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Abstract

We consider the use of Lagrange manifolds to construct viscosity
solutions of first order Hamiltonian-Jacobi equations. Recent work of
several authors is indicated in which the essential underlying struc-
ture consists of a Lagrange manifold on which 1) the desired Hamil-
tonian function vanishes and 2) the canonical 1-form p·dx of classical
mechanics has an integral S(x, p). We explore the proposition that
a viscosity solution W (x) of the Hamiltonian-Jacobi equation is ob-
tained by minimizing the function S over points in the Lagrange
manifold that project to the state x. We prove that the function
W (x) produced by this construction is necessarily a viscosity super-
solution, and if Lipschitz is also a subsolution. Elementary examples
illustrate the construction, including situations in which the sub-
solution property fails. Connections with Riccati PDEs, L2-gain in
nonlinear systems, small-noise quasipotentials, and simple variational
examples are all described.

1 Introduction

Hamilton-Jacobi equations of the form

DtW (t, x) +H(t, x;DxW (t, x)) = 0 (1)

or
H(x,DW (x)) = 0 (2)

∗We are grateful for helpful conversations with C. Byrnes and Bill McEneaney.
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arise naturally as descriptions of value functions associated with control
or variational problems, or differential games. It is typical to define W
as the value function of a control problem and then characterize it as a
solution of (1) or (2). Since such functions W (·) are generally nonsmooth,
the equations must be understood in a weak sense. The notion of viscosity
solutions [11] has been developed for this purpose.

The classical method of characteristics, on the other hand, describes
smooth solutions of these equations in terms of a family of trajectories of
the Hamiltonian system

ẋt = Hp(xt, pt), ṗt = −Hx(xt, pt) (3)

associated with H. One is typically led to consider a particular family
of these trajectories, making up what is known as a Lagrange manifold
M in (x, p)-space. Recently several authors have exploited this Lagrange
manifold structure in variational or control contexts for which viscosity
sense solutions are generally called for.

Our purpose in this paper is to consider how (continuous) viscosity solu-
tions result directly from the Lagrange manifold structure, in the absence of
any control or variational interpretation. Control and/or variational prob-
lems certainly motivate most interest in viscosity solutions, and have been
the context in which many aspects have been previously studied. It is no
surprise that most of our conclusions below are familiar facts in the context
of, say, Bolza problems in the calculus of variations. (See [11] for a nice
summary of classical results for simple problems, or [7] and references for
recent work.) Our purpose here is not to offer new results in that highly
developed subject, but to explore the extent to which some of the famil-
iar features of those problems follow from the Lagrange manifold structure
alone, apart from any variational interpretation. The main artifact of the
control-theoretic motivation will be the assumption that H(x, p) is convex
in p. (This excludes problems arising in differential games, however.)

1.1 Terminology and Classical Characteristics

Our analysis will take place in phase space, which consists of all (x, p) ∈
IRn × IRn. The x component is called the state and p is the costate (some-
times momentum). We assume throughout that H(x, p) is a C2 function
defined on phase space. In Section 3 we will add the assumption that H is
convex in p for each x, but that is not needed initially. A solution (xt, pt) of
(3) is called a bicharacteristic. The state component xt of a bicharacteristic
is called a characteristic or extremal.

A brief summary of the classical method of characteristics will intro-
duce our point of view. Suppose V (x) is a classical (C2) solution to (2).
Associated with V (·) is the following n-dimensional submanifold of phase
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space:
M = {(x, p) : p = DV (x)}.

(DV (x) denotes the vector of partial derivatives of V at x. For V (t, x)
depending on a time variable as well, DtV denotes ∂V/∂t while DxV is the
vector of partial derivatives with respect to xi. Hp and Hx in (3) are the
vectors of partial derivatives of H with respect to the xi and pi.) Equation
(2) says that

H(x, p) = 0, all (x, p) ∈M. (4)

In addition, M has the property that∫
p · dx is independent of path on M. (5)

Indeed, if (xt, pt), t ∈ [0, 1] is a closed (piecewise smooth) path onM, then

pt = DV (xt) and so
∫ 1

0
pt ·dxt = V (x1)−V (x0) = 0. This independence of

path is what it means to say that M is a Lagrange manifold. (In general
a Lagrange manifold need only have this property locally; see [18]. Here,
since M is a graph over state space, the independence of path is global.)

Another important feature of M is its invariance with respect to the
Hamiltonian system (3). To see this consider any (x0, p0) ∈ M and let xt
be the solution of ẋt = Hp(xt, DV (xt)) with the selected initial value x0.
Define pt = DV (xt). Then differentiating (2) with respect to x produces
an identity (the Riccati PDE below) which implies ṗt = −Hx(xt, pt). This
produces the solution of (3) through the prescribed (x0, p0) ∈ M in a way
that makes (xt, pt) ∈ M manifest.

Conversely, given M with these properties, a solution of (2) is deter-
mined (up to a constant) by

V (xT )− V (x0) =

∫ T

0

pt · dxt, (6)

where (xt, pt) is any piecewise smooth curve on M joining x0 to xT (not
necessarily a solution of (3)). The classical method of characteristics is
essentially to find V by constructing M. If some kind of boundary data is
prescribed for (2), that data often determines a subset Σ of M. By then
including the solutions of (3) for all (x0, p0) ∈ Σ one hopes to obtain a
suitable manifold M. The problem is that the resulting M may fail to be
a graph p = p(x) over state space; for a given x there may be more (or less)
than one p with (x, p) ∈ M so that V (x) is multiple-valued (or undefined).
If, however, one can identify a piece M0 ⊂M which is a graph over some
domain Ω0 ⊆ IRn, then at least the construction will produce a solution of
(2) for x ∈ Ω0.
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1.2 Lagrange Manifold Properties

The properties (4) and (5) of M cited above are not limited to the “ideal”
situation in which M is a graph over state space. Rather they are very
natural properties to expect of M in general, because they are associated
with fundamental invariance properties of Hamiltonian systems. To be
concrete, suppose that M is a smooth manifold, made up of a family of
bicharacteristics (3), and that there is an open subset M0 ⊂ M in which
(4) and (5) hold and through which every bicharacteristic on M passes.
(This is common in the applications to be cited shortly, in which M is
often taken to be the unstable manifold of a critical point of (3).) An
elementary invariance property of (3) is that H(xt, pt) is constant along
every bicharacteristic. It follows that (4) extends from M0 to all of M.
A more profound invariance property is that (3) preserves the differential
2-form

d(p · dx) = dp ∧ dx =
n∑
i=1

dpi ∧ dxi.

(See [1].) This means that if Γ0 is a two-dimensional surface in phase space,
bounded by a simple closed curve γ0, and we let (3) transport Γ0 through
t time units to obtain a new two-dimensional surface Γt, bounded by the
simple closed curve γt, then∫

Γ0

dp ∧ dx =

∫
Γt

dp ∧ dx.

Stokes’ formula says that for each t.∫
Γt

dp ∧ dx =

∫
γt

p · dx.

Thus if the line integral
∫
γt
p · dx vanishes for t = 0 then it does for all t.

Consider a given (x, p) ∈ M. There exists a bicharacteristic with (x0, p0) ∈
M0 and (xt, pt) = (x, p) for some t. (3) mapsM0 to a neighborhoodMt ⊆
M of (x, p). If γt is any closed path in Mt then

∫
γt
p · dx =

∫
γ0
p · dx = 0,

since γ0 is in M0. The point is that the (local) independence of path of∫
p · dx is inherited by M from that property in the initial section M0.

Notice from Stokes’ formula that the local path independence on M is
equivalent to the property that dp ∧ dx vanishes on TM. This, and that
M has dimension n, is the usual definition of a Lagrange manifold. See
[1] and [18]. In general a Lagrange manifold only has the independence
of path property in sufficiently small neighborhoods, not globally. (See
Example 2.1.1 of the next section.) For our purposes it is essential that
this independence of path in fact be global.

Suppose then that we do indeed have a manifold M satisfying (4) and
(5), but not necessarily the graph of a function p = p(x) over state space.
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The global independence of path means that there is a smooth function
S(x, p) defined (up to a constant) onM by

S(xT , pT ) = S(x0, p0) +

∫
pt · dxt, (7)

where the line integral is over any piecewise smooth curve (xt, pt), t ∈ [0, T ]
on M. This is abbreviated as

dS = p · dx on M.

