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Abstract

We formulate the L2-gain control problem for a general nonlinear, state-space system with
projection dynamics in the state evolution and hard constraints on the set of admissible inputs.
We develope specific results for an example motivated by a traffic signal control problem. A state-
feedback control with the desired properties is found in terms of the solution of an associated
Hamilton-Jacobi-Isaacs equation (the storage function or value function of the associated game)
and the critical point of the associated Hamiltonian function. Discontinuities in the resulting
control as a function of the state and due to the boundary projection in the system dynamics
lead to hybrid features of the closed-loop system, specifically jumps of the system description
between two or more continuous-time models. Trajectories for the closed-loop dynamics must be
interpreted as a differential set inclusion in the sense of Filippov. Construction of the storage
function is via a generalized stable invariant manifold for the flow of a discontinuous Hamiltonian
vector-field, which again must be interpreted in the sense of Filippov. For the traffic control
model example, the storage function is constructed explicitly. The control resulting from this
analysis for the traffic control example is a mathematically idealized averaged control which
is not immediately implementable; implementation issues for traffic problems will be discussed
elsewhere.

1 Introduction

We consider a general nonlinear system of the form

ẋ = f(x, q, u)

z = h(x, u) (1)

where x(t) is the state vector taking values in a state manifold X , u(t) is the control vector taking
values in an admissible control set U , q(t) is the disturbance taking values in a space of disturbances
Q, and h(x(t), u(t)) is a performance or error signal taking values in a Euclidean space Rnz . The
associated state-feedback H∞-control problem (or, more properly, L2-gain problem) is as follows: for
a preassigned tolerance level γ, find a state-feedback control u = u∗(x) so that the trajectories of the
closed-loop system

ẋ = f(x, q, u∗(x)), x(0) = x0

z = h(x, u)

satisfy
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(i)
∫ T

0 ‖z(t)‖2 dt ≤ γ2
∫ T

0 ‖q(t)‖2 dt+α(x0) for all T > 0 for some continuous function α : X → R+

with α(0) = 0, and

(ii) some appropriate notion of stability.

This problem is now fairly well understood for linear systems, at least for the finite-dimensional,
time-invariant case (see [6], [17], [4]). In the past decade there has been remarkable progress, including
for the output measurement version of the problem where only a partial measurement of the state
vector x(t) is available to the controller u∗ at any time t. We refer to [3], [19], [22], [21], and [27] and to
[28] and [29] for particularly useful overviews of the subject. In all this work it is usually assumed that
the state space X is a smooth manifold, which for local analysis around the equilibrium point can be
assumed to be X = Rn with equilibrium point at 0, that the admissible control set U and the space Q
of possible disturbances are full Euclidean spaces Rnu and Rnq , and that f : Rn×Rnu×Rnq → Rn

and h : Rn ×Rnu → Rnz are smooth functions in their respective arguments.
Hybrid systems, unlike (1), have interacting components using more than one modeling paradigm,

such as ordinary differential equations, difference equations and differential inclusions. In this pa-
per we will consider hybrid systems obtained from (1) by including additional features in the state
dynamics and restricting the control set U . In particular we wish to consider a situation in which
the system dynamics include special features on the boundary of a convex set K ⊆ X which prevent
x(t) from leaving K. These are not state constraints in the usual sense that the controller must be
designed to enforce them. Rather the fact that x(t) ∈ K is a feature of the underlying system that
will be satisfied regardless of the control u(t). We will start with nominal dynamics ẋ = f(x, u, q) and
augment them in order to insure that state trajectories never leave K. A mathematical mechanism
(which fits with the traffic control example to be described in Section 5 below and with queueing
flow models in general) has been described by Dupuis and Nagurney [9] as follows. For K a closed,
convex set in Rn, x a point in Rn and v a direction vector in Rn, there is a notion of “projection of
v onto the generalized tangent space of K at x” (x, v)→ πK(x, v). Among other properties, if x is in
the interior K◦ of K and v is any vector in Rn, then πK(x, v) = v. The projected dynamical system
(PDS) proposed in [9] associated with any dynamical system ẋ = f(x) and closed, convex set K is

ẋ = πK(x, f(x)), x(0) = x0 ∈ K. (2)

When x is in the interior of K we see that the vector field πK(x, f(x)) is the same as f(x), while when
x is on the boundary of K we use instead the projection of the vector on the tangent space of K.
This ensures that the trajectories of the PDS always remain in the set K once the initial condition
x(0) = x0 starts the trajectory in K. This analysis is easily adapted to the case where the disturbance
signal q and control vector u enter into the dynamics. In this case, the unprojected system is of the
form ẋ = f(x, q, u) and the associated PDS (with disturbances and control inputs) with respect to
the set K is

ẋ = πK(x, f(x, q, u)) (3)

This will be described in more detail in Section 2.

An Example. We will be particularly interested in the example n = nu = nq = nz = 2 with

f(x, q, u) = q +Bu, B =

[
−s1 0

0 −s2

]
, h(x, u) = x. (4)

Here s1 > 0 and s2 > 0 are (known) model parameters. We take the set U of admissible controls to
be the triangle in R2

U =

{[
u1

u2

]
; 0 ≤ ui for i = 1, 2, u1 + u2 ≤ 1

}
,

and let K be the first quadrant:

K = {(x1, x2) : both xi ≥ 0}.
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As we shall explain in Section 5, the motivation for this particular example comes from a control
problem for traffic signal phase allocation at an isolated highway intersection.

For the case of a smooth system of the form (1), the state-feedback H∞-control problem can be
solved as follows (see e.g. [29]). One introduces the pre-Hamiltonian

Kγ(x, p, q, u) = pT f(x, q, u) +
1

2
‖h(x, u)‖2 − γ2

2
‖q‖2 (5)

and seeks a saddle point (q∗(x, p), u∗(x, p)) such that

Kγ(x, p, q, u∗(x, p)) ≤ Kγ(x, p, q∗(x, p), u∗(x, p)) ≤ Kγ(x, p, q∗(x, p), u)

for all (x, p). One then defines the Hamiltonian

Hγ(x, p) = inf
u

sup
q
Kγ(x, p, q, u)

= Kγ(x, p, q∗(x, p), u∗(x, p)) (6)

and solves the Hamilton-Jacobi inequality

Hγ(x,∇S(x)) ≤ 0

for a C1-function S : Rn → R+ with S(0) = 0. In practice we often replace this inequality with the
Hamilton-Jacobi equation

Hγ(x,∇S(x)) = 0. (7)

Then, if we use as state feedback the function u∗(x) = u∗(x,∇S(x)), S will be a storage function for

the closed-loop system with supply rate s(q, z) = γ2

2 ‖q‖2 −
1
2‖z‖2 in the sense that

S(x(t2))− S(x(t1)) ≤
∫ t2

t1

{γ
2

2
‖q(t)‖2 − 1

2
‖z(t)‖2} dt

for all trajectories (q(t), x(t), z(t)) of the closed-loop system

ẋ = f(x, q, u∗(x,∇S(x)))

z = h(x, u).

The desired L2-gain property follows from the storage function inequality:∫ T

0

1

2
‖z(t)‖2 dt ≤

∫ T

0

1

2
‖z(t)‖2 dt+ S(x(T )) ≤

∫ T

0

γ2

2
‖q(t)‖2 dt+ S(x(0)).

