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1 Introduction

We consider here the basic problem of small noise induced exit of a finite
dimensional system from an asymptotically stable equilibrium point. In IRd

let ω(t) be a standard Wiener process and consider the diffusion process

dxε(t) = b(xε(t)) dt+ ε1/2σ(xε(t)) dω(t), (1.1)

starting at xε(0) ∈ D, where D is a basin of attraction for an asymptotically
stable critical point at 0 for the deterministic system

ẋ(t) = b(x(t)). (1.2)

For an initial x = xε(0) ∈ D we follow xε(t) up to its first contact with ∂D:

τ εD = inf{t > 0 : xε(t) ∈ ∂D}.

Our interest is in the asymptotic behavior (ε ↓ 0) of the exit point distri-
bution

µεx(dy) = Px[xε(τ εD) ∈ dy] (1.3)

and the mean exit time
vεD(x) = Ex[τ εD]. (1.4)

The main offering of this paper is the overview in Section 3 of some of the
approaches which have been used to obtain sub-large deviations results.
By this we mean results that describe properties of (1.3) and (1.4) that
cannot be determined from the usual large deviations results [17] describing
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exponential dependence on ε. It is the mathematical concepts behind the
methods that we discuss, rather than specific results which apply under
diverse and various hypotheses on ∂D. Some of the approaches we describe
have been given rigorous treatments in the literature, others are based only
on formal asymptotic calculations. The latter have played an important
role in the discovery and explanation of significant features, though they
do not by themselves provide “proof” in the mathematical sense. Beyond
theoretical and formal asymptotic approaches, analogue simulations have
also been used to observe features of the exit problem firsthand; see [11] and
references. More sophisticated digital simulations based on the importance
sampling technique were conducted in [10].
A long-standing interest of Wendell Fleming’s has been small noise (ε ↓ 0)
limits in stochastic control problems, particularly as regards the Hamilton-
Jacobi-Bellman equation which describes the associated value function φε,
and its asymptotic relation to that of its deterministic (ε = 0) counterpart.
A logarithmic transformation φε = −ε log(uε) typically converts solutions
uε of linear equations equations (such as those associated with Lε below)
into Hamilton-Jacobi-Bellman equations of this small noise type. This al-
lows the small noise asymptotics of appropriate control problems to be
used to obtain large deviations results for the exit problem. Fleming’s pa-
per [14] broke new ground in this area. The advent of viscosity solution
techniques has made these analyses possible without explicit recourse to
control arguments; see [13] for instance. The 1990 paper of Perthame [29]
is a development of these ideas specifically in the context of the exit prob-
lem as we are considering it here. We will comment more on that work in
Section 3.2 below. This general approach is not limited to Wentzel-Freidlin
type large deviations but can also be used for results on occupation mea-
sures, principal eigenvalues and other issues; see [15] and [16]. In fact the
logarithmic connection to stochastic optimization problems has been de-
veloped by Dupuis and Ellis [9] into a general approach to large deviations
analysis of broad scope.

2 Basic Results

We review in this section a number of results to which our discussion in
Section 3 refers. Two special cases of the exit problem will be mentioned
frequently. These depend on whether (1.2) crosses ∂D with a positive angle
or is tangent to it. Let n denote the (unit) outward normal to ∂D. The
nontangential case is succinctly described by n · b < 0 at all points y ∈ ∂D.
This was the case originally treated by the large deviations analysis in [17].
In many applications D is taken to be the maximal domain of attraction of
the stable point at x = 0. This makes the characteristic boundary, n ·b = 0,
a more natural hypothesis, though more difficult mathematically.
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2.1 PDE Formulations

The generator of the diffusion process (1.1) is the differential operator

Lεu(x) =
ε

2

∑
i,j

aij(x)
∂2

∂xi∂xj
u(x) +

∑
i

bi(x)
∂

∂xi
u(x). (1.5)

The diffusion matrix is a(x) = σ(x)σ(x)T . Typical regularity assumptions
would require a(·), b(·) to be C3, with a positive definite hypothesis on a(·).
Similarly D is assumed to be bounded with C3 boundary. However, we will
not concern ourselves with precise hypotheses, since our goal is to provide
only a heuristic overview.
The quantities of interest in the exit problem can be characterized in terms
of appropriate boundary value problems associated with Lε. The exit point
distribution (1.3) is intimately connected with the Dirichlet problem in D:
given a continuous function f(y) defined on ∂D, find u(x) = uεf (x) solving

Lεu(x) = 0, x ∈ D; u(y) = f(y), y ∈ ∂D. (1.6)

Indeed as is well-known,

uεf(x) = Ex[f(xε(τ εD))] =

∫
∂D

f(y)µεx(dy).