We propose the following simple formula as a natural candidate for a vis-
cosity solution of (2):

W (x) = inf{S(x, p) : p such that (x, p) ∈ M}
= inf

p:(x,p)∈M
S(x, ·), as it is denoted below. (8)

It is the veracity of this proposition that we explore in this paper. We
emphasize that this point of view makesM the fundamental object under-
lying the proposed viscosity solution. We will assume we have M in hand
(satisfying the technical hypotheses outlined in the next section).

We now describe briefly some previous studies that have exploited this
Lagrange manifold point of view.

1.3 Riccati Equations

The recent paper of C. Byrnes [5] provides a nice discussion of the La-
grange manifold structure of the family of extremals determined by the
maximum principle in basic control problems. The focus is on the Riccati
PDE, viewed as a nonlinear generalization of the matrix equations of linear
systems theory. The Riccati PDE turns out to be another expression of
the invariance of M with respect to the Hamiltonian flow, but one which
is valid only where M is a graph over state space. In our context, if M is
given by p = p(x), the Riccati PDE would be

Hx(x, p(x)) +
∂p(x)

∂x
Hp(x, p(x)) = 0,

which is the same as ṗ = −Hx in the bicharacteristic equations. We note

that the Lagrange property of M is equivalent to the symmetry of ∂p(x)
∂x ,

and differentiating H(x, p(x)) = 0 with respect to x implies Hx+( ∂p∂x )THp.
Thus the Riccati equation is a consequence of (4) and (5) above. In general,
whenM is not a graph, [5] callsM a “weak solution” of this equation. Gen-
eralizations of the Riccati equation are possible in such circumstances, by
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using some of the pj instead of xj as independent variables. See the discus-
sion at the end of Section 2 on invariance with respect to the Hamiltonian
flow.

One of the primary contributions of the Lagrange manifold point of view
has been “geometric” existence proofs, based on takingM to be a stable (or
unstable) invariant manifold associated with the Hamiltonian system (6),
as mentioned briefly above. The use of invariant manifold theory to provide
existence results, in particular the construction of solutions by takingM to
be the stable/unstable manifold of the appropriate Hamiltonian system (in
time independent settings), is described and traced to work of Brunovsky
[4] and Lukes [17] in the 1960’s. Numerous other references in the control
theory literature are cited. Byrnes also notes that Burgers’ equation is
a particular instance of the Riccati PDEs he considers. This connection
with scalar conservation laws goes back many years, as we will comment in
Section 4.

1.4 L2-gain of Input-Output Systems

Nonlinear systems theory offers a particular context in which the effort to
construct viscosity solutions from Lagrange manifolds is natural in light of
recent work. Consider a control system

ẋt = f(xt) + g(xt)ut.

The control ut ∈ IRm (locally L2) is viewed as an input and a function
yt = h(xt) is considered as the output. Assume f(·), g(·) and h(·) are
C2 with appropriate dimensions, and that x = 0 is an equilibrium of the
uncontrolled system: f(0) = 0, h(0) = 0. The goal is to establish a bound γ
on the L2-gain of the map u· 7→ y·. A. J. van der Schaft [25] has formulated a
version of this problem which is equivalent to the existence of a nonnegative
function V (x) satisfying V (0) = 0 and obeying the Dissipation Inequality:

V (xT )− V (x0) ≤ 1

2

∫ T

0

γ2|ut|2 − |h(xt)|2 dt, (9)

for all controlled trajectories xt. The appropriate Hamiltonian (see Sec-
tion 5) is

H(x, p) =
1

2
γ−2p · g(x)g(x)T p+ p · f(x) +

1

2
|h(x)|2.

If V is smooth, (9) is equivalent to the differential inequality

H(x,DV (x)) ≤ 0. (10)

Van der Schaft shows how appropriate controllability and observability as-
sumptions imply that the stable manifold of (6) for the equilibrium (0, 0)
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is the graph of a smooth function over state space in a neighborhood of
(0, 0), providing (locally) the existence of a classical solution of (11) below.
This provides a local verification of L2-gain ≤ γ, holding for paths limited
to the domain Ω0 in which the solution V so constructed is smooth.

The limitation to smooth functions V is too stringent, however. M.
James [15] has shown that for a lower semicontinuous V (·), (9) is equivalent
to the viscosity sense inequality

H(x,D−V (x)) ≤ 0.

Here D−V (x) is the usual set of subdifferentials of V at x. (See Fleming
and Soner [11] for this and other background on viscosity notion solutions.)
We use the notation “H(x,D−V (x)) ≤ 0” above to mean H(x, p) ≤ 0 for
all p ∈ D−V (x). In the usual terminology, this is equivalent to saying that
V is a viscosity supersolution to the equation

−H(x,DV (x)) = 0. (11)

Moreover results of Ball and Helton [2] and Soravia [23] imply that the
minimal nonnegative function satisfying (9) (the available storage function
– see Section 5) is in fact a viscosity solution of (11). The point is that (11)
should be considered in the viscosity sense. Even though van der Schaft
only considered smooth solutions, (8) provides a natural extension of his
construction which offers the prospect of being a viscosity solution.

We note that (11) is not of the form (2) that we are considering here,
because−H(x, ·) is concave rather than convex. We will explain in Section 5
how our recipe (8) translates in this case to

V (x) = sup
p:(x,p)∈M

S(x, ·)

as a construction of solutions to (11). Section 5 below is devoted to this
particular application.

1.5 Quasipotentials in Small Noise Asymptotics

The Lagrange manifold structure has also been exploited in the study of
the quasipotential functions which arise in the study of small Brownian
perturbations of a dynamical system [13]. The equations there can be
formulated as special cases of those for the the L2-gain problem above. In
fact take g(·) ≡ I, h(·) ≡ 0 and γ = 1. The control system is then

ẋt = f(xt) + ut, (12)

and the Hamiltonian becomes

H(x, p) =
1

2
|p|2 + p · f(x).
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Assume that 0 is an exponentially stable critical point for the uncontrolled
system ẋt = f(xt). The original Wentzel-Freidlin quasipotential W [13] is
defined by

W (xT ) = inf
x0=0

∫ T

0

1

2
|ut|2 dt. (13)

The infimum is over all T > 0 and controlled paths xt : [0, T ]→ IRd which
join x0 = 0 to the specified xT and have ut ∈ L2. (In the language of dis-
sipative systems, W so constructed is generally called the required supply
function. In contrast to the available storage function, the required supply
typically provides the maximal solution of the Dissipation Inequality (9).)
Day and Darden [10] showed (with some growth assumptions on f(x)) that
W is given by our recipe (8) using the unstable manifold M for the equi-
librium at (0, 0) of the Hamiltonian system. The terminology of Lagrange
manifolds was not used in [10], but is none the less the structure that was
exploited. The smoothness of W in a neighborhood of 0 was obtained as a
consequence. A few years later Perthame [21] showed that W is a viscosity
solution of (2). Thus for the Wentzel-Freidlin quasipotential specifically,
we know that (8) does indeed produce a viscosity solution, by virtue of
the combined results of [10] and [21]. More recently Day [9] reworked the
same kind of analysis, but taking M to be the stable manifold associated
with a periodic orbit of ẋt = b(xt), to produce a different quasipotential
function (solving H(x,−DW (x)) = 0) and establishing smoothness in a
neighborhood of the orbit.

Maier and Stein [19] also consider the same quasipotential function (13)
in their studies of small noise phenomena. They too observe its relation to
the unstable manifold and recognize that the possibility of a given x having
multiple p with (x, p) ∈M posed a problem for classical solutions. However
the consideration of viscosity solutions to the Hamilton-Jacobi equation was
not part of their discussion.

1.6 Overview

General hypotheses for our treatment and their implications are presented
in Section 2. Some elementary examples are offered to clarify (8) above
and certain technical issues. In Section 3 we show that (8) always produces
a lower-semicontinuous supersolution of (2), under the hypotheses of Sec-
tion 2. (8) can fail to produce a subsolution of (2), as the examples show.
We establish some simple results on the regularity of W and prove that it
is a subsolution under an additional Lipschitz continuity assumption. Sec-
tion 4 presents two examples in which W (·) is discontinuous, clarifying the
discrepancy between the hypotheses of Section 2 and features of a typi-
cal variational problem. Finally, in Section 5 we look more closely at the
application to L2-gain estimation.
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2 Fundamentals

The purpose of this section is to define concisely the basic objects of our
consideration, establish some of their fundamental properties, and identify
those additional hypotheses under which we will consider

W (x) = inf
p:(x,p)∈M

S(x, ·) (14)

as a possible viscosity solution. We also present some elementary examples
to illustrate (14) and some aspects of the hypotheses.

