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Lecture Notes for Fall 1997

Preface

These notes have evolved through teaching this course over many years. They began mostly as a
“record” of the material covered, a list of definitions, theorem statements and examples. Now however
they also contain proofs (or outlines of proofs) for many of the main results, as well as a few supplemental
topics that past students have asked for. However they are not intended to be a completely self-contained
treatment. Rather they and the lectures are meant as compliments to each other. In some places you will
need the lectures for a full explanation of details. (Some acknowledged omissions indicated with an ellipsis
“ . . . ”.) At other places we will use our class time for additional examples or clarifying discussion, leaving
technical details to the notes alone. Your comments and suggestions are welcome, and will inΩuence future
improvements to the notes. For a more thorough treatment we recommend the excellent book by Billingsley
[1]. Billingsley’s text has had a strong inΩuence on these notes. In particular the credit for a number of the
problems is his.

– M. Day, June 1997

Contents

The material is organized into the following units:

Unit M: Motivation and Overview
Unit I: Measures and Sigma-Fields
Unit II: Random Variables and Measurable Functions
Unit III: Integration
Unit IV: Convergence Concepts
Unit V: Advanced Constructions: Product Measures and Conditioning

Unit S Mathematical Supplements

Equations, problems and examples are numbered consecutively within a unit. Formally stated results (i.e.
theorems and lemmas) will be labeled A, B, . . . . To refer to equations or results outside the current unit
the labels will be preceded by the unit reference. Thus Theorem III.D means Theorem D of Unit III and
(IV.12) is equation (12) of Unit IV.
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Unit M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motivation and Overview

The job of a statistician is to select and apply statistical procedures to analyze “real” data. Under-

standing the properties of these procedures is of course vital to deciding when their use is appropriate. To

understand the properties of these statistical procedures in a careful way we have to study their properties

in a precise mathematical setting. For instance, to say an estimator Θ of some parameter θ is unbiased is a

statement about its properties as a mathematical object: Eθ[Θ] = θ. Probability theory is the mathemat-

ical setting in which most statistical procedures are studied. Our goal in this course is to understand the

mathematical concepts of modern probability theory.

You are probably familiar with “primitive” probability theory, as illustrated in the following examples.

Example 1. A discrete probability space, consisting of a finite number N of distinct “events” ω1, ω2, . . . ,

ωN , each with an associated probability pi. (We insist that 0 ≤ pi ≤ 1 and
∑N

1 pi = 1). ��

Example 2. The above could be extended to allow an infinite sequence pi; i = 1, 2, . . . with 0 ≤ pi and∑∞
1 pi = 1. ��

Example 3. A continuous probability density is a continuous function f(x) ≥ 0 defined for all real numbers

x (i.e. f : IR→ [0,∞)) with ∫ ∞
−∞

f(x) dx = 1.

Then with any interval A = (a, b] (or finite disjoint union of intervals) we can associate a probability

P ((a, b]) =

∫ b

a

f(x) dx.

This might describe the “distribution” of a random variable X ; P (A) = the probability that X ∈ A. We

would then calculate expected values of functions of X by

E[φ(X)] =

∫ ∞
−∞

φ(x)f(x) dx.

��

Example 4. Example 3 can be generalized by describing the probability of an interval using a distribution

function F (·):
P ((a, b]) = F (b)− F (a).

(F (·) must be non-decreasing and satisfy limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.) For instance the

distribution of Poisson or binomial random variables can be described this way, although they do not have

continuous densities. In general it may not be clear how to generalize the formula of Example 3:

E[φ(X)] =

∫ ∞
−∞

φ(x) dF (x) ?

��

Example 5. In the plane, IR2, we can also consider continuous densities f(x, y). The probability of a subset

A ⊆ IR2 could be computed by

P (A) =

∫∫
A

f(x, y) dx dy.

This could describe the joint distribution of a pair of random variables; P (A) = the probability that (X,Y ) ∈
A. Now we would calculate

E[φ(X)] =

∫∫
φ(x)f(x, y) dx dy.

��
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In each of these examples we have a set of elements Ω and a rule for assigning probabilities P (A) to

certain subsets A ⊆ Ω. P (A) is not necessarily defined for all subsets A however. Those A ⊆ Ω for which

P (A) is defined form a special class A of subsets of Ω. One eventually realizes that simple settings such

as these are not always adequate, that something more sophisticated mathematically is needed. Example 4

hints at this but the example we develop next will make the point more strongly.

A Game of Ten-Sided Dice

Imagine that we have a dice with 10 sides, numbered 0, 1, . . . , 9. The dice is fair, i.e. each side has

probability 1
10 of landing up. We roll the dice repeatedly and independently, obtaining a sequence of digits

d1 d2 d3 . . . dn . . . ,

each digit being one of the integers 0, . . . , 9. We want to assign probabilities to sets of such sequences. For

instance we would say that the set of all sequences with first digit d1 = 3, i.e. all sequences of the form

3 d2 d3 . . . dn . . . ,

should have probability 1
10.

There is a nice way to assign probabilities to sets of such sequences, by thinking of the sequence of digits

as the decimal representation of a real number ω:

(1) ω = .d1d2d3 · · · =
∞∑
n=1

dn/10n.

For instance, ω = 123/999 = .123123123123 . . . . This association of digit sequences with numbers is not

perfect however because some numbers have two different decimal representations, such as

1/2 = .5000 · · · = .4999 . . .

For such ω we will insist on using the decimal representation with trailing 0’s, not trailing 9’s. (This excludes

those outcomes of our dice game which are all 9’s after some point, but the probability of these should be 0

anyway.) Thus we will take Ω = [0, 1) as our set of basic elements. Each ω ∈ [0, 1) determines a full digit

sequence d1(ω), d2(ω), . . . from the decimal representation (1), with no trailing 9’s. Each dn is viewed as a

function of ω, dn : Ω→ {0, 1, . . .9}.

Example 6. The set of ω for which d1(ω) = 3 is just an interval of real numbers:

{ω : d1(ω) = 3} = [.3, .4).

We want to assign probability 1
10 to this set of ω. Observe that 1

10 is precisely the length of the interval! ��

We take this example as our lead, and assign the length of a subset A ⊂ [0, 1) as its probability P (A):

P (A) = b− a if A = [a, b) with 0 ≤ a ≤ b ≤ 1,

and if A = ∪n1 [ai, bi) with [ai, bi) disjoint (i.e. no two intersect) then define

P (A) =
n∑
1

(bi − ai).
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Note that we can only calculate P (A) if A is a set of the proper type. We could certainly make some obvious

extensions (to include A = (a, b), [c, b], (a, b] and finite unions of such) but there remain many sets A ⊂ [0, 1)

for which P (A) is not defined!

We can confirm that this set-up does accurately describe the probabilities of our dice game by checking

the probability it produces for a specified outcome of the first N rolls. Suppose we pick digits u1, u2, . . . ,

uN and ask for the probability that the first dice produces value u1, the second dice produces u2, . . . and

dice N produces uN . In our set-up we calculate this by finding the set A of ω’s which meet the prescribed

requirements and then evaluate P (A):

A = {ω : dn(ω) = un each n = 1, · · · , N}

= [a, a+ 10−N), where a =
N∑
1

un/10n,

and so we do get the correct value:

P (A) = 1/10N .

The really interesting questions come from considering events that involve the whole sequence of dice

rolls, not just some finite number of them. Consider in particular

1

n

n∑
1

di(w),

which is the average of the values rolled in the first n plays. As n →∞ we expect this average to converge

to 4.5 with probability 1. (This is the Strong Law of Large Numbers.) To be precise, we want to say that

P (H) = 1, where

H = {ω : lim
n→∞

1

n

n∑
1

di(w) = 4.5}.

But now we are faced with a serious problem: H is not a finite disjoint union of intervals, so P (H) is not

defined! In problem 1 below you will show that every interval (a, b) ⊆ [0, 1) contains points from both H and

Hc. Thus both H and Hc are spread throughout [0, 1), having no segments or gaps of any positive length.

Thus our intuition does not tell us what the length P (H) of a complicated set like H should even mean,

much less why P (H) = 1 is the correct value.

The point is that the definition of P needs to be extended from the simple type of sets (finite unions of

intervals) for which the value of P is clear, to sets of more complicated type (like H) for which the definition

of P is not clear at the outset. This extended definition of P must satisfy certain properties in order to be

a reasonable “measure of probability”. Any proof that P (H) = 1 must make essential use of the properties

which govern this extension. In other words, the assignment of probabilities by our intuition alone is not

adequate. In general what we need to do is set down the mathematical principles that govern the assignment

of probabilities (the definitions of what are called “probability measures” and “sigma-fields”), and then study

how these principles determine those probabilities that are beyond our intuition.

Overview

The basic setup of probability theory is similar to what we constructed above, based on a “probability

space” (Ω,F , P ). The “master set” Ω (like [0, 1) above) encompasses all possibilities. F is the collection

(class) of subsets A ⊂ Ω for which probabilities P (A) will be defined. P is the “probability measure” which

assigns probabilities to A ∈ F . In addition we often have random variables X (like our d1, d2, · · · ) which are

functions taking w ∈ Ω to X(w) ∈ IR, or some other set of outcomes like our {0, 1, 2, . . .9}. Our first goal
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(Unit I) is to discuss the properties that Ω,F and P must have to be mathematically adequate (to surmount

the type of problem we encountered with H above instance). Then (Unit II) we need to talk about the

properties that random variables must have in order to be compatible with (Ω,F , P ).

The expected value “E[X ]” is what mathematicians call the “integral of X with respect to the measure

P”, usually written

E[X ] =

∫
Ω

X dP.

This notion of integration is more general and powerful than that of calculus. If P ([a, b)) = b− a gives the

measure of length as above (called “Lebesgue measure”) then
∫

[a,b) f(x) dP extends the Riemann integral∫ b
a f(x) dx. An infinite series

∑∞
1 f(n) is another special case of this new notion of integral, this time using

“counting measure” on Ω = IN. After discussing this concept of integration (Unit III) we take a quick

overview of the various notions of convergence common in probability theory and some of the most famous

limit laws (Unit IV).

These measure-theoretic foundations also allow a unified understanding of conditional probabilities. The

various conditioning formulas of elementary probability theory, such as

P (A|B) =
P (A ∩B)

P (B)
fX|Y (x|y) =

f(x, y)∫
f(x, y) dx

will all be seen as different expressions of the same idea. By understanding what conditioning really is

mathematically we will be able to explain the important rules for manipulating conditional probabilities

and expectations (Unit V). This is fundamental to understanding several important classes of stochastic

processes, such as martingales and Markov processes.

Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let H ⊆ [0, 1) be the set described above. Show that every non-empty open interval (a, b) ⊆ [0, 1) contains

a point from H and a point from Hc. As a hint, notice that if we take ω and alter the terms of its decimal

expansion after dn, we obtain a new ω̃with

|ω − ω̃| =
∣∣∣∣∣
∞∑

k=n+1

(dk(ω)− dk(ω̃))/10k

∣∣∣∣∣
≤

∞∑
k=n+1

9/10k = 10−n.

Using this you can construct ω̃of either type (in H or Hc) as close as you like to a given ω.

Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let

δk(i) =

{
1 if i = k

0 if i 6= k
.

For each k = 0, 1, . . . , 9 define the set

Ak = {ω ∈ [0, 1) : lim
n→∞

1

n

n∑
i=1

δk(di(ω)) =
1

10
}.

Show that

∩9
k=0Ak ⊆ H.

Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Draw graphs of d1(·) and of d2(·). Explain why, according to our definitions above,

P ({ω : d2(ω) = 7}) = 1/10.
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Unit I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Measures and Sigma-Fields

We begin a careful study of “measures of probability” by describing their essential properties. Let Ω be

any “space” or master set of points ω ∈ Ω.

Example(s) 1.

• Ω = {ω1, . . . , ωN} – Ex. M.1.

• Ω = {1, 2, 3, . . .} – Ex. M.2.

• Ω = { all sequences ω = HTTHTHHTHTHTTT . . . } – Coin tossing.

• Ω = {f : [0,∞)→ IR} – random motions.

• Ω = IR – probability distributions.

• Ω = [0, 1) – 10-sided dice, Unit M. ��

We will want to define probabilities P (A) for certain subsets A ⊆ Ω. There will be a collection F of subsets

of Ω consisting of those A ⊆ Ω for which P (A) is be defined. (A set is a collection of elements but we

use the word class for a collection of (sub)sets. Thus F is a class of subsets of Ω; see the Mathematical

Supplements.) What properties should F have? Our calculations are likely to manipulate sets in F via the

usual set theoretic operations: compliment, intersection and union. We want the resulting sets also to be in

F . This means we want F to be a what is called a field of subsets.

Definition. A class F of subsets of Ω is called a field when the following properties hold:

(i) Ω ∈ F ;

(ii) if A ∈ F then Ac ∈ F ;

(iii) if A,B ∈ F then A ∪B ∈ F .

If A ∈ F we say A is an F set, or that A is F measurable.

Example 2. Consider Ω = [0, 1) and the following classes of subsets:

• I = class of all intervals, [a, b) ⊆ Ω — this is not a field.

• S = class of finite disjoint unions of intervals A = ∪n1 [ai, bi) — this is a field. (We consider ∅ = [a, a) to

be in S.) ��

Notice that the following properties are consequences of (i)—(iii): ∅ = Ωc ∈ F , and A∩B = (Ac ∪Bc)c ∈ F
if A,B ∈ F . Moreover if An ∈ F for each n = 1, . . . , N , then ∩N1 An and ∪N1 An must also be in F . In other

words any set we can form by a finite number of operations (intersections, unions, or compliments) applied

to F sets must also be an F set.

We saw in the last section that for Ω = [0, 1) even the field S was not adequate for the discussion of

infinite sequences of coin tosses, because H /∈ S. However,

H = ∩∞k=1 ∪∞m=1 ∩∞n=m{ω : | 1
n

n∑
1

di(ω)− 4.5| < 1

k
}.

So we also want to be able to take unions and intersections of sequences of sets in F ; i.e. “countable” unions

and intersections.

Definition. A class F of subsets of Ω is called a σ-field (or σ-algebra) if F is a field and

∪∞i=1Ai ∈ F whenever A1, A2, · · · ∈ F is a sequence of sets in F .

Notice that a σ-field must also contain countable intersections: if Ai ∈ F then ∩∞i=1Ai = (∪∞i=1A
c
i )
c must

also be in F since F is “closed under complementation”.
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Example(s) 3. Most σ-fields are complicated but here are a few simple ones.