With regard to the mean exit time (1.4), its distribution is linked to Lε
through the Poisson equation

Lεv(x) + φ(x) = 0, x ∈ D; v(y) = 0, y ∈ ∂D (1.7)

by the solution formula

v(x) = Ex[

∫ τεD

0

φ(xε(t)) dt].

In particular, for φ ≡ 1 we get the mean exit time, vεD(x) = Ex[τ εD].

2.2 Green’s Identity

A principal tool in exploiting these PDE characterizations is Green’s iden-
tity, which provides a fundamental relation between Lε and its formal ad-
joint:

Lε∗g(x) =
ε

2

∑
i,j

∂2

∂xi∂xj
[aij(x)f(x)] −

∑
i

∂

∂xi
[bi(x)f(x)]. (1.8)

The unit outward normal and conormal at y ∈ ∂D will be

n(y) = (ni(y)), η(y) = a(y)n(y).
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Two operators defined on ∂D appear in (1.11) below. One is a scaled conor-
mal derivative:

N εf(y) =
ε

2

∂

∂η
f(y) =

ε

2

∑
i,j

niaij
∂

∂xj
f(y). (1.9)

The second is a sort of “boundary adjoint” to N ε:

N ε∗g(y) =
ε

2

∑
i,j

ni
∂

∂xj
[aijg(y)]− 〈n, b〉 · g(y). (1.10)

Green’s (second) identity, equation (6.5) of [27], is a fundamental relation
among these operators:∫

D

g(x)Lεf(x)− f(x)Lε∗g(x) dx =

∫
∂D

g(y)N εf(y)− f(x)N ε∗g(y) dy.

(1.11)

2.3 Leveling Results

The exit point distributions µεx need not in general converge as ε ↓ 0.
However the dependence on the initial point x vanishes in the limit. This
is manifested in the leveling property of the solution uεf to the Dirichlet
problem (1.6): for any compact K ⊆ D,

sup
x,y∈K

|uεf (x)− uεf (y)| → 0 as ε ↓ 0.

This was proven in [8] for the nontangential case, but the concluding re-
marks show that it holds for characteristic boundaries as well. See [12] also.
If in fact µεx does converge as ε ↓ 0 then the leveling property implies that
the limit µεx ⇒ µ0 is independent of x ∈ D and that for a given f there is
a constant

C0
f =

∫
∂D

f dµ0 (1.12)

so that uεf → C0
f uniformly on compacts. In this case finding µ0 is equivalent

to identifying a formula for C0
f .

A relative leveling result for the mean exit time is provided by Corollary 1
of [7]:

λεEx[τ εD]→ 1, (1.13)

holding uniformly on any compact K ⊆ D. Here λε > 0 is the principal
eigenvalue for Lε with Dirichlet boundary data on ∂D: Lεφε+λεφε = 0 for
φε > 0 in D with φε = 0 on ∂D. Because of (1.13) analysis of the principal
eigenvalue is often considered equivalent to analysis of the mean exit time.
The treatment in [7] only considered the nontangential case. To our knowl-
edge (1.13) has not been worked out in the characteristic boundary case,
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although it may implied by some of the sophisticated work on exponential
loss of memory and long-time asymptotics: [23], [24] and [30] for instance.
As we will see in Section 3.2, (1.13) would be useful in the characteristic
boundary case.

2.4 Hasminksii’s Formula

Many of the approaches to sub-large deviations phenomena can be viewed
as expressions involving an invariant density for some version of xε(t). We
summarize here a general formula for the invariant distribution in terms
of an embedded Markov chain. Although this formula goes back much fur-
ther in the context of Markov chains, it was developed in the context of
diffusion processes by Hasminskii in 1960. An exposition can be found in
[18]; see Ch. IV, §4. We will use this formula below for several variants of
the original xε(t) of (1.1), to produce rather explicit relations among the
invariant distribution, exit point distribution and exit time. We describe it
here in general for a process x(t), which will refer to any of the variants
actually used below.
The idea is to construct a sequence of stopping times

0 < τ1 < τ2 < . . .

associated with contact times of a (compact) subset Γ. This is typically
done using a second disjoint subset Γ′: with τ0 = 0 define

τ ′i = inf{t > τi : x(t) ∈ Γ′}
τi+1 = inf{t > τ ′i : x(t) ∈ Γ}.