2.1 Basic Hypotheses

We are assuming that the Hamiltonian H(x, p) is a smooth (C2) real-valued
function defined on phase space. In the sections to follow we will assume
that H is convex in p for each x. This is natural in many situations, but
unnatural in others. In particular nonconvex H are important in nonlinear
H∞ control. So at least in the present section we allow the possibility of a
nonconvex H. However our discussions of the viscosity sub/supersolution
properties below will depend on a convexity hypothesis.

We assumeM is a smooth submanifold of phase space (without bound-
ary) satisfying hypotheses (A1) — (A6) below. We will elaborate on these
hypotheses in the paragraphs which follow.

(A1) H = 0 at all points of M.

(A2) M is Lagrangian.

(A3) p · dx is globally independent of path on M.

(A4) M is embedded in phase space.

(A5) M is locally bounded.

(A6) M covers an open region Ω of state space and has no boundary points
over Ω

The usual definition of a Lagrangian manifold M is that it be a sub-
manifold of phase space, of dimension n, such that the differential 2-form
dp ∧ dx vanishes on its tangent space TM. See [18] or [1] for instance. As
pointed out in the introduction, this is equivalent to local independence
of path of p · dx on M. An alternate characterization of the Lagrangian
property can be given which will be useful in our discussion. A general
feature of a Lagrange manifold is that, at any point, some complimentary
selection of state and costate variables will provide a coordinate chart. (See
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[18] Proposition 4.6.) That is, we can find I ⊆ {1, . . . , n} so that the xi,
i ∈ I and pj , j ∈ Ic provide coordinates forM in some neighborhood of the
prescribed point. Moreover ([18] Proposition 4.21) in such a neighborhood
the Lagrange property is equivalent to the existence of a (smooth) gener-
ating function G(xi, pj), i ∈ I, j ∈ Ic in terms of which M is described
by

xj = − ∂G
∂pj

, j ∈ Ic pi =
∂G

∂xi
, i ∈ I. (15)

(Some authors, such as Arnold [1], call F = −G the generating function,
and the above relations are negated.) Of particular significance for us is
the function defined in this neighborhood of M by

S(x, p) = G+
∑
j∈Ic

xjpj .

On M we have, using (15),

dS =
∑
i∈I

∂G

∂xi
dxi +

∑
j∈Ic

∂G

∂pj
dpj +

∑
j∈Ic

(xjdpj + pjdxj)

=
d∑
j=1

pjdxj = p · dx.

In particular
∫
p · dx is independent of paths remaining inside the region

where (15) holds. The description of M in terms of generating functions
will be a convenient way to describe simple examples. Note that for n = 1
any smooth curve in phase space (IR2) is a Lagrange manifold M. Where
M is of the form p = f(x) a generating function is given by G(x) =

∫
f dx;

whereM is the graph of x = φ(p), G(p) = −
∫
φdp is a generating function.

2.1.1 Example

Consider H(x, p) = x2 +p2−1. The unit circleM = {(x, p) : x2 +p2 = 1}
is a Lagrange manifold (since n = 1) on which H vanishes. Thus (A1) and
(A2) are satisfied.

This example fails to satisfy (A3), however. That p · dx be globally
independent of path onM is equivalent to the existence of a single function
S defined on all ofMwith dS = p· dx. This is not possible in Example 2.1.1,
since integrating p · dx once around the circumference does not vanish. As
indicated in the introduction, the desired M is frequently obtained as the
stable (or unstable) invariant manifold of a critical point of the Hamiltonian
system. Several authors, [5], [9] and [24] for instance, have noted that the
stable (or unstable) invariant manifold of a hyperbolic critical point of
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a Hamiltonian system always has the Lagrangian property. A sufficient
condition for (A3) is that M be simply connected. (See [18], pg.9.)

The term “embedded” in (A4) means that the intrinsic topology of
M, i.e. that induced by its coordinate charts, is the same as the relative
topology it inherits as a subset of phase space. There is some genuine
content to this assumption, as the next example illustrates.

2.1.2 Example

H(x, p) = x3 − x2 + 1
2p

2, and take M to be the unstable manifold of
the critical point at the origin for the associated Hamiltonian system:
p = x

√
2(1− x) for x ≤ 1 and p = ±x

√
2(1− x) for 0 < x ≤ 1. M

is Lagrangian because it is one-dimensional, and as the unstable invariant
manifold. However in its intrinsic topology the points p = −x

√
2(1− x) as

x ↓ 0 do not converge to the origin, while they do in the subspace topology
from IR2. The embedded hypothesis is thus violated. In general if the level
set H−1{0} contains a homoclinic loop of the associated Hamiltonian sys-
tem, then the full stable (unstable) manifold will not satisfy the embedded
assumption. However a reduced version ofM, obtained say by removing a
small piece of p = −x

√
2(1− x), x > 0 near the origin, will satisfy (A4).

x

p

Figure 1: Example 2.1.2

It makes sense to consider (14) only at states x which are “covered” by
M, i.e. for which there exists some p with (x, p) ∈M. In (A6) we limit our
consideration of (14) to an open region Ω of state space all of whose points
are covered by M in this sense. By “boundary points” of M in (A6) we
mean points (x, p) in phase space which occur as limits (x, p) = lim(xn, pn)
with (xn, pn) ∈M but for which (x, p) /∈M. (In this sense ∂M = M̄\M,
where the closure M̄ is with respect to the phase space topology.) In (A6)
we assume that no such (x, p) ∈ ∂M has x ∈ Ω. The significance of (A4)
and (A6) together is this: if xn → x ∈ Ω, (xn, pn) ∈ M for each n and
pn → p, then (x, p) ∈ M and (xn, pn) → (x, p) in the topology of M.
I.e. in the portion of M over Ω convergence of (xn, pn) in phase space is
equivalent to convergence in M.
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Finally we come to the assumption (A5) that M is “locally bounded”.
By this we mean that for each x0 ∈ Ω there exists a δ > 0 and K <∞ so
that |p| ≤ K for all (x, p) ∈ M with x ∈ Bδ(x0). Under (A1) a sufficient
condition would be that H(x, p) → +∞ as |p| → ∞ uniformly for x in
compacts. This is satisfied in the two preceding examples for instance.
Example 4.1.2 illustrates some of the pathological features possible when
local boundedness fails. An important implication of local boundedness is
that the infimum in (14) is achieved for every x ∈ Ω: S is continuous on
M∩({x}×IRd), which is compact by (A5) and the agreement of phase space
andM topologies onM. The following lemma collects several consequences
of (A1) — (A6) for future use.

Lemma 1 For every x ∈ Ω there exists (x, p∗) ∈M such that

S(x, p∗) ≤ S(x, p) all other (x, p) ∈ M.

If xn → x ∈ Ω and (xn, pn) ∈ M, then the pn form a bounded sequence
and (x, p) ∈M for all limit points p of pn.

2.1.3 Example

The construction (14) is easily illustrated by examples with n = 1 and M
described by

x = φ(p).

If φ is not monotonic the projection (x, p) ∈M 7→ x is many-to-one so that
the infp comes into play. Let Φ(p) =

∫
φ(p) dp. S is given on M by

S(x, p) = xp− Φ(p), for (x, p) ∈M.

To be specific, consider

Φ(p) =
1

4
(2p2 − p4), φ(p) = p− p3.

Figure 2 shows, firstM = {x = φ(p)} in the x, p plane, then S plotted over
the points ofM, and then S plotted as a multiple-valued function of x (i.e.
p suppressed). The graph of the resulting W (x) is easy to pick out as the
curve with a “peak” on the vertical axis.

2.1.4 Example

Contrast Example 2.1.3 with what happens if Φ is negated:

Φ(p) = −1

4
(2p2 − p4), φ(p) = −p+ p3.
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x

p

x

p

S

x

S

Figure 2: Example 2.1.3

Views of this example are shown in Figure 3. Here the resulting W (x) is
clearly discontinuous. This is typical of cases in which the graph of x = φ(p)
loops back above itself as we move from left to right. We will refer to this
general configuration an an “overloop”, and that of Example 2.1.3 as an
“underloop”.

x

p

x

S

Figure 3: Example 2.1.4

We note that the Hamiltonian H plays no role in the construction (14).
Rather, H is involved in the identification of the appropriate M for a
particular equation (2) and boundary conditions. In Examples 2.1.3 and
2.1.4 we could simply take

H(x, p) = φ(p) − x,

which obviously vanishes on M. This H is not convex in p, however. In
one (space) dimension clearly no Hamiltonian which is strictly convex in
p can vanish on a curve M having these over/underloop configurations
since the convex function p 7→ H(x, p) would vanish at 3 distinct p, for x
under the loop. However we can easily embed these examples in a higher
dimensional context (with convex Hamiltonian) so that the figures above
occur as one dimensional cross-sections. Indeed considerM determined by
the generating function

G(x2, p1) = −(
1

2
x2p

2
1 + Φ(p1)) :

x1 = − ∂G
∂p1

= x2p1 + φ(p1),
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p2 =
∂G

∂x2
= −1

2
p2

1

S = x1p1 −
1

2
x2p

2
1 − Φ(p1).