• F = {∅,Ω},
• P = { all subsets A ⊆ Ω},
• C = {A ⊆ Ω : either A or Ac is countable } – see Problem 2. ��

The difficulty we encountered in our 10-sided dice discussion is simply that S, the class on which we

knew how to define P , is not a a σ-field. To resolve this we need to “extend” the definition of P to a larger

class of sets which is a σ- field. What σ-field is appropriate? P (from the preceding example) turns out

to be too big – P (A) cannot be defined for all subsets A ⊆ [0, 1). C is clearly too small; it doesn’t contain

bounded intervals. What we want is the smallest σ-field that includes all the sets in S.

Definition. If A is a class of subsets of Ω, we define σ(A) to be the class of all A ⊆ Ω such that A belongs

to every σ-field containing A:

σ(A) = {A ⊆ Ω : A ∈ F for every σ- field F with A ⊆ F},

You can check that σ(A) is itself a σ-field, called the σ-field generated by A. It is the smallest σ- field

containing A.

Example 2 (continued). Define B = σ(S). The sets in B are called the Borel sets in [0, 1). It is impossible

to give a direct description of the sets which are in B, but virtually every set you can describe is. For instance

B contains all open subsets of [0, 1). This is because

1. (a, b) = ∪∞n=k[a+ 1
n , b) ∈ B, (where a+ 1

k < b), and

2. If G is open then G = ∪Γ(a, b) where

Γ = {(a, b) : a, b are rational and (a, b) ⊆ G}.

Since Γ is countable, G ∈ B.

There are subsets of (0, 1] which are not Borel sets but they are impossible to describe explicitly. (See the

discussion later in this section.) ��

Measures

Given a set Ω and a σ-field F of subsets of Ω, the next thing that we need is the “rule” or “set function”

P which assigns to each A ∈ F its probability P (A). P is what we will call a probability measure. We want

0 ≤ P (A) ≤ 1 for probabilities. However there are other settings in which we want to assign “sizes” µ(A) to

A ∈ F without the restriction µ(A) ≤ 1, or even µ(A) <∞. These are what are called (general) measures.

We define them first.

Definition. Let F be a field on a Ω. A measure µ on F is a function µ : F → [0,+∞] satisfying

(i) µ(∅) = 0,

(ii) if A1, A2, · · · is a sequence of disjoint sets in F , and if ∪∞1 An ∈ F , then

µ(∪∞1 An) =
∞∑
1

µ(An).

Remarks.

• We only required F to be a field in this definition, but we are most interested in the case in which F is

a σ-field. If F is σ-field, we do not need to say “if ∪∞1 An ∈ F” in part (ii).
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• We allow µ(A) = +∞. Thus the definition assumes we have some conventions regarding arithmetic on

[0,∞]. The conventions are all quite natural; see Unit S.

• Part (ii) is called countable additivity. A less demanding property is finite additivity: µ(A ∪ B) =

µ(A) + µ(B) for any disjoint pair A,B ∈ F . (This implies the natural generalization to any finite

number of sets: µ(∪n1Ai) =
∑n

1 µ(Ai) when Ai ∈ F are disjoint.) Problem 3 shows that it is possible

for µ to be finite but not countably additive.

• There are also “signed measures” which allow µ(A) to be negative, but we do not need to deal with

them.

A measure µ is called

• a probability measure if µ(Ω) = 1,

• a finite measure if µ(Ω) <∞,

• infinite if µ(Ω) =∞,

• σ-finite if there exist A1, A2, · · · ∈ F with Ω = ∪∞1 An and µ(An) <∞ for each n.

When F is a σ-field on Ω and µ is a measure on F , the triple (Ω,F , µ) is called a measure space. When

P = µ is a probability measure, (Ω,F , P ) is called a probability space. The pair (Ω,F) (with no measure

specified) is a measurable space.

Example 4. With (Ω,S) as in Example 2 we can define P on A ∈ S as in Unit M: P ([a, b)) = b − a. It

seems obvious that P is countably additive. This is true, though the proof is more involved than you might

think. (See Theorem E below.) We will see that P extends (in a “unique” way) to all of B = σ(S). The

extended version is called Lebesgue measure, often denoted by ` below. ��

Example 5. The above can be carried out on Ω = IR as well. Let J consist of all finite (disjoint) unions of

intervals of the form (−∞, a], (a, b], or (b,+∞). (Note the reversal of open/closed endpoints, compared to

Example 2.) J is a field. Define

`((−∞, a]) = +∞, `((a, b]) = b− a, `((b,+∞)) = +∞

and

`(∪n1Ji) =
n∑
1

`(Ji),

if the Ji are disjoint intervals of the indicated types. Theorem E below will tell us that `(·) can be extended

to a measure on B(IR) = σ(J ) (the Borel sets) called Lebesgue measure on IR. Here ` is infinite, but σ-finite:

IR = ∪∞1 (−n, n]; `((−n, n]) = 2n <∞ each n.

By arguing as in Example 2 it follows that B(IR) contains all intervals (of any type), all open sets and all

closed sets. ��

Example 6. If f ≥ 0 is a continuous probability density,
∫∞
−∞ f(t) dt = 1, then there exists (Theorem E

again) P on B(IR) with the property that

P ((a, b]) =

∫ b

a

f(t) dt

The function F (x) =
∫ x
−∞ f(t) dt is called the distribution function associated with P :

F (x) = P ((−∞, x])

��
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Example 7. Let Ω = any set, F = all subsets, and define µ(A)= the number of elements in A. This is a

measure, called counting measure. ��

Additional Properties of Measures. The definition of a measure implies a number of other elementary

properties. Suppose µ is a measure on a field F of subsets of Ω. (All sets referred to below are assumed to

be in F .) Probability measures satisfy a few extra properties, which are indicated by writing P (·) instead

of µ(·).
• If A ⊆ B then µ(A) ≤ µ(B).

•

µ(A) + µ(B) = µ(A ∪B) + µ(A ∩B)

P (A ∪B) = P (A) + P (B)− P (A ∩B).

• If A1 ⊆ A2 ⊆ · · ·An ⊆ . . . and A = ∪∞1 An (i.e. “An ↑ A”) then limµ(An) = µ(A) (i.e. “µ(An) ↑ µ(A)”).

• If A1 ⊇ A2 ⊇ · · ·An ⊇ · · · and A = ∩∞1 An (“An ↓ A”) and if µ(An) < ∞ for some n, then µ(A) =

limµ(An) (“µ(An) ↓ µ(A)”). (Note that we always have P (A) = limP (An) because P (An) ≤ 1 <∞.)

• µ(∪∞1 An) ≤
∑∞

1 µ(An) (any sequence of An ∈ F with ∪An ∈ F).

• If µ is σ-finite, then any collection of disjoint F-sets of positive measure is countable.

Proof(s): . . .

The existence of distribution functions is not limited to the situation of Example 6. In fact every

probability measure P on (IR,B(IR)) has a distribution function defined by F (x) = P ((−∞, x]). The

properties of a measure imply that F (·) is a function from IR to [0, 1] which satisfies the following:

• if x ≤ y then F (x) ≤ F (y) (nondecreasing);

• limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1;

• for every x, F (x) = limy↓x F (y) (right continuous).

We can recover P for intervals from F by the formula

P ((a, b]) = F (b)− F (a).

Now it is important which endpoints are open/closed! Also note that P ({a}) = F (a)− F (a−).

Conversely, for any such function F there is a unique probability measure P on (IR,B(IR)) with

P ((a, b]) = F (b) − F (a). This is the content of Theorem E below. Notice what we are saying here with

the word “unique”: the values of P (A) for all A ∈ B(IR) are determined by the values of P (J) for intervals

J = (a, b], even though there may be no way to write A in terms of intervals!

Generation of Sigma-Fields

We have already defined σ(A) where A is any class of subsets of Ω. Here are some facts about this process

of “generating” σ-fields.

• σ(A) is a σ-field and contains all A ∈ A.

• If A ⊆ F and F is a σ-field then σ(A) ⊆ F .

• If A is itself a σ-field then σ(A) = A.

• If A1 ⊆ A2 then σ(A1) ⊆ σ(A2) .

• If A1 ⊆ A2 ⊆ σ(A1) then σ(A1) = σ(A2).

Example 8. A = {A,B,C}. σ(A) consists of those sets made up of the 8 basic sets A∩B ∩C, A∩Bc ∩C,

. . . . Note that some sets like Ac∩Bc∩Cc or Ac∩Bc∩C may consist of more than one “piece” in a drawing

but are inseparable in σ(A). ��
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Example 9. V = {(−∞, c]× IR : c ∈ IR}. σ(V) consists only of sets of the form A× IR (A ∈ B(IR)). I.e. if

G ∈ σ(V) and (x, y) ∈ G then the complete vertical line Lx = {(x, z) : z ∈ IR} must be ⊆ G. Sets in σ(V)

are “bundles of lines”. ��

Example 10. D = {{(x, y) : y = mx, a ≤ m ≤ b} : a, b ∈ IR}. Then {(0, 0)} ∈ σ(D), but all other sets in

σ(D) are “bundles of lines”, possibly with (0, 0) removed. ��

Example 2 (continued). In addition to I, S and B defined previously, let

I+ all sub-intervals of [0, 1) of any type:

(a, b), [a, b), (a, b], or [a, b].

T = all open subsets A ⊆ [0, 1).

U = all singleton sets {x}.
Then I ⊆ S ⊆ σ(I), which implies σ(I) = σ(S) = B. Also I ⊆ I+ ⊆ σ(I) and I ⊆ σ(T ) ⊆ B, so I, I+, S
and T all generate the Borel sets B. U ⊆ B also, but σ(U) 6= B. In fact σ(U) = C as defined in Example 3.��

We tend to think of σ(A) as what we get by starting with the A ∈ A, then including all sets we can

construct from these by compliments, countable unions and intersections, then repeat the process . . . . But

this is false; not all sets in σ(A) can be constructed from the A ∈ A by such a process. We must rely on

more abstract mathematical arguments to establish properties of generated σ-fields.

Consider again the situation described in Example 4. We have defined P (·) for sets in I by P ([a, b)) =

b − a and claim that there exists a unique probability measure on the Borel sets B which extends P . Lets

think about the uniqueness part of this assertion. What we are saying is that if P and Q are both probability

measures on [0, 1) with the Borel sets B and if both P ([a, b)) = Q([a, b)) for all [a, b) ∈ I, then P (A) = Q(A)

for all A ∈ B. This fits a logical pattern that we encounter frequently in dealing with σ-fields.

Typical Problem. Suppose A is a class of subsets of Ω and F = σ(A). We know that a certain property

(X) holds for all A ∈ A and want to show that (X) holds for all A ∈ F .

For instance, in the uniqueness question above, A = I and (X) would be the property that P (A) = Q(A).

We will encounter several other problems that fit the same pattern. To understand how to handle a problem

of this general pattern, define the class of F-sets determined by (X):

L = {A ∈ F : (X) holds for A}.

The very definition implies L ⊆ F . The problem is to show L = F . One way to proceed is to show directly

from the description of (X) that L is itself a σ-field. This is sometimes feasible (see problem 5 for instance),

but often not.

Example 11. Let P and Q both be probability measures on (Ω,F), where F is a σ-field. Define

L = {A ∈ F : P (A) = Q(A)}.

We can check that L has the following properties:

(i) Ω ∈ L;

(ii) if A ∈ L then Ac ∈ L;

(iii) if An ∈ L are disjoint, then ∪An ∈ L.

However L can fail to be a σ-field; see problem 6. ��
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Definition. A class L of subsets of Ω is called a λ-system if it satisfies (i), (ii) and (iii) of the preceding

example. A class P of subsets of Ω is called a π-system if A ∩B ∈ P whenever A,B ∈ P .

Note that a class F is a σ-field if and only if it is both a λ-system and a π-system. (An ∈ F implies

Bn = An ∩ Acn−1 ∩ · · · ∩ Ac1 ∈ F so that ∪∞1 An = ∪∞1 Bn ∈ F .) Thus the two definitions separate the

properties of σ-fields into two parts. Here is the important theorem.

The π-λ Theorem (A). If P is a π-system, L is a λ-system and P ⊆ L, then σ(P) ⊆ L.

Proof: Let λ(P) be the smallest λ-system containing P (the intersection of all λ-systems containing P).

We will show that λ(P) is also a π-system.

Consider A ∈ P and define GA = {B : A∩B ∈ λ(P)}. The following steps show that GA is a λ-system:

1) P ⊆ GA, since B ∈ P implies A ∩B ∈ P ⊆ λ(P).

2) Ω ∈ GA, since Ω ∩A = A ∈ P ⊆ λ(P).

3) Suppose B ∈ GA, then A ∈ λ(P) implies Ac ∈ λ(P) and A∩B ∈ λ(P) are disjoint, so Ac∪(A∩B) ∈ λ(P).

But Ac ∪ (A ∩B) = Ac ∪B, so (Ac ∪B)c = A ∩Bc ∈ λ(P). I.e. Bc ∈ GA.

4) Suppose B1, B2, · · · ∈ GA and are disjoint. Then A∩ (∪∞1 Bi) = ∪∞1 (A∩Bi) and the A∩Bi ∈ λ(P) are

disjoint. Thus ∪∞1 Bi ∈ GA.

Since GA is a λ-system containing P , we conclude that λ(P) ⊆ GA. Since this holds for any A ∈ P ,

we have shown that A ∩ B ∈ λ(P) for all A ∈ P , B ∈ λ(P). Now consider any B ∈ λ(P) and define

GB = {A : A ∩B ∈ λ(P)}, and repeat the above sequence of steps.

1) P ⊆ GB , by the preceding.

2) Ω ∈ GB , because Ω ∩B = B ∈ λ(P).

3) Suppose A ∈ GB. Then since Bc ∈ λ(P) and A ∩ B ∈ λ(P) are disjoint, Bc ∪ (A ∩ B) = Bc ∪ A =

(Ac ∩B)c ∈ λ(P), so Ac ∩B ∈ λ(P). I.e. Ac ∈ GB.

4) IfA1, A2, · · · ∈ GB are disjoint, then Ai∩B ∈ λ(P) are disjoint, so that (∪∞1 Ai)∩B = ∪∞1 (Ai∩B) ∈ λ(P).

Thus ∪∞1 Ai ∈ GB .