Moreover, if S enjoys good positivity properties, one can use S as a Lyapunov function to verify the
desired stability for the closed-loop system. This completes what we shall call Stage 1 of the solution
procedure.

Stage 1 merely reduces the problem to solving a Hamilton-Jacobi equation. What we shall call
Stage 2 consists of some procedure for solving the Hamilton-Jacobi equation. One such procedure,
very useful for purposes of theoretical analysis if not necessarily for practical computation and also
described in [29], is the method of bicharacteristics. For the case of a Hamilton-Jacobi equation
(7), this amounts to using the connection between a solution S(x) and an invariant manifold for the
Hamiltonian system of ordinary differential equations

ẋ = ∇pHγ(x, p)

ṗ = −∇xHγ(x, p),
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One can show that in the case where (0, 0) is a hyperbolic equilibrium point, at least in a neighborhood
Ωγ of (0, 0) the stable invariant manifoldM has the form {(x,∇S(x)) : x ∈ Ωγ} where S : Ωγ → R+

is the desired solution of the Hamilton-Jacobi equation.
In the present paper we consider modifications needed to this procedure for a system of the form

(2) with projection dynamics on the state evolution and hard constraints on the admissible control
set. We obtain the analogue of Stage 1 for the general case and an explicit analogue of Stage 2 (the
method of bicharacteristics) for the particular example (4). The following is a precise formulation of
our result for Stage 1 in the case of a general system of the form (3). The notions of inward normal
vector, Filippov solution and the precise definition of πK will be explained in Section 2.

Theorem 1 Consider the state-feedback L2-gain problem for the system (3) as posed above and let
Hγ(x, p) be the Hamiltonian function as defined in (6). Suppose that S(x) is a C1 real-valued function
on a subset Ωγ of K satisfying

Hγ(x,∇S(x)) ≤ 0, S(x) ≥ 0, (8)

on Ωγ ⊂ K with boundary condition
n · ∇S(x) ≤ 0 (9)

for all n ∈ n(x), the set of inward normals to x ∈ ∂K. For x ∈ Ωγ and p ∈ Rn define u∗(x, p) to be
the set

u∗(x, p) = {u ∈ U : Hpre,γ(x, p, u) = Hγ(x, p)}.
where we have set Hpre,γ(x, p, u) = supqKγ(x, p, q, u). Next define the set-valued state-feedback x →
u∗(x) according to the rule

u∗(x) = u∗(x,∇S(x)) (10)

and define the dynamics of the closed-loop system as solutions of the differential inclusion

ẋ(t) ∈ πK(x, f(x, q, u∗(x)) (11)

in the sense of Filippov. Then the dissipation inequality

S(x(t2))− S(x(t1)) ≤
∫ t2

t1

1

2
(γ2‖q(t)‖2 − ‖h(x(t), u∗(x(t)))‖2) dt (12)

is satisfied along all trajectories (x(t), q(t)) of the closed loop system (11) such that the state vector x(t)
remains in the region Ωγ over the time interval [t1, t2]. In particular, over all trajectories (x(t), q(t))
for which x(t) ∈ Ωγ for 0 ≤ t ≤ T , the L2-gain property∫ T

0

‖x(t)‖2 dt ≤ γ2

∫ T

0

‖q(t)‖2 dt+ S(x(0)) (13)

holds.

For the Stage 2 step, we obtain a precise, explicit result for the specific example (4). To what
extent the result continues to hold for the case of a general PDS system (3) is an interesting topic for
further investigation.

Theorem 2 For the particular f, h,U ,K specified in (4) above, the Hamilton-Jacobi equation (7) can
be solved as follows. There exists a region Ωγ ⊂ K and a continuous function P : Ωγ → Rn so that
the Hamiltonian system of ordinary differential equations

ẋ = ∇pHγ(x, p), x(0) = x0 ∈ Ωγ
ṗ = −∇xHγ(x, p), p(0) = P (x0)

(14)

has a solution (in the sense of Filippov), defined on an interval 0 ≤ t ≤ Tx0 , with the properties that
x(t) ∈ Ωγ \ (0, 0) and p(t) = P (x(t)) for 0 ≤ t < Tx0 , and x(Tx0) = 0. Although the initial value
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problem (14) has nonunique solutions, the particular solution with p(t) = P (x(t)) is the only one that
remains in the interior of K until reaching 0 for the first time at t = Tx0 . The function S : Ωγ → R+

defined by

S(x0) = −
∫ Tx0

0

P (x(t))T ẋ(t) dt

meets all the required conditions in Theorem 1.

Theorem 1 implies that the S of Theorem 2 is a storage function for the controlled system (11)
associated with our example (4). We shall show that it is in fact the minimal such storage function.

Theorem 3 Let the function S(x), x ∈ Ωγ be the function constructed as in Theorem 2. S(x) is the
minimal or “available” storage function in Ωγ for the closed-loop system (11) (which becomes (57)
below for the system (4)). In other words for any solution of (2) with x(t) ∈ Ωγ on [t1, t2] we have

S(x(t2))− S(x(t1)) ≤
∫ t2

t1

1

2
(γ2‖q(t)‖2 − ‖x(t)‖2) dt.

If S̃ is any other nonnegative function with this property, then S(x) ≤ S̃(x) for every x ∈ Ω.

We will see that the Hamiltonian vector field in (14) has discontinuities, due to discontinuities in
the critical point function u∗(x, p). This necessitates interpreting solutions of (14) in the Filippov
sense, as stated in Theorem 2.

The controlled system (11) associated with our example (4) also has discontinuities, due to dis-
continuities in the state feedback u∗(x) = u∗(x,∇S(x)). In the optimal control literature (see e.g.
[23]), constraints on the admissible input set often lead to bang-bang type controls with a certain
number of switchings among the extreme points of the admissible control set. The problem discussed
here, however, has an H∞ or game-theoretic rather than simply optimal control formulation; the
closed-loop dynamics involves an unknown disturbance term as well as the state-feedback term. The
precise nature of the state-feedback depends on the choice of disturbance driving the dynamics. In
particular there can be no a priori upper bound on the number of switchings between extreme control
values. For some disturbances the uniquely determined control takes averaged values, which would
correspond to infinitely fast switchings. We will discuss the closed-loop dynamics in more detail in
Section 4.

The remainder of the paper is organized as follows. In Section 2 we introduce systematically the
needed background material on projection dynamics and differential inclusions, and prove Theorem 1.
In Section 3 we specialize to the system (4) and verify Theorem 2 by piecing together explicit solutions
of the system (14). Section 4 establishes existence and one-sided uniqueness for the closed-loop,
controlled system associated with the specific system (4), and analyzes the Hamiltonian flow for the
Hamiltonian associated with the bounded-real lemma for this system. Theorem 3 will be proven
there. Finally the concluding Section 5 describes the traffic-signal-control origins of the problem,
mentions some implementation issues not addressed by the mathematical solution derived in the
earlier sections, and formulates some open problems suggested by the results here.

