . . . 0

−s1 s2 0
...

0 −s2 . . . . . .
...

. . . . . . sn−1 0
0 . . . 0 −sn−1 sn



.

The si > 0 are parameters which specify the service rates for the respective queues. Thus when u(t) = ek
(k < n), the effect of −Gu(t) in (1) is to drain queue xk at rate sk with the served customers entering xk+1

at the same rate:

ẋk = qk(t) − sk, ẋk+1(t) = qk+1(t) + sk, and ẋi = qi otherwise.
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Multiple server examples are easily modeled by (1) and (5) as well. Consider for example the 2-server
re-entrant line in Figure 2. It would be natural to use

G =



s1 0 0 0
−s1 0 s2 0

0 s3 −s2 0
0 −s3 0 s4


 and U0 = {




1
0
1
0


 ,




1
0
0
1


 ,




0
1
1
0


 ,




0
1
0
1


}.(3)

The first two columns in G correspond to the service allocation at server A and the second two at server
B. The u ∈ U0 correspond to the 4 different combinations in which server A chooses between x1 or x3 and
server B chooses between x2 or x4.

A B

✲x1 ✲x2

✲x3 ✲x4 ✲

Figure 2. 2-Server re-entrant line

2.1. Skorokhod Problem Dynamics. We denote by K the nonnegative orthant of Rn:

K = {x ∈ Rn : xi ≥ 0 for all i}.(4)

The faces of K are

∂iK = {x ∈ K : xi = 0}.
The interior normal to ∂iK is the standard unit vector ni = ei. We will use

N = {1, . . . , n}
to denote the set of all coordinate indices. For x ∈ K,

I(x) = {i ∈ N : xi = 0},
will denote the set of indices with zero coordinate values.

An essential feature of queueing models is that x(t) remains in K for all t. One could simply impose
this as a constraint the control functions u(t) and loads q(t) which are considered admissible. Although
some constraints on the load are reasonable, we find it much more natural in general to couple (1) with the
dynamics of a Skorokhod problem. On each face ∂iK we specify a constraint vector di. If the solution of
(1) attempts to exit K through ∂iK, then the idea is to add some positive multiple of di to the right side of
(1) to prevent the exit. A precise formulation is the following: given x(0) ∈ K and q(t), u(t) (which we will
assume to be locally integrable), let

y(t) = x(0) +
∫ t

0

q(s) +Gu(s) ds.

The Skorokhod Problem is to find a continuous function x(t) ∈ K, a measurable function r(t) ∈ Rn and a
nondecreasing function �(t) ≥ 0 which satisfy the following for t ≥ 0:

• x(t) = y(t) +
∫
(0,t]

r(s) d�(s);
• for each t, r(t) =

∑
i∈I(x(t)) λidi for some λi ≥ 0;

• �(t) =
∫
(0,t]

1x(s)∈∂K d�(s).
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By imposing a normalization ‖r(t)‖ = 1, there will be a unique solution, provided K and di satisfy certain
conditions. Dupuis and Ishii [5] and Dupuis and Ramanan [7] provide a substantial body of theory of
Skorokhod problems in general. In particular they show, using a velocity projection map π(x, v), that a
Skorokhod problem can be expressed as a differential system. The velocity projection map is of the form

π(x, v) = v +
∑
i∈I(x)

βidi

for an appropriate choice of βi ≥ 0. (See (6) below.) The result of coupling our (1) with the appropriate
Skorokhod problem is expressed as

ẋ(t) = π(x(t), q(t) −Gu(t)),(5)

holding almost surely.
The appropriate constraint vectors di are determined by the structure of the system in Figure 1. If

x ∈ ∂iK and server i is active (ui > 0) but the applied service rate siui exceeds the inflow qi to xi, then
according to (1) x would exit K through ∂iK. In an actual network the system could not really use the
full service capacity siui allocated to xi. Instead, service would take place at a lower level which exactly
balances the inflow and outflow of queue xi. Mathematically this is achieved by adding a positive multiple of
the column Gei of G to the right side of the system (1), bringing ẋi to 0 and producing the correct reduction
of the throughput xi → xi+1 to the next queue. So we take di = 1

si
Gei (the normalization being so that

ni · di = 1). The same prescription is appropriate for the example of Figure 2: take di to be the unique
column of G having a positive entry in row i, normalized so that ni · di = 1.

At this point we wish to highlight the fact that no restrictions on u(t) and q(t) are needed to keep x(t)
in the nonnegative orthant; (5) will determine a state trajectory with x(t) ∈ K regardless. Thus we always
instruct the server to work at full capacity (

∑
ui(t) = 1) and the Skorokhod dynamics can be viewed as

automatically reducing the service rates to the levels that can actually be implemented. The model allows
a separate load term qi(t) for each queue. For re-entrant queues, one typically would only want to allow
qi > 0 for the entry queue in each re-entrant sequence. In Figure 1 for instance it would be natural to assume
q2 = . . . = qn = 0. A nice feature of single servers with respect to the L2 performance criteria of Section 2.4
is that the the optimal strategy is the same for all loads, regardless of which coordinates might be zero. In
queueing applications one also naturally assumes that qi ≥ 0. However it was argued in [2] that, for purposes
of vehicular traffic for instance, it is reasonable to consider qi < 0. This would correspond to customers that
leave the system without waiting to receive service all the way through. This is a reasonable consideration
in some applications. However it is hard to conceive of a realistic interpretation for qi < 0 when xi = 0.
Even so, (5) will still yield a mathematical solution. The effect of the additional +βidi terms in π(x, q−Gu)
might then be seen not as reductions to the service rates but as a transference of the reducing influence of
qi < 0 from the empty xi to the queues xj further along in sequence; fluid at xj would be drawn backwards
through the system to satisfy to external demand due to qi < 0 at previous xi.

With di defined, we face the important technical issue of existence and regularity properties of the Sko-
rokhod problem. This issue is treated in detail in [5] and [7]. Those treatments consider a more general
convex polyhedron in place of our K. Our particular choice of the nonnegative orthant falls within the scope
of the earlier work [12]. Let D = [di] be the matrix with the constraint vectors as columns. In our case,
D = I −Q where Q is the subdiagonal matrix with entries

qij =

{
1 if i = j + 1
0 otherwise.

Assuming that Q has nonnegative entries and spectral radius less than 1, both clearly satisfied for us, [12]
provided a direct construction of the solution of the Skorokhod problem. In [7] it is shown that these
conditions from [12] fall within the scope of a more general set of sufficient conditions for existence and
Lipschitz continuity of the Skorokhod map y(·) �→ x(·).

Drawing on the ideas of [12], we can give a direct construction of the π(x, v) appearing in the differential
formulation (5) of the Skorokhod problem. For any x ∈ K and v ∈ Rn, we will show that w = π(x, v) can
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be characterized using a linear complementarity problem:

w = v +
∑
I(x)

diβi(6)

subject to the following constraints for each i ∈ I(x):

βi ≥ 0,(7)

wi ≥ 0,(8)

wiβi = 0.(9)

For i /∈ I(x) there is no constraint on wi, and we consider βi = 0 to be implicit. Let β = [βi]n1 . Using
D = I −Q, and rewriting (6) as

Qβ − v + w = β

it is easy to see that the complementarity problem is equivalent to saying β is a fixed point β = Ψx(β) of
the map Ψx : Rn → Rn defined coordinate-wise by

(Ψx(β))i =

{
(Qβ − v)+i if i ∈ I(x)
0 if i /∈ I(x).

(10)

The notation y+ refers to the usual positive part: y+ = max(0, y). (This fixed point representation is a
particular case of the general fixed point representation of variational inequalities in Chapter 1 of [10].) We
first observe the existence of a unique fixed point. The argument of [12] is to observe that (after a linear
change of variables) Ψ is a contraction, under the nonnegativity and spectral radius assumption mentioned
above. However this is even simpler for our particular Q; β = Ψx(β) reduces to

β1 =

{
(−v1)+ if 1 ∈ I(x)
0 if 1 /∈ I(x)

, and βi =

{
(βi−1 − vi)+ if i ∈ I(x)
0 if i /∈ I(x)

for 1 < i,

which determine the βi sequentially. Iteration of Ψx from any initial β will converge to the fixed point after
at most n steps. This makes it particularly simple to see that v �→ β and thus v �→ π(x, v) are continuous,
and to evaluate π(x, v) numerically. Indeed π(x, v) is Lipschitz in v for a fixed x, and is jointly continuous
in (x, v) if x is restricted so that I(x) is constant.

We can easily check that π(x, v) as defined by the above complementarity problem is indeed the velocity
projection map as identified in [5]. First, following an observation of [3], we can check that π(y) = π(0, y) is
the discrete projection map of Assumption 3.1 of [5]. Indeed, if y ∈ K then clearly β = 0 and w = y solves
the complementarity problem: π(0, y) = y. For y /∈ K,

y − π(0, y) = y − w = −
∑

i∈I(x), wi>0

βidi

which is of the form αγ for some α ≤ 0 and γ ∈ d(w), where d(x) is the set of reflection directions as defined
in [5, §3]. Next, suppose x ∈ K, v ∈ Rn, and let w, β solve the complementarity problem for w = π(x, v)
above. We claim that

π(0, x+ hv) = x+ hw, provided h > 0 is sufficiently small.(11)

This will imply that

π(x, v) = w = lim
h↓0

π(x+ hv) − x
h

,

which is the characterization of π(x, v) in [5, §5.3]. Since w, β solve (6), it follows that

x+ hw = (x+ hv) +
n∑
1

hβi di.

We want to see that w̃ = x+hw and β̃ = hβ satify the complementarity conditions (7) — (9) for ṽ = x+hv
associated with x̃ = 0, for which I(x̃) = N . First consider i ∈ I(x). Since xi = 0, we have

w̃i = (x+ hw)i = hwi ≥ 0.
5



Since h > 0 we also know β̃i = hβi ≥ 0, For the prodiuct (9) we have

w̃iβ̃i = (x+ hw)ihβi = h2wiβi = 0.

Next consider i /∈ I(x). Provided h > 0 is sufficiently small we have

w̃ = (x+ hw)i > 0.