Thus GB is a λ-system containing P . Therefore λ(P) ⊆ GB, for any B ∈ λ(P). This means that A∩B ∈ λ(P)

for all A,B ∈ λ(P). We have shown therefore that λ(P) is a π-system, and therefore is in fact s σ-field. We

conclude that P ⊆ σ(P) ⊆ λ(P) ⊆ L.

Examples 4 and 11 (continued). On Ω = [0, 1) as before, notice that I is a π-system. So if P and

Q are both probability measures on (Ω,B), with P (A) = Q(A) for all A ∈ I then the theorem tells us

L = σ(I) = B. In other words the class of A for which P (A) = Q(A) includes all of B. Thus there is at

most one extension of P from intervals to a probability measure on the Borel sets. ��

This example demonstrates how the π-λ Theorem is applied to our typical problem above: if the class

A of sets for which we know property (X) to hold is a π-system, then we only need to verify that L is a

λ-system, not that it is a σ-field. Also note that whether or not L is a λ-system depends only what the

property (X) is, not on A.

If µ and ν are general measures on (Ω,F) then we cannot always show that

L = {A ∈ F : µ(A) = ν(A)}

is a λ-system; we can’t use subtraction to establish (ii). However for σ-finite measures we can get around

this difficulty to prove the following uniqueness result.

Theorem B. Suppose P is a π-system and µ and ν are two measures on σ(P) which are σ-finite on P. If

µ = ν for all P-sets, then µ = ν on all of σ(P).

By ”σ-finite on P” we mean Ω = ∪∞1 Pn, Pn ∈ P with µ(Pn), ν(Pn) <∞.
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Proof: In our typical problem take

(X) ν(A ∩ Pn) = µ(A ∩ Pn) for all n.

Then (X) holds for all A ∈ P . Define

L = {A ∈ σ(P) : ν(A ∩ Pn) = µ(A ∩ Pn) for all n}.

(i) Ω ∈ L because ν(Pn) = µ(Pn).

(ii) A ∈ L implies

µ(Ac ∩ Pn) = µ(Pn)− µ(Pn ∩A)

= ν(Pn)− ν(Pn ∩A) = ν(Ac ∩ Pn),

which implies Ac ∈ L. (Note that we are using µ(Pn) <∞ here.)

(iii) Ak ∈ L disjoint implies

µ((∪∞1 Ak) ∩ Pn) = µ(∪∞1 (Ak ∩ Pn))

=
∞∑
k=1

µ(Ak ∩ Pn)

=
∞∑
k=1

ν(Ak ∩ Pn) = · · · = ν((∪∞1 Ak) ∩ Pn),

which implies ∪∞1 Ak ∈ L.

Now the π-λ Theorem implies L = σ(P).

Finally, let Q1 = P1, Q2 = P2 \P1, . . . , Qn = Pn \∪n−1
1 Pk. For any A ∈ σ(P), A∩Qn = (A∩Qn)∩Pn

so µ(A ∩Qn) = ν(A ∩Qn) and A = ∪∞1 (A ∩Qn), disjoint. Thus,

µ(A) =
∞∑
1

µ(A ∩Qn) =
∞∑
1

ν(A ∩Qn) = ν(A)

There is another, older result which provides another way to deal with our typical problem.

Definition. A class M of subsets of Ω is called a monotone class if

(i) whenever A1 ⊇ A2 . . . are sets in M then ∩An ∈M;

(ii) whenever A1 ⊆ A2 . . . are sets in M then ∪An ∈M.

The Monotone Class Theorem (C). If F is a field,M is a monotone class and F ⊆M then σ(F) ⊆M.

To summarize if A ⊆ G there are several ways we might show that σ(A) ⊆ G. Any of these may be

viable approaches to dealing with our typical problem.

• Show that G is a σ-field. (See problem 5 for instance.)

• Show that A is a π-system and G is a λ-system. (See Example 3 above.)

• Show that A is a field and G is a monotone class. (See problem 9 for an example.)

The Extension Theorem

We come now to the main theorem on the existence of measures.
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Carathéodory Extension Theorem (D). Suppose µ is a measure on a field F of subsets of Ω. Then µ

has an extension to a measure on σ(F).

If µ is σ-finite on F , then the extension is unique, by Theorem B above.

Application to Distribution Functions. Suppose F : IR→ IR is nondecreasing and right-continuous:

F (x) ≤ F (y) whenever x ≤ y,

lim
y↓x

F (y) = F (x) for all x.

Let J be the class of all intervals of the form

(−∞, b], (a, b], or (a,∞).

(We consider ∅ = (a, a] to be in J .) Define F (±∞) by

F (∞) = lim
x→∞

F (x) ≤ ∞, F (−∞) = lim
x→−∞

F (x) ≥ −∞.

We can define µ on J by

(1)

µ((a, b]) = F (b)− F (a)

µ((−∞, b]) = F (b)− F (−∞)

µ((a,∞)) = F (∞)− F (a).

These are all values in [0,∞] by the monotonicity of F (·).
Let S consist of all finite disjoint unions ∪N1 Jn of intervals Jn ∈ J . S is a field. We claim, and will

prove, that

µ(∪N1 Jn) =
N∑
1

µ(Jn)

defines a σ-finite measure on S. Once we do, the following theorem will be a consequence of the Carathéodory

Theorem.

Theorem E. Let F : IR → IR be a nondecreasing, right continuous function as described above. There

exists a unique measure µ on (IR,B(IR)) with the property that µ((a, b]) = F (b)− F (a).

This theorem justifies several assertions made in our discussion up to this point. In particular, using F (x) = x

we get Lebesgue measure ` on the Borel sets, determined by the property that `((a, b]) = b− a.

Proof: First we will show that µ is countably additive within the individual intervals J . If −∞ ≤ c0 <

c1 < c2 < · · · < cn ≤ ∞ then clearly

n∑
1

F (ck)− F (ck−1) = F (cn)− F (c0).

By dropping some terms from the left we see that if Ik ∈ I are disjoint and ∪n1 Ik ⊆ I, I ∈ J , then∑n
1 µ(Ik) ≤ µ(I). Passing to the limit as n → ∞ we see that the same is true for sequences of disjoint

Ik ∈ J : ∪Ik ⊆ I, I ∈ J implies

(2)
∞∑
1

µ(Ik) ≤ µ(I).



I: 9

Next suppose I, Ik ∈ J are intervals with finite endpoints and that I ⊆ ∪K1 Ik. Let I = (a, b] and

Ik = (ak, bk]. By throwing out some intervals and renumbering we can assume that a ∈ (a1, b1], bk−1 ∈
(ak, bk], ending with b ∈ (aK , bK ]. Then since a1 ≤ a, ak ≤ bk−1 and b ≤ bK the monotonicity of F implies

F (bk)− F (bk−1) ≤ F (bk)− F (ak), and so

F (b)− F (a) ≤ F (bK)− F (a1)

= F (b1)− F (a1) +
K∑
2

F (bk)− F (bk−1)

≤
K∑
1

F (bk)− F (ak).

Thus, after adding back to the right side any intervals we threw out and reverting to the original numbering,

we have

(3) µ(I) ≤
K∑
1

µ(Ik).

We want to generalize this to a sequence of intervals. I.e. we want to prove that I ⊆ ∪∞1 Ik with

I, Ik ∈ J implies

(4) µ(I) ≤
∞∑
1

µ(Ik).

(There is no disjointness assumed here.) To do this, first notice that we can assume I is bounded, because

µ(I ∩ (−n, n]) ↑ µ(I) as n → ∞. So suppose I = (a, b] with finite endpoints a, b. We can also assume that

Ik = (ak, bk] has finite endpoints. (Otherwise replace Ik with I ′k = Ik∩(a, b], which only makes the right side

in (4) smaller.) Moreover assume a < b because otherwise there is nothing to prove. Consider any ε > 0.

Since F is right continuous we can find

a < a′ < b with F (a′) ≤ F (a) + ε, and

bk < b′k with F (b′k) ≤ F (bk) + ε/2k.

Then

[a′, b] ⊆ (a, b] ⊆ ∪∞1 (ak, bk] ⊆ ∪∞1 (ak, b
′
k).

By the Heine-Borel Theorem there exists K <∞ so that

[a′, b] ⊆ ∪K1 (ak, b
′
k).

But then (a′, b] ⊆ ∪K1 (ak, b
′
k] so that the finite case (3) implies

µ((a′b]) ≤
K∑
1

µ((ak, b
′
k]).
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Now we can put some pieces together:

µ(I) = F (b)− F (a) ≤ F (b)− F (a′) + ε

≤ ε+
K∑
1

F (b′k)− F (ak)

≤ ε+
K∑
1

ε2−k + F (bk)− F (ak)

≤ ε+
∞∑
1

ε2−k +
∞∑
1

F (bk)− F (ak)

= 2ε+
∞∑
1

µ(Ik)

Since ε > 0 was arbitrary, the inequality (4) follows.

Taking (2) and (4) together shows that

(5) µ(I) =
∞∑
1

µ(Ik),

whenever Ik ∈ J are disjoint intervals and I = ∪∞1 Ik is also an interval in J . This is the countable additivity

on J that was our first goal.

The next step is to extend this to S by first showing that µ is well-defined on S. That is if we consider

two different representations of A ∈ S as a disjoint union of intervals

∪N1 In = ∪M1 Jm = A

where In ∈ J are disjoint and Jm ∈ J are disjoint, both lead to the same value of µ(A). Indeed, for each

fixed n the In ∩ Jm are disjoint intervals as m = 1, . . . ,M and In = ∪M1 In ∩ Jm. Thus (5) implies that

µ(In) =
M∑
m=1

µ(In ∩ Jm).

Likewise,

µ(Jm) =
N∑
n=1

µ(In ∩ Jm).

Hence,

N∑
1

µ(In) =
N∑
n=1

M∑
m=1

µ(In ∩ Jm)

=
M∑
m=1

N∑
n=1

µ(In ∩ Jm) =
M∑
1

µ(Jm)

Suppose next that A = ∪∞1 Ak with A,Ak ∈ S, the Ak being disjoint. Then

A = ∪N1 In for disjoint In ∈ J ;

Ak = ∪mkj=1Ik,j for disjoint Ik,j ∈ J
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Here, since the Ak are disjoint, the “doubly indexed” collection of Ik,j is disjoint. Thus (5) implies that for

each n,

µ(In) =
∞∑
k=1

mk∑
j=1

µ(In ∩ Ik,j).

Now we can establish the countable additivity of µ by writing

µ(A) =
N∑
n=1

µ(In)

=
N∑
n=1

∞∑
k=1

mk∑
j=1

µ(In ∩ Ik,j)

=
∞∑
k=1

mk∑
j=1

N∑
n=1

µ(In ∩ Ik,j)

=
∞∑
k=1

mk∑
j=1

µ(Ik,j)

=
∞∑
k=1

µ(Ak).

Theorem E now applies to extend µ to B = σ(A). The proof is finished by noting that µ is σ-finite on

J , because µ((−n, n]) <∞ and (−n, n] ↑ IR. Hence the uniqueness is a consequence of Theorem B.

Higher Dimensions. This can all be generalized to Ω = IRk. We start with the class R of all “bounded

rectangles”, i.e. sets of the form

J = {x ∈ IRk : ai < xi ≤ bi for each i = 1, . . . , k}
= (a1, b1]× (a2, b2]× · · · × (akbk] = ×k1(ai, bi],

including ∅. B(IRk) = σ(R) (or simply B when Ω = IRk is understood) is the Borel σ-field. We could have

allowed unbounded rectangles (i.e. allow ai = −∞, and ∞ for bi]) to obtain a class more analogous to

what we called J previously. This, and many other possibilities, would all generate the same σ-field B. In

particular B is generated by the collection of all open subsets of IRk.

The idea of a distribution function can be generalized and a higher dimensional version of Theorem

E proved; see Billingsley §12. In particular there exists Lebesgue measure `(·) on (IRk,B(IRk)) determined

uniquely by its values on R:

`(×ki (ai, bi]) =
k∏
1

(bi − ai).

(Note that R is a π-system.)

Completeness. A measure space (Ω,F , µ) is called complete if A ∈ F and µ(A) = 0 implies that all subsets

B ⊆ A are also in F . Completeness is important in certain aspects of advanced probability theory. It can

be shown that starting with any measure space (Ω,F , µ) there exists a (smallest) complete extension or

“completion”: (Ω,F+, µ+) where F ⊆ F+ and µ+(A) = µ(A) for all the original A ∈ F .

It turns out that (IRk,B, `) (any k ≥ 1) is not complete. The completed σ-field B+ is the class of

Lebesgue measurable sets. Every Borel measurable set is Lebesgue measurable, but not conversely. There

are still sets which are not Lebesgue measurable. `+ is still called Lebesgue measure. The completed version,

(IRk,B+, `+), is the standard measure space used in treatments of real analysis (such as Math 5225).
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Existence of a Non-Measurable Set

Problem 8 discusses the translation invariance of Lebesgue measure. This is what we need to present the

usual construction of a subset of IR which is not a Borel set. We start by defining x ∼ y (x, y ∈ IR) to mean

that x − y is a rational number. This is what is called an equivalence relation. We need to consider the

equivalence class of x:

Cx = {y ∈ IR : x ∼ y} = {x+ q : q rational }.

If z ∈ Cu ∩ Cv then z = u + p = v + q where p, q are rational, so that u − v = q − p is also rational. I.e.

u ∼ v, so u ∈ Cv and v ∈ Cu. In fact every y ∈ Cu is also in Cv: Cu ⊆ Cv. Thus whenever two equivalence

classes intersect they actually coincide. The equivalence classes form a partition of IR.

Given an equivalence class Cx, Cx ∩ [0, 1) is not empty. (Let q be a rational with |(1
2 − x) − q| < 1

2 .

Then x+ q ∈ Cx and |(x+ q)− 1
2 | <

1
2 so that x+ q ∈ [0, 1).) For each equivalence class C pick exactly one

h ∈ C ∩ [0, 1) and let H be the set of h so chosen. We will show that H /∈ B(IR). To do this we will use the

following translates of H, mod 1. For r ∈ [0, 1) define

Hr = {y ∈ [0, 1) : y = h+ r mod 1, some h ∈ H}
= (H ∩ [0, 1− r)) + r

⋃
(H ∩ [1− r, 1)) + (r − 1).

Since ` is translation invariant (Problem 8) we see that if H ∈ B(IR) the `(H) = `(Hr), and 0 ≤ `(H) ≤ 1.