2 Proof of General Results

2.1 Discontinuous Vector Fields and Filippov Solutions

We begin by describing the notion of projected dynamical systems as presented in [9]. Let K be a
closed convex subset of R2. Denote by ∂K and K◦ the boundary and the interior of K. Given
x ∈ ∂K, we define the inward unit normals to K at x by

n(x) = {γ : ‖γ‖ = 1, 〈γ, x− y〉 ≤ 0, ∀y ∈ K} (15)
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Figure 1: Projected Dynamics of the State Space

Notice that n(x) = {0} if x is interior to K. Define the projection map PK : R2 → K as

PK(x) = arg min
z∈K
‖x− z‖.

Given x ∈ K and v ∈ R2, the projection of vector v at x is defined as

πK(x, v) = lim
δ↓0

PK(x+ δv)− x
δ

The following properties of πK were established in [8].

Lemma 1 1. If x ∈ K◦, then πK(x, v) = v.

2. If x ∈ ∂K, then πK(x, v) = v + β(x)n∗(x), where

n∗(x) = arg max
n∈n(x)

〈v,−n〉 and β(x) = max{0, 〈v,−n∗(x)〉}.

The projected dynamical system (PDS) proposed in Dupuis and Nagurney [9] associated with a
(Lipschitz continuous) dynamical system ẋ = f(x) and closed, convex set K is

ẋ = πK(x, f(x)), x(0) = x0 ∈ K. (16)

From Lemma 1, we see that the vector field πK(x, f(x)) is the same as f(x) when x is in the interior
of K, while when x is on the boundary of K we use instead the projection of the vector on K. This
ensures that the trajectories of the PDS will always remain in the set K once the initial condition
x(0) = x0 starts in K.

This analysis generalizes to the case where the disturbance signal q and control vector u enter into
the dynamics. In this case the unprojected system is of the form ẋ = f(x, q, u) and the associated
PDS (with disturbances and control inputs) with respect to the set K is

ẋ = πK(x, f(x, q, u)), x(0) = x0 ∈ K. (17)
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For our prototype example in (4), (17) becomes

ẋ = πK(Bu+ q). (18)

The existence-uniqueness theory for solutions of a PDS is problematical in classical ODE theory
since the right hand side of the differential equation in (17) is not even continuous in x. This
difficulty is addressed by relating (16) to a more detailed mechanism for the projected dynamics
generally referred to as the Skorokhod problem (see [8] for details). In this way Dupuis and Nagurney
were able to establish that the PDS (16) has a unique solution for every x0 ∈ K, provided K is a
polyhedron such as K = [0,∞)× [0,∞) for our example.

The Hamiltonian system (52) and the controlled system (57) both have discontinuous dynamics,
both in the interior of K and on the boundary. At interior points we interpret these using the notion
of solution developed by Filippov [13]. The generalization to the case where boundary dynamics arises
as well is in [9]. To explain this in general, consider a differential equation

ẋ = f(x, t) (19)

where f : Rn×R→ Rn is essentially locally bounded and measurable. The solution of this differential
equation is defined by Filippov as follows.

Definition 1 A vector function x(·) is the solution of (19) on the interval [t0, t1] in the sense of
Filippov if x(·) is absolutely continuous on [t0, t1] and for almost all t

ẋ(t) ∈ K[f ](x, t), (20)

where K[f ](x, t) is the set-valued function defined in (21) below.

There are two equivalent definitions for K[f ](x, t), described in [13], [12], [11], [25] and [30]. The
definition most convenient for us is

K[f ](x, t) = ∩δ>0 ∩µN=0 cof(B(x, δ)\N, t), (21)

where N ranges over all sets of Lebesgue measure zero. (The notation co denotes closed convex hull.)
As described in [25], “the content of Filippov’s solution is that the tangent vector to a solution where
it exists, must lie in a convex closure of the limiting values of the vector field in progressively smaller
neighborhoods around the solution point.” We also note that any ambiguities in the definition of f
which are confined to a set of measure 0 do not affect K[f ].

2.2 Proof of Theorem 1

We now turn to the proof of Theorem 1. From the definition (6) and the hypothesis that S satisfies
(8) we obtain the inequality (for any q)

0 ≥ Hγ(x,∇S(x))

≥ inf
u∈U

Kγ(x,∇S(x), q, u)

= Kγ(x,∇S(x), q, u∗(x))

= ∇S(x) · f(x, q, u∗(x))− 1

2
(γ2‖q‖2 − ‖h(x, u∗(x))‖2)

Now since πK(f) = f + βn for some β ≥ 0 and inward normal n, (9) implies that ∇S(x) · f ≥
∇S(x) · πK(f). Therefore for any q and all x ∈ Ωγ we have

∇S(x) · πK(f(x, q, u∗(x))) ≤ 1

2
(γ2‖q‖2 − ‖h(x, u∗(x))‖2).
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Now consider any q(t) and solution x(t) of (11) which remains in Ωγ . (In the context of Theorem 1
we are not asserting the existence of such solutions. Rather we are deriving a necessary condition for
any that do exist.) Since x(t) is absolutely continuous, and S is C1, S(x(t)) is (locally) absolutely
continuous, with

d

dt
S(x(t)) = ∇S(x(t)) · ẋ(t) ≤ 1

2
(γ2‖q(t)‖2 − ‖h(x(t), u∗(x(t)))‖2).

Integrating this yields (12). Since S(0) ≥ 0, (13) is an immediate consequence of (12). This completes
the proof of Theorem 1.

3 Existence of H∞ Solution for the Traffic Problem

We turn next to the problem of producing a solution of (8) and (9) for the specific system (4), and
proving the various assertions of Theorem 2. We begin by writing out the pre-Hamiltonian for our
example:

Kγ(x, p, q, u) = pT (Bu+ q)− 1

2
(γ2‖q‖2 − ‖x‖2) (22)

This is quadratic in q with quadratic term having negative definite coefficient. Hence the maximum
in q is easily computed: the maximal q is given by q∗(x, p) = 1

γ2 p and the semi-pre-Hamiltonian

Hpre,γ(x, p, u) = maxq∈R2 Kγ(x, p, q, u) is given by

Hpre,γ(x, p, u) =
1

2γ2
‖p‖2 + pTBu+

1

2
‖x‖2 (23)

To compute the desired saddle point, it remains to compute arg minu∈TKγ(x, p, q, u). Since Kγ is
linear in u, this is a simple linear programming problem. In particular, the minimizing u = u∗(x) can
always be taken to be one of the vertices of U :

u0 = (0, 0), u1 = (1, 0), u2 = (0, 1)

Associated with each vertex is an individual Hamiltonian: Hi,γ(x, p) = Hpre,γ(x, p, ui). Explicitly, we
have

H0,γ(x, p) =
1

2γ2
‖p‖2 +

1

2
‖x‖2 (24)

H1,γ(x, p) =
1

2γ2
‖p‖2 − s1p1 +

1

2
‖x‖2 (25)

H2,γ(x, p) =
1

2γ2
‖p‖2 − s2p2 +

1

2
‖x‖2. (26)

The Hamiltonian Hγ(x, p) = min
u∈T

Hpre,γ(x, p, u) is given simply by

Hγ(x, p) = min{H0,γ(x, p), H1,γ(x, p), H2,γ(x, p)}. (27)

We may complete the squares in H1,γ(x, p) and H2,γ(x, p) to obtain the alternate expressions

H1,γ(x, p) =
1

2γ2
(p1 − γ2s1)2 +

1

2γ2
p2

2 −
γ2

2
s2

1 +
1

2
‖x‖2, (28)

H2,γ(x, p) =
1

2γ2
p2

1 +
1

2γ2
(p2 − γ2s2)2 − γ2

2
s2

2 +
1

2
‖x‖2 (29)

An immediate observation is that the Hamilton-Jacobi inequality Hγ(x,∇S(x)) ≤ 0 can have no
global solutions. Indeed observe that H0,γ(x, p) ≤ 0 only for x = 0, p = 0. From (28) we see
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that H1,γ(x, p) ≤ 0 has no solutions p if ‖x‖2 > γ2s2
1. Similarly, H2,γ(x, p) ≤ 0 has no solution if

‖x‖2 > γ2s2
2.