Since βi = 0 we have β̃i = 0, which also confirms the product condition. This verifies (11), as desired.
For purposes of our calculations, the characterizations of π(x, v) in Lemma 1 below will be useful. If

J ⊆ N we will use
NJ = [nj ]j∈J and DJ = [dj ]j∈J

to denote the matrices whose columns are the normal vectors nj and constraint directions dj for the j ∈ J .
Given v, w = π(x, v), and the corresponding βi as described above, let

F0 = {i : βi > 0} and L = {i ∈ I(x) : wi = 0}.
From the complementarity problem we know F0 ⊆ L ⊆ I(x). Using any F0 ⊆ F ⊆ L the values of βi, i ∈ F
are determined by setting wi = 0, i ∈ F in (6). In other words we can solve for βF = [βi]i∈F directly in
0 = NTF (v +DFβF ) to obtain βF = BF v where

BF = −(NTFDF )−1NTF ,(12)

and consequently

w = π(x, v) = RF v(13)

where RF is the reflection matrix
RF = I +DFBF .

For F = ∅ we simply take R∅ = I. The fact that wi ≥ 0 for i /∈ F is equivalent to

NTI(x)\FRF v ≥ 0.

More precisely,
NTL\FRF v = 0 and NTI(x)\LRF v > 0.

Suppose that we don’t know F0 or L at the outset, but just take an arbitrary F ⊆ I(x), calculate
βF = BF v, and take w = RF v. By construction wi = 0 for i ∈ F and βi = 0 for i /∈ F . So item 3 of the
complementarity problem is satisfied. If item 1 is satisfied of i ∈ F , which is to say

BF v ≥ 0,

and item 2 holds for i ∈ I(x) \ F , which is to say

NTI(x)\FRF v ≥ 0,

then we can say that w = RF v is in fact π(x, v). This discussion proves the following lemma.

Lemma 1. Given x ∈ K, v ∈ Rn, and F ⊆ I(x), the following are equivalent:

1. π(x, v) = RF v;
2. both of the following hold:

(a) BF v ≥ 0 when F �= ∅, and
(b) NTI(x)\FRF v ≥ 0 when F �= I(x);

3. for some L with F ⊆ L ⊆ I(x) all of the following hold:
(a) BF v > 0 when F �= ∅, and
(b) NTL\FRF v = 0 when F �= L, and
(c) NTI(x)\LRF v > 0 when L �= I(x).

Notice that the strict inequality in 3 (a) simply identifies F as F0 = {i : βi > 0}.
6



2.2. The Optimal Control Policy. Our goal is to design a feedback control strategy α∗(x), prescribing
a value in the extended control set U for each x ∈ K, so that using u(t) = α∗(x(t)) produces optimal
performance of the system. The criteria used to determine optimality is based on∫ T

0

1
2
‖x(t)‖2 − γ2

2
‖q(t)‖2 dt,(14)

where γ > 0 is a parameter. Roughly speaking, the control should keep the integrated cost (14) small,
so that x(t) remains small compared to the load q(t) in a time-averaged sense. We will give this a more
precise formulation in Section 2.4 below. The “running cost” 1

2‖x‖2 − γ2

2 ‖q‖2 of (14) has it roots in classical
H∞ control, and is attractive for its broad familiarity and success in a wide range of control applications.
Other choices might be more appropriate for particular queueing applications, such as those associated with
optimal draining and time-to-empty criteria; see [18] and [1]. There are however considerations that favor
L2 in the traffic setting. For a given total customer population, the L2 norm favors balanced queue lengths
over a situation in which some queues are empty and others are full. When each customer is a person who
has to wait in a queue, a cost structure that can be minimized by using excessive waits for some small class
of customers would be considered unacceptable.

The optimal policy itself is easy to identify by naive considerations at this point. In order to minimize
(14) for a given q(t) one would minimize 1

2‖x(t)‖2, for which one would naturally try to choose u(t) to
minimize d

dt
1
2‖x(t)‖2 = x(t) · ẋ(t). In the interior of K, where (1) applies, this suggests that the optimal u

is that which maximizes x ·Gu over u ∈ U . On ∂K ẋ is given by (5), which makes finding the u to minimize
x ·π(x, q−Gu) potentially more difficult. However if we assume that all qi ≥ 0 then the Skorokhod dynamics
do not affect the minimizing u. To see this consider x ∈ K with x �= 0 and suppose u∗ ∈ U maximizes x ·Gu.
It is easy to see that supx ·Gu > 0. Observe that for any i ∈ I(x), since xi = 0 and all off-diagonal entries
of G are nonpositive, x ·Gei ≤ 0. Thus the i-coordinate of u∗ must be 0, from which we can conclude that
ni ·Gu∗ ≤ 0. Since qi ≥ 0 by hypothesis, we see that

ni · (q −Gu∗) ≥ 0, for all i ∈ I(x).

This means that π(x, q−Gu∗) = q−Gu∗. Also, for any i ∈ I(x) we have x · di ≤ 0 because xi = 0 and only
the i coordinate of di is positive. Therefore, for any u ∈ U we can say that

x · π(x, q −Gu) = x · (q −Gu+
∑
I(x)

βidi) ≤ x · (q −Gu) ≤ x · (q −Gu∗) = x · π(x, q −Gu∗).

Thus the policy

α∗(x) = {u∗ ∈ U : x ·Gu∗ = max
U
x ·Gu}.(15)

is an obvious candidate for the optimal service policy. We will see below that it is indeed optimal in the
sense to be made precise in Section 2.4.

Several comments should be made at this point. First observe that α∗(x) is set-valued. There are inherent
discontinuities in α∗(x), as the optimum u jumps among the extreme points of U . When we replace u(t)
by α∗(x(t)) in (5), we will want the resulting feedback system to have good existence properties. This is
addressed using the Filippov theory of differential inclusions. For that it is important that α∗(x) have closed
graph and be convex set-valued. (The notion of closed graph is often called “lower semi-continuity” for
set-valued functions.) It is easy to see that (15) has these properties.

Another important point to make is that the naive reasoning which suggests α∗(x(t)) to us does not
actually imply that it achieves the smallest possible value of 1

2‖x(T )‖2 for a given q(·) and target time T . It
is conceivable that it might be better to forgo pointwise minimization of d

dt
1
2‖x(t)‖2 in order to drive x(t)

into a different region (or section of the boundary) where larger reductions of ‖x(t)‖ could be achieved. Some
sort of dynamic programming argument, such as the Hamilton-Jacobi equation developed in Section 3, is
needed to adequately address such global optimality issues.

Although it may not have much practical import, one might ask whether allowing qi < 0 when xi = 0
might affect the choice of u∗ ∈ U which minimizes x ·π(x, q−Gu). Indeed it can. If qi < 0 is large enough its
effect through the Skorokhod dynamics can produce cases in which a u /∈ α∗(x) minimizes x · π(x, q −Gu).
This consideration would lead to an enhanced optimal policy which agrees with α∗(x) on the interior of K,
but depends on both q and x when x ∈ K. Although no longer state-feedback, this enhanced control would
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(we expect) produce lower values of (14), but only for those negative loads q(t) which, as we described above,
have the effect of drawing customers backwards through the system. Even so, this enhanced control would
not improve the performance of the system in the worst case sense of the differential game formulated in
Section 2.4, as Theorem 1 below will assert.

2.3. Minimum Performance Criteria. Our strategy α∗ is expressed in state feedback form. Given a load
q(·), the associated control function u∗(t) would be what results from solving the system

ẋ = π(x(t), q(t) −Gu∗(t)),

u∗(t) ∈ α∗(x(t)).
(16)

This system is a combination of a differential inclusion, in the sense of Filippov, and a Skorokhod problem
as described above. The discussion in [2, Section 1.4] outlined how the arguments of [6] can be adapted to
establish the existence of a solution. A proof of uniqueness is more elusive. The usual Filippov uniqueness
condition would be that for some L

(xa − xb) · [(q −Gua) − (q −Gub)] = (xa − xb) · (Gub −Gua) ≤ L‖xa − xb‖2.

This is immediate (using L = 0), since by definition of α∗(·),
xa ·Gub ≤ xb ·Gua and xb ·Gua ≤ xb ·Gub

for all ua ∈ α∗(xa), ub ∈ α∗(xb). However, as noted in [2], when coupled with Skorokhod dynamics (16)
we are unable to conclude uniqueness based on existing results in the literature. Until that issue can be
addressed, we must allow the possibility of multiple solutions to (16). The uniqueness question is not
essential to our main result Theorem 1, however. We simply need to formulate its statement in such a way
that strategies are allowed to produce more than one control function u(t) for a given load q(t).

In general a service strategy α(·) maps a pair x(0), q(·) to one or more control functions u(·). We will
write u(t) = α[x(0), q(·)](t), although this notation is not quite proper if there are actually more than one
u(·) associated with x(0), q(·) by α. Rather than formulating a cumbersome notation to accommodate this,
we will simply use phrases like “for any u(t) = α[x(0), q(·)](t)” to refer to all possible u(t). A strategy
should produce one or more control functions for any x(0) ∈ K and load function q(·) which is locally
square-integrable. We insist that a strategy be nonanticipating, in the sense that if q(s) = q̃(s) for all s ≤ t,
then for any u(t) = α[x(0), q(·)](s) there is a ũ(t) = α[x(0), q̃(·)](s) with u(s) = ũ(s) for all s ≤ t. Given
any such x(0), q(·) and a resulting u(t), the general existence and uniqueness properties of the Skorokhod
problem (e.g. [5]) provide a unique state trajectory x(t) ∈ K.

We will call a strategy α(·) non-idling if for any nonnegative load qi(t) ≥ 0 for all i and all t ≥ 0, any
x(0) ∈ K, and any u(t) = α[x(0), q(·)](t), the resulting state trajectory x(t) has the property that ui(t) > 0
and xi(t) = 0 occur simultaneously for some i only if x(t) = 0. In other words, all service effort is allocated
to nonempty queues, unless all queues are empty. In particular, our strategy (15) is non-idling, because if
x ∈ K and xi = 0, then x ·Gei ≤ 0, while x ·Gej > 0 if j is the index of the largest nonzero coordinate of x.

One of the features of single servers as in Figure 1 is that for nonnegative loads, a non-idling strategy
will never invoke the Skorokhod dynamics on ∂K, until it reaches x(T ) = 0. Indeed if x(t) ∈ K \ {0} but
xi(t) = 0, the non-idling property means that ui(t) = 0, from which the structure of G implies that

ni ·Gu(t) ≤ 0.

Since qi(t) ≥ 0, we conclude that
ni · (q(t) −Gu(t)) ≥ 0.