Let {r1, r2, r3, . . . } be an enumeration of the rational numbers in [0, 1). The key facts are that the Hri

are disjoint and [0, 1) = ∪∞1 Hri . Then if H were in B(IR) we would have

`([0, 1)) = 1 =
∞∑
1

`(Hri) =
∞∑
1

`(H),

which would be 0 if `(H) = 0 or ∞ if `(H) > 0. Either way we have a contradiction! To finish, we need to

check the two key facts.

To see that the Hri are disjoint, suppose that z ∈ Hri ∩ Hrj for some ri 6= rj . Then there would be

hi, hj ∈ H so that z− hi = either ri or ri − 1 and likewise z− hj = rj or rj − 1. Thus hi − hj is rational, so

that hi, hj ∈ H come from the same equivalence class. By construction of H we deduce that hi = hj . This

means that either ri = rj (not possible since we assumed otherwise) or they differ by ±1 (not possible since

both are in [0, 1)). Thus the Hri are disjoint.

Lastly, given any x ∈ [0, 1) there is h ∈ H with x ∼ h. Thus x = h + q for some rational q, which in

fact must be −1 < q < 1 since both x, h ∈ [0, 1). If q ≥ 0 then x ∈ Hq. If −1 < q < 0 then 0 < 1 + q < 1

and x ∈ H1+q. Either way, x ∈ ∪∞1 Hri . Thus [0, 1) = ∪∞1 Hri , as claimed.

Applications to Independence

Working with the concept of independence illustrates the usefulness of the π–λ Theorem. We assume that

(Ω,F , P ) is a probability space and all sets referred to are F-sets.

Definition. Two sets A and B are independent if P (A∩B) = P (A)P (B). We say the sets of a an indexed

list or family {Aθ : θ ∈ Θ} are independent (of each other) if for every selection of a finite number of them,

Aθ1 , . . . , Aθn with the θi distinct, we have

P (∩n1Aθi) = P (Aθ1) · · ·P (Aθn).

In this definition we allow duplicates among the Aθ. This is so that we can talk about sets being independent

of themselves. For instance, the 3 sets Ω,Ω, ∅ are independent. In the notation of the definition we could list
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these as A1 = Ω, A2 = Ω, A3 = ∅; Θ = {1, 2, 3} and say that the sets of {A1, A2, A3} are independent. On

the other hand if P (H) = 1
2 then H is not independent of itself. Thus if B1 = Ω, B2 = ∅, B3 = H, B4 = H

it would be false to say that the sets of {Bθ : θ ∈ {1, 2, 3, 4}} are independent because the definition would

require P (B3 ∩ B4) = P (B3)P (B4), which is false. However {Bθ, θ ∈ {1, 2, 3}} are independent because

the definition’s restriction to distinct θi prevents us from considering H ∩ H. Thus the definition allows

duplicates in the collection of sets Aθ provided they occur with different indices θ ∈ Θ.

This idea generalizes from individual sets to classes of sets.

Definition. Let (Ω,F , P ) be a probability space.

1) Two classes G,H ⊆ F are called independent if A,B are independent for any choice of A ∈ G, B ∈ H.

2) Suppose for each index θ ∈ Θ we have a class Aθ of F-sets. We say that the classes Aθ, θ ∈ Θ are

independent if for each selection of a finite number of distinct indices θ1, . . . , θn ∈ Θ and each choice of

sets Aθi ∈ Aθi , i = 1, . . . , n the sets of {Aθ1 , . . . , Aθ1} are independent.

Theorem F. If the classes A1, · · · ,An are independent, and each is a π-system, then the generated σ-fields

σ(A1) · · · , σ(An)

are independent.

Proof: Observe (for n = 2) that the collection L of those A ∈ σ(A1) which are independent of B ∈ A2 is

a λ-system. (Apply this idea repeatedly.)

Example 12. For any individual set A, A = {A} is a π-system. Thus if Aθ, θ ∈ Θ are independent then

σ(Aθ) = {∅,Ω, Aθ, Acθ} over θ ∈ Θ are independent. Compare this with problem 12 below.

Corollary G. Suppose Aθ, θ ∈ Θ is a collection of independent π-systems. Suppose Θ1 and Θ2 are

disjoint subsets of the index set Θ. Then σ(∪θ∈Θ1Aθ) and σ(∪θ∈Θ1Aθ) are independent. (This extends to

any partition Θ = ∪λ∈ΛΘλ of Θ.)

Proof: Just note that the classA∗1 of finite intersections of sets from ∪Θ1Aθ is a π-system and is independent

of A∗2 (defined analogously).

Example 13. Let Ω = (0, 1] and dn(·) the digits of decimal expansion, as in Unit M. The Borel sets B can

be described as the σ-field generated by the sets {w : dn(w) = k} using all n = 1, 2, . . . and k = 0, 1, . . . , 9.

Consider

• Let Feven be the σ-field generated by the sets {w : dn(w) = k} using just the even n.

• Let Fodd the σ-field generated by the same sets, but using only the odd n.

Then Feven and Fodd are independent. (Notice that An = {∅, {dn = 0}, . . . , {dn = 9}} is a π-system for each

n.) ��

Tail Events

Suppose A1, A2, · · · is a sequence of sets. Consider the following sets

lim supAn = ∩∞n=1 ∪∞k=n Ak = {ω : ω ∈ Ak for infinitely many k} = “{Ak i.o. }”
lim inf An = ∪∞n=1 ∩∞k=n Ak = {ω : ω ∈ Ak for all but a finite number of k}.

If lim supAn = lim inf An, then sometimes we say “An → A”.

Example 14. Consider lim supAn and lim inf An for An = {ω : dn(ω) = 6}. ��
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Notice, if x ∈ lim inf An = ∪∞n=1 ∩∞k=n Ak then x ∈ ∩∞k=n′Ak for some n′, i.e.

x ∈ Ak all k ≥ n′.

Therefore

x ∈ ∪∞k=nAk for all n.

I.e. x ∈ ∩∞n=1 ∪∞k=n Ak = lim supAn. Thus

lim inf An ⊆ lim supAn,

as is clear from the alternate descriptions.

Recall the notions of lim inf and lim sup for sequences {a1, a2, · · · } of real numbers:

lim inf an = lim
n→∞

(inf{an : k ≥ n}).

(The limit always exists if we allow ±∞.) Similarly,

lim sup an = lim
n→∞

(sup{ak : k ≥ n}).

We always have lim inf an ≤ lim sup an. Equality holds (with a finite value) if and only if limn→∞ an exists

(in which case lim an = lim sup an = lim inf an).

Theorem H. P (lim inf An) ≤ lim inf P (An) ≤ lim supP (An) ≤ P (lim supAn). If An → A, then P (An)→
P (A)

Proof: P (lim inf An) = limn→∞ P (∩∞n Ak) ≤ limn infk≥n P (Ak), and similarly for the other half.

The Borel-Cantelli Lemmas are concerned with P (lim supAn)

First Borel-Cantelli Lemma (I). If
∑∞

1 P (An) converges, then P (lim supAn) = 0 .

Proof: Since lim supAn ⊆ ∪k=nAk, for each n, we have

P (lim supAn) ≤
∞∑
k=n

P (Ak)→ 0 as n→∞.

Second Borel-Cantelli Lemma (J). Suppose {An}∞1 is a sequence of independent sets. If
∑∞

1 P (An)

diverges, then P (lim sup An) = 1.

Proof: We will show P ((lim supAn)c) = 0. Since

(∩∞k=nA
c
k) ↑ ∪∞1 ∩∞k=n A

c
k = (lim supAn)c,

we know that P (∩∞k=nA
c
k) ↑ P ((lim supAn)c). It will suffice therefore for us to show that P ((∩∞k=nA

c
k) = 0

for each n. Since the Acn are independent and 1− x ≤ e−x,

P (∩∞k=nA
c
k) = lim

N→∞
P (∩Nk=nA

c
k)

= lim
N→∞

ΠN
k=n(1− P (Ak))

≤ lim
N→∞

e−
∑

N

k=n
P (Ak).
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Since the series diverges,
∑N
k=n P (Ak)→ +∞ as N →∞. Therefore, P (∩∞k=nA

c
k) = 0.

Given a sequence A1, A2, · · · of F-sets, lim supAn and lim inf An are examples of sets which depend on

the An only as n→∞. We can define a special σ-field consisting of all such events, called the “tail σ-field”

associated with the sequence {An}∞1 :

T = ∩∞n=1σ(An, An+1, · · · ).

In particular, lim supAn, lim inf An ∈ T .

The Kolmogorov 0−1 Law (K). If {An}∞1 is a sequence of independent events and A is in the associated

tail σ-field, then P (A) = 0 or 1.

Proof: Corollary G implies that

σ(A1, A2, . . . , An) and σ(An+1, . . . )

are independent, for each n. Since T is contained in the second of these, the following are independent

∪∞1 σ(A1, A2, . . . , An) and T .

But since the left is a π-system,

σ(A1, A2, . . . ) and T

are also independent. Since T is contained in the first of these, we find that T must be independent of itself,

and so for any A ∈ T , A must be independent of itself: P (A) = P (A)2. Hence P (A) must be either 0 or 1.

Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) Let Ω = {1, 2, 3, . . .} and, for each n, let Fn consist those A ⊆ Ω with the property that m′ ∈ A for

some m′ ≥ n implies m ∈ A for all m ≥ n. Show that each Fn is a field and that Fn ⊆ Fn+1. Is Fn a

σ- field ?

b) For any Ω, if F1 ⊆ . . .Fn ⊆ Fn+1 ⊆ . . . are all fields, show that ∪∞1 Fn is also a field. Give an example

to show that even if the Fn are all σ-fields ∪∞1 Fn may fail to be a σ-field.

c) If Fn are all σ-fields (no assumption of order), show that ∩∞1 Fn is also a σ-field.

Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) Let

F = {A ⊆ Ω : either A or Ac is finite }.

Show that F is a field, but is a σ-field if and only if Ω is finite.

b) Let C be as in Example 3. Show C is a σ- field. If Ω = IR find an A /∈ C.

Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let Ω = [0, 1) and take S as defined in Example 2. Define ρ on S by

ρ(A) =

{
1 if [1

2 − ε,
1
2 ) ⊆ A for some ε > 0

0 otherwise.

Show that ρ is finitely but not countably additive.
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Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Given B ⊆ Ω show that

GB = {G ⊆ Ω : either B ⊆ G or B ⊆ Gc}

is a σ-field. As a consequence show that if C ∈ σ(A), and ω, ω′ ∈ Ω with

ω ∈ C and ω′ ∈ Cc

then there must exist A ∈ A with either

ω ∈ A and ω′ ∈ Ac or ω ∈ Ac and ω′ ∈ A.

Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have defined B([0, 1)) and B(IR) separately, but show that

A ∈ B([0, 1)) if and only if A ⊆ [0, 1) and A ∈ B(IR).

Set up each half of the argument following the pattern of our typical problem, and show that (in both cases)

the resulting L is a σ-field. [Hints: for the “only if” part you might take (X) to be the property that

A ⊆ [0, 1) and A ∈ B(IR),

while (X) could be

A ∩ [0, 1) ∈ B([0, 1)).

for the “if” part. You need to be careful about what Ω is – does Ac mean IR \A or [0, 1) \A?]

Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Give an example of Ω, a σ-field F on Ω, and two probability measures P and Q on F for which

L = {A ∈ F : P (A) = Q(A)}

fails to be a σ-field. [Hint: try Ω = {a, b, c, d} and F = all subsets.]

Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let N be a fixed positive integer. Suppose P is a probability measure on (IR,B) with the property that for

every interval (a, b], P ((a, b]) is a multiple of 1/N . Show that P (A) must be a multiple of 1/N for all A ∈ B.

Problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose λ is a measure on (IR,B) which is translation invariant :

λ(A+ x) = λ(A) for all x ∈ IR, A ∈ B.

(Here A+ x = {a+ x : a ∈ A}.) If λ((0, 1]) <∞ show that λ(·) = α`(·) for some constant α. [Hints: What

must the value of α be? First consider all intervals of length 1, then length 1/2, then length 1/4, . . . .]

Problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose µ and ν are finite measures on (Ω,F) and F = σ(G) where G is a field. Suppose ν(G) ≤ µ(G) for

all G ∈ G. Show that ν(A) ≤ µ(A) for all A ∈ F . [Hint: set up following our typical problem and apply the

Monotone Class Theorem.]
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Problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let P be a probability measure on (IR,B). Show that P must be tight ; i.e. for every A ∈ B and ε > 0 there

is a compact set K ⊆ A with P (A) − P (K) ≤ ε. [Hint: the class of A for which this holds can be shown

(with some effort) to be a monotone class.]

Problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider (IR,F , ν) where F = B (the Borel sets) and ν is counting measure on the integers:

ν(A) = the number of integers k ∈ A.

Suppose (IR,F+, ν+) is the completion. Describe the sets in F+.

Problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Show directly that if A,B,C are independent, then Ac,B,C are independent.

Problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose that A, B and C are events such that A and B are independent, B and C are independent and A

and C are independent. Are A, B and C necessarily independent? Prove or give a counterexample.

Problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Show that P (A∩B∩C) = P (A)P (B)P (C) alone does not imply that A, B and C are independent. However

show that P (A∩B ∩C) = P (A)P (B)P (C) for all A ∈ A, B ∈ B and C ∈ C does imply that A, B and C are

independent provided A, B and C are fields.

Problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose that A1, A2, . . . , AN are independent sets. Show that Ac1, Ac2, . . . , AcN are independent sets.

Problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose P (lim supAn) = 1 and P (lim inf Bn) = 1. Show that P (lim supAn ∩ Bn) = 1. However if the

requirement on the Bn is weakened to P (lim supBn) = 1 then give an example to show that P (lim supAn ∩
Bn) can be < 1.

Problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose that A1, A2, . . . is a sequence of independent sets, each with P (An) = 1/2. Define

Yn(ω) =

{
1 if ω ∈ An
−1 if ω /∈ An.

The Central Limit Theorem says that the distribution of

N−1/2
N∑
n=1

Yn(ω)

converges (as N → ∞) to the standard normal distribution, which gives probability 1/2 to the values < 0.

However show that the Kolmogorov 0-1 Law implies

P

(
{ω : lim

N→∞
N−1/2

N∑
n=1

Yn(ω) < 0}
)
6= 1/2.