The Hamiltonian H(x, p) = 1
2p

2
1 + p2 is convex and clearly vanishes on

M. We note that this Hamiltonian is the same as that associated with the
examples of Section 4 below.

2.2 Invariance with Respect to the Hamiltonian Flow

The property that M is invariant with respect to the Hamiltonian system

ẋ = Hp(x, p), ṗ = −Hx(x, p) (16)

was demonstrated in the introduction, assuming M is described by p =
DV (x) where H(x,DV (x)) = 0. Using generating functions (15) the ar-
gument we indicated earlier extends to show the invariance is a general
consequence of (A1) and (A2). Consider a neighborhood in M in which
xi, i ∈ I and pj , j ∈ Ic provide coordinates, some I ⊆ {1, 2, . . . , n}, and let
G(xi, pj), i ∈ I, j ∈ Ic be a generating function, so that in this neighbor-
hood M is described by (15). In particular on M we can view H,Hx, Hp

as functions of the coordinates xi, pj alone (i ∈ I, j ∈ Ic). Through an
initial point onM we can compute a trajectory by solving the system of n
equations for the coordinate variables,

ẋi = Hpi , ṗj = −Hxj , (17)

and then use (15) to determine the values of the remaining variables xj , pi
of the trajectory on M. We need to check that the resulting trajectory
on M is a bicharacteristic. Equations (17) are half of the bicharacteristic
equations (16); we need to check the equations for the dependent variables
xj and pi. Writing out H = 0 using (15) we have

0 = H(xi,−
∂G

∂pj
,
∂G

∂xi
, pj), (18)

holding identically as a function of the coordinate variables xi, pj . Differ-
entiating (18) with respect to an xi, i ∈ I yields

0 = Hxi +
∑
j∈Ic
−Hxj

∂2G

∂pj∂xi
+
∑
i′∈I

Hpi′
∂2G

∂xi′∂xi
,

which in light of (15) and (17) is equivalent to

ṗi = −Hxi . (19)
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Similarly, differentiating (18) with respect to a pj, j ∈ Ic produces

0 =
∑
j′∈Ic

−Hpj′
∂2G

∂pj′∂pj
+
∑
i∈I

Hpi

∂2G

∂xi∂pj
+Hpj ,

which is equivalent to
ẋj = Hpj . (20)

(17), (19), and (20) show that the trajectory we have constructed on M
through a prescribed initial point is in fact the bicharacteristic through the
initial point. This establishes the invariance of M with respect to (16), as
claimed.

3 Continuity and Subsolution Properties

We now assume that H(x, ·) is convex and begin to consider

W (x) = inf
p:(x,p)∈M

S(x, ·), x ∈ Ω (21)

as a possible viscosity solution of H(x,DW (x)) = 0. First we show, un-
der the general hypotheses presented in Section 2, that W is lower semi-
continuous and is a viscosity supersolution, namely that

H(x, p) ≥ 0

for all p in the set of subdifferentials D−W (x). The proof of the superso-
lution property below was communicated by Bill McEneaney, although in
a slightly different form. A very similar argument was given for Theorem
3.1 of [15]. Notice that the convexity of H(x, ·) is used significantly.

Theorem 1 W (·) is a lower semi-continuous viscosity supersolution of

H(x,DW (x)) = 0 in Ω.

Proof. The lower semi-continuity follows easily by considering sequences
xn → x and pn with (xn, pn) ∈ M and W (xn) = S(xn, pn). By passing
to a subsequence Lemma 1 implies lim inf W (xn) ≥ infp:(x,p)∈M S(x, p) =
W (x).

Consider x0 ∈ Ω and suppose φ(·) is C1 such that W ≥ φ with equality
at x0. Since D−W (x0) consists of the set of Dφ(x0) for all such φ(·), we
need to show H(x0, Dφ(x0)) ≥ 0. There exists p0 with (x0, p0) ∈ M and
W (x0) = S(x0, p0). For an arbitrary (x, p) ∈M we have

S(x, p) ≥W (x) ≥ φ(x), with equality at (x0, p0).
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Consider the bicharacteristic (xt, pt) through (x0, p0). For t < 0∫ 0

t

Dφ(xs) · ẋs ds = φ(x0)− φ(xt) ≥ S(x0, p0)− S(xt, pt) =

∫ 0

t

ps · ẋs ds
(22)

Since H(x, p) is convex in p, ẋs = Hp(xs, ps) and H(xs, ps) = 0 we know
that

H(xs, q) ≥ (q − ps) · ẋs +H(xs, ps) = (q − ps) · ẋs for all q.

Applying this with q = Dφ(xs) and using (22) yields, for all t < 0,∫ 0

t

H(xs, Dφ(xs)) ds ≥
∫ 0

t

(Dφ(xs)− ps) · ẋs ds ≥ 0.

The continuity of H(xs, Dφ(xs)) now implies that

H(x0, Dφ(x0)) ≥ 0,

completing the proof.

We observe that the above proof only used (local) backwards invariance
of Ω with respect to the bicharacteristics of M: (xt, pt) ∈ M and x0 ∈ Ω
implies xt ∈ Ω for all t ∈ (−ε, 0), some ε > 0. Suppose the closure Ω̄ is
likewise (locally) backward invariant and that we can extend the definition
(21) to x ∈ Ω̄. Then the argument in the proof applies for x0 ∈ ∂Ω with
any C1 function φ such that W (x) ≥ φ(x) for all x ∈ Ω̄ with equality at
x0. We would conclude that W satisfies Soner’s boundary condition on ∂Ω
for problems with state constrained to Ω̄. (See [11] Section II.12.)

The subsolution property of (21) is more involved. Indeed it is false in
general under only the hypotheses of Section 2. The shortcoming is that
W (x) so defined can easily be discontinuous, as we have seen in Exam-
ple 2.1.4. The notion of viscosity solution does extend to discontinuous
functions. (See [11] and references.) The subsolution property for dis-
continuous W requires that H(x,D+W ∗(x)) ≤ 0 where W ∗ is the upper
semicontinuous envelope of W . At a discontinuity D+W ∗(x) is typically
unbounded, as our examples illustrate. This makes H(x,D+W ∗(x)) ≤ 0
impossible for Hamiltonians with H(x, p) → +∞ as |p| → ∞, such as
nondegenerate quadratics.

Our proof of the subsolution property requires the additional assump-
tion that W is (locally) Lipschitz continuous in Ω. Before coming to the
proof itself we will explore some continuity properties of W which do fol-
low from our assumptions in Section 2. To this end we distinguish several
types of points in Ω. First are the regular points, x ∈ Ω for which there is
a unique (x, p) ∈ M giving the minimum of S:

W (x) = S(x, p) < S(x, p′) for all (x, p′) ∈M, p 6= p′.
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(This terminology is standard; see [11] pg. 48.) The set of all regular points
will be denoted U . The points in Ω\U might reasonably be called multiple
points , since there are multiple (x, p) ∈M achieving the value W (x).

Let π :M→ IRn be the projection to state space: π(x, p) = x. A point
x ∈ Ω is called a caustic point if, there is some (x, p) ∈ M at which the
state projection π is singular (i.e. has vanishing Jacobian with respect to
any set of coordinates for a neighborhood of (x, p) inM). C will denote the
set of caustic points. We define the set of essential caustics C∗ to consist
of those x such that π is singular at every (x, p) ∈ M which is minimizing,
W (x) = S(x, p). Of course C∗ ⊆ C.

We note that if the projection π is nonsingular at (x0, p0) ∈ M, then
the state variables, xi, i = 1, . . . , n provide a coordinate chart in some
neighborhood of (x0, p0). Following our discussion in Section 2, there exists
a generating function G(x) defined in some ball Bδ(x0) about x0 so that so
that the set of (x, p) with x ∈ Bδ(x0) with p = DG(x) is a neighborhood
of (x0, p0) in M, and S(x, p) = G(x) in this neighborhood. This fact will
be used several times below.