The essential technical features are that Ex[τ1] <∞, uniformly over x ∈ Γ,
and that there is some sort of separation between Γ and Γ′ which insures
τi < τi+1 with positive probability. The idea is to view the history of x(t)
as a sequence of cycles, τi < t ≤ τi+1, punctuated by the Markov chain on
Γ determined by

Xi = x(τi).

Generally Xi will have a (unique) invariant measure ν on Γ, from which
the (unique) invariant measure π for x(t) is constructed by means of Has-
minskii’s formula:∫

f(x)π(dx) =
1

Eν [τ1]

∫
Γ

Ez[

∫ τ1

0

f(x(s)) ds] ν(dz). (1.14)

3 Methods for Sub-Large Deviations Asymptotics

Large deviations results provide definitive descriptions of the exponential ε-
dependence of the mean exit time and the exit point distribution. However,
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in some situations there are interesting phenomena which can not be seen
through this kind of exponential asymptotics. This is true particularly in
cases of characteristic boundary (see [3]). For instance large deviations
analysis will identify a special subset Γ∗ ⊆ ∂D on which the exit point
distribution µεx must concentrate as ε ↓ 0. However the distribution of µεx
within Γ∗ is not discernible through large deviations results. In particular
if ∂D is a limit cycle of (1.2) then Γ∗ will necessarily be all of ∂D, so
something other than large deviations is needed to study the exit point
distribution. If Γ∗ consists of isolated points there is the question of the
relative weighings of these points in µεx as ε ↓ 0. Even if Γ is a single point,
large deviations does not tell us anything about the asymptotic “shape” of
µεx. The issue of skewing of the exit point distribution is a prime example.
One may be even more interested in the effect of these features on the mean
exit time, and less than exponential aspects of its ε-dependence. These are
all examples of what we call “sub-large deviations” phenomena. It is the
mathematical ideas that have been used to address these kind of questions
that we overview in this section.
A variety of methods have been used to study sub-large deviations fea-
tures. Some are probabilistic in nature, while others are based on PDE
techniques. Our purpose in this section is to summarize a number of these
methods, and indicate their relations to each other using Green’s identity
and Hasminkskii’s formula. We have tried to use a consistent notation to
do this. As a result the notation below is sometimes different that that of
the original sources.

3.1 The Original Matkowsky-Schuss Method

The 1977 paper [25] of Matkowsky and Schuss introduced a fruitful for-
mal approach to sub-large deviations results for the exit problem. Initially
developed in the nontangential case n · b < 0, it was subsequently applied
to cases with characteristic boundary; see [26]. The basic idea is to use a
solution zε of the adjoint equation Lε∗zε = 0 together with uεf of (1.6) in
Green’s identity, resulting in

0 =

∫
∂D

zεN εuεf − fN ε∗zε. (1.15)

This is exploited by postulating suitable asymptotic forms for zε and uεf :

zε(x) ∼ eφ(x)/ε
∑

εn/2wn(x). (1.16)

and
uεf (x) ∼ C0

f + (f(x)− C0
f )eζ(x)/ε (1.17)

The function ζ(x) should be 0 on ∂D but negative inside D, so that (1.17)
produces a function which adjusts from the interior constant C0

f to the
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boundary data f in a layer near ∂D. Assuming that the exit point distri-
butions do converge, (1.17) agrees nicely with the leveling property (1.12).
Careful asymptotic calculations proceed from (1.17) and (1.16). In the
course of these calculations one finds that the term fN ε∗zε is negligible
with respect to the first term in (1.15), and is therefore dropped from the
calculations. The determination of C0

f is thus based on using (1.16) and
(1.17) in

0 ∼
∫
∂D

zεN εuεf . (1.18)

The resulting formulas involve terms that describe the distribution of µ0

within the support set Γ∗, thus giving sub-large deviations information.
For the mean exit time (1.4) we know that Lε∗vεD = −1 with vεD(y) = 0 on
∂D. Using these facts and zε in Green’s identity implies∫

D

−zε =

∫
∂D

zεN εvεD.

by postulating the asymptotic expression

vεD(x) ∼ cεeK/ε(1− eζ/ε).

Expressions for cε are derived, which provide sub-large deviations informa-
tion on the mean exit time.