(Does this surprise you? In fact the above probability is = 0, though you are not being asked to show that.)
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Unit II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Random Variables and Measurable Functions

Suppose (Ω,F , P ) is a a probability space. A random variable X is a quantity whose value is determined

by the specification of an ω ⊂ Ω. In other words X is a function, X : Ω → IR. We want to be able to

calculate quantities such as

P (X = a) = P ({ω : X(ω) = a})
P (−2 ≤ X < 7) = P ({ω : X(ω) ∈ [−2, 7)})

For these sets of ω to be in F there needs to be some compatibility between X and F .

Definition. Given a measurable space (Ω,F), a function X : Ω → IR is called a random variable if for

every x ∈ IR, {ω ∈ Ω : X(ω) ≤ x} ∈ F .

Example 1. Let Ω = [0, 1), F = B the Borel sets and P = ` (Lebesgue measure). The digits of decimal

expansion dn(·) of Unit M are random variables, because {ω : dn(ω) ≤ x} is a finite union of intervals, i.e.

a set in S ⊆ B. ��

Notation. If A ⊆ Ω its indicator function is

1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A.

(Other common notations are IA(·) and χA(·).) 1A is a random variable if and only if A ∈ F .

Measurable Mappings

Notation. If T : Ω→ Γ is a mapping and B ⊆ Γ, the notation T−1B refers to the following subset of Ω:

T−1B = {ω ∈ Ω : T (ω) ∈ B}.

(There is no presumption here that T−1 exists as an inverse function. For instance if T (ω) = 0 for all ω then

T−1{0} = Ω.)

The definition of random variable above says

X−1(−∞, x] ∈ F for every x ∈ IR.

It is simple to check that for any X : Ω→ IR the class

G = {B ⊆ IR : X−1B ∈ F}

is a σ-field – see problem 1. Let A = {(−∞, x] : x ∈ IR}. The definition of X being a random variable

says A ⊆ G. Therefore σ(A) ⊆ G. But notice that σ(A) = B, the Borel sets in IR. Thus if X is a random

variable, then X−1B ∈ F for all Borel sets B ∈ B. Therefore P (X ∈ B) is defined for every Borel set. This

shows that our definition of random variable is a special case of the following more general concept.

Definition. If (Ω,F) and (Γ,H) are two measurable spaces, then T : Ω → Γ is called F/H measurable if

T−1A ∈ F whenever A ∈ H.

Thus a random variable X is an F/B measurable map X : Ω→ IR.
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Theorem A. Suppose (Ω,F) and (Γ,H) are measurable spaces, and T : Ω→ Γ.

1) If H = σ(A) and T−1A ∈ F for every A ∈ A, then T is F/H measurable .

2) If T is F/H measurable, (Θ,M) is another measurable space and S : Γ → Θ is H/M measurable,

then S ◦ T is F/M measurable.

Lebesgue vs. Borel. Recall that associated with Lebesgue measure ` on IR, there is a larger σ-field B+

called the Lebesgue measurable sets. So there is more than one type of measurability for f : IR → IR (or

f : IRd → IRr, though we assume d = r = 1 in this discussion). The two most common are B/B (Borel) and

B+/B (Lebesgue).

• f is Borel measurable if f−1(−∞, x] ∈ B for all x.

• f is Lebesgue measurable if f−1(−∞, x] ∈ B+ for all x.

• If f is Borel measurable, then f is Lebesgue measurable, since B ⊆ B+. But not conversely.

• If f and g are both Borel measurable, then f ◦ g is also Borel measurable.

• If f and g are both Lebesgue measurable, f ◦ g may fail to be Lebesgue measurable.

Treatments of real analysis typically use Lebesgue measurability as the standard, but the last point above

makes this choice inconvenient for other settings. Our convention will be that on IR (or IRk) we will always

assume the Borel σ-field B is intended, unless otherwise specified.

Vectors vs. Components. Suppose we have several fi = Ω → IR; i = 1, . . . , k. We can consider them

individually, and ask that they each be measurable F/B(IR): f−1
i (a, b] ∈ F all a < b. Or we can view them

as the coordinates of a single “vector-valued” f = (f1, . . . , fk), so that f : Ω → IRk , and ask that f be

F/B(IRk) measurable. How do these two notions compare?

Suppose first that each fi is measurable. Consider any bounded rectangle J ⊆ IRk in R, J = ×k1(ai, bi].

The measurability of each fi implies that each f−1
i (ai, bi] ∈ F . Hence

f−1J = ∩k1f−1
i (ai, bi] ∈ F .

Since R generates B(IRk), it follows that f is F/B(IRk) measurable.

On the other hand, if f is measurable in the vector sense then for any i and c ∈ IR, let

A = {(x1, . . . , xk) ∈ IRk : xi ≤ c}.

Since A ∈ B(IRk) we know that f−1A ∈ F . But

f−1A = {ω ∈ Ω : fi(ω) ≤ c} = f−1
i (−∞, c].

Since this is in F for all c, we conclude that fi is measurable, for each i.

Thus a “vector-valued” function f(·) = (f1(·), . . . , fk(·)) is B(IRk) measurable if and only if each of the

component functions fi(·) is B(IR) measurable. If the underlying space on which f and the fi are defined is

a probability space (Ω,F , P ) we call f a random vector .

Sufficient Conditions for Measurability

Extended Real Numbers. The discussion of limits in Theorem D below is streamlined by using the

extended real numbers IR∞ = [−∞,∞], as described in Unit S. The σ-field of Borel sets in IR∞ can be

defined as B(IR∞) = σ(J∞) where J∞ is the class of all intervals (a, b], −∞ ≤ a ≤ b ≤ ∞. Functions

f : Ω → IR∞ are just like ordinary functions except that we allow the values f(ω) = ±∞. Here are some
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facts relating B(IR∞) measurability to B(IR) measurability. Of course (Ω,F) is assumed to be a measurable

space.

• A ∈ B(IR∞) if and only if A ∩ IR ∈ B(IR).

• f : Ω → IR∞ is F/B(IR∞) measurable if and only if the sets {ω : f(ω) = −∞} and {ω : f(ω) = ∞}
are in F and f−1B ∈ F for all Borel subsets B ⊆ IR of the usual real numbers, B ∈ B(IR).

Note that B(IR∞) = σ(A) where A consists of all [−∞, x], x ∈ IR (finite). Thus f : Ω→ IR∞ is measurable

if and only if f−1[−∞, x] = {ω : f(ω) ≤ x} ∈ F for all x ∈ IR.

The next several results make verifying measurability rather easy for most functions we want to work

with.

Theorem B. If f : IRd → IRr is continuous, then it is measurable (Borel).

Corollary C. If fi : Ω→ IR is F/B measurable for each i = 1, . . . , k and g : IRk → IR is continuous, then

g(f1(ω), . . . , fk(ω))

is measurable.

Proofs: . . .

Example 2. If fi are measurable, then sin(f1(ω))e
−2

f2(ω)∧f3(ω)

(f4(ω))2+1 is measurable. ��

Theorem D. Suppose fn : Ω→ IR∞ is a sequence of F measurable functions.

1) Each of the functions

sup
n
fn, inf

n
fn, lim inf fn, lim sup fn

are also F measurable.

2) L = {ω : lim fn(ω) converges } ∈ F and 1L · lim fn is measurable.

3) If g is any other measurable function defined on Ω, then

{ω : g(ω) = lim fn(ω)} ∈ F .

In 2) we are interpreting “lim fn converges” is the strict sense: finite values only.

Proof:

Part 1): Since supn an ≤ x if and only if an ≤ x for all n, we can write

{ω : sup
n
fn(ω) ≤ x} = ∩n{ω : fn(x) ≤ x} ∈ F .

Since infn an = − supn(−an), inf fn = − sup(−fn). If fn is measurable then −fn is also measurable (because

g(x) = −x is continuous). Hence − sup(−fn) = inf fn is measurable. Next notice that

lim sup an = lim
n→∞

[sup
k≥n

ak] = inf
n

[sup
k≥n

ak],

because An = supk≥n ak is nonincreasing: An+1 ≤ An. So we can conclude that

lim sup fn = inf
n

[sup
k≥n

fk]

is measurable, and similarly for lim inf fn = supn[infk≥n fk].
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Part 2): First observe that if g : Ω→ IR∞ is measurable and B ∈ F , then

1B(ω)g(ω) =

{
g(ω) if ω /∈ B
0 if ω ∈ B

is measurable.

(Note that our convention of 0 · ∞ = 0 is convenient here.) To check this, for any A ∈ B(IR∞) we have

(1Bg)−1A =
[
(g−1A) ∩B

]
∪
{
Bc if 0 ∈ A
∅ if 0 /∈ A

.

Now we want to show that the following set is measurable:

L = {ω : lim inf fn(ω) = lim sup fn(ω) and are finite}.

It would be nice if we could simply let h(ω) = lim inf fn(ω)− lim sup fn(ω) and then say L = h−1{0}. The

difficulty with this is that h(ω) may be undefined (∞−∞). To get around this, let

A = {lim inf fn = ±∞} ∪ {lim sup fn = ±∞}

and define

F (ω) =

{
lim inf fn(ω) if ω /∈ A
−1 if ω ∈ A

G(ω) =

{
lim sup fn(ω) if ω /∈ A
+1 if ω ∈ A

.

These are measurable, and finite valued. Therefore F −G is defined and measurable, and we can conclude

that

L = {ω : F (ω) = G(ω)} = {ω : F (ω)−G(ω) = 0}

is indeed measurable. To finish the proof of 2) notice that 1L · lim fn = 1L · lim inf fn.

Part 3): We can show that G = {lim inf fn = g both finite } ∈ F , by the same technique as in 2). Now

observe that

{ω : lim fn(ω) = g(ω)} = L ∩G.

Example 3.. (Refer to Problem I.15 for notation.) Let F = σ({A1, A2, . . . }) and

C = {ω : lim
1√
N

N∑
1

Yi(ω) < 0}.

Let fn = 1√
n

∑n
1 Yi, which is measurable by Corollary C. Then by 2) of Theorem D,

L = {ω : lim fn(ω) converges} ∈ F ,

and so

C = L ∩ (lim inf fn)−1(−∞, 0) ∈ F .

��

Example 4. Going back to Unit M again, Ω = [0, 1), F = B and each dn is measurable. Corollary C says

that for each n, 1
n

∑n
1 dk(ω) is measurable function, and so Theorem D says

H = {ω : lim
1

2

n∑
1

dk(ω) = 4.5}

is indeed a B measurable set. ��



II: 5

Simple Functions. A random variable, or function, f : Ω→ IR is called simple if it has finite range. This

means we can write

(1) f(ω) =
n∑
1

xi1Ai(ω)

where Ai ∈ F are disjoint, Ω =
n
∪
1
Ai and xi ∈ IR are the distinct values in the range. (Ai = {ω : f(ω) =

xi} = f−1{xi}.) Even if the xi are not distinct and Ai ∈ F are not disjoint, the above formula still produces

a simple function. See problem 2.

Lemma E. If f is real-valued and F measurable, there exists a sequence {fn} of F measurable simple

functions with

0 ≤ fn(ω) ↑ f(ω) if f(ω) ≥ 0

0 ≥ fn(ω) ↓ f(ω) if f(ω) < 0

Proof: Just check that fn = φn ◦ f works, where φn : IR→ IR is the simple function

φn(x) =


n if x > n

k2−n if k2−n < x ≤ (k + 1)2−n for some 0 ≤ k ≤ n2n − 1

−k2−n if − k2−n ≥ x > −(k + 1)2−n

−n if x ≤ −n.

Generated Sigma-Fields and Functional Dependence

Suppose T : Ω → Γ and H is a σ-field on Γ. Any σ-field F on Ω with respect to which T is measurable

must contain all the sets T−1B,B ∈ H. If we have several Xi : Ω → Γ, i = 1, 2, 3, . . . then for them all to

be F/H measurable means F contains X−1
i B for all i, all B ∈ H. Let

A = {X−1
i B : B ∈ H, some i}.

Thus all the Xi are measurable if and only if A ⊆ F . Therefore

σ(A) = σ(Xi : i = 1, 2, . . . ), or simply σ(Xi)

is the smallest σ-field on Ω with respect to which the Xi are all measurable. σ(Xi) is called the σ-field

generated by the Xi. Note that in the case of a single mapping, A is already a σ-field:

σ(T ) = {T−1B : B ∈ H}.

Intuitively the sets A ∈ σ(Xi) are ones that can be distinguished by the values of Xi alone. I.e. to tell

if ω ∈ A it ought to be enough to know the values of the Xi(ω); knowing ω itself should not be necessary.

This is essentially correct.

Example 5. Let Ω = IR2 and T (x, y) = x+ y. The sets A ∈ σ(T ) are all made up of unions of lines of the

form x+ y =constant. (But not all such unions are in σ(T ).) ��
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Example 6. Let Ω = [0, 1) and dn : Ω→ {0, 1, . . .9} as in Unit M. Consider σ(d1), σ(d1, d2) and σ(d1, d2, d3)

. . . The sequence of sigma-fields Fn = σ(di : i = 1, . . . , n) (sometimes called a “filtration”) represents the

increasingly refined knowledge about ω ∈ Ω that is available as we collect the information revealed by

d1(ω), . . . , dn(ω) for increasing n. ��

Theorem F. Suppose X1, . . . , Xn are random variables, Xi : Ω→ IR.

1) A ∈ σ(X1, X2, . . . , Xn) if and only if A can be written as

A = {ω ∈ Ω : (X1(ω), . . . , Xn(ω)) ∈ H}

for some H ∈ B(IRn).

2) Y is a σ(X1, . . . , Xn) measurable random variable if and only if

Y (ω) = f(X1(ω), . . . , Xn(ω))

for some measurable function f : IRn → IR.

Proof: For 1) consider the following classes of subsets of Ω:

M = {X−1H : H ∈ B(IRn)}, F = σ(X1, . . . , Xn).

Since (see page II.2) X = (X1, . . . , Xn) is F/B(IRn) measurable,M⊆ F . On the other hand you can check

thatM is a σ-field. X isM/B(IRn) measurable. This implies that each Xi isM/B(IRn) measurable, which

implies that F ⊆M. ThereforeM = F .

For 2) Theorem A tells us that if Y = f ◦ X then X is F/B(IRn) measurable, then Y is F/B(IR)

measurable. Conversely, suppose Y is F/B(IR) measurable. First consider Y = 1A for A ∈ F . By 1) this

implies A = X−1H for some H ∈ B(IRn). Therefore

Y (ω) = 1A(ω) = 1H(X1(ω), . . . , Xn(ω)),

proving Y = f ◦X for f = 1H . If Y =
∑M

1 ym1Am with Am = X−1Hm, Hm ∈ B(IRn) then we write

Y (ω) =
M∑
1

ym1Am(ω)

=
M∑
1

ym1Hm(X(ω))

= f(X(ω)) where f =
M∑
1

ym1Hm.