The results in the following theorem and corollary are familiar in the
context of variational and control problems; see [11] (Theorem I.10.4 in
particular) and [7] for instance. Our definition of caustic point is related
to the notion of conjugate point. However the actual definition of conju-
gate point makes reference to the subset of state space on which initial
or boundary data is prescribed. Our hypotheses do not identify any such
distinguished subset of state space or ofM, so we cannot quite define con-
jugate points in the general context of Section 2. Thus the following result
is slightly different than the usual results on the region of strong regularity.
Our main point however is not that these features are new, but that they
follow from the general hypotheses in section 2 apart from any variational
interpretation.

Theorem 2

a) U \ C∗ is open, and W (·) is smooth in U \ C∗.
b) W (·) is continuous at every point of Ω \ C∗.
c) W (·) is locally Lipschitz in the interior of Ω \ C∗.

Corollary 1 All discontinuities of W occur at essential caustics.

Proof. Consider x0 ∈ U\C∗. There exists a (unique) (x0, p0) ∈M which
minimizes S(x0, ·) over (x0, p) ∈ M and at which π is nonsingular. By the
observation just above there exists a smooth G(·) defined in a neighborhood
of x0 so that p = DG(x) and S(x, p) = G(x) in a neighborhood of (x0, p0)
in M. Since (x0, p0) is minimizing, W (x0) = G(x0). We claim there exists
δ > 0 so that p = DG(x) is the unique minimizer of S(x, ·) in M for
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each x ∈ Bδ(x0). If not, there would exist a sequence of (xn, pn) ∈ M
with xn → x0 such that pn minimizes S(xn, ·) in M but pn 6= DG(xn).
By Lemma 1 the pn are bounded, and any limit point p∗ = lim pn′ has
(x0, p∗) ∈ M. Since W (xn) = S(xn, pn) ≤ G(xn), we can use the lower
semi-continuity of W (·) to deduce that

G(x0) = W (x0) ≤ lim inf W (xn′) = limS(xn′ , pn′) ≤ limG(xn′) = G(x0).

Therefore,

W (x0) = G(x0) = limS(xn′ , pn′) = S(x0, p∗).

In other words (x0, p∗) is minimizing at x0, which means p∗ = p0, since by
hypothesis the minimizer at x0 is unique. It follows then that pn → p0.
Therefore (xn, pn) → (x0, p0) in M and so, for all sufficiently large n,
(xn, pn) is in the neighborhood of (x0, p0) in which p = DG(x). Hence
pn = DG(xn) for all sufficiently large n, contrary to our construction. This
proves the existence of δ > 0 so that p = DG(x) is the unique minimizer of
S(x, ·) inM for each x ∈ Bδ(x0), showing both that x0 has a neighborhood
Bδ(x0) contained in U \C∗, and that W (x) = S(x, p) = G(x) is smooth in
Bδ(x0), proving a).

Next, consider x0 ∈ Ω \ C∗. There exists (x0, p0) ∈ M minimizing
S(x0, ·) at which π is nonsingular. Let G(x) be defined in a neighborhood of
x0, as described prior to the theorem statement above. Then since G(x) =
S(x, p) in a neighborhood of (x0, p0) we have

W (x) ≤ G(x), with equality at x0.

Hence
lim sup
x→x0

W (x) ≤ G(x0) = W (x0),

showing that W is upper-semicontinuous at x0. Since lower-semicontinuity
holds in general, this proves b).

Now suppose x0 is an interior point of Ω \ C∗. The local boundedness
assumption implies that for some δ,K > 0 we have

|p| ≤ K for all (x, p) ∈M with x ∈ Bδ(x0).

For simplicity denote B = Bδ(x0). We note that B is convex, and we may
assume B ⊆ Ω \ C∗. We will show that

|W (x1)−W (x2)| ≤ K|x1 − x2|, for all x1, x2 ∈ B. (23)

Consider any x1 ∈ B. Since x1 /∈ C∗ there exists (x1, p1) ∈M minimiz-
ing S(x1, ·) and a smooth G(·) defined on some Bδ1(x1) ⊆ B as previously.
For any x2 ∈ Bδ1(x1) we have |DG(x2)| ≤ K and so

W (x2) ≤ G(x2)

≤ G(x1) +K|x2 − x1| = W (x1) +K|x2 − x1|. (24)
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Pick a unit vector u and consider the maximal interval 0 ≤ t ≤ T of t such
that x2 = x1 + tu ∈ B and (24) holds. It must be that x1 + Tu ∈ ∂B, else
we could take x2 = x1 +Tu and repeat the above argument, finding δ2 > 0
so that

W (x3) ≤W (x2) +K|x3 − x2| for all x3 ∈ Bδ2(x2).

We could then combine this with (24) to find that (24) also holds for x3 =
x1 + (T + t)u, 0 ≤ t < δ2, contradicting the maximality of T . In this way
we find that (24) holds for x2 along any ray from x1 up to ∂B. Since B is
convex, this means (24) holds for all x1, x2 ∈ B. Interchanging x1 and x2

we conclude (23), as claimed.

Lemma 2 The set C of all caustics has measure 0.

Proof This is a direct application of Sard’s Theorem. (See [20].)

We observe that the set of caustics is closed, relative to Ω, because it
is the image under π of the set of points where the Jacobian of π vanishes.
Indeed C = {(x, p) ∈ M : π is singular at (x, p)} is a closed subset of M.
Any x0 ∈ C has a closed neighborhood B̄δ(x0) ⊆ Ω. Since M is locally
bounded, C∩(B̄δ(x0)×IRd) is compact. Hence its image C∩B̄δ(x0) under π
is closed. Since x0 ∈ C was arbitrary, it follows that C is closed, relative to
Ω. As a result of this and part c) of the theorem above, the points at which
W (·) fails to be Lipschitz is a subset of the caustics and thus has measure 0.
However, even if we knew W was continuous in Ω, this would not be enough
to deduce that W is Lipschitz in Ω. (Indeed the Cantor function is locally
Lipschitz in the compliment of the Cantor set, which has measure 0, but
is not Lipschitz overall.) The following stronger hypothesis on C∗ implies
Lipschitz continuity and will be adequate for simple examples, although it
is too strong to be useful in the general case.

Lemma 3 Suppose n ≥ 2 and C∗ has no accumulation points. Then W is
(locally) Lipschitz continuous in Ω.

Note that for n = 1 this result is false, as the overloop of Example 2.1.4
illustrates.

Proof. The hypotheses imply that C∗ is closed, so that Ω \ C∗ is open and
Theorem 2 c) assures us that W is Lipschitz there. We need only consider
a neighborhood Bδ(x0) containing a single point x0 of C∗. Repeating the
reasoning of Theorem 2 b), it follows that for some K > 0,

|W (x1)−W (x2)| ≤ K|x1 − x2|, x1, x2 ∈ Bδ(x0) (25)

provided x0 is not on the line segment joining x1 and x2. If x0 is on this
line segment, introduce x3 close to x0 but off the line segment. Pass to the
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limit as x3 → x0 in

|W (x1)−W (x2)| ≤ K|x1 − x3|+K|x3 − x2|

to see that (25) holds for any x1, x2 in the punctured ball Bδ(x0) \ {x0}.
Hence

w0 = lim
x→x0

W (x)

exists. Once we show w0 = W (x0) it will follow that (25) holds on the full
open ball Bδ(x0), and the proof of the lemma will be complete. We know

W (x0) ≤ w0 (26)

by lower semi-continuity.
Let (x0, p0) ∈ M such that S(x0, p0) = W (x0). Consider the set Px0 =

{p : (x0, p) ∈ M}. The local boundedness hypothesis tells us that Px0 ⊆
IRn is bounded. Let p∗ be a boundary point of Px0 whose distance from
p0 is as small as possible. We must have (x0, p∗) ∈ M because otherwise
it would be a boundary point of M over Ω, contrary to hypothesis (A6).
On the other hand, no neighborhood of (x0, p∗) in M can be contained in
{x0}× IRd or else p∗ would be interior to Px0 . Hence there exits a sequence
of points inM, (xn, pn)→ (x0, p∗) with xn 6= x0. Since W (xn) ≤ S(xn, pn)
we can argue that

w0 = limW (xn) ≤ limS(xn, pn) = S(x0, p∗).

Because no boundary points of Px0 are closer to p0 than p∗, the line segment
between (x0, p0) and (x0, p∗) is contained inM and along it dS = p·dx = 0,
so that

w0 ≤ S(x0, p∗) = S(x0, p0) = W (x0).