Thus unless x(t) = 0, π(x(t), q(t)−Gu(t)) = q(t)−Gu(t). Multiple servers do not have this property. In the
case of Figure 2 for instance, if both x2 = x4 = 0, then the service effort at B is wasted and the Skorokohd
dynamics will definitely come into play, regardless of x1 and x3. The Skorokhod dynamics will thus have a
stronger influence on the design of optimal strategies for multiple server models.

When considering those fluid models that arise as limits of discrete/stochastic queueing systems, the
stability criterion of Dai [4] is important for purposes of positive recurrence of the stochastic model. In that
setting the load q(t) is typically constant, with 1/qi equal to the mean time between new arrivals in queue
xi. The stability property of [4] is simply that for any x(0) ∈ K, the state x(t) reaches x(T ) = 0 at a finite
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T ≥ 0. For our single server model, all non-idling strategies are equivalent in this respect. To see why,
consider the vector

ν = (
n∑
j=1

1
sj
,

n∑
j=2

1
sj
, . . . ,

1
sn

)T .(17)

Observe that νTG = (1, 1, . . . , 1), so that for all u ∈ U we have ν · Gu = 1. For any nonnegative load q(t)
and the u(t) resulting form any non-idling strategy, we have (on any interval prior to the first time T when
x(T ) = 0)

d

dt
ν · x(t) = ν · π(x(t), q(t) −Gu(t))

= ν · (q(t) −Gu(t))

= ν · q(t) − 1.

Said another way, W (x) = ν · x is a sort of universal Lyapunov function for all non-idling controls. Thus,
the first time T for which x(T ) = 0 does not depend on the choice of non-idling control; it only depends on
the load q(t). For constant nonnegative loads q(t) ≡ q, the Dai stability property simply boils down to

ν · q < 1.(18)

Moreover if q = (q1, 0, . . . , 0)T then this reduces to the familiar load condition of [4, (1.9)]:

q1

n∑
1

1
sj
< 1.

Figure 3 illustrates this stability property. We have taken the optimal strategy α∗(x) for our model with
n = 2 and s1 = s2 = 1 and subjected the system to the constant disturbance q(t) ≡ (.4, 0). For these
parameters we find ν = (2, 1) and q · ν = .8, so that the load condition (18) is indeed satisfied. The figure
illustrates the resulting trajectories of (16). When x(t) reaches the ray from the origin in the direction of ν,
the solution of (16) in the Fillipov sense uses the averaged control value

u(t) = (
8
25
,

17
25

),

which takes x(t) to the origin in finite time directly along the ν ray. One may check that this ray consists
of those x for which α∗(x) = U is multiple-valued.

Theorem 1 below considers the optimality of α∗ with respect to all strategies α that satisfy the following
minimum performance criterion: given x(0) ∈ K with

ν · x(0) < 1,

there exists δ < 1 so that whenever q(·) is a nonnegative load satisfying

ν · q(t) ≤ 1 for all t,

and any u(t) = α[x(0), q(·)](t) the resulting state trajectory satisfies

ν · x(t) < δ for all t ≥ 0.

It is clear from our discussion above that every non-idling control satisfies the minimum performance criterion;
simply take δ = ν · x(0).

2.4. The Robust Control Problem. We now want to define more carefully the sense in which our service
strategy α∗(x) is optimal. We follow the general approach of Soravia [14] to formulate a differential game
based on (14). The focus is on a value function of the form

Vγ(x) = inf
α(·)

sup
q(·),T

∫ T

0

1
2
‖x(t)‖2 − γ2

2
‖q(t)‖2 dt.(19)

Here x ∈ K, the outer infimum is over strategies α(·), the inner supremum is over locally square integrable
loads q(·), all u(t) = α[x, q(·)](t) and bounded time intervals [0, T ], with x(t) the resulting solution of (1) for
x(0) = x.
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Figure 3. Controlled Trajectories for q(t) ≡ (.4, 0).

The gain parameter γ > 0 is customary in robust control formulations. However for the structure of our
problems γ scales out of the game (19) in a natural way. To see this, consider a particular load q(t), control
u(t), and solution x(t) of (5). Make the change of variables

s = γ−1t, x̄(s) = γ−1x(t), q̄(s) = q(t), ū(s) = u(t).

Then ẋ(t) = d
ds x̄(s), and because K is a cone, π(x, q−Gu) = π(x̄, q̄−Gū). Thus x̄(s) solves (5) on the new

time scale. With S = T/γ we have∫ T

0

1
2
‖x(t)‖2 − γ2

2
‖q(t)‖2 dt = γ3

∫ S

0

1
2
‖x̄(t)‖2 − 1

2
‖q(s)‖2 ds.

If V (·) = V1(·) is the value (19) for γ = 1, then the above implies that

Vγ(x) = γ3V (γ−1x).

From this point forward we simply take γ = 1 and write V instead of Vγ .
We can only expect V (x) <∞ to hold in a bounded region. To see why, imagine a load q(t) which is large

on some initial interval 0 ≤ t ≤ s so as to drive the state out to a large value X, and then q(t) is chosen for
t > s so as to maintain x(t) = X for t > s: q(t) = Gu(t). If ‖X‖ > supu∈U ‖Gu‖, the integral in (19) grows
without bound as T → ∞, producing infinite value. We must exclude such scenarios from the definition of
the game. It turns out that the region Ω in which V (x) will be finite is described using the vector ν of (17)
above:

Ω = {x ∈ K : x · ν < 1}.(20)

We restrict the T in (19) to those for which x(t) remains in Ω for all 0 ≤ t ≤ T .
This qualification on the state in turn requires us to place some limitations on the strategies α(·) considered

as well. We need to exclude controls that “cheat” by encouraging x(t) to run quickly to the outer boundary
of Ω to force an early truncation of the integral in (19). Such controls could achieve an artificially low value
by having actually destabilized the system. To exclude such policies we insist that all control strategies α(·)
satisfy the minimum performance criterion stated at the end of Section 2.2. With these qualifications, we
can now state precisely the optimality properties of the feedback strategy α∗(x).
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Theorem 1. Let Ω and α∗(x) be as defined above and suppose the boundary verifications of Section 4 have
been successfully completed. Using the control α∗(x), for x ∈ Ω, define

V (x) = sup
q(·),T

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt,(21)

where the supremum is over all loads q(t), all resulting control functions u(t) = α∗[x, q(·)](t), and those
0 < T <∞ such that the controlled state from x(0) = x satisfies x(t) ∈ Ω for all 0 < t < T . Then, for any
other control strategy α(·) satisfying the minimum performance criterion,

V (x) ≤ sup
q(·),T

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt(22)

with the same qualifications on the supremum.

The proof of these assertions will be discussed in Section 5 below. The qualification regarding the boundary
verifications of Section 4 will be explained in the last paragraph before Section 3.1.

3. Construction of the Value Function by Staged Characteristics

The proof in Section 5 of Theorem 1 is based on showing that the function V (x) of (21) solves the
Hamilton-Jocobi-Issacs equation associated with the game (19):

0 = Hπ(x,DV (x)).(23)

The Hamiltonian function is complicated by the special reflection effects on ∂K:

Hπ(x, p) = sup
q

inf
u∈U

{
p · πK(x, q −Gu) − 1

2
‖q‖2 +

1
2
‖x‖2

}
.(24)

The essential property of our strategy α∗(x) for the proof is that, given x ∈ Ω and p = DV (x), a saddle
point for the supq infU defining Hπ(x,DV (x)) in (24) is given by q∗ = DV (x) and any u∗ ∈ α∗(x). To be
specific, the minimum value of

DV (x) · π(x, q∗ −Gu) − 1
2
|q∗|2 +

1
2
|x|2(25)

over u ∈ U is 0, achieved at u = u∗; and the maximum value of

DV (x) · π(x, q −Gu∗) − 1
2
|q|2 +

1
2
|x|2(26)

over q ∈ Rn is 0, achieved at q∗. Together these imply (23). Our primary task is to produce V (x) and
establish this property of α∗.

In general (23) must be considered in the viscosity sense. Lions [13] considers the viscosity-sense formula-
tion of a general class of problems involving Skorokhod dynamics on ∂K. Instead of working with Hπ as in
(24), the viscosity sense solutions are described using only the interior form of the Hamiltonian (27), together
with special viscosity sense boundary conditions on ∂K. In our case it will turn out that the solution V is
actually a classical one. We find the direct formulation in terms of Hπ more natural for our development.

We will construct the desired solution V (x) by working in the interior K◦, where the complicating effects
of π(x, v) are not present: π(x, v) = v so Hπ = H where

H(x, p) = sup
q

inf
u∈U

{
p · (q −Gu) − 1

2
‖q‖2 +

1
2
‖x‖2

}
(27)

= inf
u∈U

Hu(x, p).

Here Hu refers to the the individual Hamiltonian for u ∈ U :

Hu(x, p) = sup
q
{p · (q −Gu) − 1

2
|q|2 +

1
2
|x|2}

=
1
2
|p|2 − p ·Gu+

1
2
|x|2.