For the general case take a sequence of simple Yj with |Yj | ≤ |Y | and Yj → Y . We know that Yj = fj ◦X
for Borel measurable fj. Define

A0 = {x ∈ IRn : lim
j→∞

fj(x) converges} and f(x) = lim 1A0(x)fj(x).

Then f is B(IRn)/B(IR) measurable. Since we know Yj(ω) = fj(X(ω))→ Y (ω), we conclude that X(ω) ∈ A0

for each ω and therefore Y (ω) = f(X(ω)).
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Induced Measures and Distributions

Suppose (Ω,F) and (Γ,H) are measurable spaces, T : Ω → Γ is F/H measurable and µ is a measure on

(Ω,F). For any B ∈ H we know T−1B ∈ F , so µ(T−1B) is defined. Thus

ν(B) = µ(T−1B)

assigns numerical ([0,∞]) values to those B ⊆ Γ which are in H. We can easily check that in fact ν is a

measure on (Γ,H):

T−1∅ = ∅ implies ν(∅) = µ(∅) = 0.

If B1, B2, · · · ∈ H are disjoint, then T−1Bi ∈ F are disjoint. (If ω ∈ T−1Bn ∩T−1Bm then T (ω) ∈ Bn ∩Bm,

contradicting the disjointness.) Since T−1(∪Bn) = ∪(T−1Bn),

ν(∪Bn) = µ(T−1(∪Bn))

= µ(∪T−1Bn) =
∑

µ(T−1Bn)

=
∑

ν(Bn).

Sometimes we use the notation

ν = µT−1.

Think of ν as the measure on Γ resulting from applying the map T to the measure µ on Ω; the measure

induced on Γ by µ and T . If µ is a probability measure, then so is ν:

ν(Γ) = µ(T−1Γ) = µ(Ω) = 1.

In the case of a random variable X : Ω → IR defined on a probability space (Ω,F , P ), the induced

measure νX = PX−1 on (IR,B) is called the distribution (or sometimes the law) of X : for any B ∈ B(IR),

νX(B) = P (X−1B) = P ({ω ∈ Ω : X(ω) ∈ B})
= “P (X ∈ B)” for short.

Statements like “X is a standard normal random variable”, or “X has Poisson distribution with parameter

λ” are describing the distribution of X , i.e. probabilities P (X ∈ B). Such statements do not tell us what

(Ω,F , P ) is, or the specific definition of X(ω) for ω ∈ Ω.

The distribution function of X is

FX(x) = νX((−∞, x]) = P (X ≤ x).

Thus FX completely determines the distribution νX , according to Theorem II.E, but it doesn’t say much at

all about P .

Example 7. Are all standard normal random variables the same? ��

When we have several random variablesXi; i = 1, . . . , n we can talk about their individual or “marginal”

distributions, νXi , but more information is contained in their joint distribution which is the measure induced

on (IRn,B(IRn)) by the random vector X = (X1, . . . , Xn).

Finally, independence of random variables is defined to mean independence of their generated σ-fields.

For instance X1, X2, . . . are independent if the σ(Xi) are independent.
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Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose (Ω,F) and (Γ,H) are measurable spaces and T : Ω→ Γ is a mapping.

a) Show that both of the following define σ-fields:

G = {B ⊆ Γ : T−1B ∈ F}
K = {A ⊆ Ω : A = T−1B for some B ∈ H}.

b) Show that both H ⊆ G and K ⊆ F are equivalent ways of saying that T is F/H measurable.

c) If F = {∅,Ω} and H contains all singleton sets {Ω}, show that T is measurable if and only if T is a

constant mapping.

Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider a simple function f expressed by (1). If the xi are distinct show that f is measurable if and only

if the Ai are measurable. However if the xi are not distinct, show that f can be measurable even if some of

the Ai are not.

Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose f, g : Ω→ IR and F is a σ-field on Ω. Show that f(ω) + g(ω) < c if and only if there exist rational

numbers r, s such that r + s < c, f(ω) < r and g(ω) < s. Use this to give a direct proof that f + g is

measurable if both f and g are.

Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose that X is a random variable whose distribution function F is continuous and strictly increasing.

Show that F (X) is a random variable with uniform distribution on [0, 1], i.e. P (F (X) ≤ x) = x for 0 ≤ x ≤ 1.

Can you do this assuming that F is continuous but only non-decreasing? What if F can be any probability

distribution function (not necessarily continuous)?

Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let Ω = (−π, π] with the Borel sets and define P (·) = 1
2π `(·). Let X(ω) = sin(ω) and Y = cos(ω). Compute

the distribution functions of X and Y . Are X and Y independent?

Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose X1, X2, . . . is a sequence of independent random variables defined on a probability space (Ω,F , P ).

a) Define the tail σ-field T associated with the Xi.

b) Prove Kolmogorov’s 0-1 Law in this context.

c) Show that any random variable Z which is measurable with respect to T must be constant almost surely;

i.e. there must exist a constant c and a set N ∈ T with P (N) = 0 so that Z(ω) = c for all ω /∈ N .

d) Show that

lim
n→∞

1

n

n∑
i=1

Xi

either diverges with probability 1 or converges with probability 1, and in the latter case there is a

constant c so that the limit = c with probability 1.
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Unit III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Integration and Expectation

The careful development of measure theory now begins to produce its benefits. The measure-theoretic

integral (alias expectation in probability theory) is one of the most powerful and important tools of modern

analysis, including probabilistic analysis.

Suppose X : Ω→ IR is a random variable, defined on a probability space (Ω,F , P ). We want to be able

to discuss its expected value “E[X ]”, second moment “E[X2]”, or more generally

E[φ(X)]

where φ : IR → IR is any measurable function. There are some settings in which you may already have an

idea of how to do this.

Example 1. Suppose the distribution of X is given in terms of a density function p(·):

P (X ≤ a) =

∫ a

−∞
p(x) dx.

Then you will probably agree with

E[φ(X)] =

∫ ∞
−∞

φ(x)p(x) dx.

��

Example 2. If Ω is countable Ω = {ω1, ω2, . . . } with P ({ωi}) = pi, then

E[φ(X)] =
∑

φ(X(ωi)) · pi.

(Such pi are sometimes called a “frequency function”.) ��

In general, for a measurable space (Ω,F , µ) and a measurable function f : Ω→ IR we are going to define

the integral of f with respect to µ: ∫
f(ω)µ(dω), or

∫
f dµ for short.

Expectations are just the case of a probability measure:

E[X ] =

∫
X dP, E[φ(X)] =

∫
φ(X(ω))P (dω).

An important special case is when µ = `, Lebesgue measure on (IR,B). In that setting the integral∫
f(x) `(dx) that we define here is called the Lebesgue integral, a powerful extension of the Riemann integral∫∞
−∞ f(x) dx that you studied in calculus. The Lebesgue integral exists for a broader collection of functions

f(·) than the Riemann, and has a more complete set of properties for manipulations. But when both exist,

they agree: ∫
[a,b]

f(x) `(dx) =

∫ b

a

f(x) dx.

(See Problem 6 also.) This allows us to use the various techniques of integration learned in calculus to

evaluate the more sophisticated integral with respect to Lebesgue measure.

The definition of
∫
f dµ is not hard to understand. Consider a measure space (Ω,F , µ) and a nonnegative

function f ≥ 0. If we believe
∫
f dµ should give the “area under the graph” of y = f(ω), using µ to measure

the “size” of subsets of Ω, then for f = 1A the value of the integral should certainly be∫
1A dµ = µ(A).



III: 2

If the integral is also to obey the usual rules,∫
c · f dµ = c

∫
f du,

∫
f + g dµ =

∫
f dµ+

∫
g dµ,

(c = a constant) then for a simple function

(1) f(ω) =
n∑
1

xi1Ai(ω),

with xi ≥ 0 and Ai ∈ F , its integral (over Ω with respect to µ) must be given by:

(2)

∫
f dµ =

n∑
1

xiµ(Ai).

Notice that if µ(Ω) =∞ then
∫

0 dµ = 0 implies the convention 0 · ∞ = 0, mentioned in the Mathematical

Supplements.

The Definition and Elementary Properties

The definition below refers to “partitions” of Ω. We will call {Ai}n1 a partition of Ω if each Ai ∈ F , the Ai
are disjoint and ∪n1Ai = Ω.

Formula (2) for nonnegative simple functions (1) is natural enough. The extension to measurable f ≥ 0

in general is also reasonable. First consider f ≥ 0. The idea is that
∫
f dµ should be the supremum of the

values of
∫
ψ dµ over all (measurable) simple functions ψ with 0 ≤ ψ ≤ f . For a given partition Ω = ∪n1Ai,

the largest such simple function is ψ =
∑
xi1Aiusing xi = infAi f . For this ψ, formula (2) says∫
ψ dµ =

n∑
1

[inf
Ai
f ]µ(Ai).

This explains the first part of the definition below. Note that by allowing +∞ as a value,
∫
f dµ is always

defined for f ≥ 0.

For f in general, we split f into its positive and negative parts, f± : Ω→ [0,+∞] defined by

f+(ω) =

{
f(ω) if f(ω) ≥ 0

0 if f(ω) < 0
= f ∨ 0,

f−(ω) =

{
0 if f(ω) > 0

−f(ω) if f(ω) ≤ 0
= −(f ∧ 0).

Note that both f± ≥ 0 (so that both
∫
f± dµ are defined) and that f(ω) = f+(ω) − f−(ω). The definition

is
∫
f dµ =

∫
f+ dµ −

∫
f− dµ. The convention that ∞−∞ is undefined means that some integrals must

remain undefined. For instance the integral of

f(x) = 1[0,∞) − 1(−∞,0)

with respect to Lebesgue measure is undefined, because
∫
f d` = 1 · ∞ − 1 · ∞ =∞−∞.

Definition of Integral. Suppose (Ω,F , µ) is a measure space and f : Ω → [−∞,∞] is measurable. If

f ≥ 0 for all ω then we define∫
f(ω)µ(dω) = sup

{∑
[inf
Ai
f ]µ(Ai) : {Ai} is a finite partition of Ω into F sets

}
.
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In general ∫
f(ω)µ(dω) =

∫
f+ dµ−

∫
f− dµ,

unless both
∫
f± dµ = +∞ in which case

∫
f dµ is considered undefined. We say f is integrable with respect

to µ (or µ-integrable) if both
∫
f± dµ <∞. If A ∈ F , the integral of f over A is defined by∫

A

f dµ =

∫
1Af dµ.

Notice that if one of
∫
f± dµ is finite but the other is +∞, then

∫
f dµ isdefined (= ±∞) although f is not

integrable. You may occasionally see the notation µ(f) instead of
∫
f dµ.

The next two theorems collect the important elementary properties of the integral which are conse-

quences of the definition above. Theorem A concerns nonnegative functions; Theorem B is about integrable

functions.

We say some property holds almost everywhere (a.e.) if there is B ∈ F with µ(B) = 0 so that the

property holds for all ω /∈ B. (If µ = P is a probability measure, we also say almost surely (a.s.)) For

instance to say f ≥ g a.e. means that there exists B with µ(B) = 0 so that f(ω) ≥ g(ω) for all ω except the

ω ∈ B.

Theorem A. Suppose f, g : Ω→ IR∞ are nonnegative measurable functions.

1) If f =
∑m

1 yj1Bj (yj ≥ 0, Bj ∈ F) then

∫
f dµ =

m∑
1

yjµ(Bj).

2) If f = g a.e., then
∫
f dµ =

∫
g dµ

3) If f ≤ g, a.e., then
∫
f dµ ≤

∫
g dµ

4) If α, β ≥ 0 then
∫

(αf + βg) dµ = α
∫
f dµ+ β

∫
g dµ.

5) If µ({ω : f(ω) > 0}) > 0, then
∫
f dµ > 0

6) If
∫
f dµ <∞ then f <∞ a.e.

Theorem B. Suppose f, g are integrable.

1) If f ≤ g a.e., then
∫
f dµ ≤

∫
g dµ

2) If α, β ∈ IR, then (αf + βg) is also integrable, and
∫

(αf + βg) dµ = α
∫
f dµ+ β

∫
g dµ

3) |
∫
f dµ| ≤

∫
|f | dµ.

Comments.

• A1) says that the definition produces what we expected for simple functions.

• f is integrable if and only if both
∫
f± dµ <∞, which is equivalent to∫

f+ dµ+

∫
f− dµ =

∫
f+ + f− dµ =

∫
|f | dµ <∞.

• If g is integrable and |f | ≤ |g| then f is integrable.

• The integral
∫
f dµ is blind to what f does on any particular set of measure 0. This is reΩected in all

the “a.e.”s.

• f = g a.e. implies f± = g± a.e. which implies
∫
f dµ =

∫
g dµ.

• If
∫

is replaced by
∫
A, then all of the above remain true with “a.e.” replaced by “a.e. on A”, with the

obvious meaning.
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• A,B ∈ F disjoint and f integrable (or nonnegative) implies
∫
A∪B f dµ =

∫
A
f dµ +

∫
B
f dµ. This is

simply because 1A∪Bf = 1Af + 1Bf .

Proof of Theorem A: First we record a simple fact. Suppose {Ai}n1 and {Bj}m1 are both partitions of

Ω and

φ =
n∑
1

xi1Ai , ψ =
m∑
1

yj1Bj

are simple functions with φ(ω) ≤ ψ(ω) for all ω. Then

(3)
n∑
1

xiµ(Ai) ≤
m∑
1

yjµ(Bj).

(Until A1 is proven we have no right to call these expressions
∫
φ or

∫
ψ.) Notice that if µ(Ai ∩ Bj) > 0

then there exists ω ∈ Ai ∩Bj , and so xi = φ(ω) ≤ ψ(ω) = yj. This shows that xiµ(Ai ∩Bj) ≤ yjµ(Ai ∩Bj).
Clearly the same inequality is also true if µ(Ai ∩Bj) = 0. Thus (3) follows from writing

n∑
1

xiµ(Ai) =
n∑
i=1

m∑
j=1

xiµ(Ai ∩Bj) ≤
n∑
i=1

m∑
j=1

yjµ(Ai ∩Bj) =
m∑
1

yjµ(Bj).