Together with (26) this completes the proof.

The main result of this section is the following.

Theorem 3 If H(x, p) is convex in p for each x and W (x) is (locally)
Lipschitz continuous in Ω, then W is a viscosity solution of H(x,DW (x)) =
0 in Ω.

Proof. We need to show that

H(x, p) ≤ 0

for all p in the set D+W (x) of superdifferentials of W at x. Frankowska
[12] showed that for (locally) Lipschitz functions W ,

D+W (x) ⊆ ∂W (x),
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where ∂W (x) is the generalized gradient in the sense of Clarke. Clarke [8]
has shown (Theorem 2.5.1) that for any set G of Lebesgue measure 0

∂W (x) = co{limDW (xi) : xi → x, xi /∈ G,DW (xi) converges}. (27)

(The “co” indicates the convex hull.) We take

G = C̄∗ ∪ {x ∈ Ω : W is not differentiable at x}.

G does have measure 0 by the Lipschitz hypothesis, Lemma 2 and the
observation following it which implies C̄∗ ⊆ C. We claim that for any x0 ∈
Ω \G, (x0, p0) ∈ M where p0 = DW (x0) and S(x0, p0) = W (x0). Indeed
x0 /∈ C∗ means there exists (x0, p0) ∈ M at which π is nonsingular and
S(x0, p0) = W (x0). There exists a smooth G(x) defined in a neighborhood
of x0 with p0 = DG(x0) and (x,DG(x)) defines a neighborhood of (x0, p0)
in M, with G(x) = S(x,DG(x)). Therefore in this neighborhood we have

W (x) ≤ G(x)

with equality at x0. Since both sides are differentiable at x0 it follows that

DW (x0) = DG(x0) = p0.

We already know S(x0, p0) = W (x0) by the choice of p0. This justifies our
claim.

Consider then any such sequence xi → x, xi ∈ G as in (27). We have
(xi, pi) ∈ M where pi = DW (xi) converges to some p. By Lemma 1,
(x, p) ∈ M. We conclude that

D+W (x) ⊆ co{p : (x, p) ∈M}.

(We comment that this fact is in Cannarsa and Soner [6], at least for semi-
convex (or concave) functions; see Def.4.3, Prop.4.9. The same is true of
D−W . This provides at a fundamental level the observation of Ball and
Helton [2] about the equivalence of H(x,D±W (x)) ≤ 0, which results from
time-reversal in the argument of M. James.) Since H(x, p) = 0 on M and
H(x, ·) is convex, it follows that

H(x, p) ≤ 0

for all p ∈ D+W (x), which completes our proof.

4 Examples with Discontinuity

Our intent has been to develop viscosity solution properties directly from

W (x) = inf
p:(x,p)∈M

S(x, p) (28)
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under the basic hypotheses of Section 2, divorced from any variational in-
terpretation. The obvious shortcoming of those hypotheses is that they do
not imply the continuity that is needed in Theorem 3. In this section we
provide two examples which offer some insight into how discontinuities can
arise in (28), and an important feature of variational problems that our
basic hypotheses fail to capture.

Consider time-dependent equations of the following form in one space
dimension (x ∈ IR1):

DtW +H(DxW ) = 0, W (0, x) = Φ(x) (29)

Assume that H(·) is a proper convex function in the sense of convex anal-
ysis, with conjugate function

L(v) = sup
p
{p · v −H(p)}, (30)

and moreover that both L(·) and H(·) are finite-valued and sufficiently
smooth. Assume that Φ(·) is smooth with Φ′(x) bounded. We note that
time-dependent equations such as this may be put in the form (2) by aug-
menting the state and costate variables

y = (t, x), q = (σ, p)

and defining an augmented Hamiltonian,

H+(y, q) = σ +H(p). (31)

The Cauchy problem (29) has been thoroughly studied, since it describes
the value function for the following basic variational problem:

W (t, x) = inf
xt=x

{
Φ(x0) +

∫ t

0

L(ẋs) ds

}
(32)

(The infimum is over xs : [0, t]→ IR1 which are absolutely continuous with
the prescribed terminal position xt = x.) An efficient discussion can be
found in Fleming and Soner [11], Sections I.8, I.9. In particular, for t > 0
(32) defines a Lipschitz continuous function and the infimum is achieved by
one of the bicharacteristic curves that will make up M below, so that for
t > 0 (32) defines the same W (t, x) that we would construct following (28).
The variational representation implies Lipschitz continuity. E. Hopf [14]
studied (29) long ago. Among other things, he showed that the formula

W (t, x) = inf
z

sup
p
{Φ(z) + p · (x− z)− tH(p)} (33)

provides a generalized solution to (29) which is Lipschitz. Later, after the
theory of viscosity solutions was in place, Bardi and Evans [3] revisited
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Hopf’s formula, showing that it provides the unique continuous viscosity
solution for t > 0 to the Cauchy problem. One can check that Hopf’s
formula also reduces to (28) above in the context of the augmented variables
(31).

The manifold M that we would construct in solving this problem is
exactly what results from the method of characteristics. Start with the
initial manifold consisting of t = 0, p = Φ′(x) and σ = −H(p). Take these
as initial conditions for the bicharacteristic system associated with H+,
which reduces to

ṗt = 0
ẋt = H ′(pt)
σt = −H(pt).

M is the union of points on this family of bicharacteristic curves. Note
that ẋt and pt are constant. For v = ẋt the supremum in (30) is achieved
by p = pt (since ẋt = H ′(pt)). Therefore, the function S associated with
M as in (7) obeys the following along a bicharacteristic:

dS = qt · dyt = pt · dxt −H(pt) dt = [ptHp(pt)−H(pt)]dt = L(ẋt)dt. (34)

We can therefore express the function S on M by

S(t, xt, σt, pt) = Φ(x0) +

∫ t

0

L(ẋs) ds

along the bicharacteristic (xt, pt). This makes plain the correspondence of
(28) with (32) for t > 0.

The variational interpretation of W (t, x) is limited to t > 0, while the
construction of M, S(·) and W (·) by (28) extend equally well to t < 0.
The hypotheses of Section 2 remain satisfied. We have lost the variational
interpretation for t < 0 and, as our first example will show, we can lose
continuity of W (·) as well.

4.1 Examples

We now offer two examples, both using H(p) = 1
2p

2. The corresponding
Lagrangian is L(v) = 1

2v
2. We consider two choices of Φ. The resulting

manifoldM is nicely parameterized by t, x0. Since the augmenting costate
variable is always given by σ = −H(p), only t, x, p and S are included in
the plots below.

4.1.1 An Example with Upstream Discontinuity

Consider Φ(x) = 2 arctan(x) − x. Φ′ is bounded, in accord with the hy-
potheses above. The resulting manifold M is illustrated in Figure 4, and
in Figure 5 using different t cross-sections. The bottom row in each figure
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displays S(t, ·) as a multivalued function of x, for the corresponding t val-
ues. As t increases the cross-section undergoes a “shearing” motion, with
the upper half-plane moving to the right and the lower to the left. By the
time t=1.2 the cross-section of M has formed an underloop, producing a
nondifferentiable but Lipschitz function W , in accord with the implications
of the variational interpretation. However for t < 0 we see that an overloop
develops, yielding a discontinuous W for t < −1.
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Figure 4: Manifold Perspectives for Example 4.1.1

Considering t < 0 is obviously inappropriate in terms of the variational
problem. In terms of the the basic hypotheses of Section 2 this example
suggests that the direction of the bicharacteristic flow is significant for the
continuity of W (·). We might hope that continuity of W (but not smooth-
ness) will be maintained as we follow the bicharacteristics in their forward
or “downstream” direction, but as we move “upstream” we are more likely
to encounter discontinuities and thereby lose the viscosity subsolution prop-
erty. The next example shows that in fact it is possible to lose continuity
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t=-2 t=0 t=1.2

Figure 5: Cross-Sections for Example 4.1.1

in the “downstream” direction as well.