(28)
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The supremum is achieved for q∗ = p. Also observe that for u∗ ∈ U to achieve the infimum in (27) means
simply that u∗ maximizes p ·Gu. So for x ∈ K◦, (23) and the saddle point conditions (25) and (26) simply
reduce to the statement that for any u∗ ∈ α∗(x),

DV (x) ·Gu∗ = max
u∈U

DV (x) ·Gu, and Hu∗(x,DV (x)) = 0.(29)

We turn now to the construction of V (x) of by a generalized method of characteristics. We cover Ω with
a family of paths x(t) as described below. The idea is that at a point x = x(t) the gradient of DV (x(t))
should be given by the costate trajectory p(t) that accompanies x(t). Thus a simple covering of Ω by a
family of such paths will determine the values of DV (x) in Ω. Knowing V (0) = 0 will then determine V (x)
in the region. We itemize the essential features of this family of x(t), p(t) in (30)–(33), and then explain
their relation to the Hamilton-Jacobi-Isaacs equation and saddle point property above. To begin, the paths
x(t), p(t) must solve the system of ODEs

ẋ = p−Gu∗
ṗ = −x(30)

for some piecewise constant u∗(t) ∈ U . The value of u∗(t) may change from one time interval to another,
but at each time t we require the optimality condition

p(t) ·Gu∗(t) = max
u∈U

p(t) ·Gu.(31)

Given an initial condition x = x(0) ∈ Ω, we require x(t) ∈ Ω for 0 < t ≤ T for some time T (depending on
x(0)) at which both x and p reach the origin:

x(T ) = 0 = p(T ).(32)

Lastly 0 ≤ t < T we require

‖p(t)‖ < ‖x(t)‖.(33)

Observe that (30) is the Hamiltonian system ẋ = ∂
∂pHu∗(x, p), ṗ = − ∂

∂xHu∗(x, p). This is intimately
connected with the propertyt that p(t) = DV (x(t)) for a solution of Hu∗(x,DV (x)) = 0. We will return to
this issue, near the end of Section 3.2 explaining why the manifold of (x, p) formed by our solution family is
truly the graph of a gradient p = DV (x). Notice also that for 0 ≤ t ≤ T we have

Hu∗(t)(x(t), p(t)) = 0(34)

The formula (28) for Hu shows that (34) is indeed satisfied at t = T since x(T ) = 0 = p(T ) according to
(32). It is a general property of Hamiltonian systems as in (30) that the value of Hu∗(x(t), p(t)) is constant
with respect to t. Property (31) implies that the jumps in u∗(t) do not produce discontinuities with respect
to t in (34). Therefore (34) follows as a consequence of (30) – (32). Thus (34) and (31) give us (29) for
u∗(t) in particular. The construction of x(t), p(t) in Section 3.2 will show that u∗(t) ∈ α∗(x(t)) and that
(29) extends to all u∗ ∈ α∗(x(t)). This will provide the saddle point conditions (29) on the interior.

The equation H(x,DV (x)) = 0 has many solutions, if it has any at all. One property of the particular
solution we want is that V be associated with the stable manifold of (30), in accord with the general approach
of van der Schaft [15, 16, 17] to robust nonlinear control. We see this in the convergence to the origin of
(32) above. Another important property is that

V (0) = 0 < V (x), for x �= 0.(35)

To this end, notice that the formula (28) for an individual Hamiltonian, together with (34), impliess that

p(t) · ẋ(t) = p(t) · (p(t) −Gu∗) =
1
2
‖p(t)‖2 − 1

2
‖x(t)‖2.(36)

So for p(t) = DV (x(t)), (33) is the same as saying

d

dt
V (x(t)) = p(t) · ẋ(t) < 0.(37)

If we stipulate that V (0) = 0, then it will follow that 0 = V (0) = V (x(T )) < V (x(0)), which is (35). One
may wonder why we have insisted on p(0) = 0 in (32). Observe that (33) (in the limit as t→ 0) implies that
‖p(0)‖2 ≤ ‖x(0)‖2, so p(0) = 0 is necessary if x(0) = 0.
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A family of x(t), p(t) as described above will give us a function V (x) which has the desired saddle point
properties at interior points. However for x ∈ ∂K both (25) and (26) are complicated by the nontrivial
structure of π(x, v). We claim the V (x) so constructed does in fact satisfy the saddle point conditions (25)
and (26) at x ∈ ∂K as well. We do not give a mathematical proof of this. Instead we have developed a
scheme of numerical confirmation that can be applied to test this claim for any specification of si. This is
described in Section 4. We also note the requirement in (32) above that x(t) ∈ Ω for all 0 ≤ t < T , given
x(0) ∈ Ω. This follows if we can verify that whenever x(t) ∈ ∂iK then

ni · (p−Gu∗) ≥ 0.

We rely on numerical tests for this fact as well. (See the discussion of (52) in Section 4.) Based on the
success of these tests for numerous examples, we conjecture that (25) and (26) are true in general. The
reference to the “boundary verifications of Section 4” in Theorem 1 indicates that the validity of that result
depends on the success of those tests.

3.1. Identification and Properties of the Invariant Control Vectors. We will construct the family
x(t), p(t) as above by generalizing the development of [2]. The key is to look for solutions that approach
the origin as in (32) using a constant control u∗. The solution of (30) with constant η = Gu∗ and terminal
conditions x(T ) = 0 = p(T ) is

x(t) = − sin(t− T )η

p(t) = (1 − cos(t− T ))η.
(38)

Observe that for 0 ≤ t ≤ T ≤ π/2 the values of both − sin(t− T ) and 1 − cos(t− T ) will be positive. Now
consider what (31) requires of (38):

η · η = max
u∈U

η ·Gu.(39)

There are only a finite number of such η = Gu∗, and they provide the key to the explicit representation of
the family of solutions x(t), p(t) that we desire.

We will call any η ∈ GU satisfying (39) an invariant control vector. To simplify our discussion here, let
gi = Gei denote the columns of G. (In more general models, gi would be the extreme points of GU .) To say
η ∈ GU means that η is a convex combination of the gi: η =

∑
λigi, some 0 ≤ λi,

∑
λi = 1. For an η as in

(39) consider the set of indicies
J = {i : λi > 0}.

It follows from (39) that every j ∈ J achieves the maximum value of η · gi over i ∈ N . Therefore

η =
∑
j∈J

λjgj for some λj ≥ 0 with
∑
j∈J

λj = 1, and

η · gj = max
i
η · gi, for all j ∈ J.

(40)

Our construction of V (x) depends on the fact that there is a unique such η = ηJ associated with every
nonempty subset J ⊆ N . The existence of ηJ depends on properties of our particular set of gi, but the
uniqueness does not. So we present the uniqueness argument separately as the following lemma.

Lemma 2. Suppose gi, i = 1, . . . ,m are nonzero vectors in Rn and J ⊆ {1, . . . ,m} is nonempty. If there
exists a vector ηJ as described in (40) then it is unique. Suppose ηJ and ηJ̃ exist for both J ⊆ J̃ . Then

ηJ · ηJ̃ = ηJ̃ · ηJ̃ .(41)

Proof. We establish (41) first. Without assuming uniqueness, suppose ηJ =
∑
J λjgj exists as in (40). It

follows that

ηJ · ηJ =
∑
J

λj ηJ · gj = max
i
ηJ · gi.(42)

Now suppose both ηJ and ηJ̃ exist for J ⊆ J̃ . Then the same reasoning implies that

ηJ̃ · ηJ =
∑
J

λjηJ̃ · gj = max
i
ηJ̃ · gi = ηJ̃ · ηJ̃ ,
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which is (41). Regarding uniqueness, suppose η =
∑
j∈J λjgj and η̃ =

∑
j∈J λ̃jgj both satisfy (40) for the

same J = J̃ . In that case (41) implies
η̃ · η̃ = η̃ · η = η · η.

But then (42) implies gj ·(η− η̃) = 0 for all j ∈ J . This means η− η̃ is orthogonal to the span of {gj , : j ∈ J}.
But since it is also in the span, we are forced to conclude that η = η̃.

It is not difficult to determine whether or not ηJ exists for a given J . If it does, the values µj = 1
η·ηλj

must be a nonnegative solution of the linear system

gj′ ·
∑
j∈J

µjgj = 1, each j′ ∈ J.(43)

From such a nonnegative solution we can recover λj from λj = µj/
∑
j′∈J µj′ , then form η =

∑
J λjgj and

check (40). With this observation we can prove that ηJ exists for all J ⊆ N in our single-server model.

Theorem 2. Assume the specific G and U0 of our model (see Section 2). For every nonempty J ⊆ N there
exists a unique invariant control vector ηJ . Moreover the λj, j ∈ J in (40) are strictly positive.

Proof. Let GJ = [gj ]j∈J be the matrix whose columns are the gj for just those j ∈ J . Observe that (43)
simply says µJ = [µj ]j∈J must solve

GTJGJµJ = 1J .
For the existence of nonnegative µj in (43) it is enough to show that GTJGJ is invertible and that all entries
of its inverse are nonnegative. Consider the diagonal matrix

SJ = diag(1/sj , j ∈ J)

and let
MJ = GJSJ .

Note that MJ is nothing but GJ for the particular case of all sj = 1. Since

(GTJGJ)−1 = SJ(MT
J MJ)−1SJ ,

it is enough to show that (MT
J MJ )−1 exists and has nonnegative entries. Now observe that MT

J MJ is block
diagonal

MT
J MJ =



A1 0 . . . 0

0
. . .

...
... Ak−1 0
0 . . . 0 B




where the A� and B are tridiagonal of the form

A� =




2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1
. . . . . . 0

...
. . . . . . 2 −1

0 . . . 0 −1 1



, and B =




2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1
. . . . . . 0

...
. . . . . . 2 −1

0 . . . 0 −1 2



.

One may check by explicit calculation that (B−1)i,j = min(i, j), and with c� denoting the size of A�,

(A−1
� )i,j = min(i, j) − ij

c� + 1
.

Since all entries are positive in both cases, it follows that all entries of (MT
J MJ)−1 and hence (GTJGJ)−1

are nonnegative, as desired. Since no rows are identically 0, all µi are positive in (43) and therefore the
respective λj > 0 can always be found.

Next, we need to show that gj · ηJ > gi · ηJ for i /∈ J , j ∈ J . First observe that gj · ηJ = ηJ · ηJ > 0 is
constant over j ∈ J . Also note that for i �= j

gi · gj =

{
−sisj if |j − i| = 1
0 if |j − i| �= 1.

≤ 0.
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We know that λj > 0. So if i /∈ J ,
gi · ηJ =

∑
j∈J

λjgi · gj ≤ 0.

Therefore, gi · ηJ ≤ 0 for every i /∈ J , and gj · ηJ > gi · ηJ . Lemma 2 gives the uniqueness.

Observe that ν of (17) is a scalar multiple of ηN . Indeed, in the notation of the above proof, ν = GNµN .
It follows that ν = ηN/ηN · ηN . In particular the Ω of (20) is alternately described as

Ω = {x ∈ K : x · ηN < ηN · ηN}.(44)

Fundamental to our construction is the existence and uniqueness of the following representation of x ∈ Ω
using a “nested” sequence of invariant control vectors.

Theorem 3. Assume the specific G and U0 of our model. Every nonzero x ∈ Ω has a unique representation
of the form

x =
k∑
j=1

ajηJj
(45)

for some 0 < aj,
∑
aj < 1 and J1 � . . . � Jk ⊆ N . Moreover,

J1 = {j : gj · x = max
i
gi · x}.(46)

Proof. Consider any nonzero x ∈ Ω. We first solve

x = Gβ.