We next compute Hγ(x, p) explicitly. For this purpose define the following regions in the space of
costates:

Π0 = {(p1, p2) : p1 < 0, p2 < 0},
Π1 = {(p1, p2) : p1 > 0 and s1p1 > s2p2},
Π2 = {(p1, p2) : p2 > 0 and s1p1 < s2p2}.

We denote the boundary between Π1 and Π2 by

Π12 := {(p1, p2)T : s1p1 = s2p2, pi > 0} = {ρ · (s2, s1) : ρ > 0}.

Then it is easily checked that u∗(p) = arg min
u∈T

Hpre,γ(x, p, u) is given by

u∗(p) =

{
ui if p ∈ Πi

λu1 + (1− λ)u2, any 0 ≤ λ ≤ 1 if p ∈ Π12.
(30)

(For p in boundaries between other pairs of the Πi u
∗(p) could be given similarly, but will not be

needed below.) The Hamiltonian Hγ(x, p) is thus given by

Hγ(x, p) =

{
Hi,γ(x, p) if p ∈ Πi

H1,γ(x, p) = H2,γ(x, p) if p ∈ Π12.
(31)

The associated Hamilton-Jacobi equation (7) can be given piecewise by

H0,γ(x,∇S(x)) = 0 if ∇S(x) ∈ Π0,

H1,γ(x,∇S(x)) = 0 if ∇S(x) ∈ Π1 ∪Π12,

H2,γ(x,∇S(x)) = 0 if ∇S(x) ∈ Π2 ∪Π12. (32)

Notice that for ∇S(x) ∈ Π12 we can write

Hγ = λH1,γ + (1− λ)H2,γ (33)

for any 0 ≤ λ ≤ 1. The choice of

λ̄ = (1/s1)2/[(1/s1)2 + (1/s2)2] (34)

will be particularly appropriate below.

3.1 The Strategy

The first step toward constructing a solution S(x) of (32) is to postulate that the state-feedback
control u(x) arising from (10) switches between the two values u1 and u2 across a half-line Γ:

Γ = {(x1,mx1) : x1 > 0}.

We shall see later that there is precisely one value, m = s1/s2, for which the construction below
succeeds. For now we consider m > 0 an unspecified parameter. Denote by X− the region in the
first quadrant strictly below Γ and by X+ the region in the first quadrant strictly above Γ. Thus we
consider the following class of controls:

u(x) =

 u1 = (1, 0)T for x ∈ X−,
u2 = (0, 1)T for x ∈ X+,
(λ, 1− λ)T , some 0 ≤ λ ≤ 1 for x ∈ Γ.

(35)
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For x ∈ Γ u(x) is a convex set of possible control values. The selection of which one to actually
use (i.e. the choice of λ) is related to the Filippov notion of solution of a differential equation with
discontinuous right hand side; we will discuss this more later.

The general theory stipulates that the control u(x) be given by that value of u which minimizes
Hpre,γ(x, p, u), i.e.

u∗(x) = u∗(∇S(x)), (36)

with u∗ as in (30). Under the presumption that rules (35) and (36) are the same, it follows that
along the line Γ, ∇S(x) should have a value in Π12, the boundary between regions Π1 and Π2. For
this reason we speculate that for x on Γ our solution S of (32) should be such that ∇S(x) is a scalar
multiple of (1/s1, 1/s2)T . We develop this idea explicitly by defining unit vectors in to Γ and Π12:

κ = Cκ(1,m), Cκ = (1 +m2)−1/2

η = Cη(1/s1, 1/s2), Cη = [(1/s1)2 + (1/s2)2]−1/2 (37)

(When we determine that m = s1/s2 below, it will follow that κ = η. But for now we allow them to
be distinct.) If we describe Γ in terms of a parameter a,

x = a γCηκ,

then our speculation is that for such an x, ∇S(x) is given, for some α > 0, by

p = ∇S(x) = αγ2Cηη.

(The additional scaling factors γ and Cη are included to achieve the simplified equation (39) below.)
Consider the Hamilton-Jacobi equation (32) restricted to Γ with ∇S(x) of this special form. Using
(33) with λ̄ as in (34), we arrive at the equation

0 = λ̄H1,γ(x,∇S(x)) + (1− λ̄)H2,γ(x,∇S(x))

=
1

2γ2
‖p‖2 − Cηη · p+

1

2
‖x‖2

=
1

2
γ2C2

η [α2 − 2α+ a2]. (38)

Solving this equation for α and taking the smaller of the two solutions (since we are expecting to find
the minimal solution of (32)) yields

α = α(a) := 1−
√

1− a2. (39)

The condition |a| ≤ 1 is necessary for a solution to exist. We take Γ0 to be the corresponding segment
of Γ:

Γ0 = {x = a γCηκ : 0 ≤ a < 1}. (40)

It will be convenient to observe that the solution (39) can be described by

a = sin(θ), α = 1− cos(θ) for some 0 ≤ θ ≤ π/2. (41)

We now recover S along Γ0 by integrating its gradient: for x = a γCηκ

S(x) =

∫ a

0

d

dy
S(y γCηκ) dy

=

∫ a

0

∇S(y γCηη)T · γCηκ dy

= γ3C2
ηκ · η

∫ a

0

α(y) dy, (42)

10



which has a simple closed form expression when needed.
Next, since (35) postulates that u1 is the optimal control in X− we expect H1,γ to be the effective

form of the Hamiltonian there. We consider the associated Hamiltonian system

ẋ =
∂TH1,γ

∂p (x, p) = 1
γ2 p− (s1, 0)T

ṗ = −∂
TH1,γ

∂x (x, p) = −x
ż = pT ẋ = 1

γ2 p
T p− s1p1

(43)

and use initial conditions

x(t1) = a γCηκ

p(t1) = α(a)γ2Cηη,

z(t1) = S(x(t1)) (44)

to generate trajectories
(x(t, x1), p(t, x1), z(t, x1)).