3.2 Boundary Local Time Formulation

The success of [25] prompted several efforts to put those results on a rigor-
ous basis: [19], [6], [29]. These developments all assumed the nontangential
case, n · b < 0. In [5] the probabilistic approach of [6] was refined for use
in the context of characteristic boundaries. This is the method we describe
in this section. It provides a probabilistic redevelopment of the original
Matkowsky-Schuss method by interpreting zε(x) as the equilibrium den-
sity pε(x) of a reflected version of the diffusion xε(t). Shortly after [5], the
exit conditioning approach described in Section 3.5 below emerged and pro-
vided a way to obtain qualitative results without needing precise, rigorous
asymptotics of an equilibrium density. As a consequence these boundary
local time ideas have not been exploited to the point of producing explicit
sub-large deviations results. Even so, the method remains interesting as a
probabilistic interpretation of the original Matkowsky-Schuss method.
Consider the diffusion process xr(t) in D̄ which obeys (1.1) in D but with
conormal reflection from ∂D. This can be characterized as the solution to
the following stochastic differential equation with reflection term (see [1]):

dxr(t) = b(xr(t)) dt+ ε1/2σ(xr(t)) dω(t) − ε

2
η(xr(t)) d`ε(t). (1.19)

Here `ε(t) is the boundary local time process, a continuous monotone pro-
cess which increases only when xr(t) ∈ ∂D: d`ε(t) = 1∂D(xr(t)) d`ε(t). We
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will not go into the existence, uniqueness theory of (1.19). Suffice it to
say that unique solutions exist with appropriate regularity properties, with
xr(t) ∈ D̄ for all t ≥ 0, satisfying a version of Itô’s lemma: for u ∈ C2(D̄):

du(xr(t)) = Lεu(xr(t)) dt + ε1/2∇u(xr(t)) · σ(xr(t)) dω(t)

−N εu(xr(t)) d`ε(t). (1.20)

From this it is clear that, for smooth functions u, the generator of xr(t) is
given by Lεu restricted to those functions with N εu = 0 on ∂D.
The reflected process xr(t) has a unique invariant density pε(x) (see [5]). We
want to consider pε as the function zε in the Matkowsky-Schuss approach
above. The invariance implies 0 =

∫
D
pεLεu for all smooth u with N εu = 0

on ∂D. Applying this in Green’s identity for u having compact support in
D leads to Lε∗pε = 0. Now Green’s identity implies 0 =

∫
∂D

uN ε∗pε for all
N εu = 0. From this follows the necessary boundary conditions for pε on
∂D:

N ε∗pε = 0. (1.21)

Moreover, applying Green’s identity yet again to uεf and pε tells us that

0 =

∫
∂D

pεN εuεf , (1.22)

for all nice f defined on ∂D. Thus with pε as zε in the Matkowsky-Schuss
development, (1.21) makes the negligibility of fN ε∗zε precise, and (1.22)
is an exact version of (1.18).
Further probabilistic reasoning reveals a mechanism behind the asymptotic
formulas resulting from this method. Let C ⊆ D be a neighborhood of 0
inside D. Suppose we start xr(t) at xr(0) = y ∈ ∂D and follow it until its
first contact with ∂C and then its subsequent return τ1 to ∂D:

τ εC = inf{t > 0 : xr(t) ∈ C}
τ1 = inf{t > τ εC : xr(t) ∈ ∂D}.

For y ∈ ∂D and g(x) ∈ C(D̄), define the mean excursion operator,

T εg(y) = Ey[g(xr(τ1))].

For smooth f(y) on ∂D, define the boundary generator

Gεf(y) = −N εuεf (y)

and the boundary local time operator

Bεf(y) = Ey [

∫ τ1

0

f(xr(t)) d`ε],
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both for y ∈ ∂D. Applying Itô’s formula (1.20) to uεf , integrating over
[0, τ1] and taking the expectation produces the relationship among these
operators:

T εf − f = Bε[Gεf ] on ∂D. (1.23)

The asymptotic behavior of the exit location distribution is given by the
behavior of T ε as ε ↓ 0. Suppose for instance that a limiting exit measure
µεx ⇒ µ0 exists. Then we have

T εf(y)→
∫
∂D

f dµ0,

with leveling results implying that the convergence is uniform in y ∈ ∂D.
As we have described it, the Matkowsky-Schuss approach is essentially the
application in (1.22) (or (1.18)) of appropriate asymptotic formulas for
Gεf = −N εuεf and pε on ∂D. Now the primary goal of [5] was to establish

an appropriate scaled limit for Bε: with cε = ε1/2:

cεB → B, (1.24)

along with an inversion formula, B−1. (The scaling factor cε = ε1/2 is for
non-degenerate characteristic boundary. For the nontangential case, cε = 1
would be appropriate.) So instead of arguing from (1.22), we can use a
scaled limit of (1.23) to find the relationship between µ0 and limiting forms
of the various operators. Proceeding purely speculatively, suppose that with
some scaling factor kε the invariant density converges to a probability mea-
sure on ∂D:

kεpε(y) dy ⇒ ν(dy). (1.25)

Convergence of T ε in (1.23) suggests 1/cε as a scaling constant for Gε:
1
cεGε → G. The scaled limits of (1.23) and (1.22) would then be∫

∂D
f dµ0 − f = B[Gf ],∫
∂D
Gf dν = 0.