The reader can check that G−1 has all nonnegative entries, which implies that all βi ≥ 0. Therefore every
x ∈ K can be written as

x =
n∑
1

βjgj with βj ≥ 0.(47)

Next, let J∗ = {j : βj > 0}, and consider the invariant control vector ηJ∗ =
∑
J∗ λjgj . Let a∗ = minj∈J∗βj/λj .

Now consider
x− a∗ηJ∗ =

∑
J∗

(βj − a∗λj)gj

Our choice of a∗ implies
βj − a∗λj ≥ 0

for all j ∈ J∗. However for one or more j ∈ J∗, βj − a∗λj = 0. By induction on the number of positive
coefficients in (47) it is possible to write

x− a∗ηJ∗ =
m−1∑

1

aiηJi
with ai > 0

and J1 ⊂ J2 ⊂ · · · ⊂ Jm−1 ⊂ J∗. Simply taking am = a∗ and Jm = J∗ completes the induction argument.
Next notice that since ηJi

· ηN = ηN · ηN (Lemma 2), (45) implies

ηN · x = (
∑

aj)‖ηN‖2.

From the hypothesis that x ∈ Ω we conclude that
∑
aj < 1.

Now consider J1 in (45) and any j, j′ ∈ J1. Then j, j′ ∈ Ji for all i, which from (40) tells us that
gj · ηJi

= gj′ · ηJi
for all i and so

gj · x = gj′ · x
However if j ∈ J1 but j′ /∈ J1 then

gj · ηJ1 > gj′ · ηJ1
while for i > 1, gj · ηJi

≥ gj′ · ηJi
(depending on whether j′ ∈ Ji or not). We conclude that

gj · x > gj′ · x.
This proves that J1 is the set of j for which gj · x takes its largest possible value, as claimed.

15



Regarding uniqueness, since G is nonsingular the β in x = Gβ are uniquely determined, and then Jk from
the last term of (45) is necessarily the J∗ above. Since Jk−1 � Jk,

k−1∑
j=1

ajηJj
=

∑
j∈J∗

(βj − akλj)gj

still must have nonnegative coefficients βj − akλj . But only those for j ∈ Jk−1 can be positive. Hence
βj − akλj = 0 for some j ∈ J∗. This implies that ak = a∗ as well. Thus Jk and ak are uniquely determined.
Repeating the argument on

x− akηJk
=
k−1∑
1

ajηJj

gives the uniqueness of the other aj , ηJj
.

The following lemma records two other facts that will be used below.

Lemma 3. Assuming the G and U0 of our model,

a) All coordinates of ηN are positive.
b) If x ∈ K is x =

∑
i aiηJi

as in Theorem 3, and if xi = 0, then i /∈ J1.

Proof. We have already observed that ηN = ν‖ηN‖2, where ν is as in (17). This proves a). Next suppose
xi = 0. It follows that x · gi ≤ 0. On the other hand, there does exist j with x · gj > 0 (take j to be largest
with xj > 0 for instance). Thus the set J1 of those j with

x · gj = max
k
x · gk

does not include i.

It is important to realize that the single server re-entrant queue being studied here is special in that a
unique ηJ is defined for every J ⊆ N . This is not the case for more multiserver systems. For example,
consider the re-entrant line with two servers in Figure 2. The gi are Gui, ui ∈ U0 as in (3). Simple test
calculations reveal many J for which no ηJ exists. Moreover it turns out that the gi are linearly dependent
(g1 + g4 = g2 + g3), so the points representable as in (45) can account for at most a 3-dimensional subset of
K.

3.2. Construction of the Characteristic Family. We can now exhibit the desired family of solutions to
(30). Consider a nested sequence J1 ⊂ J2 ⊂ · · · ⊂ Jk, and parameters

0 = θ0 ≤ θ1 ≤ · · · ≤ θk ≤ π/2.

Define coefficient functions ai(t) and αi(t) according to the formulas

a1(t) = sin((θ1 − t)+) α1(t) = 1 − cos((θ1 − t)+)

a1(t) + a2(t) = sin((θ2 − t)+) α1(t) + α2(t) = 1 − cos((θ2 − t)+)
...

...

a1(t) + · · · + ak(t) = sin((θk − t)+) α1(t) + · · · + αk(t) = 1 − cos((θk − t)+).

(48)

(Here again we use y+ to denote the positive part: y+ = max(0, y).) Take T = θk. For all 0 ≤ t ≤ T we
have

0 ≤ (θ1 − t)+ ≤ . . . ≤ (θk − t)+ ≤ π/2,

so that all ai(t) and αi(t) are nonnegative. We claim that

x(t) =
k∑
i=1

ai(t)ηJi
, p(t) =

k∑
i=1

αi(t)ηJi
,(49)
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provide a solution of of (30)–(33). The derivation of (48) is based on the calculations in [2]. Here we will
simply present as direct a calculation as possible. To that end, consider the partial sums appearing on the
left in (48):

āi(t) =
i∑
j=1

aj(t), ᾱi(t) =
i∑
j=1

αj(t).

Consider t in one of the intervals θ�−1 < t < θ�. Then for i < � we have āi(t) = ᾱi(t) = 0, so that
˙̄ai(t) = ᾱi(t); ˙̄αi(t) = −āi(t).

For i ≥ �,
˙̄ai(t) = ᾱi(t) − 1; ˙̄αi(t) = −āi(t).

Taking pairwise differences we see that

ȧi = αi, α̇i = −ai for i �= �; and
ȧ� = α� − 1, α̇� = −a�.

Using this in (49), we find that for θ�−1 < t < θ�

ẋ = p− ηJ�

ṗ = −x.
Thus (30) is satisfied for θ�−1 < t < θ� using Gu∗ = ηJ�

. To confirm property (31) on that interval, observe
that since αj(t) = 0 for j < �,

p(t) =
k∑
j=�

αj(t) ηJj
.(50)

Since α�(t) > 0 and αj(t) ≥ 0 for j ≥ � we know from (46) that p(t) ·Gu is maximized over u ∈ U at any u
for which only the j ∈ J� coordinates are positive, in particular for Gu∗ = ηJ�

.
Implicit in this construction is a function p : Ω → Rn defined by means of (49). Starting with x ∈ Ω,

express x as in (45). Then determine p(x) using

p(x) =
k∑
1

αiηJi
(51)

where the partial sums of the αi are determined from those of the ai according to
i∑
j=1

aj = āi = sin(θi),
i∑
j=1

αj = ᾱi = 1 − cos(θi),

for 0 < θi ≤ π/2. This is the gradient map p(x) = DV (x) of our solution to (23). There are several facts to
record about p(x) before proceeding.

Theorem 4. The map p(x) described above is locally Lipschitz continuous in Ω and satisfies the strict
inequality

‖p(x)‖ < ‖x‖
for all x ∈ Ω, x �= 0.

To see this, first consider what we will call a maximal sequence J1 ⊂ J2 ⊂ . . . ⊂ Jn, i.e. k = n and each Ji
has precisely i elements, with Jn = N . Consider the x representable as in (45) for this particular maximal
sequence. The maps x �→ ai �→ āi and ᾱi �→ αi �→ p are linear. The maps āi �→ ᾱi are simply

ᾱi = 1 −
√

1 − ā2
i .

These are Lipschitz so long as āi remains bounded below 1. Since āi ≤
∑n

1 ai = x · ν < 1 in Ω, we see that
p(x) is indeed Lipschitz in any compact subset of Ω, constrained to those x associated with a fixed maximal
sequence of Ji. If in (45) we relax the positivity assumption to ai ≥ 0, then we can include additional Ji so
that every x ∈ Ω is associated with one or more maximal sequence of Ji. The Lipschitz continuity argument
extends to the x associated with any given maximal sequence in this way. To finish the continuity assertions
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of the theorem we need to consider x on the boundary between the regions associated with distinct maximal
sequences: ∑

aiηJi
= x =

∑
ãiηJ̃i

.

The uniqueness assertion of Theorem 3 means that the nonzero terms of both representations agree, which
implies that the corresponding terms of the expressions for p also agree:∑

αiηJi
= p(x) =

∑
α̃iηJ̃i

.

Thus p(x) is continuous across the boundaries of the regions associated with different maximal sequences.
From this it follows that the (local) Lipschitz continuity assertion of the theorem is valid in all of Ω.

The argument that ‖p(x)‖2 < ‖x‖2 is the same as [2, pg. 334, 335]. The strict inequality comes from the
fact that

1 − cos(θn) < sin(θn).

Equality occurs only for θn = 0 (x = 0) or θn = π/2 (x · ν = 1). Notice that for x ∈ Ω, x · ν =
∑n

1 ai =
sin(θn) < 1 implies that p(x) · ν =

∑n
1 αi = 1 − cos(θn) < 1 as well.

The argument given in [2] that p(x) is indeed the gradient of a function V (x), x ∈ Ω also generalizes to
the present context. In brief, the standard reasoning from the method of characteristics can be applied to
each of the individual Hamiltonians Hu∗ where Gu∗ = ηJi

, i = 1, . . . n is succession to see that DV (x) = p(x)
in the region associated with a given maximal sequence Ji. Continuity across the boundaries between such
regions allows us to conclude that there is indeed a C1 function V in Ω with DV (x) = p(x). Taking V (0) = 0
implies that V (x) > 0 for x �= 0, by virtue of the discussion of (35) above.

Finally, we return to the connection of (31) with α∗(x) and (29). Since U is convex,

max
U
x ·Gu = max

i
x · gi

and so α∗(x) consists precisely of those u in the convex hull of ej , j ∈ J1, J1 being as in (45) for x. Because
in p(x) =

∑
αiηJi

the αi are positive when the corresponding ai are positive, we see that α∗(x) has the
alternate description

α∗(x) = {u∗ ∈ U : p(x) ·Gu∗ = max
U
p(x) ·Gu}.

In particular, the u∗(t) of (31) belongs to α∗(x(t)). Moreover p(x)·Gu∗ has the same value for all u∗ ∈ α∗(x),
so

Hu∗(x, p(x)) = 0 for all u∗ ∈ α∗(x),

as desired in (29).