We can now prove A1) under the additional assumption that the Bj , j = 1, . . . ,m are disjoint. By

including one additional Bm+1 and ym+1 = 0 we get a partition {Bj}m+1
1 and

∑
yjµ(Bj) does not change

since ym+1µ(Bm+1) = 0. Now consider any partition {Ai}n1 and let φ =
∑

[infAi f ]1Ai. Then since φ ≤ f ,

(3) tells us that
∑

[infAi f ]µ(Ai) ≤
∑
yjµ(Bj), which according to the definition of

∫
f dµ means that∫

f dµ ≤
∑

yjµ(Bj).

For {Ai} = {Bj} in particular, φ = f in which case (3) implies
∑

[infAi f ]µ(Ai) =
∑
yjµ(Bj). This means

that
∫
f dµ ≥

∑
yjµ(Bj). We conclude then that

(4)

∫
f dµ =

∑
yjµ(Bj), if 0 ≤ f =

∑
yj1Bjwith Bj disjoint.

Suppose f(ω) ≤ g(ω) for all ω. Consider any partition {Ai}. Then infAi f ≤ infAi g and so

∑
[inf
Ai
f ]µ(Ai) ≤

∑
[inf
Ai
g]µ(Ai) ≤

∫
g dµ.

We conclude that
∫
f dµ ≤

∫
g dµ, giving us a preliminary version of A3).

We next establish the following fact, which is the precursor of the convergence theorems D, E and F

below.

Approximation Lemma. Suppose 0 ≤ φn are measurable simple functions such that φn ↑ f , for every ω.

Then
∫
φn dµ ↑

∫
f dµ.

Since φn ≤ f we know from above that
∫
φn dµ ≤

∫
f µ for all n, so that lim sup

∫
φn dµ ≤

∫
f dµ. So the

lemma will follow if we can show lim inf
∫
φn dµ ≥

∫
f dµ. For this it suffices to show

(5) lim inf

∫
φn dµ ≥

∫
ψ dµ
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for any simple 0 ≤ ψ ≤ f . Consider such a ψ. Then

ψ =
∑
j

yj1Bj φn =
∑
i

xni 1An
i
,

where {Bj}m1 is a partition and, for each n, {Ani }kn1 is a partition. Pick an arbitrary ε > 0 and define

Bnj = {ω ∈ Bj : φn(ω) ≥ yj(1− ε)} = ∪xn
i
≥yj(1−ε)A

n
i ∩Bj .

Then Bnj ↑ Bj as n→∞, so µ(Bnj ) ↑ µ(Bj). Based on this,∫
φn dµ =

∑
j

∑
i

xni µ(Ani ∩Bj)

=
∑
j

 ∑
xni <yj(1−ε)

xni µ(Ani ∩Bj) +
∑

xni ≥yj(1−ε)
xni µ(Ani ∩Bj)


≥
∑
j

[0 + yj(1− ε)µ(Bnj )]→ (1− ε)
∑
j

yjµ(Bj) = (1− ε)
∫
ψ dµ.

Since ε > 0 was arbitrary, (5) follows, proving the lemma.

Proof (Theorem A continued): We can now prove A4). First suppose f =
∑
xi1Aiand g =

∑
yj1Bj

are simple, the {Ai} and {Bj} being partitions. Let Cij = Ai∩Bj . Then {Cij} is a partition and αf +βg =∑
(αxi + βyj)1Cij is also a simple function. By (3) we can write∫

αf + βg dµ =
∑
i

∑
j

(αxi + βyj)µ(Ai ∩Bj)

= α
∑
i

xiµ(Ai) + β
∑
j

yjµ(Bj) = α

∫
f dµ+ β

∫
g dµ.

In general there exist simple fn, gn ≥ 0 with fn ↑ f and gn ↑ g. Then each αfn+βgn is simple and ↑ αf+βg.

The lemma above can now be used to see that∫
αf + βg dµ = lim

∫
αfn + βgn dµ = α lim

∫
fn dµ+ β lim

∫
gn dµ = α

∫
f dµ+ β

∫
g dµ.

A1) now follows from A4), even if the Bj are not disjoint.

Suppose N ∈ F with µ(N) = 0, {Ai} is any partition and f ≥ 0 is measurable. If infAi [f1N ] > 0 then

Ai ⊆ N so that µ(Ai) = 0. Hence
∑

infAi [f1N ]µ(Ai) = 0 for all partitions, which means∫
f1N dµ = 0.

If {f 6= g} ⊆ N then since f = f1N + f1Nc and f1Nc = g1Nc ,∫
f dµ =

∫
f1N dµ+

∫
f1Nc dµ

=

∫
f1Nc dµ

=

∫
g1Nc dµ

=

∫
g1N dµ+

∫
g1Nc dµ =

∫
g dµ.
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This establishes A2).

If µ(N) = 0 and {f 6≤ g} ⊆ N , then f1Nc ≤ g1Nc so that we can use our preliminary version of A3) to

conclude ∫
f dµ =

∫
f1Nc dµ ≤

∫
g1Nc dµ =

∫
g dµ,

proving A3) in general.

Consider A5). Let An = {ω : f(ω) ≥ 1/n}. Then An ↑ {f > 0} and so µ(An) ↑ µ({f > 0}) which is

> 0 by assumption. Hence µ(An) > 0 for some n. But then f ≥ 1
n1An , from which we conclude∫

f dµ ≥
∫

1

n
1Andµ =

1

n
µ(An) > 0.

Finally, for A6), let A = {f = +∞}. Since ∞1A ≤ f ,

∞µ(A) =∞
∫

1A dµ ≤
∫
f dµ <∞,

which implies that µ(A) = 0.

Example 3. Ω = {1, 2, 3, . . .} and µ = counting measure. Then f : Ω→ IR is just a sequence, f(n) = fn:

f(ω) =
∞∑
1

fn1{n}(ω).

Let ψn =
∑n

1 fk1{k}. The ψn are simple and ψn ↑ f . Therefore, by (5),∫
f dµ = lim

n→∞

∫
ψn dµ

= lim
n→∞

n∑
1

fk =
∞∑
1

fn.

Thus the theory of infinite series is subsumed by our general integration theory. Summation is just one

example of integration. ��

Riemann and Lebesgue. The integral on IR with respect to Lebesgue measure, or Lebesgue integral∫
[a,b]

f d`, is defined differently than the Riemann integral
∫ b
a
f(x) dx of calculus. The Lebesgue integral∫

f d` exists more generally and has more powerful theoretical properties, making it by far more appropriate

conceptually. On the other hand, we have a more extensive set of computational techniques for the Riemann

integral. (There is a tradeoff between theoretical generality and computational utility.) As we will see, both

integrals produce the same value when the Riemann integral is defined, such as when f : [a, b] → IR is

continuous. This allows us to appeal to the integration techniques of calculus for the evaluation of many

Lebesgue integrals.

Suppose f : [a, b]→ IR is measurable. (We can extend its definition to the rest of IR by f = 0 on [a, b]c).

We want to understand the connection between the Lebesgue and Riemann integrals,∫
[a,b]

f d`, and

∫ b

a

f(x) dx.

(We assume −∞ < a < b < ∞ here. See problem 5 for unbounded intervals.) Using `([c, d]) = d − c, the

definition of the Riemann integral can be stated as follows.
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Definition of Riemann Integral. To say f is Riemann integrable, with
∫ b
a f(x) d(x) = R means |R| <∞

and given any ε > 0 there exists δ > 0 so that

|R−
n∑
1

f(xi)`(Ji)| < ε

whenever {Ji}n1 is a partition of [a, b] into intervals with `(Ji) < δ all i, and any choice of evaluation points

xi ∈ Ji.

Suppose f is Riemann integrable. Given ε > 0 let δ > 0 be as promised by the definition. Take any

partition {Ji}n1 as specified. It follows that

|R−
n∑
1

[inf
Ji
f ]`(Ji)| ≤ ε and |R−

n∑
1

[sup
Ji

f ]`(Ji)| ≤ ε

Define the simple functions g∗ =
∑n

1 [infJi f ]1Ji and g∗ =
∑n

1 [supJi f ]1Ji. Then g∗ ≤ f ≤ g∗ on [a, b], so

R− ε ≤
∫

[a,b]

g∗ d` ≤
∫

[a,b]

f d` ≤
∫

[a,b]

g∗ d` ≤ R+ ε

I.e. |R −
∫

[a,b]
f d`| ≤ ε for every ε > 0. Therefore

∫
[a,b]

f d` = R =
∫ b
a
f(x)dx. This proves the following

theorem.

Theorem C. If the measurable function f is Riemann integrable on the bounded interval [a, b] then f is

`-integrable on [a, b] and ∫
[a,b]

f d` =

∫ b

a

f(x) dx.

Examples 4. If Q ⊆ IR is the set of rational numbers, then for any Borel set A,
∫
A 1Q d` = 0 because

`(A ∩Q) ≤ `(Q) = 0. However the Riemann integral
∫ b
a

1Q(x) dx is undefined.

Consider the Lebesgue integral
∫

[0,1]
1√
x
d`.∫

[0,1]

1√
x
d` = lim

n→∞

∫
[ 1
n ,1]

x−1/2 d` — see the convergence theorems below

= lim

∫ 1

1
n

x−1/2 dx = lim(2− 2/
√
n) = 2.

Thus
∫

[0,1]
1√
x
d` agrees with the value of

∫ 1

0
1√
x
dx as an improper Riemann integral.

∫ 1

0
1√
x
dx is not defined

in the strict sense of the definition of Riemann integral. ��

There are however some distinctions between the Riemann and Lebesgue integrals.

• On unbounded intervals, such as [0,∞) the improper Riemann integral∫ ∞
0

f(x) dx = lim
T→∞

∫ T

0

f(x) dx

and Lebesgue integral ∫
[0,∞)

f d` =

∫
[0,∞)

f+ d`−
∫

[0,∞)

f− d`

are defined differently. Either can exist without the other. For instance∫ ∞
0

sin(x)

x
dx = π/2,
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but
∫

[0,∞)
sin(x)
x d` is undefined. But when they both exist, they must agree.

• The Riemann integral incorporates a notion of orientation, reΩected in the formula∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

I.e in addition to the set [a, b] over which we integrate, we specify the direction of integration (from a

to b, or from b to a). The Lebesgue integral has no such concept of orientation.

Instead of ` on (IR,B), we can consider a measure µ described in terms of a distribution function F : µ((a, b]) =

F (b)− F (a). It is possible to define the Riemann-Stiltjes integral∫ b

a

f(x) dF (x) = R

by replacing ` with µ in the definition of Riemann integral above. This notion of integral is related to∫
[a,b] f dµ in the same way as described in Theorem C. Some authors write “

∫
[a,b] f dF”to mean the measure-

theoretic integral
∫

[a,b]
f dµ. In general there is no standard notation to distinguish between Riemann and

measure-theoretic integrals. In anything you read you will have to figure out what that author’s individual

conventions are. We will indicate Riemann integrals using limits of integration,
∫ b
a · dF , and measure-theoretic

integrals with subscripted domains of integration,
∫

[a,b] · dµ.

Expected Values. If X is a random variable defined on (Ω,F , P ) then its expected value is just another

name for its integral with respect to P :

E[X ] =

∫
Ω

X(ω) dP (ω),

provided this is defined. If X = c1Ω, a constant random variable, then since P is a probability measure

E[c] =

∫
c dP = cP (Ω) = c · 1 = c.

Theorem B 2) says E[cX ] = cE[X ] in general.

E[Xk], if it exists, is called the k-th moment . E[|X |k] always exists (possibly +∞) and is called the

k-th absolute moment. The first moment m = E[X ] is usually called the mean. If the mean is finite then

we can also define the variance,

Var[X ] = E[(X −m)2] = E[X2 − 2mX +m2] = E[X2]−m2.

We also write

E[X ;A] =

∫
A

X dP =

∫
1AX dP = E[X · 1A].

Convergence Theorems

One of the features of the measure-theoretic integral which makes it more useful than the Riemann integral

is the possibility of passing limits underneath integration:

lim

∫
fn dµ

?
=

∫
lim fn dµ

I.e. if fn → f (a.e.) then under what circumstances can we conclude that
∫
fn dµ→

∫
f dµ?
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Example 5. Consider fn defined on IR by

fn(x) =

{
n− n2x if 0 < x ≤ 1/n

0 otherwise

and

gn(x) =


1 for n < x ≤ 3n

−1 for − 2n < x < −n
0 otherwise.

Then fn(x)→ 0 and gn(x)→ 0 for all x, but
∫
gn d` = 1 and

∫
fn d` = 1/2 for all n. ��

This shows that something beyond fn → f is needed to imply
∫
fn dµ →

∫
f dµ. There are three famous

results in this department. In all these, we assume (Ω,F , µ) is a measure space and the functions fn, f, g

are IR∞-valued and measurable.

The Monotone Convergence Theorem (D). If 0 ≤ fn ↑ f a.e., then
∫
fn dµ ↑

∫
f dµ

Fatou’s Lemma (E). If 0 ≤ fn, then∫
[lim inf
n→∞

fn] dµ ≤ lim inf
n→∞

∫
fn dµ.

The Dominated Convergence Theorem (F). If |fn| ≤ g a.e., g is integrable and fn → f a.e., then f

is integrable and ∫
fn dµ→

∫
f dµ.

Proof (D): Notice that this is a generalization of our Approximation Lemma – we can use essentially the

same proof. Consider any partition {Ai}∞1 of Ω and define vi = infAi f . Consider any ε > 0. Let

Ami = {ω : fm(ω) > vi(1− ε)}.

Then Ami ↑ Ai as m→∞, so µ(Ami ) ↑ µ(Ai). We can now justify the following sequence of assertions.

fm ≥ (1− ε)
n∑
i=1

vi1Am
i∫

fm dµ ≥ (1− ε)
n∑
i=1

viµ(Ami )→ (1− ε)
n∑
i=1

viµ(Ai)

lim inf

∫
fn dµ ≥ (1− ε)

n∑
i=1

viµ(Ai), for all ε > 0

lim inf

∫
fn dµ ≥

n∑
1

[inf
Ai

]µ(Ai)

lim inf

∫
fn dµ ≥

∫
f dµ

But fn ≤ f implies lim inf
∫
fn dµ ≤

∫
f dµ. We conclude that∫

fn dµ ↑
∫
f dµ.
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Proof (E): Let g = lim inf fn and gn = infk≥n fk. Then 0 ≤ gn ↑ g. Therefore

lim

∫
gn dµ =

∫
g dµ.