Taking B−1 of the first line and then integrating with respect to ν produces
the formula ∫

∂D

f dµ0 =

∫
B−1[f ] dν∫
B−1[1] dν

. (1.26)

This is of course purely formal. However it makes the important point that
the asymptotic analysis of normal derivatives (Gε) ought to be replace-
able by asymptotic analysis of the boundary local time operator, whose
asymptotics have been worked out rigorously in [5].
The equation (1.22) at the heart of the Matkowsky-Schuss approach is an
expression of the invariance of the density pε. Hasminskii’s formula pro-
vides an alternate expression of this invariance, which links it directly to
the boundary local time operator. This provides a rigorous approach to
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the relationship (1.26) among the exit time, exit location and invariant
density which our hypothetical calculation suggested. Moreover such an
approach avoids the conormal derivative Gε and other differential opera-
tors altogether, using only mean path integral expressions. This reduces
the exit problem completely to the study of (1.25), or its counterpart in
nonconvergent situations. The idea is to use the excursions from ∂D to ∂C
and back again as the basic cycles in Hasminskii’s formula, and then form
a sort of conormal derivative of the resulting version of (1.14). The basic
formula that results (see [5] for details) is the following, holding for any
ε > 0:∫

∂D

g(y)pε(y) dy =

∫
∂D B

εg(y)µεD(dy)

Eµε
D

[τ1]
, all g ∈ C(∂D). (1.27)

Here µεD is the (unique) T ε-invariant probability measure on ∂D. The
leveling results tell us that µεD ∼ µεx for all x ∈ D. Note that (1.22)
follows from this by taking g = Gεf and using (1.23):

∫
∂D

pεGεf dy =
c
∫
∂D(T εf − f) dµεD = 0. Thus (1.27) is an expression of the same relation-

ship between pε and uεf as before, but in which the three basic quantities
pε, µεD and E[τ1] appear explicitly.
To illustrate the use of (1.27) assume again the convergent case (1.25). We
have a scaled limit (1.24) of Bε. Then using g ≡ 1 in (1.27) we obtain the
appropriate scaling of the mean excursion time:

cε

kε
Eµε

D
[τ1]→ c =

∫
B[1] dµ0.

Using this in (1.27) gives the general limiting relationship:

c

∫
∂D

g dν =

∫
∂D

B[g] dµ0.

Replacing g with B−1[f ] we find∫
f dµ0 = c ·

∫
B−1[f ] dν, (1.28)

holding for all f ∈ C(∂D). Using f ≡ 1 gives the alternate formula c =
1/
∫
∂D

B−1[1] dν, so that (1.28) confirms the speculative formula (1.26),
when (1.25) holds. If kεpε(y) dy does not converge, a similar analysis with
the known asymptotics of Bε will connect the possible limit points of µ0

with those of kεpε(y) dy on ∂D.
One could also obtain asymptotic expressions for the mean exit time. With
a version of (1.13) for the characteristic boundary case one could justify
writing

Eµε
D

[τ1] = Eµε
D

[τ εC ] +Eµε
D

[Exr(τε
C

)[τ
ε
D]]

= (o(1) + 1)E0[τ εD],
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for some δ > 0. Therefore E0[τ εD] ∼ Eµε
D

[τ1] ∼ kε

cε c.
Perthame [29] gives a rigorous development of the Matkowsky-Schuss ap-
proach based on PDE-viscosity methods. Although it uses no probabilistic
reasoning, there are a number of close parallels with the boundary local
time ideas above that we wish to point out. First note that in place of
Matkowsky and Schuss’ zε(x) he uses vε > 0 solving Lε∗vε = 0 with bound-
ary conditions N ε∗vε = 0. Thus his vε corresponds exactly with the equi-
librium density pε for the conormally reflected process xr(t). Perthame’s
hypothesis (H3) rules out fully characteristic ∂D. In the nontangential case
n · b < 0 it turns out that the scaled limit in (1.24) with cε = 1 is just a
multiplicative operator:

B[f ] =
−1

n · bf ; B−1][f ] = −(n · b) f.