4. Verification of Conditions on the Boundary

We have completed the construction of V (x) satisfying (29) on the interior of Ω. We now consider the
assertion of that for x ∈ ∂K the resulting V remains a solution when the H of (27) is replaced by Hπ as in
(27), and that q∗ = DV (x) and any u∗ ∈ α∗(x) is a saddle point, as in (25) and (26). Specifically, we want
to confirm that for a given x ∈ Ω ∩ ∂K, its associated p = DV (x), and any u∗ ∈ α∗(x), the following hold:

π(x, p−Gu∗) = p−Gu∗(52)

p · (p−Gu∗) ≤ p · π(x, p−Gu) for all u ∈ U(53)

p · π(x, q −Gu∗) − 1
2
‖q‖2 ≤ p · (p−Gu∗) − 1

2
‖p‖2 for all q(54)

Since we know Hu∗(x, p) = 0, (52) and (53) imply (25), and (52) and (54) imply (26). Together these imply
(23).

Our validation of (52) – (54) consists of extensive numerical testing, as opposed to a deductive proof. We
will describe computational procedures below. Test calculations have been performed on numerous examples
(see Section 4.4), confirming (52) – (54) to within machine precision in each case. This gives us confidence
in the theoretical validity of (52) – (54), but until deductive arguments can be presented, their theoretical
validity must be considered conjectural.
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4.1. Inactive Projection. Given x ∈ ∂Ω, the corresponding p = p(x), and any u∗ ∈ α∗(x), (52) is
equivalent to the statement that

ni · (p−Gu∗) ≥ 0 for all i ∈ I(x).

This would be easy to check by direct calculation at a given x. However the second part of the following
lemma provides an equivalent condition which is even easier to check.

Lemma 4. The following are equivalent
1. ni · (p(x) −Gu∗) ≥ 0 for all x ∈ Ω ∩ ∂K with x �= 0, all u∗ ∈ α∗(x), and i ∈ I(x);
2. p(x)i ≥ 0 for all x ∈ Ω ∩ ∂K and i ∈ I(x);
3. p(x)i > 0 for all i and all x �= 0 in the interior of Ω.

Proof. Clearly (2) follows from (3) by continuity of p(x). To see that (2) implies (1), recall from our discussion
in Section 2.2 of the fact that α∗ is a nonidling policy that that ni ·Gu∗ ≤ 0 for any u∗ ∈ α∗(x). Therefore
(2) implies

ni · (p−Gu∗) ≥ pi ≥ 0.
Finally, observe that (1) implies that the characteristic curves (49) do not exit K in forward time. From
any x(0) in the interior of Ω, x(t) remains in K up to the time T at which x(T ) = 0. Since ṗ = −x and
p(T ) = 0, it follows that pi(x) > 0 for all i in x is in the interior of Ω.

4.2. Control Optimality. Now we consider an approach to checking (53) at a given x ∈ ∂K with its
associated p = p(x) and any u∗ ∈ α∗(x). We want to check that u∗ is the minimizer of

p · π(x, p−Gu)

over u ∈ U . Observe that by virtue of (52)

p · π(x, p−Gu∗) = p · (p−Gu∗).

Since p·Gu∗ has the same value for all u∗ ∈ α∗(x) it suffices to consider any single u∗ ∈ α∗(x) and to show that
it gives the minimum of p ·π(x, p−Gu) over u ∈ U . Since this is a continuous function of u and U is compact,
we know that there does exist a minimizing ū. Moreover for some F ⊆ I(x), p ·π(s, p−Gū) = p ·RF (p−Gū),
according to (13). So given F we can identify ū as a maximizer of p · RFGu subject to the constraints of
Lemma 1 part 2). If (53) were false then an exception ū would occur as a solution of such a constrained
minimization problem, for some F ⊆ I(x).

There is no exception to (53) for F = ∅, because in that case

p · π(x, p−Gū) = p · (p−Gū) ≥ p · (p−Gu∗).

If F �= ∅ then ū solves a standard linear programming problem:

maximize p ·RFGu(55)
subject to u ∈ U ,

BF (p−Gu) ≥ 0, and

NTI(x)\FRF (p−Gu) ≥ 0.

If ū is an exception to (53) then so is any feasible maximizer uF to (55):

p · π(x, p−GuF ) = p · π(x, p−Gū).

To verify (53) computationally we invoke a standard linear programming algorithm for (55) for each
nonempty subset F of I(x), and for each feasible maximizer so found, check that

p · π(x, p−GuF ) ≥ p · (p−Gu∗).

We note that when I(x) = {i} is a singleton we only need to check F = {i} itself. In this case it is
sufficient to check that

p · π(x, p−Gej) ≤ p · (p−Gu∗)
directly for each of j = 1, . . . , n. To see why, first observe that the last constraint in (55) is satisfied
vacuously. Since BF (p−Gū) > 0, the same must hold for all u ∈ U sufficiently close to ū. It follows that ū
gives a local maximum of p · RFGu over U . Since U is convex, it must be a global maximum. Therefore ū
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must be a convex combination of those ej for which p ·RFGej = p ·RFGū. But observe that since F = {i}
the constraint

BF (p−Gu) = −ni · (p−Gu) > 0
is a scalar constraint. It must therefore be satisfied by one of the ej for which p · RFGej = p · RFGū.
This means that this ej also solves (55). Hence when I(x) is a singleton it suffices to check just the ej as
candidates for ū, rather than invoking the linear programming algorithm.

4.3. Load Optimality. Once (52) is confirmed we know that for any u∗ ∈ α∗(x), π(x, q∗−Gu∗) = q∗−Gu∗
and that q∗ = p(x) maximizes

p · π(x, q −Gu∗) − 1
2
‖q‖2 +

1
2
‖x‖2

with respect to those q for which π(x, q −Gu∗) = q −Gu∗, and that the maximal value is 0. To verify (54)
we need to be sure that there are not some other ū ∈ α∗(x) and q̄ with π(x, q̄−Gū) �= q̄−Gū and for which

p · π(x, q̄ −Gū) − 1
2
‖q̄‖2 +

1
2
‖x‖2 > 0.(56)

Since π(x, v) is continuous and piecewise linear, and since α∗(x) is a compact set, it follows that there does
exist a ū ∈ α∗(x) and q̄ which maximizes (56) over q ∈ Rn and u ∈ α∗(x). We derive necessary conditions
contingent on the specification of the subset F ⊆ I(x) for which π(x, q̄ −Gū) = RF (q̄ −Gū). Using part 3
of Lemma 1 we know that u = ū and q = q̄ satisfy

BF (q −Gu) > 0, NTI(x)\LRF v > 0, and(57)

NTL\FRF (q −Gu) = 0.(58)

Consider the affine set of all q satisfying (58). Since the inequalities are strict in (57), all q near q̄ and
satisfying (58) must also have π(x, q −Gū) = RF (q −Gū). Thus q = q̄ is a local maximum of

p ·RF (q −Gū) − 1
2
‖q‖2, subject to the constraint NTL\FRF (q −Gū) = 0.(59)

A simple calculation shows that this implies

q̄ −Gū = PL\F (RTF p−Gū),

where PL\F is the orthogonal projection onto the kernel of NTL\F . (If F = L the constraint (58) is vacuous
and we take PL\F = I.) Substituting this back into (59) and considering the result as a function of ū, it
follows that u = ū is a local (and hence global by convexity) solution of the quadratic programming problem:

maximize p ·RFPL\F (RTF p−Gu) − 1
2
‖(I − PL\F )Gu‖2 − 1

2
‖PL\FRTF p‖2 +

1
2
‖x‖2(60)

subject to u ∈ α∗(x),

BFPL\F (RTF p−Gu) ≥ 0, and

NTI(x)\LRFPL\F (RTF p−Gu) ≥ 0.

To verify (54) computationally, we consider all pairs of subsets F ⊆ L ⊆ I(x). For each, we invoke a
standard quadratic programming algorithm to find a feasible maximizer ū, if any exists. If such a ū is found,
we take

q̄ = PL\FRTF p+ (I − PL\F )Gū
and then check by direct calculation whether this is an exception to (54), as in (56). If we consider all
F ⊆ L ⊆ I(x) but find no such exceptions, then (54) is confirmed for this x, p.

Again we note that the quadratic programming calculation can be skipped in some cases. If F = ∅,
then π(x, q̄ − Gū) = q̄ − Gū and we know there are no such exceptions to (54). Thus only F �= ∅ need be
considered. Secondly, suppose I(x) = {i} is a singleton. Then the only case to check is F = L = I(x). In
that case if there is an exception to (54), q̄ must maximize

p ·RF (q −Gū) − 1
2
‖q‖2 +

1
2
‖x‖2

and satisfy
BF (q̄ −Gū) > 0.
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It follows that
q̄ = RTF p, and BF (RTF p−Gū) > 0.

But for F = {i}, the latter inequality simplifies to

ni · (p−Gū) < di · p.
Moreover since di = ni − ni+1 (with nn+1 = 0), this is equivalent to

ni ·Gū > ni+1 · p.(61)

But i ∈ I(x) means i /∈ J1, so ni · Gū ≤ 0 for all ū ∈ α∗(x). So (61) would imply pj < 0 for some j. If
we have already checked that p ≥ 0 in accord with Lemma 4 and our confirmation of (52), then we can be
sure no exceptions to (54) occur when I(x) is a singleton. Thus we only need to appeal to the quadratic
programming calculations when two or more xi are zero.

4.4. Test Cases. We begin our test of (30)–(33) for a specific choice of parameters s1, . . . , sn by calculating
all the invariant control vectors ηJ . Then on each face ∂iK a rectangular grid of points x ∈ ∂iK with
x · ηN ≤ ηN · ηN is constructed. For each grid point x we then compute the representation (45) and then the
associated Gu∗ = ηJ1 and p(x) according to (51). We then check that all pi ≥ 0 in accord with Lemma 4
and carry out the constrained optimization calculations described above for all possible ∅ � F ⊆ L ⊆ I(x).
Obviously, the amount of computation involved will be prohibitive if the number of dimensions n is significant.
However, for modest n the calculations can be completed in a reasonable amount of time. We have carried
out these computations for numerous examples, including the following:

(s1, . . . , sn) = (1, 1, 1)

= (1, 3, 5)

= (10, 5, 2)

= (2, 16, 4)

= (1, 1, 1, 1)

= (1, 3, 7, 10)

= (1, 12, 4, 23)

= (12, 1, 23, 4)

= (1, 1, 1, 1, 1).

No exceptions to (52)–(54) were found.