4.1.2 An Example without Local boundedness

Now take Φ(x) = 1
2 (log(x2 + 1)− x2). We note immediately that Φ′(x) =

−x3

x2+1 is unbounded. The variational argument that W (·) is Lipschitz for
t > 0 no longer applies. However the construction of M, S(·) and then
W (·) from (28) can still proceed. Figure 6 again displays t cross-sections
of M on the top and the corresponding S(t, ·) on the bottom row. We see
that a pair of underloops has formed by t = .95, resulting in a nonsmooth
but continuous W . However at t = 1 an “inversion” takes place, with the
p→ ±∞ tails ofM passing through the vertical axis. M violates the local
boundedness hypothesis (A5) at this point. An overloop forms at this time,
so that W develops a discontinuity. This discontinuity persists (although
diminishing in size) as t continues to increase.

t=0 t=.95 t=1.2

Figure 6: Example 4.1.2
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It turns out that local boundedness does hold for the portion ofM with
0 < t < 1. This example illustrates that our local boundedness hypothesis
is important for the continuity of W (·), but that it is not a property that
propagates forward or “downstream” on M. We pointed out in Section 2
that global boundedness does follow if the Hamiltonian has the property
H(x, p)→ 0 as |p| → ∞. In time dependent settings the augmented Hamil-
tonian (31) does not have this property. In the specific context of (29), the
assumption of bounded Φ′(x) is a spatially global version (A5) which then
does propagate downstream.

4.2 Comments on the Time-Dependent Equation

Byrnes [5] noted the connection between the case of H(p) = 1
2p

2 above
and Burgers’ equation. His focus was on the Riccati PDE, which describes
M under the assumption that it is a graph over (t, x): p = p(t, x) (and
σ = −H(p(t, x))). In the present setting the Riccati PDE would take the
form

∂p

∂t
+
∂p

∂x
·Hp(p) = 0.

In higher dimensions the symmetry of ∂p/∂x follows from the Lagrange
property of M. This makes the Riccati PDE equivalent to the scalar con-
servation law

∂p

∂t
+DxH(p(t, x)) = 0. (35)

For H(p) = 1
2p

2 specifically we get Burgers’ equation. The formation of
shocks for (35) corresponds to the folding ofM over state space, so that it is
no longer a graph. In the context of (28) this corresponds to the formation
of nonsmooth points, as illustrated in the examples. In the context of (35)
it is natural to expect the minimizing p, as a function of (t, x), to provide
a weak solution (see [22]). In fact the very construction (28) has been the
basis of existence arguments for scalar conservation laws since the work of
Hopf in the 1950’s. Under appropriate technical conditions it produces the
unique weak solution satisfying the usual entropy condition. (See Lax [16].)
The Rankine-Hugoniot jump condition [p] dx− [H] dt = 0 and “equal area
rule” are natural consequences.

5 Nonlinear L2-Gain Calculations

We return in this final section to consider the implications of our results for
the problem of L2-gain calculation, introduced in Section 1. As pointed out
there, van der Schaft [24], [25] has considered the use of Lagrange manifold
constructions in this context, but only in terms of smooth solutions of (48)
below in some domain Ω. We will obtain some of the same results under
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weaker hypotheses for which the construction yields a viscosity solution.
The reader can refer to the papers of van der Schaft for more background
on this topic and its relation to H∞ control.

Recall from Section 1 that the problem concerns a control system

ẋt = f(xt) + g(xt)ut (36)

in which ut ∈ IRm (locally L2) is viewed as an input and the observed
output is yt = h(xt). We will call xt solving (36) for some ut a controlled
path. The goal is to establish a bound γ on the L2-norm of the map u· 7→ y·.
Two versions of this problem have been posed. One is to establish L2-gain
≤ γ only for the zero-state response: for all T > 0 and controlled paths
with x0 = 0, ∫ T

0

|h(xt)|2 dt ≤ γ2

∫ T

0

|ut|2 dt. (37)

The second is to generalize this to non-zero initial states x0 allowing a
nonnegative function K(x0) of the initial state to appear on the right:∫ T

0

|h(xt)|2 dt ≤ γ2

∫ T

0

|ut|2 dt+K(x0), all T > 0. (38)

The generalized version of the problem is to show there exists a (finite)
function K(·) ≥ K(0) = 0 such that this holds for all initial conditions
and all controlled paths. (This is the version of the problem referred to in
Section 1.)

We define the running cost (or supply rate in the language of dissipative
systems) to be

`(x, u) =
1

2
[γ2|u|2 − |h(x)|2], (39)

and the associated Hamiltonian

H(x, p) = sup
u
{p · (f(x) + g(x)u)− `(x, u)}

=
1

2
γ−2p · g(x)g(x)T p+ p · f(x) +

1

2
|h(x)|2. (40)

Note that the supremum is achieved for u∗(p) = γ−2g(x)T p, and Hp(x, p) =
f(x) + g(x)u∗(p). Thus the spatial part xt of a bicharacteristic (xt, pt) is a
controlled path

ẋt = Hp(xt, pt) = f(xt) + g(xt)u
∗(pt)

along which
H(xt, pt) = pt · ẋt − `(xt, u∗(pt)).
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Both versions of the L2-gain problem are expressed succinctly in terms of
the available storage function, defined by

φa(x0) = − inf

∫ T

0

`(xt, ut) dt, (41)

where the infimum is over all 0 < T and controlled paths with the specified
initial condition x0. Considering T ↓ 0 immediately implies

φa(·) ≥ 0. (42)

(However, without further assumptions on the control system it is possible
for φa(x0) = +∞.) L2-gain ≤ γ for the zero-state response is equivalent to

φa(0) = 0. (43)

This is because (37) means φa(0) ≤ 0 which is equivalent to (43) by (42).
L2-gain ≤ γ holds in the generalized sense (38) if and only if

0 ≤ φa(·) <∞. (44)

It is simple to check that φa obeys the Dissipation Inequality:

φ(xT ) ≤ φ(x0) +

∫ T

0

`(xt, ut) dt for all controlled paths. (45)

Moreover φa is minimal among all nonnegative functions φ(·) ≥ 0 satisfying
(45). James [15] shows that for a lower semi-continuous function φ, (45) is
equivalent to the viscosity sense inequality

H(x,D−φ(x)) ≤ 0. (46)

(This is to say φ is a viscosity supersolution of −H(x,Dφ(x)) = 0, as many
authors put it.) Ball and Helton [2] observe, by applying James’ result in
reverse time, that (45) is also equivalent to

H(x,D+φ(x)) ≤ 0. (47)

Soravia [23] and Ball and Helton [2] have shown that φa is actually a
viscosity solution of

−H(x,Dφ(x)) = 0. (48)

The question we consider here is whether we might be able to construct
φa from an appropriate Lagrange manifold. Van der Schaft has recognized
that the stable manifold at (0, 0) for the Hamiltonian system

ẋ = Hp(x, p), ṗ = −Hx(x, p) (49)
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is a natural candidate. He makes appropriate controllability and observ-
ability assumptions which imply that this stable manifold is the graph of
a smooth function over some neighborhood Ω0 of 0 in state space. This
provides (locally) the existence of a classical solution of (48), and thereby a
local version of the L2-gain property, holding for paths limited to Ω0. We
simply make our assumptions directly on the manifold M that we intend
to work with. To be specific we assume the following:

(M1) x = 0, p = 0 is a hyperbolic equilibrium for (49) and Ms is the
associated stable manifold.

(M2) Ω is an open region in state space containing 0 with the following
properties:

a) for every x ∈ Ω there is some (x, p) ∈Ms (i.e. Ms covers Ω);

b) for every (x0, p0) ∈ Ms with x0 ∈ Ω the corresponding bichar-
acteristic (49) has xt ∈ Ω for all t ≥ 0.

(M3) M is the submanifold of Ms consisting of those (x, p) ∈ Ms with
x ∈ Ω. We assume M to satisfy (A1) – (A6) of Section 2.

(M4) Vs(x) = supp: (x,p)∈M S(x, ·) is a continuous viscosity solution of (48),
where S is the function on M determined dS = p · dx, S(0, 0) = 0.

Several comments are in order. First, Ms and the hyperbolicity in (M1)
are determined by H(·, ·). Second, Ω is not arbitrary but must be chosen
to satisfy (M2) with respect to Ms. M is then determined by the choice
of Ω. It follows that Ω and M are forward invariant for (49): x0 ∈ Ω
and (x0, p0) ∈ M implies xt ∈ Ω and (xt, pt) ∈ M for all t ≥ 0. (This is
important in Lemma 5.) Next, as noted by van der Schaft and others,M
is a simply connected Lagrange manifold. Therefore the function S(x, p)
is well-defined on it. H(0, 0) = 0 (by (40)) and since H is constant along
bicharacteristics in M, all of which converge to (0, 0) as t → +∞, we see
that H = 0 everywhere onM.