(This was not derived in [5], but follows by applying the same methods in
the simpler nontangential case.) In light of this we recognize Perthame’s
equation (7) as an approximate version of our (1.23): Gεf ∼ B−1[T εf − f ].
(He attributes this to Kamin [19] originally.) His Theorem 3 is an exponen-
tial leveling result, with the limiting formula for the nontangential case.

3.3 Green’s Function Approach

A new approach to formal asymptotic calculations was presented by Naeh,
K losek, Matkowsky and Schuss in [28]. In contrast to the method of Sec-
tion 3.1 which involved asymptotic representations of solutions to both
forward and backward equations, as well as some matching conditions, the
newer method seemed more direct. It involves the asymptotic representa-
tion of a single quantity: the classical Green’s function.
The Green’s function G(x, y) = Gε(x, y) provides an integral representation
of the solution to the Poisson equation (1.7):

v(x) =

∫
D

G(x, y)φ(y) dy. (1.29)

The construction of G is a classical approach to the study of elliptic PDEs;
see [27]. G is characterized as a solution of

LεxG(x, y) = 0, Lε∗yG(x, y) = 0 for x 6= y; G(x, y) = 0 for y ∈ ∂D,

with a singularity of appropriate type at x = y. (The subscripts on Lεx
and Lε∗y indicate which of the two variables of G(x, y) the operators act
on.) A classical formula extends (1.29) to solutions of the Poisson equation
(1.7) with nonzero Dirichlet boundary data, v(y) = f(y), y ∈ ∂D:

v(x) =

∫
D

G(x, y)φ(y) dy −
∫
∂D

[N ε∗
yG(x, y)]f(y) dy.
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This is [27] equation (10.4) (after conversion to our notation). The function

K(x, y) = −N ε∗
yG(x, y) (1.30)

is sometimes called the “Poisson kernel” (at least in the case of Lε = 1
2∆).

It yields an integral representation of the solution to the Dirichlet problem
(1.6)

uεf (x) =

∫
∂D

K(x, y)f(y) dy,

and is therefore the density of the exit point distribution with respect to
surface measure on ∂D:

µεx(dy) = K(x, y) dy.

In other words (1.30) is the density of xε(τ εD) for xε(0) = x.
The notation of [28] uses p(x, y) in place of G(x, y) and expresses (1.30) as

−N ε∗
yG(x, y) = JG(x, y) · n(y), (1.31)

where JG = (Ji) is the probability current density :

Ji(x, y) = bi(y)G(x, y) − ε

2

∑
j

∂

∂xj
[aij(y)G(x, y)], (1.32)

So the point is that if we can produce the Green’s function G(x, y), or a
suitable asymptotic representation of it as ε ↓ 0, then the following for-
mulas give the asymptotic behavior of the mean exit time and exit point
distribution:

Ex[τ εD] =

∫
D

G(x, y) dy (1.33)

Ex[f(xε(τ εD))] =

∫
∂D

JG(x, y) · n(y)f(y) dy (1.34)

These are equations (2.32) and (2.41) of [28] respectively. They were devel-
oped in [28] with the case of singular diffusion in mind, but for nonsingular
diffusion they follow from the classical theory of PDEs.
Formal asymptotic calculations proceed by supposing an asymptotic ap-
proximation to the Green’s function of the form

G(x, y) = p(y)q(x, y) (1.35)

The factor p(y) (called a quasi-stationary density) is taken to be a solution
of Lε∗p = 0 of the form