We hope to cover at least some region Ω− ⊆ X− with such trajectories. This procedure for computing
a solution of H1,γ(x,∇S(x)) = 0 in Ω− amounts to the classical method of characteristics for first
order partial differential equations. (For recent work on this method in the context of Hamilton-
Jacobi equations as we have here, see [29] and [5].) Indeed, suppose we can define a smooth function
S(x1, x2) for x = (x1, x2) in a neighborhood Ω− of Γ0 implicitly (or in parameterized form) by

S(x) = z(t, x1) if x = x(t, x1) (45)

where (x(t, x1), p(t, x1), z(t, x1)) are as in (43) and (44). Then (according to the method of character-
istics) S will solve the Hamilton-Jacobi equation H1,γ(x,∇S(x)) = 0 with boundary condition S(x)
given by (42). Moreover the gradient of S will be given implicitly by

∇S(x) = p(t, x1) if x = x(t, x1). (46)

Moreover, if the costate vector p stays in region Π1 we will have a solution S of the Hamilton-Jacobi
equation (32) in Ω−. We will see shortly that these hoped for features in the solutions of (43) and
(44) are present when (43) is solved backwards in time: t < t1. Similarly, starting with (44) on Γ0

and solving the Hamiltonian flow associated with H2,γ backwards in time will allow us to construct
S(x) for x in a region Ω+ ⊆ X+, with the associated gradient ∇S(x) remaining in region Π2.

We still need to determine the slope m of the “switching line” Γ. The bicharacteristic equations
associated with H1,γ are

ẋ =
1

γ2
p− (s1, 0)T , ṗ = −x.

For an initial x = x1(1,m)T ∈ Γ and p = ρ(s2, s1)T ∈ Π12, when integrated in reverse time these
should enter the region X− in state space, and the region Π1 in costate space. At the initial values
this means

(−m, 1)T · ẋ ≥ 0 and (−s1, s2)T · ṗ ≥ 0.

The second condition in particular says

−(−s1, s2)T · x1(1,m)T ≥ 0, for x1 ≥ 0,

from which we get that m ≤ s1/s2. Repeating the argument for the bicharacteristics associated with
H2,γ yields the reverse inequality: m ≥ s1/s2. Thus m = s1/s2 is necessary for the construction
proposed above to work. This implies that κ = η in (37).

11



Sample Calculations. Now we need to verify that, form = s1/s2, the construction described above
does indeed succeed in producing a nonnegative C1 solution of (32) in a region Ω = Ω− ∪ Γ ∪ Ω+

of the first quadrant, as claimed. We first offer experimental verification using sample calculations.
Using the software package Mathematica, we have produced graphical plots of various pieces of the
solution of the system of ordinary differential equations (43) with (44). In this way we can view a
plot of the graph of S and also check that the costate vector p remains in the appropriate region Π1

or Π2.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

-0.5

0.5

1

Figure 2: x Plot

2 4 6 8 10

1

2

3

4

5

Figure 3: p Plot

We take as an example the case of s1 = s2 = 1 with γ = 2. (In this case the slope of the switching
line Γ is m = 1, as we would expect since the problem is symmetric in x1 and x2.) Figure 2 shows
the state trajectories of (43) for t < t1, with initial conditions (44). We see that these trajectories
cover a region Ω− ⊆ X−, consisting of the triangle with vertices at (0, 0), (1, 1), (2, 0). Figure 3 shows

12
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Figure 4: Graph of S with two different views

the associated p values, which do indeed remain in Π1 as desired. Figure 4 plots the values of z
(vertically) with respect to (x1, x2) (horizontal axes), providing curves on the graph of S.

We note in Figure 2 that some x ∈ Ω− lie on more than one state trajectory, so that the definition
of S(x) is ambiguous. Multivaluedness of S in the context of general Hamilton-Jacobi equations is
an interesting phenomenon related to shocks and demanding notions of generalized solutions (such
as “viscosity solutions”) of the Hamilton-Jacobi equation (see e.g. [20], [2] and [5]). Such notions
are not needed here however. Those x for which S(x) is multivalued involve state-trajectories which
have already touched the boundary of the region Ω−. By truncating trajectories at the time they
contact ∂Ω− and only using the truncated trajectories in the construction of Theorem 1, S becomes
single-valued. This truncation is appropriate for several reasons. Notice in Figure 4 that the values
of z beyond the truncation point are less than the values for the same x on a trajectory prior to
truncation. Only by limiting our construction to truncated trajectories do we obtain a continuous
function S(x). Secondly, we will see that any nonnegative storage function S(x) that agrees with (42)
on Γ0 must satisfy z(t) ≤ S(x(t)). This implies that for our construction to be successful we needed
to take S(x) to be the largest of the possible values z(t) for x(t) = x, which again means discarding
the portions of trajectories beyond the truncation point. To see why z(t) ≤ S(x(t)) is necessary, first
notice that we have H1,γ = 0 along the solutions of (43), (44). (That H1,γ is constant along these
trajectories is a general porperty of Hamiltonian systems. That H1,γ = 0 at t = t1 follows from the
construction of α(a) in (39) and (38).) With q(t) = 1

γ2 p(t), the fact that H1,γ = 0 can be restated as

ż(t) = p(t) · (q(t) +Bu1) =
1

2
γ2‖q(t)‖2 − 1

2
‖x(t)‖2.

Now our presumption that (35) and (36) agree means that the x equation of (43) can be expressed

ẋ(t) = q(t) +Bu∗(x(t)).

13



Therefore, applying (12) with t < 0 we must have

S(x(t1))− S(x(t)) ≤
∫ t1
t
{ 1

2γ
2‖q(s)‖2 − 1

2‖x(s)‖2} ds
=

∫ t1
t
ż(s) ds

= z(t1)− z(t)

Since z(t1) = S(x(t1)) it follows that z(t) ≤ S(x(t)), as claimed.

3.2 Explicit Solution and Proof of Theorem 2

We can verify these observed features by calculating solutions of (43), (44) explicitly. To this end
we parametrize x = (x1, x2) in terms of new parameters (a, b) and p = (p1, p2) in terms of new
parameters (α, β) according to

x = a γCηη + b γ(s1, 0)

p = α γ2Cηη + β γ2(s1, 0).

Note that the region X− (where now m = s1/s2) in state space corresponds to a > 0, b > 0 while Γ
corresponds to b = 0. Similarly, the region Π1 in costate space corresponds to α > 0, β > 0 while the
boundary line Π12 corresponds to β = 0. Then the system (43) reduces to the following system of
equations for the coefficients a, α, b, β:

ȧ = 1
γα

α̇ = − 1
γ a

ḃ = 1
γ (β − 1)

β̇ = − 1
γ b.

Consider the following family of solutions, for parameters t1, θ ≥ 0:

b(t) = sin

(
t1 − t
γ

)
β(t) = 1− cos

(
t1 − t
γ

)
a(t) = − sin

(
t1 − t
γ

)
+ sin

(
θ +

t1 − t
γ

)
α(t) = cos

(
t1 − t
γ

)
− cos

(
θ +

t1 − t
γ

)
. (47)

Observe that b(t1) = β(t1) = 0, so that x(t) reaches Γ at t = t1. Moreover

a(t1) = sin(θ), α(t1) = 1− cos(θ),

so that the values of x(t1) and p(t1) correspond with our previous calculations (41), (44) along Γ0.
Now provided 0 ≤ θ + t1

γ ≤
π
2 all coefficients will be positive for 0 ≤ t ≤ t1. (For α(t) this follows

from α̇(t) ≤ 0 and α(t1) ≥ 0.) This implies x(t) ∈ X− and p(t) ∈ Π1 as claimed. So the remaining
question is for what x(0) ∈ X− such parameters t1, θ exist. We certainly need b(0) = sin(t1/γ) ≤ 1.
Beyond this we just need

a(0) + b(0) = sin

(
θ +

t1
γ

)
≤ 1.