We accommodate the “-” sign in (48) by a simple change of variables.
Note that (48) is equivalent to saying that ψ = −φ is a viscosity solution
of

H̃(x,Dψ(x)) = 0, x ∈ Ω (50)

with respect to the Hamiltonian

H̃(x, p) = H(x,−p), (51)

Define a new Lagrange manifold M̃ by

(x, p) ∈ M̃ if and only if (x,−p) ∈M.
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H̃(x, ·) is convex since H(x, ·) is, and H̃,M̃ satisfy our basic hypotheses
since H,M do. The respective functions with dS = p · dx on M and
dS̃ = p · dx on M̃ are related by

S̃(x, p) = −S(x,−p).

Our candidate to solve (50) is

W (x) = inf
p: (x,p)∈M̃

S̃(x, p).

This is equivalent to

Vs(x) = −W (x) = − inf
p: (x,p)∈M̃

S̃(x, p) = sup
p: (x,p)∈M

S(x, p) (52)

being a viscosity solution of (48) in Ω.
One may check that the conversion from H to H̃ involves a time rever-

sal. What was the “upstream” direction of a bicharacteristic onM becomes
the “downstream” of its counterpart on M̃. M̃ is (a subset of) the unsta-
ble manifold associated with the equlibrium point at (x, p) = (0, 0) for the
H̃ bicharacteristic system. Hence all of M̃ is “downstream” from an arbi-
trarily small neighborhood of (0, 0) in M̃. In accord with our observations
following Example 4.1.1, this makes us optimistic that W will in fact be
Lipschitz continuous and thus truly a viscosity solution of (50). We have
simply assumed the validity of this in (M4).

It follows from James’ result (46) that Vs satisfies the dissipation in-
equality, restricted to controlled paths with xt ∈ Ω. We abbreviate this
by saying that “Vs satisfies (45) in Ω.” Is is only reasonable to expect a
comparison with the available storage function defined with a similar lim-
itation. We let φΩ

a be defined as in (41) above, but with the additional
restriction to paths xt ∈ Ω. The first of the following lemmas is clear.

Lemma 4 0 ≤ φΩ
a (·) ≤ φa(·) in Ω. φΩ

a is minimal among φ which are
nonnegative and satisfy (45) in Ω.

Lemma 5 Vs(0) ≥ 0 and is minimal among those φ with lim infx→0 φ(x) ≥
0 and satisfying (45) in Ω.

Proof. Since (0, 0) ∈ M and S(0, 0) = 0, Vs(0) ≥ 0 is immediate from the
definition. Suppose φ satisfies (45) in Ω and lim infx→0 φ(x) ≥ 0. Consider
any x0 ∈ Ω and p0 with (x0, p0) ∈M and let (xt, pt) be the bicharacteristic
through (x0, p0) for t ≥ 0. We know (xt, pt) ∈ M and xt ∈ Ω and that
xt is a controlled path with ut = u∗(pt). Moreover, since 0 = H(xt, pt) =
pt · ẋt − `(xt, ut) it follows that

S(xT , pT )− S(x0, p0) =

∫ T

0

pt · dxt
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=

∫ T

0

`(xt, ut) dt

≥ φ(xT )− φ(x0).

As T → +∞ we know xT , pT and S(xT , pT ) all converge to 0. Thus the
hypothesis lim infx→0 φ(x) ≥ 0 implies that

S(x0, p0) ≤ φ(x0), all x0 ∈ Ω, (x0, p0) ∈M.

From this we conclude that Vs(x0) ≤ φ(x0). Since Vs itself satisfies the
dissipation inequality (45) in Ω, and lim infx→0 Vs(x) = Vs(0) ≥ 0, the
proof is complete.

Theorem 4 Vs(·) ≤ φΩ
a (·). Vs = φΩ

a if and only if Vs(·) ≥ 0 in Ω.

Proof. Since φΩ
a (·) ≥ 0, Lemma 5 implies Vs(·) ≤ φΩ

a (·). If Vs(·) ≥ 0 then
Lemma 4 yields Vs(·) ≥ φΩ

a (·) and hence Vs = φΩ
a . If Vs = φΩ

a then Vs ≥ 0
is immediate from Lemma 4.

The idea is to compute Ms, select the largest Ω possible satisfying
our hypotheses and then observe the resulting Vs. If Vs(·) ≥ 0 in Ω then
Vs = φΩ

a and we have verified that L2-gain ≤ γ in Ω. It is interesting
to consider how this program might fail. If Vs(x0) < 0 at some x0 ∈ Ω
(necessarily x0 6= 0), consider the null-controlled path ẋt = f(xt) through
x0. If xt stays in Ω we must have

Vs(xT ) ≤ Vs(x0) +

∫ T

0

`(xt, 0) dt ≤ Vs(x0) < 0.

In particular xt is bounded away from 0. In the theory of nonlinear H∞
control the L2-gain criterion is usually taken together with a requirement
of asymptotic stability of 0 for the null-controlled system. Thus Vs(x0) < 0
implies that either Ω is not invariant for the null-controlled system, or
that it is not asymptotically stable. This is in accord with the result that
global asymptotic stability of the null-controlled system implies that any
function satisfying the dissipation inequality (45) with φ(0) = 0 must be
nonnegative; see [25]. If we find Vs(0) > 0 then φa(0) ≥ φΩ

a (0) ≥ Vs(0) > 0
and so the zero-state L2-gain is not bounded by γ.

5.1 Linear-Quadratic Examples

Simple linear-quadratic examples in 2 dimensions will illustrate situations
in which Vs 6= φΩ

a . We will use Ω = IR2. From the above remarks we know
the null-controlled system must fail to be asymptotically stable. Consider
the control system (u ∈ IR2)

ẋ = Fx+Gu

31



with output given by
h(x) = Y x.

(F,G, Y are 2× 2 real matrices.) The resulting Hamiltonian is

H(x, p) =
1

2γ2
p ·GGT p+ p · Fx+

1

2
x · Y TY x.

The Hamiltonian system (49) is linear,[
ẋ
ṗ

]
= H

[
x
p

]
,

where

H =

[
F γ−2GGT

−Y TY −FT
]
.

In both our examples M will be the stable subspace of H, described by
p = Px where P is a particular symmetric 2 × 2 matrix. (Ω = IR2.) The
resulting Vs is the quadratic function

Vs(x) =
1

2
x · Px.

5.1.1 Example

Consider γ = 1 and

F =

[
−2 0
0 2

3

]
, G =

[
1 0
0 1

]
, Y =

[ √
3 0

0 1√
3

]
.

One calculates that

P =

[
1 0
0 −1

]
, Vs(x) =

1

2
(x2

1 − x2
2).

Since Vs fails to be nonnegative we know Vs 6= φa. In this example φa ≡
+∞, due to the instability of F . Indeed for a null-controlled response, xt
with ut ≡ 0 the dissipation inequality (45) implies (because φa ≥ 0)∫ T

0

1

2
xt · Y TY xt dt ≤ φa(x0),

which, since Y TY is positive definite, converges to +∞ as T → +∞, unless
x0 is in the stable subspace of F . Using an arbitrarily small control to move
xt out of this stable subspace one easily argues that φa(x0) = +∞ on the
stable subspace of F as well.
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5.1.2 Example

Take γ = 1 again and

F =

[
−1 0
0 1

]
, G =

[
1 0
0 1

]
, Y =

[ √
3

2 0
0 0

]
.

One calculates that

P =

[
1
2 0
0 −2

]
, Vs(x) =

1

4
x2

1 − x2
2.

Now however φa is finite, given by

φa(x) =
1

4
x2

1.

(Essentially, the instability is not observed.) Indeed, one can verify that φa
is a classical solution of (48) and thus satisfies the dissipation inequality.
By considering the feedback controls

ut =

[
1
2 0
0 0

]
xt,

one sees that φa is the minimal nonnegative function satisfying (45).

5.2 A Nonlinear Example

Finally, we offer the following nonlinear example in 2 dimensions, indicating
coordinates as xt = (x1,t, x2,t). For (36) consider the linear system

ẋt = −xt + ut,

but with the following nonlinear output:

yt = h(xt) = (x1,t,
(1 + 5x1,t)x2,t

1 + x2
2,t

).

Taking γ = 4, we calculate the unstable manifold Ms of the Hamiltonian
system for (40) at (0, 0). Figure 7 displays a selection of characteristics from
Ms for x1 > 0 with the corresponding S values plotted vertically. One can
see that Vs(·) resulting from (52) develops a ‘’crease” over the x1 axis as
one moves away from the origin, resulting in a true viscosity solution to
(48).
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Figure 7: Nonlinear Example
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