p(y) = Kε(y)e−ψ(y)/ε,



Mathematical Approaches to the Problem of Noise-Induced Exit 13

with appropriate normalization. The factor q(x, y) is a boundary layer func-
tion with q(x, y) = 0 for y ∈ ∂D but should be essentially constant for y in
the interior of D (away from an asymptotically thin boundary layer).
In general (1.35) is only formal, unable to capture all the detailed math-
ematical structure of the true Green’s function G(x, y). For instance, the
boundary layer function q will not capture the essential singularity of G
at x = y. In fact as the asymptotic calculations in [28] proceed, no x-
dependence of q is included. However expressions of the form (1.35) can be
worked out explicitly in some special cases. Based on these, there is rea-
sonable confidence that the asymptotic calculations stemming from (1.35)
will lead to appropriate conclusions. However the conclusions of such an
approach are limited by the presumptions and “ansatzes” which feed the
calculations. They failed in particular to predict the cycling phenomena of
exit to limit cycles. Once that type of possible behavior is recognized and
built into the presumed asymptotic forms, formal methods become effective
is studying its detailed structure; see [21].
We have explained (1.33) and (1.34) apart from any probabilistic inter-
pretation. The development in [28] discusses them in terms of a process
x+(t), which obeys the same stochastic dynamics (1.1) as xε(t) in D, but
upon contact with ∂D instantaneously jumps to a specified x0 ∈ D and
then resumes evolution in accord with (1.1). It is intuitively reasonable to
expect that x+(t) has a unique stationary distribution π+ in D. We merely
wish to to point out the relation of π+ to G using Hasminskii’s formula.
The evolution of x+(t) can be decomposed into the sequence of indepen-
dent cycles between successive jumps from ∂D to x0 by using Γ = ∂D and
Γ′ = {x0} in Section 2.4. The mean cycle length is Ex0 [τ εD]. Hasminskii’s
formula identifies the stationary distribution according to∫

f(y)π+(dy) =
1

Ex0 [τ εD]
Ex0 [

∫ τεD

0

f(x+(s)) ds].

Now we know that

Ex0 [

∫ τεD

0

f(x+(s)) ds] = Ex0 [

∫ τεD

0

f(xε(s)) ds] =

∫
D

G(x0, y)f(y) dy.

Thus we see that

π+(dy) =
1

Ex0 [τ εD]
G(x0, y) dy,

identifying the Green’s function G(x0, y) as the (unnormalized) stationary
density for x+(t) in D. This interpretation is described in [28].

3.4 Maier and Stein Principal Eigenfunction Method

R. Maier and D. Stein have written a number of papers exploring particular
phenomena of the exit problem by means of formal asymptotic calculations.
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Their real contribution is not so much the mathematical foundation of
their method (described below) but how they have effectively used it to
study some of the interesting sub-large deviations phenomena in the exit
problem, particularly in cases for which the quasipotential function of large
deviations analysis is nonsmooth. For instance in [22] and [20] they look
at the situation in which the exit location concentrates at a saddle point
on ∂D. They point out that singularities in the quasipotential are quite
possible precisely at this saddle point, and that they effect the asymptotic
description of the mean exit time. Their calculations offer a more detailed
description of the ‘skewing” phenomena of the exit location distribution
than in other treatments, such as [3].
The calculations of Maier and Stein are based on an approach closely re-
lated to the Green’s function approach of Section 3.3. The central object
is the principal adjoint eigenfunction ψε for Lε∗ with Dirichlet conditions
on ∂D:

Lε∗ψε + λεψε = 0 in D; ψε(y) = 0 on ∂D. (1.36)

Here λε is the principal eigenvalue mentioned in Section 2. General results
imply that ψε(x) > 0 everywhere in D. We are free to specify a normaliza-
tion of ψε. The natural choice is

1 =

∫
D

ψε(x) dx, (1.37)

allowing us to interpret ψε(x) as a probability density in D, called the quasi-
stationary density in [20]. They compute the probability current associated
with ψε:

Jψ(y) · n(y) = −N ε∗ψε(y)

and use this as the (unnormalized) density of exit points. The “reaction
rate” λε ∼ 1/Ex[τ εD] describes the mean exit time and is given the formula

λε =

∫
∂D

Jψ(y) · n(y) dy/

∫
D

ψε(x) dx. (1.38)

We will see that (1.38) follows directly from Green’s formula. Consider any
smooth u in D̄. Since ψε(y) = 0 on ∂D, Green’s formula implies,

λε
∫
D

ψεu = −
∫
D

(Lε∗ψε)u =

∫
ψεLεu+

∫
∂D

(−N ε∗ψε)u.

Taking u ≡ 1 and our normalization (1.37) yields (1.38) above. Using the
solution u = uεf of the Dirichlet problem we find∫

D

ψεuεf =
1

λε

∫
∂D

(−N ε∗ψε)f. (1.39)
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Equation (1.39) shows us that − 1
λεN ε∗ψε = 1

λε J
ψ · n is the density of the

exit position of xε(τ εD) if xε(0) is distributed within D according to density
ψε(x): ∫

D

ψεuεf =

∫
D

Ex[f(xε(τ εD))]ψε(x) dx.