5. Proof of Optimality: Theorem 1

We turn now to the proof of the optimality assertions of Theorem 1. By hypothesis V (x) is as constructed
in Section 3.2, the saddle point conditions (25) and (26) have been confirmed, as well as the equivalent
conditions of Lemma 4. We know that α∗(·) satisfies the minimum performance criterion of Section 2.4. As
explained above, V (x) > 0 for all x ∈ Ω with x �= 0. Consider any load q(·). The argument of [2, Theorem
2.1] shows that with respect to α∗(·), on any interval [0, T ] on which x(t) remains in Ω, we have

V (x) ≥ sup
q(·),T

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt.

For a given x(0) ∈ Ω, let x(t), p(t) be the particular path constructed according to (30), with x(T ) = 0.
We know that u∗(t) ∈ α∗(x(t)) so x(t) is the controlled path produced by α∗ in response to the load q∗(t).
Along it we have from (36) that

− d

dt
V (x(t)) =

1
2
‖x(t)‖2 − 1

2
‖q∗(t)‖2,

and therefore

V (x(0)) =
∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q∗(t)‖2 dt.

This establishes (21).
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Next we consider an arbitrary strategy α satisfying the minimum performance criterion. We would like to
produce a load q(t) which is related to the resulting state trajectory x(t) by q(t) = DV (x(t)). In [2, Theorem
2.3] this was accomplished by limiting α to state-feedback strategies and appealing to an existence result for
Filippov solutions of the differential inclusion [2, (2.23)]. Here we only approximate such a load. By taking
advantage of the properties of π(x, ·), our argument will not be limited to state-feedback strategies, and will
not need the Filippov existence result.

Given x ∈ Ω we will show that for any ε > 0 there exists a load q(t) satisfying qi(t) ≥ 0 and q(t) · ν ≤ 1
for all t > 0, and such that (for some u(t) = α[x, q(·)](t))

V (x(0)) − V (x(T )) ≤ ε+
1
2

∫ T

0

‖x(t)‖2 − ‖q(t)‖2 dt(62)

holds for all T . The difficult question of existence for the closed loop system

ẋ = π(x, q(t) −Gα[q(·)](t))
q(t) = DV (x(t))

for an arbitrary strategy is easily resolved by introducing a small time lag:

q(t) =

{
DV (x(t− εe−t)) if εe−t < t
DV (x(0)) if t ≤ εe−t.

The system can now be solved incrementally on a sequence of time intervals [tn−1, tn] where tn−1 = tn−εe−tn .
For t ∈ [tn−1, tn] the values of q(t) are determined by x(t) on the previous interval [tn−2, tn−1], so the basic
existence properties of the system under α subject to a prescribed q(t) insure the existence of x(t) and q(t)
as above. Let u(t) = α[x, q(·)](t) be the associated control function. Since q(t) is always a value of DV (x)
at some x ∈ Ω, we know qi(t) ≥ 0 and q(t) · ν ≤ 1, and the minimum performance hypothesis insures that
x(t) remains in a compact subset of Ω: x(t) · ν ≤ δ, δ < 1. We must explain how the time lag leads to the
+ε term in (62).

Observe that because π(x, v) = RF v for one of only a finite number of possible matrices RF , and because
v = DV (x) −Gu is bounded over x ∈ Ω, u ∈ U , there is a uniform upper bound on ẋ:

‖ẋ‖ = ‖π(x, q(t) −Gα[q(·)](t))‖ ≤ B.

Consequently,
‖x(t) − x(t− εe−t)‖ ≤ B εe−t.

Next, on the subset of x ∈ Ω with x · ν ≤ δ, DV (x) is Lipschitz; see Theorem 4. It follows that for some
constant C1 (independent of ε) such that

‖q(t) −DV (x(t))‖ = ‖DV (x(t− εe−t)) −DV (x(t))‖ ≤ C1 εe
−t.(63)

We observed previously that π(x, v) in Lipschitz in v. It follows that for some constant C2 and all ε, t > 0

DV (x) · π(x, q(t) −Gu(t)) − 1
2
‖q(t)‖2 + C2εe

−t ≥ DV (x) · π(x,DV (x) −Gu(t)) − 1
2
‖DV (x)‖2.

We know that
0 ≤ DV (x) · π(x,DV (x) −Gu(t)) − 1

2
‖DV (x)‖2 +

1
2
‖x‖2.

So it follows that
−DV (x) · π(x, q(t), Gu(t)) ≤ C2εe

−t +
1
2
‖x(t)‖2 − 1

2
‖q(t)‖2.

Since ẋ = π(x, q(t) −Gu(t)), integrating both sides over [0, T ] and replacing ε by ε/C2 yields (62).
With this q(t) in hand the remainder of the argument proceeds as in [2]: if there exists a sequence Tn

with x(Tn) → 0, then V (x(Tn)) → 0 in (62) which implies

V (x(0)) ≤ ε+ sup
T

1
2

∫ T

0

‖x(t)‖2 − ‖q(t)‖2 dt.(64)

Suppose no such sequence Tn exists. Then in addition to x(t) · ν ≤ δ < 1 we know x(t) does not approach
0; it must remain in a compact subset M of Ω \ {0}. From (63),∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt ≥ −C1ε+

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖DV (x(t))(t)‖2 dt.
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We also know from Theorem 4 that 1
2‖x‖2 − 1

2‖DV (x(t))‖2 has a positive lower bound. Therefore the right
side in (64) is infinite. Thus (64) holds in either case. Since ε > 0 was arbitrary, (22) follows.

6. An Example with Restricted Entry

In this section we reconsider our model in n = 2 dimensions, but modified so that the exogenous load
q = q1 is only applied to queue x1. This is illustrated in Figure 4. The system equations are now

ẋ(t) = π(x,Mq(t) −Gu(t))(65)

where q(t) is a scalar and

M =
[
1
0

]
,

while the control matrix

G =
[
s1 0
−s1 s2

]
,

the control values u ∈ U and the constraint directions di all remain as before. We carry out the same general
approach to constructing V (x) as outlined at the beginning of Section 3. The details of the analysis are
different in several regards. This is significant because it shows that our general approach is not exclusive to
all the structural features of Sections 3.1 and 3.2. We will find that the optimal policy is the same α∗(x) as
given in (15) above. In higher dimensions (n > 2) it is interesting to speculate whether the optimal policy
would likewise remain unchanged if we removed the exogenous loads qi(t), i > 1 . However, at present this
has only been explored in 2 dimensions.

q1
x1

x2

✲ ✲

✻

✩
✪✫

✻

❡

Figure 4. Re-entrant Loop with Single Input Queue

The presence of M in (65) changes the individual Hamiltonian:

Hu(x, p) = sup
q

{
p · (Mq −Gu) − 1

2
q2 +

1
2
|x|2

}

=
1
2
p21 − p ·Gu+

1
2
|x|2,
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p1 being the first coordinate of p = (p1, p2). The supremum is achieved for q∗ = p1. The corresponding
Hamiltonian system, for a given u ∈ U , is

ẋ =
[
1 0
0 0

]
p(s) −Gu

ṗ = −x.
(66)

We calculate the invariant control vector

ηN =
s1s2

s21 + (s1 + s2)2

[
(s1 + s2)

s1

]
as described in Section 3.1. Other than g1 = Ge1, g2 = Ge2 and ηN , there are no additional ηJ to consider.
To simplify notation we will drop the subscript N :

η = ηN =
[
η1
η2

]
.

The first place we find a significant difference from our previous analysis is in the calculation of a (Filippov)
solution to the Hamiltonian system associated with η, analogous to (38). Previously, we did this using
ηJ = Gu∗, u∗ =

∑
J λj , the λj being as determined by the construction of ηJ =

∑
J λjgj ; see (40). But now,

because of the missing p2 term in the ẋ2 equation of (66), we must use a Gu∗(t) which is both different from
η and time dependent. We seek a solution x̄(t) = a(t)η, p̄(t) = α(t)η (both a(t) and α(t) nonnegative) to

˙̄x(t) =
[
p̄1
0

]
−G

[
µ(t)

(1 − µ(t))

]
˙̄p(t) = −x̄(t)

(67)

for some function 0 ≤ µ(s) ≤ 1. The overbar on x̄, p̄ distinguishes this special solution from the others
encountered below. In light of the ˙̄p equation and the terminal conditions (32), the solution we seek must
be of the form

p̄(t) = α(t) · η, x̄(t) = −α̇(t) · η, α(T ) = 0, α̇(T ) = 0

for some function α(t) ≥ 0. Since, ˙̄x = −α̈η is a scalar multiple of η, the right side of the ˙̄x equation in
(67) must also be a scalar multiple of η. Since p̄1 = α(t)η1 this implies a relationship between µ(t) and α(t),
which works out to be

µ(t) =
s2(s1 + s2)

(s21 + (s1 + s2)2)2
(1 + s21α(t)).

Using this we can reduce (67) to a single second order differential equation for α(t):

α̈(t) +Aα(t) = 1,

where A is the constant

A =
(s1 + s2)2

s21 + (s1 + s2)2
.

The solution (for initial conditions α(T ) = α̇(T ) = 0) is α(t) = A−1[1−cos(
√
A (t−T ))]. It will be convenient

for the rest of this discussion to fix T = 0, so that

α(t) = A−1[1 − cos(
√
A t)].

(One consequence of fixing T = 0 is that for a given x the t < 0 for which x(t) = x depends on x.) For
− π

2
√
A
≤ t ≤ 0 we confirm that 0 ≤ µ(t) ≤ 1, α(t) ≥ 0 and a(t) = −α̇(t) ≥ 0, as we wished.

We now have the desired solution:

x̄(t) = −A−1/2 sin(
√
A t) · η

p̄(t) = A−1[1 − cos(
√
A t)] · η.

This special solution provides the final stage of our family of paths x(t), p(t) as in (30)–(33) of Section 3,
but with some adjustment. In contrast to Section 3, our u∗(t) = [µ(t), 1−µ(t)]T varies continuously, instead
of being piecewise constant. This means we have to pay closer attention to (34). Once again it is satisfied
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at t = 0 by virtue of the terminal conditions. When we calculate d
dtHu∗(t)(x̄(t), p̄(t)), one term does not

automatically drop out:
d

dt
Hu∗(t)(x̄(t), p̄(t)) = −p̄(t) ·Gu′∗(t) = −p̄(t) · (g1 − g2)µ′(t).