Note however that x(0) · η = γCη(a(0) + b(0)), so that for x(0) ∈ X− the necessary and sufficient
condition for solvability is that x(0) belong to the triangle Ωγ given by

Ωγ = {x(0) : x(0) · η ≤ γCη}. (48)

14



Note also that Γ0 in (40) is just the set of x ∈ Γ satisfying the same inequality: x · η ≤ γCη.
The function P (x) referred to in the statement of Theorem 2 is the result of solving for α(0), β(0)
subject to 0 ≤ θ ≤ θ + t1

γ ≤
π
2 , given x(0) ∈ Ωγ . More explicitly, P (x) is defined as follows: given

x(0) = a(0)γCηη + b(0)γ(s1, 0) ∈ Ωγ ∩X−, solve for parameters t1 and θ so that

a(0) = − sin

(
t1
γ

)
+ sin

(
θ +

t1
γ

)
, b(0) = sin(

t1
γ

),

then define
P (x(0)) = α(0)γ2Cηη + β(0)γ2(s1, 0) (49)

with

α(0) = cos

(
t1
γ

)
− cos

(
θ +

t1
γ

)
β(0) = 1− cos(

t1
γ

).

The fact that a, α, b, β are all nonnegative implies ∇S(x) · x ≥ 0, which, since S(0) = 0, implies that

S(x) ≥ 0. (50)

Finally suppose x is on the portion of the boundary of K where x2 = 0. Then the corresponding
a and α values are both 0, so that ∇S(x) = P (x) = βγ2(s1, 0). Since the only n ∈ n(x) is n = (0, 1),
we find

∇S(x) · n = 0,

confirming (9).
A similar analysis applies for solutions of the Hamiltonian system associated with H2. In this case

we introduce new parameters (a′, b′) and (α′, β′) according to

x = a′ γCηη + b′ γ(0, s2)

p = α′ γ2Cηη + β′ γ2(0, s2).

Then the region X+ in state space corresponds to a′ > 0, b′ > 0 while Γ corresponds to b′ = 0.
Similarly, the region Π2 in costate space corresponds to α′ > 0, β′ > 0 while the boundary line Π12

corresponds to β′ = 0. One can solve the Hamiltonian system associated with H2,γ explicitly

ẋ =
∂TH2,γ

∂p (x, p) = 1
γ2 p− (0, s2)T

ṗ = −∂
TH2,γ

∂x (x, p) = −x
ż = pT ẋ = 1

γ2 p
T p− s2p2

(51)

Following the same analysis as above with H2,γ in place of H1,γ we see that we can cover the region
Ω+ ⊆ X+ with the state space component x(t) of trajectories (x(t), p(t)) of (51) with the associated
p(t) in Π2. In this way we arrive at the required function x→ S(x) for x ∈ Ω+ as wanted.

In summary, we have defined a region Ωγ (see (48)), a function x → P (x) (see (49) and its
counterpart for X+) and a nonnegative-valued function x→ S(x) (see (42), (45) and (50)) for x ∈ Ωγ
which meets all the requirements of Theorem 2. The proof of Theorem 2 is now complete apart from
the assertion concerning Filippov-sense solutions of (14); this last point is the subject of the next
subsection.

3.3 Filippov Bicharacteristics and Completion of the Proof of Theorem 2

To complete the proof of Theorem 2, it remains to relate the analysis above to solutions of (14) in
the sense of Filippov. We will consider only (43) in X−, since (51) in X+ is analogous. By reference
to (31) we see that (14) can be rewritten as

ẋ = 1
γ2 p +Bui, if p ∈ Πi

ṗ = −x. (52)
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Notice that a discontinuity occurs as a function of the p coordinates, rather the spatial coordinates x
as in (11). Since our P (x) ∈ Π1 for x ∈ X− ∩Ωγ , the solution x(t), p(t) = P (x(t)) that we exhibited
for 0 ≤ t ≤ t1 above solves (52) as well as (43). We can extend it to t1 ≤ t ≤ Tx0 using b(t) = β(t) = 0
(which means x(t), p(t) ∈ Γ) and

a(t) = sin(θ + t1−t
γ )

α(t) = 1− cos(θ + t1−t
γ ).

(53)

This reaches 0 for the first time at Tx0 = γθ+ t1. Moreover, as one may check, the resulting x(t), p(t)
satisfy

ẋ = λ̄ ∂
∂pH1,γ + (1− λ̄) ∂∂pH2,γ = 1

γ2 p+ Cηη

ṗ = −λ̄ ∂
∂xH1,γ − (1− λ̄) ∂

∂xH2,γ = −x (54)

This extension exhibits x(t), p(t) = P (x(t)) as a Filippov solution of (14) on the full [0, Tx0] as claimed
in Theorem 2.

The general behavior of (52) can be seen in detail by making an orthonormal change of coordinates
in both the x and p planes. Define

µ = (−s1, s2) · x/s̄ µD = (s2, s1) · x/s̄
ν = (−s1, s2) · p/s̄ νD = (s2, s1) · p/s̄

where s̄ =
√
s2

1 + s2
2. The coordinates µD and νD measure the components of x and p in the “diagonal”

direction (Γ and Π12 respectively), while µ and ν give their components orthogonal to this. In
particular ν > 0 indicates p ∈ Π2 so that we should be using i = 2 in (52). (We are ignoring x in the
third quadrant in saying this.) When (52) is converted to these coordinates the diagonal components
are independent of i:

µ̇D =
1

γ2
νD −

s1s2

s̄
; ν̇D = −µD. (55)

Only the orthogonal components involve the discontinuities:

µ̇ =
1

γ2
ν ± s2

i

s̄
; ν̇ = −µ. (56)

Here we use + when i = 1 (i.e. for ν < 0) and − when i = 2 (i.e. ν > 0). All three of these systems
are periodic with period 2πγ having constant angular velocity about their respective centers. The
solutions of (55) are ellipses centered at (0, γ2s1s2/s̄). The solutions of (56) are ellipses centered at
(0, vi) where

v1 = −γ2s2
1/s̄, v2 = +γ2s2

2/s̄.

The resulting phase portrait for the orthogonal components of (52), i.e. (56) using i = 1 if ν < 0
and i = 2 if ν > 0, is illustrated in Figure 5. Inspection should convince the reader that Filippov
solutions are unique, except those passing through the point µ = ν = 0. We see several solutions
through this point: an ellipse in the upper half-plane, an ellipse in the lower half-plane, as well as
ν(t) ≡ 0, µ(t) ≡ 0. This latter is a Filippov solution since the µ component of K[f ] at the origin is
the interval [−s2

1/s̄, s
2
2/s̄], which contains 0. In addition µ(t), ν(t) can switch from one of these basic

solutions to another whenever it passes through the origin.
The solution using P (x) as in Theorem 2 on [t1, T ] corresponds to µ(t) ≡ ν(t) ≡ 0 since x(t) ∈ Γ

and p(t) ∈ Π12. It is then a Filippov solution of (52). We now see that there are other solutions
of (52) starting from the same x(t1), p(t1). However, all these alternate solutions will leave the first
quadrant (K in x-space) before reaching the origin. To see this, notice that any such solution must
have the same diagonal components, µD(t), νD(t) which approach (0, 0) monotonically on [t1, T ]. This
means that the length of [t1, T ] is at most a quarter period of (55). But once a solution of (56) leaves
µ = 0 it takes exactly a half period until it returns. Thus any solution of (52) other than the one we
constructed but having the same values x(t1), p(t1) will have µ(T ) 6= 0 but µD(T ) = 0. This means
the solution has left the first quadrant K. So although (52) has many solutions for initial conditions
x(0) ∈ Γ0 with p(0) = ∇S(x(0)), there is only one which reaches the origin without first leaving the
first quadrant. This completes the proof of all aspects of Theorem 2.
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Figure 5: Off-diagonal components of Hamiltonian dynamics Hγ