Recognizing ψε(x) as the stationary density of the process x∗(t) below,
it seems clear that ψε(x) dx ⇒ δ0(dx). More detailed large deviations re-
sults on ψε should be possible. The leveling properties of uεf show that∫
D ψ

εuεf → uεf as ε ↓ 0. Thus the accuracy of the approximation

E0[f(xε(τ εD))] ≈ 1

λε

∫
D

Jψ(y) · n(y)f(y) dy

can be studied directly in terms of leveling and large deviations results.
The probability current densities associated with G(x, y) and ψε(y) re-
spectively should produce the same asymptotic results as ε ↓ 0. However,
they are not identical for ε > 0; they produce slightly different exit point
distributions:

Ex[f(xε(τ εD))] =
∫
∂D J

G(x, y) · n(y)f(y) dy∫
D Ex[f(xε(τ εD))]ψε(x) dy = 1

λε

∫
∂D J

ψ(y) · n(y)f(y) dy.

The second of these is an averaged version of the first. As the formal asymp-
totic calculations in [20] proceed, an asymptotic expression for ψε is devel-
oped by setting λε to 0 in (1.36) and using Lε∗ψε = 0 as an approximate
equation. This is the same equation used for p(y) of (1.35). Thus, as the
asymptotic calculations are actually carried out, any distinction between
the Green’s function interpretation and the principal eigenfunction inter-
pretation is lost.
We observe that the formulas arising from this eigenfunction approach can
once again be interpreted in terms of Hasminskii’s formula for an appro-
priately defined process. Let x∗(t) be the stochastic process which follows
(1.1) between times of contact with ∂D, but upon contact with ∂D is in-
stantaneously restarted at a random point in D distributed with density
ψε. The successive times of contact with ∂D form the sequence of cycle
times. The expected cycle time is given by

E[τ1] =

∫
D

Ex[τ εD]ψε(x) dx =

∫
D

ψεvεD dx.

Notice that (using Green’s formula)

λε
∫
D

ψεvεD = −
∫
D

(Lε∗ψε)vεD = −
∫
D

ψεLεvεD =

∫
D

ψε = 1.

Thus the mean cycle time for x∗(t) is given exactly by

E[τ1] = 1/λε.
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The solution v(x) of the Poisson equation (1.7) provides the mean path

integral over one cycle: E[
∫ τεD

0 φ(xε(s)) ds] =
∫
D ψ

εv. Hasminskii’s formula
would identify the stationary distribution π∗ for x∗(t) as∫

φ(x)π∗(dx) = 1
E∗[τ ]E

∗[
∫ τ

0
φ(x∗(s)) ds]

= λε
∫
D
ψεv

=
∫
D −(Lε∗ψε)v

=
∫
D
−ψεLεv

=
∫
D
ψεφ.

Thus ψε is the stationary density of x∗(t). We can view (1.38) and (1.39)
as a method for determining the mean exit time and exit point distribution
from the invariant density ψε(x).

3.5 Exit Conditioning

We conclude with a brief mention of the method of exit conditioning: [4].
The approaches described so far relate strongly to Green’s identity and
quantities which are natural from a PDE approach to the problem. Exit
conditioning is more exclusively probabilistic. It was developed expressly to
treat cases of characteristic boundary and has been successful in producing
qualitative results on sub-large deviations phenomena without using formal
asymptotic expansions. The idea is to consider a subregion G ⊆ D with
0 ∈ G for which the exit problem (τ εG) is nontangential: n · b < 0 on ∂G.
Large deviations results are used to describe the exit point distribution
from G, i.e. νεx(dz) = Px[xε(τ εG) ∈ dz]. The exit point distribution µεx(dy)
from D is then represented in terms of νεx and a conditional exit kernel
Qε(z, dy), z ∈ ∂G:

µε(dy) =

∫
∂G

cεg(z)Qε(z, dy) νε(dz) + o(1). (1.40)

Here g is a specific positive continuous function on ∂D, and the o(1) ac-
counts for dependence on the initial point, which we know vanishes as ε ↓ 0.
To define Qε we use another subdomain C: 0 ∈ C ⊆ G ⊆ D. One might
think of D\C as a boundary strip. Define τ εC to be the first time of contact
with ∂C for xε(t), started at xε(0) = z ∈ ∂G. Then

Qε(z,A) = Pz [x
ε(τ εD) ∈ A|τ εD < τ εC ]. (1.41)

What makes (1.40) effective is the possibility of describing the asymptotic
behavior of Qε in terms of qualitative features of (1.2). The details are more
involved than we can summarize here. See [3] and [2] for a fuller description,
and some results of this approach.
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