Since p̄ is a scalar multiple of η and we know η · g1 = η · g2, we do indeed find that Hu∗(t)(x̄(t), p̄(t)) ≡ 0.
The analogue of (33) for this example is

(p1)2 < ‖x‖2.(68)

This is because ‖q‖2 − ‖x‖2 = (p1(t))2 < ‖x(t)‖2 when q∗(t) = p(t). Also note that

p · ẋ = p · (Mp1 − gi)
= Hu∗(x, p) +

1
2
p21 −

1
2
‖x‖2

=
1
2
p21 −

1
2
‖x‖2,

taking advantage of the fact that Hu∗(x, p) = 0. So to verify (33) along x̄, p̄ in particular, simply observe
that

p̄ · ˙̄x = −αα̈|η|2 < 0,
since both α and α̈ are positive (excepting t = 0). In the following x̄i(t), p̄i(t) will refer to the individual
coordinates of this particular solution.

Our special solution x̄(t), p̄(t) provides the final stage (t1 < t ≤ 0) for each of the solutions in the family
described at the beginning of Section 3. The initial stage (t < t1 < 0) will be a solution of (66), with u∗ =
either e1 or e2, which joins x̄, p̄ at some t1 < 0: x(t1) = x̄(t1), p(t1) = p̄(t1). In other words we solve (66)
backwards from x̄(t1), p̄(t1),for the appropriate choice of u∗. It turns out that using u∗ = e1 produces that
part of the family which covers a region below the line x̄(·) in the first quadrant, and using u∗ = e2 gives
the x(t) which cover a region above x̄(·). This is illustrated in Figure 5, for parameter values s1 = 4, s2 = 1.
Note that the region covered by this family, and hence the domain Ω of V (x), is no longer the simple polygon
of (20).
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1.2

1.4

1.6

Figure 5. Characteristics for Restricted Entry Loop

We will need to verify that the resulting family indeed satisfies all the conditions outlined in Section 3.
These verifications are discussed below. Once confirmed, this implies that the optimal control α∗(x) produces
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e1 if x is below the line x̄(t), e2 if x is above the line, and any u ∈ U if x is on the line. So although we
will not produce as explicit a construction for x �→ p as we did in Section 3, we still find the same optimal
control

α∗(x) = {u ∈ U : x ·Gu = sup
u∈U

x ·Gu}.

6.1. Interior Verifications. We have already discussed properties (30)–(33) of Section 3 for the final stage
of our family of solutions: x(t) = x̄(t), p(t) = p̄(t) for t1 ≤ t ≤ 0. However we still need to verify (31) and
(68) for the initial segment t < t1. In Section 3.2 this followed from properties of the ηJ and the rather
explicit formulae for x(t) and p(t) in terms of them. Here we have not developed such an elaborate general
structure. Instead we resort to direct evaluation of the needed inequalities. By solving (66) for u∗ = e1 with
x(t1) = x̄(t1), p(t1) = p̄(t1) we obtain the formulas for the “lower” half of our family: for t < t1 < 0,

x(1)(t) =
[
x̄1(t1) · cos(t− t1) + [p̄1(t1) − s1] · sin(t− t1)

s1 · (t− t1) + x̄2(t1)

]
,(69)

p(1)(t) =

[
−x̄1(t1) · sin(t− t1) + [p̄1(t1) − s1] · cos(t− t1) + s1

−s1 · (t−t1)2
2 − x̄2(t1) · (t− t1) + p̄2(t1)

]
.

For any − π
2
√
A
< t1 < 0, the above will be valid for t < t1 down to the first time at which x(1)(t) either reaches

the horizontal axis, t = τ1(t1), or reaches the outer boundary of Ω, t = τb(t1). (For all curves appearing in
the figure, τb(t1) < τ1(t1).) A formula for τ1(·) is easily obtained from the expressions in (69). The value
t = τb(t1) can be identified as the point at which the determinant of the Jacobian of x(1) with respect to
(t1, t) vanishes. An explicit formula is possible for τb(·) as well. (For brevity we omit both formulas.) Thus
(69) is valid for

max(τ1(t1), τb(t1)) ≤ t ≤ t1 ≤ 0.

The points on the horizontal boundary ∂2K are x(1)(τ1(t1)) for those t1 with τb(t1) ≤ τ1(t1).
The analogous formulas for the “upper” half of our family are obtained by solving (66) for u∗ = e2 with

x(t1) = x̄(t1), p(t1) = p̄(t1) to obtain the following expression for t < t1 < 0:

x(2)(t) =
[
x̄1(t1) · cos(t− t1) + p̄1(t1) · sin(t− t1)

−s2 · (t− t1) + x̄2(t1)

]
,(70)

p(2)(t) =

[
−x̄1(t1) · sin(t− t1) + p̄1(t1) · cos(t− t1)
s2 · (t−t1)2

2 − x̄2(t1) · (t− t1) + p̄2(t1)

]
.

This time, for a given − π
2
√
A
< t1 < 0, the valid range of t < t1 is slightly different. It turns out that x(2)(t)

always reaches the outer boundary of Ω, at a time t = σb(t1), prior to contacting the vertical boundary ∂1K.
(Once again, an explicit formula for σb(·) is obtained by setting the Jacobian of (70) equal to 0.) Thus given
t1 < 0, (70) is valid for

σb(t1) < t < t1 ≤ 0.

The vertical boundary itself is traced out by the solution for t1 = 0:

x(2)(t) =
[

0
−s2t

]

p(2)(t) =
[

0
1
2s2t

2

]
,

(71)

valid for σb(0) < t ≤ 0.
The availability of these formulas makes it possible to check the inequalities we need for (31) and (33).

For (31) we want to verify

p(1)(t) ·G(e1 − e2) ≥ 0,(72)

p(2)(t) ·G(e2 − e1) ≥ 0(73)
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For (73), it turns out that

p(2)(t) ·G(e2 − e1) =s1 · x̄1(t1) · (sin(t− t1) − (t− t1))

+ s1 · p̄1(t1) · (1 − cos(t− t1) +
(s1 + s2) · s2 · (t− t1)2

2
),

which certainly is positive for t < t1. We resort to numerical calculation to confirm (72). We have already
noted that (33) should be replaced by (68):

‖x(i)(t)‖2 − (p(i)1 (t))2 > 0,

for both i = 1, 2. It is a straightforward task to prepare a short computer program that, given values
for s1, s2, evaluates (72) and (68) for a large number of t < t1 pairs extending through the full range of
possibilities. In this way we have confirmed the above inequalities numerically.

6.2. The Horizontal Boundary. Finally we must consider the influence of the projection dynamics at
points x ∈ ∂K, confirming as we did in Section 4 that our q∗ = p1 and u∗ = α∗(x) remains a saddle point
when π(x, v) is taken into account. This entails checking the same three facts, (52), (54), and (53) as before.
We consider the two faces of ∂K separately.

The reflection matrix for ∂2K is

R{2} = I − 1
n2 · d2

d2n
T
2 =

[
1 0
0 0

]
,

and

π(x, v) =

{
v if n2 · v ≥ 0
R{2}v if n2 · v < 0

.

Now observe that
n2 · (Mq −Gu) = −n2 ·Gu,

which is independent of q. Since u∗ = e1 and −n2 · Ge1 = s1 > 0, it follows that π(x,Mq∗ − Gu∗) =
Mq∗ −Gu∗, so that (52) reduces to (72). Moreover this independence of q also implies (54) since we know
q∗ = p1 is the saddle point in the absence of projection dynamics.

Next consider (53). The u ∈ U are just

u =
[
µ

1 − µ
]
, 0 ≤ µ ≤ 1.(74)

Note that u∗ = e1 corresponds to µ = 1. So for (53) we want to show that the minimum of

p · π(x,Mp1 −Gu)(75)

over 0 ≤ µ ≤ 1 occurs at µ = 1. A little algebra shows that for 0 ≤ µ ≤ s2
s1+s2

we have n2 · (Mp1 −Gu) ≤ 0,
so that

p · π(x,Mp1 −Gu) = p ·R{2}(x,Mp1 −Gu)

= p21 − s1p1µ.
For s2

s1+s2
≤ µ ≤ 1 we have n2 · (Mp1 −Gu) ≥ 0, so that

p · π(x,Mp1 −Gu) = p · (Mp1 −Gu)

= p21 − s2p2 + p ·G(e2 − e1)µ.

Thus the function of µ in (75) is piecewise linear, in two segments. The slope of the right segment ( s2
s1+s2

≤
µ ≤ 1) is

p ·G(e2 − e1),
which we already know to be negative, by virtue of our work in checking (72). Thus to establish (53) we
only need to check that the value for µ = 1 is no greater than that for µ = 0:

p21 ≤ p21 − s2p2 + p · (g2 − g1),

which is equivalent to p · g1 ≥ 0. This we have confirmed numerically, by evaluating

p(1)(τ1(t1))) · g1
27



for various choices of s1, s2 and t1 throughout its range.

6.3. The Vertical Boundary. Recall that along ∂1K we have u∗ = e2 and that from (71) we know
q∗ = p1 = 0 and p2 > 0. Therefore

n1 · (Mq∗ −Gu∗) = −n1 · g2 = 0.

Thus π(x,Mq∗ −Gu∗) = (Mq∗ −Gu∗), confirming (52).
The reflection matrix on ∂1K is

R{1} = I − 1
n1 · d1

d1n
T
1 =

[
0 0
1 1

]
,

We already know that q∗ = p1 = 0 maximizes

p · π(x,Mq − g2) − 1
2
q2 +

1
2
‖x‖2

over those q for which π(x,Mq − g2) = Mq − g2. We need to consider the possibility of a global maximum
among those q with π(x,Mq − g2) = R{1}(Mq − g2), namely q with n1 · (Mq − g2) = q ≤ 0. However,

p ·R{1}(Mq − g2) − 1
2
q2 +

1
2
‖x‖2

is maximized at q = p2 > 0. So its maximum over q ≤ 0 must occur at q∗ = 0. This confirms (54).
Finally, we turn to (53). Since q∗ = p1 = 0, for any u as in (74) we have

n1 · (Mq∗ −Gu) = −µ ≤ 0.

Therefore, after a little algebra,

p · π(x,Mq∗ −Gu) = p ·R{1}(Mq∗ −Gu) = (µ− 1)p2,

which is minimized at µ = 0, since p2 > 0. Since µ = 0 corresponds to u = e2, this verifies (53).
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