4 Minimal Storage Function and Properties of the Closed
Loop system

We turn now to issues concerning the closed loop control system (11), or (57) just below. In particular
we will show that S(x) is the minimal storage function (in Ωγ) for our PDS (18) using control (35),
proving Theorem 3. Secondly we will see that (x,∇S(x)), x ∈ Ωγ is an invariant manifold (in
a Filippov sense) for the bounded-real-lemma Hamiltonian system associated with the closed-loop
system.

The control associated with our solution S is that of (35). Using it in our system (18) results in
the closed-loop differential inclusion

ẋ ∈ πK(Bu∗(x) + q), x(0) = x0. (57)

The assertion that S(x) is the minimal storage function in Ωγ is with reference to this system.

4.1 Proof of Theorem 3

Our argument that S is minimal is an adaptation of that used for Proposition 7.1.8 in [29]. Consider
any x(0) ∈ Ωγ . We will exhibit a pair x(t), q(t) solving (57) on an interval [0, T ] with x(T ) = 0 and
for which the storage function inequality becomes an equality:

S(x(T ))− S(x(0)) = −S(x(0)) =

∫ T

0

1

2
(γ2‖q(t)‖2 − ‖x(t)‖2) dt, (58)
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since S(x(T )) = S(0) = 0. Given that such x(t), q(t) exist, consider any other nonnegative storage

function S̃. It follows that

−S̃(x(0)) ≤ S̃(x(T ))− S̃(x(0)) ≤
∫ T

0

1

2
(γ2‖q(t)‖2 − ‖x(t)‖2) dt = −S(x(0)).

If x(0) = x ∈ Ωγ is arbitrary, then S ≤ S̃, establishing our assertion that S is the smallest of all
possible storage functions in Ωγ .

Consider x ∈ Ωγ ∩X− and the solution x(·), p(·) of (43) used in our construction of S at x. Define
an associated disturbance by

q(t) =
1

γ2
p(t).

On [0, t1], x(t) ∈ X− so u∗(x(t)) = u1 and therefore (43) and (57) coincide. (Since x(t) ∈ Ωγ , the
projected dynamics are not involved.) Noting that q(t) achieves the supremum defining H1,γ (see the
discussion preceding (23)) we find that

∇S(x(t)) · ẋ(t)− 1
2 (γ2‖q(t)‖2 − ‖x(t)‖2) = p(t)(Bu(x(t)) + q(t)) − 1

2 (γ2‖q(t)‖2 − ‖x(t)‖2)
= H1,γ(x(t),∇S(x(t)))
= 0.

(59)
In other words, for x(t), q(t) so constructed on [0, t1], equality is achieved in the dissipation inequality:

S(x(t1))− S(x(0)) =

∫ 0

t1

1

2
(γ2‖q(t)‖2 − ‖x(t)‖2) dt. (60)

Continuing with the solution (53), (54) on [t1, T ], we continue to consider q(t) = 1
γ2 p(t) as a

disturbance. Then x(t) continues to be a solution of (57). We are using the value λ̄ to choose the
value of u(x) in (35), since x(t) ∈ Γ. This gives a Filippov sense solution; see (61). Again we have
(from (33))

∇S(x(t)) · ẋ(t)− 1

2
(γ2‖q(t)‖2 − ‖x(t)‖2) = Hpre,γ(x(t), p(t), u(x(t))) = Hγ(x(t), p(t)) = 0.

Thus

S(x(T ))− S(x(t1)) =

∫ t1

T

1

2
(γ2‖q(t)‖2 − ‖x(t)‖2) dt.

Combining this with (60) establishes (58) used above. and therefore completes the proof of Theorem 3.

4.2 Filippov Solution of the Control System

We now consider (57) in general, which has discontinuities for x ∈ Γ. We see that K[f ](x, t) is
essentially Bu(x) + q(t) using what we have already written down in (35):

K[f ] = {q(t)− (λs1, (1− λ)s2) : 0 ≤ λ ≤ 1}, for x ∈ Γ (61)

If q(t) is parallel to Γ, as it was in our construction above, the opposing directions of the vector fields
on opposite sides of Γ imply that the solution of the differential inclusion in this case is unique and
remains on Γ. The Filippov solution then corresponds to choosing u = (λ̄, 1− λ̄) with λ̄ selected so
that Bu is parallel to Γ. See Figure 6.

Other choices of q(t) can translate the directions of the vectors by any fixed amount (depending
on t). The resulting control u(t) for a Filippov solution of the closed loop system may then have
any number of switchings between u1 and u2 or involve any averaging u = (λ, 1 − λ) of u1 and u2,
all depending on what disturbance q(t) actually appears. Nevertheless we have the following general
result.
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Figure 6: Dynamics of the discontinuous flow

Theorem 4 Let q(t) be an R2-valued integrable function on the interval [t0, t1] for some t0 < t1 and
let x0 ∈ K = {(x1, x2) : x1 ≥ 0 for i = 1, 2}. Then existence and right uniqueness holds for the
system (57) with initial condition x(t0) = x0, i.e., there exists a unique absolutely continuous function
x(t) satisfying (57) a.e. with a given initial condition x(t0) = x0 ∈ Q on the interval [t0, t1].

Proof. Define a time-dependent set-valued function b(t, x) on all of [t0, t1]×R2 by

b(x, t) =

 Gu1 + q(t), s1x1 > s2x2

Gu2 + q(t), s1x1 < s2x2

{G(λu1 + (1− λu2) + q(t) : 0 ≤ λ ≤ 1}, s1x1 = s2x2

and consider the differential inclusion with no boundary dynamics for an R2-valued absolutely con-
tinuous function x(t):

ẋ(t) ∈ b(t, x(t)), x(t0) = x0. (62)

One can easily check that the set-valued function b(t, x) satisfies the generalized Lipschitz condition

〈f(t, x)− f(t, y), x− y〉 ≤ L‖x− y‖2 (63)

for all vectors f(t, x) ∈ b(t, x) and f(t, y) ∈ b(t, y) and all x, y ∈ R2 for a fixed constant L (where in
fact one can take L = 0). Existence of solutions of the unconstrained differential inclusion (62) for
t ∈ [t0, t1] follows from Theorem 8 of Section 7 (page 85) of [13] while uniqueness follows from the
generlized Lipschitz condition (63) by Theorem 1 of Section 10 (page 106) of [13]. Now existence and
uniqueness for the system (57) with the projection dynamics on the boundary follows from Theorem
2 of [9], and the Theorem follows.

We close this section with a couple of additional remarks on the closd-loop system.
Remark 1. The controlled system (57) using (35) satisfies the usual criteria of suboptimal H∞

control: it stabilizes the system with q(t) ≡ 0 (Figure 6 is the phase portrait) and has the required
gain property (this follows from our successful construction of storage function S(x)). However the
storage function is only defined in the bounded region Ωγ . Increasing γ will produce a larger Ωγ , but
it will be bounded for each finite γ.
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Remark 2. We have worked with the Hamiltonian Hγ of (27) to construct S(x) from the H∞
point of view. It is interesting to note that a different Hamiltonian function results if we simply
postulate u(x) = u∗(x) and then consider the L2-gain property of the the closed-loop system. Again
leaving out the projection dynamics, this leads to considering

H̃γ(x, p) = sup
q
{p · (Bu(x) + q)− 1

2
(γ2‖q‖2 − ‖x‖2)},

which is supqKγ(x, p, q, u(x)) in terms of the pre-Hamiltonian (22). This a distinct Hamiltonian from

Hγ . In general it is true that Hγ ≤ H̃γ , because

H̃γ(x, p) = supqK(x, p, q, u(x))
≥ supq infu∈TK(x, p, q, u)
= Hγ(x, p)

.

However when p = ∇S(x) both Hamiltonians agree since the minimizing u ∈ U is then given by
u∗(∇S(x)) = u(x):

Hγ(x,∇S(x)) = H̃γ(x,∇S(x)) = 0.

It is actually H̃γ(x,∇S(x)) = 0 that we used in (59) above. One could construct the available storage
for (57) directly by considering the stable invariant manifold for the Hamiltonian system associated

with H̃γ :
ẋ = 1

γ2 p +Bui, i = 1(2) if x ∈ X−(+)

ṗ = −x. (64)

We can again study the Filippov solutions of this by looking at the orthogonal components µ, ν as
before. We now use (56) with i = 1 for µ < 0 and i = 2 for µ > 0 (instead of using the sign of ν as
previously). The resulting phase portrait is illustrated in Figure 7. Now we see that all solutions are
unique. Our (x,∇S(x)), x ∈ Ωγ is again an invariant manifold of solutions, all reaching the origin in
finite time. Now however (64) has a whole line segment of equilibrium points, connecting v1 and v2

along the ν-axis in Figure 7. Thus we would not say that the origin is a hyperbolic critical point for
(64)!

5 Applications Issues and Conclusions

Our example (4) originates with a simple model for traffic flow at an isolated intersection of two
one-way streets; see Figure 8. The variables and parameters appearing in the model are as follows:

State Variables:
x1: the queue length of the traffic stream in approach A
x2: the queue length of the traffic stream in approach B

Exogenous inputs:
q1: the arrival rate of the vehicles at approach A
q2: the arrival rate of the vehicles at approach B

Parameters:
s1: the saturation flow rate of approach A (vehicles/lane/second)
s2: the saturation flow rate of approach B (vehicles/lane/second)

We allow the qi to be negative, corresponding to departure of vehicles from the two approaches. We
assume both si to be strictly positive.

20



ν

-

6

µ

v1

v2
r

r
�

-

-

6
6
6

?? ? ?

	
	

Figure 7: Off-diagonal components of alternate Hamiltonian dynamics H̃γ

The set U of control actions (u1, u2) is

0 ≤ ui, u1 + u2 ≤ 1. (65)

The interpretation is that u1 = 1 corresponds to a green light for approach A (and red light for B).
Likewise u2 = 1 corresponds to a red light for A and a green light for B. While letting both ui > 0
makes sense mathematically in our system equations (67), it would correspond to an infinitely fast
switching between green for A and green for B, which is unrealistic physically. In practice, the control
is a finite-state machine with two possible states, namely green or red for a given direction of traffic.
There are other practical issues ignored by our simple mathematical model, for example, the need for
a minimum green time to avoid unnecessary lost time in transition, and a maximum green time so
as not to shut out an individual driver waiting in the less busy direction. We address such practical
implementation issues in a more systematic manner in another publication [1].

Our state equations are based on the following assumption: the difference between the arrival
density and the flow served represents exactly the dynamic rate of the queue length at that approach,
as long as the queue length to be served is positive. That is,

ẋi = δ(xi, qi − siui), i = 1, 2 (66)

where the function δ(·, ·) is defined by

δ(y, v) =

{
v if y > 0, or if y = 0 and v > 0
0 otherwise.

In particular, in the situation where both lines of traffic are oversaturated (both xi > 0), equation
(66) assumes the simpler form {

ẋ1 = q1 − s1u1

ẋ2 = q2 − s2u2,
(67)
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which can be rewritten in matrix format as

ẋ = Bu+ q. (68)

The effect of δ is to produce the projected version, as in (18) above.
This simple model for traffic flow using saturation flow rate parameters s1 and s2 (for the over-

saturated case where projection dynamics can be ignored) is usually attributed to Webster (see [32]).
The above model can also be used to handle physically more complicated intersections or networks
as long as the detailed traffic signal control configuration can be condensed to two phases.

The problem of traffic signal control has been studied extensively over the years; a sample of
references is [7], [15], [24], [26], [14] and [18]. A state of the art summary of what is done in practice can
be found in the Traffic Control Systems Handbook of the Federal Highway Administration [16]. Mainly
open loop, rolling horizon, and heuristic techniques have been used by researchers and engineers in
the control design, with most of the work coming out of the operations research rather than the
control community. One notable exception is the paper of Gazis [15], where a simple two-phase and
a two-intersection network problem were considered (with the disturbance q(t) assumed to be known
and of a simple analytical form) by using Pontryagin’s maximum principle.

In conclusion, the contribution of this paper is to analyze the general nonlinear H∞-control prob-
lem in the situation where discontinuities arise due to projection dynamics on the boundary of the
state manifold and discontinuities in the state feedback due to constraints on the admissible control
set. Just as in the smooth case, we have shown that the solution of the problem can be reduced to
constructing a positive definite solution of a certain Hamilton-Jacobi equation, but now subject to
an inequality constraint on the boundary of the state manifold, and with the resulting state-feedback
in general set-valued. For the specific example of a system of this sort arising in a simple traffic
signal control problem (4), we have shown that one can construct a solution of the Hamilton-Jacobi
equation from a version of the stable invariant manifold for the associated nonsmooth Hamiltonian
system of ordinary differential equations. We then went on to show, again just for the example (4),
that the storage function S(x) resulting from this construction is a minimal storage function for the
closed-loop system in the sense of van der Schaft [29]. We were also able to analyze the Hamiltonian
flow associated with the closed-loop system having gain equal to at most the preassigned tolerance
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level γ. Solutions of both Hamiltonian systems and of the closed-loop system must be interpreted in
the sense of Filippov.

An open question is to understand to what extent the results obtained for the special case (4)
extend to the general system (2), or to develope other special cases of interest for applications where
these results extend. One such special case, where B is replaced by a general n× n diagonal matirx
B = diag(−si), can be used to model an intersection with a multiphase traffic signal, and is a topic
of current research. Of interest for applications is to extend our results to more complicated models,
e.g. traffic models including allowance for lag times and models for a traffic network rather than an
isolated intersection. Finally a natural problem suggested by our work is the extension of the analysis
to the measurement feedback case, where only a measurement k(x) of the state vector x (rather than
the whole state vector x itself) is available to the controller.
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