Since gn ≤ fn we see that∫
lim inf fn dµ =

∫
g dµ = lim

∫
gn dµ ≤ lim inf

∫
fn dµ.

Proof (F): First, by modifying all the functions on a measurable set with µ(N) = 0 we can assume that

the convergence is for all ω. Next, fn → f implies f±n → f± and since |fn| ≤ g we also have 0 ≤ f±n ≤ g. It

suffices therefore to assume 0 ≤ fn ≤ g.

Fatou’s Lemma tells us that
∫
f dµ ≤ lim inf

∫
fn dµ. If we consider h = g − f and hn = g − fn, then

h, hn ≥ 0 and hn → h. Fatou’s Lemma now tells us that∫
h dµ ≤ lim inf

∫
hn dµ∫

g dµ−
∫
f dµ ≤ lim inf[

∫
g dµ−

∫
fn dµ]

=

∫
g dµ− lim sup

∫
fn dµ

lim sup

∫
fn dµ ≤

∫
f dµ.

We can now conclude that
∫
fn dµ→

∫
f, dµ.

Example 4 (continued). Our assertion above that∫
[0,1]

1√
x
d` = lim

n→∞

∫
[ 1
n ,1]

x−1/2 d`

is the monotone convergence theorem, since x−1/21[ 1
n ,1] ↑ x−1/21[0,1] almost surely (the exception being

x = 0). ��

Example 6. Suppose µ is a probability measure on IR, perhaps the distribution of some random variable.

The associated moment generating function is

M(s) =

∫
IR

esx µ(dx),

defined for those s for which it is finite. This is closely related to the Laplace transform of µ, usually taken

to be ∫
e−sx dµ(x) = M(−s).

Notice that

• M(0) = 1 is always defined;

• If M is defined for s0 and s1, and s0 ≤ s ≤ s1, then M(s) is also defined because 0 < esx ≤ es0x + es1x.

Thus the domain of M(s) will always be some kind of interval containing 0.

• If µ is “supported” on [0,∞) (i.e. µ(−∞, 0)) = 0) then M(s) will be defined for all s ≤ 0, at least.
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Discussion of further properties of M(s) provides a good illustration of the use of the convergence theorems.

Suppose M(s) is defined on some interval [s0 − ε, s0 + ε] around s0. For any positive integer k there

exists a constant c so that for all x

|x|k ≤ c(eεx + e−εx)

|x|kesox ≤ c(e(s0+ε)x + e(s0−ε)x).

Thus
∫
xkes0x dµ <∞. We want to write esx =

∑∞
0

(s−s0)k

k! xkes0x, and take the integral by integrating each

term of the series individually. The Dominated Convergence Theorem justifies this, since∣∣∣∣∣
N∑
0

(s− s0)k

k!
xk

∣∣∣∣∣ es0x ≤
∞∑
0

∣∣∣∣ (s− s0)k

k!
xk
∣∣∣∣ es0x

= e|(s−s0)x|es0x

≤ e(s0+ε)x + e(s0−ε)x,

because |(s − s0)x| ≤ ε|x| ≤ ±εx, depending on the sign of x. The right side above is µ-integrable, by

assumption, providing the dominating function for the Dominated Convergence Theorem. Therefore

M(s) =

∫
esx dµ =

∫ ∞∑
0

(s− s0)k

k!
xhes0x dµ

=
∞∑
0

∫
(s− s0)k

k!
xhes0x dµ

=
∞∑
0

(s− s0)k

k!

∫
xkes0x dµ.

In particular
∫
xkes0x dµ = ( dds)kM(s0). If M is defined on [−ε, ε] for some ε > 0, then for |s| < ε

M(s) =
∞∑
0

sk
mk

k!
,

where mk =
∫
xk dµ are the moments, hence the name “moment generating function”. Its derivatives are

the moments:

mk = M (k)(0).

See Example 12 below for a specific calculation. ��

Densities and Changes of Variable

There are a couple situations in which the measure we need to integrate with respect to is related to another

measure that we understand better. We would like to translate the original integral into one with respect to

the better understood measure.

Ω, P
X−−−−→ IR, µX

φ−−−−→ IRxdµX=p d`

IR, `

This issue comes up twice in the situation of Example 1. The expected value of φ(X) is defined to be an

integral with respect to P on the Ω of the underlying probability space:

E[φ(X)] =

∫
Ω

φ(X(ω))P (dω).
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The distribution µ of X is a different measure on a different space, IR. We expect to be able to calculate

using

(6)

∫
Ω

φ(X(ω))P (dω) =

∫
IR

φ(x)µ(dx).

This is essentially a change of variables from ω ∈ Ω to x ∈ IR. If µ has a “density” p(x) we expect this in

turn to be calculated as a Lebesgue integral,

(7)

∫
IR

φ(x)µ(dx) =

∫
IR

φ(x)p(x) `(dx),

which we hope to finally evaluate by connecting it to the Riemann integral∫ ∞
−∞

φ(x)p(x)dx.

Thus beyond the connection between the Riemann and Lebesgue integrals, we want to

• validate the change of variables x = X(ω) in (6), and

• understand what is meant by a “density” and why (7) is valid.

Densities. The distribution µ of a random variable X is just a probability measure on (IR,B) constructed

from X :

µ(A) = P ({ω ∈ Ω : X(ω) ∈ A}).
Many of the important distributions arising in practice can be described in terms of Lebesgue measure using

a density function p(x) ≥ 0: for all −∞ < a < b <∞

(8) µ((a, b]) =

∫ b

a

p(x) dx =

∫
(a,b]

p d`.

Examples 7.

p(x) =
1√
2π
e−x

2/2 – standard normal

p(x) = 1[0,∞)λe
−λx – exponential (λ > 0)

p(x) =
1

π

u

u2 + x2
– Cauchy (u > 0).

��

Most, if not all, probability measures µ on (IR,B) that you know either have such a density or are of

the form

(9) µ(A) =
∑
n∈A

pn, for some
∞∑
−∞

pn = 1.

However there exist many probability measure that are of neither of these two types. For instance there

exist distribution functions F (x) which are continuous but not given by an integral integral of any density

with respect to Lebesgue measure. (An example is the Cantor ternary function on [0, 1].) Thus (8) and (9)

by no means account for all µ on IR!

Problem 2 will show that (8) for intervals (a, b] implies that the same formula holds for all Borel sets,

A ∈ B:

µ(A) =

∫
A

p d`.

In general when µ and ν are two measures on a measurable space (Ω,F), we say ν has density ρ with respect

to µ if ρ : Ω→ IR is a nonnegative measurable function such that

ν(A) =

∫
A

ρ dµ for all A ∈ F .

The following theorem tells us how ν-integrals are related to µ- integrals in such cases, justifying (7) above.
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Theorem G. Suppose ν has density ρ with respect to µ and f : Ω→ IR∞ is measurable. Then

1)
∫
f dν =

∫
fρ dµ, if f ≥ 0;

2) f is ν-integrable if and only if f · ρ is µ-integrable, in which case∫
A

f dν =

∫
A

f · ρ dµ

for all A ∈ F .

Example 8. We calculate the mean of the exponential distribution, with parameter λ > 0, as follows.

mean =

∫
xdµ =

∫
x+ dµ−

∫
x− dµ,

where

x+(x) = max{x, 0} and x−(x) = −min{x, 0}.
Now ∫

x− dµ =

∫
x−(x)p(x) d` = 0,

because µ has density p(x) = 1[0,∞)λe
−λx with respect to `, and x−p = 0 for all x.∫

x+ dµ =

∫
x+(x)p(x) d`

=

∫
[0,∞)

xλe−λx d`

= lim
n→∞

∫
[0,n]

xλe−λx d`, by M.C.T.

But ∫
[0,n]

xλe−λx d` =

∫ n

0

xλe−λx dx

= −e−λx (λx+ 1)

λ

∣∣x=n

x=0

=
1

λ
[1− e−nλ(nλ+ 1)]→ 1/λ

as n→∞. We conclude that
∫
xdµ = 1/λ. ��

Change of Variable. The distribution µ of a random variable X is the measure induced by X on IR using

the probability measure P from the underlying space (Ω,F): µ = PX−1.

µ, Ω
T−−−−−→

µT−1=ν
ν, Γ

f−−−−→ IR

Here is the general change of variable theorem.

Theorem H. Suppose (Ω,F) and (Γ,H) are measurable spaces, µ is a measure on (Ω,F), T : Ω → Γ is

measurable, and ν = µT−1 is the induced measure. Suppose f : Γ→ IR∞ is F/B(IR∞) measurable. If f ≥ 0

then ∫
Ω

f(T (ω))µ(dω) =

∫
Γ

f(Ω) ν(dΩ).

f is ν-integrable if and only if f ◦ T is µ-integrable, in which case the preceding equation again holds.

Basically, this works in general because it works for indicator functions: let f = 1B where B ∈ H. Then

f ◦ T (ω) = 1B(T (ω)) = 1T−1B(ω),

so ∫
Γ

f dν = ν(B) = µ(T−1B) =

∫
Ω

f ◦ T dµ.

Examples 9. E[esX ] =
∫
esx µ(dx), E[X2] =

∫
x2 µ(dx). ��
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Example 10. Suppose T : IRd → IRd is a one-to-one map having continuous derivatives and nonvanishing

Jacobian, J(x) = det[∂Ti/∂xj ]. In an advanced calculus course you might have learned that to make the

change of variables y = T (x) you should use dy = |J(x)| dx in integrals. This is an instance of Theorem G,

which we would write as ∫
T−1B

f(T (x))|J(x)| `(dx) =

∫
B

f(y) `(dy),

provided B is contained in the range of T . In the language of Theorem G this is saying that if µ is the

measure on the domain having density |J(x)| with respect to `(dx), then the induced measure ν = µT−1

agrees with Lebesgue measure `(dy) on the range. (To be precise if R = {T (x) : x ∈ IRd} is the subset of

the range actually covered by T , ν would be Lebesgue measure restricted to R: ν(A) = `(A∩R).) We might

illustrate this with a diagram, such as

x ∈ T−1B ⊆ IRd T (x)=y−−−−−−−−−−−−−−−−−→
|J(x)|`(dx)T−1=1R(y)`(dy)

y ∈ B ⊆ IRd f−−−−→ IR.

��

Important Inequalities

Suppose X is a random variable. Consider any integer k = 1, 2, . . . and positive constant α. Since

αk1{|X|≥α} ≤ |X |k1{|X|≥α} ≤ |X |k

it follows that

αkP [|X | ≥ α] ≤ E[Xk; |X | ≥ α] ≤ E[|X |k].

This gives

Markov’s Inequality (I).

P [|X | ≥ α] ≤ 1

αk
E[|X |k; |X | ≥ α] ≤ E[|X |k]/αk.

Applying this to X −m, where the mean m = E(X) is assumed finite, and using k = 2, we get

Chebyshev’s Inequality (J). If E[|X |] <∞ then for any α > 0

P [|X −m| ≥ α] ≤ 1

α2
Var[X ].

Another important inequality is Jensen’s inequality for convex functions. Suppose J ⊆ IR is an interval

and

φ : J → IR

satisfies

φ(px + qy) ≤ pφ(x) + qφ(y)

for all x, y ∈ J and p, q ≥ 0 with p+ q = 1. Then φ is called convex .

Examples 11. Any smooth function with φ′′ ≥ 0 is convex, such as

φ(x) = x2, φ(x) = ex, φ(x) = − log(x).

��
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Jensen’s Inequality (K). If φ : J → IR is convex, X(ω) ∈ J a.s., and E[|X |] <∞, then

φ(E[X ]) ≤ E[φ(X)].

In terms of the distribution µ of X Jensen’s inequality could be written

φ

(∫
xµ(dx)

)
≤
∫
φ(x)µ(dx).

This is only true when µ is a probability measure; it does not hold for all measures.

Hölder’s Inequality (L). : Suppose (Ω,F , µ) is any measure space, f, g : Ω→ IR∞ are measurable and

p, q > 1 with 1
p + 1

q = 1. Then

∫
|fg| dµ ≤

[∫
|f |p dµ

]1/p [∫
|g|q dµ

]1/q

.

Moment Generating and Characteristic Functions

If X is a random variable, and µ its distribution, the associated moment generating function is

M(s) = E[esX ] =

∫
IR

esx µ(dx),

defined for those s for which it is finite. We discussed some of its properties in Example 6 above. In particular

if M is defined on [−ε, ε] for some ε > 0, then all the moments mk = E[Xk] =
∫
xk dµ are finite and for

|s| ≤ ε

M(s) =
∞∑
0

sk
mk

k!
,

and E[Xk] = M (k)(0).

Example 12. Suppose X has normal distribution, mean 0, variance σ2:

M(s) =

∫ ∞
−∞

esx(2πσ2)−1/2e−x
2/2σ2

dx =
1√

2πσ2

∫ ∞
−∞

e
1

2σ2[(x−σ2s)2−σ4s2] dx

= eσ
2s2/2

∫ ∞
−∞

1√
2πσ2

e−(x−σ2s)2/2σ2

dx = eσ
2s2/2

=
∞∑
0

σ2k

2kk!
s2k.

Therefore

E[Xn] =

{
0 for odd n
(2k)!
2kk!

σ2k for n = 2k.

��

The characteristic function (also called the Fourier transform) of µ,

µ̂(t) = E[eitX] =

∫
eitx µ(dx),

is a complex-valued function of t ∈ IR. Unlike the moment generating function, µ̂is defined for all t. The

Dominated Convergence Theorem tells us that it is continuous. We will discuss its significance more in the

next unit.
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Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If (Ω,F , µ) is a measure space and f is a nonnegative real-valued function. Show that

ν(A) =

∫
A

f dµ, A ∈ F ,

defines a measure on (Ω,F).

Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose X : Ω→ IR is measurable and p ≥ 0 is measurable with

P (a < X ≤ b) =

∫
(a,b]

p(x) `(dx) all −∞ < a ≤ b < +∞.

Show that

P (X ∈ A) =

∫
A

p(x) `(dx) for all A ∈ B.

Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prove Beppo Levi’s Theorem: If fn are integrable, sup
∫
fn dµ < ∞ and fn ↑ f , then f is integrable and∫

fn dµ→
∫
f dµ. [Hint: write fn = gn + f1 and work with the gn.]

Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose φ : IR→ IR is one-to-one, onto and φ′ ≥ 0 is continuous. State and prove a theorem, analogous to

Theorems F and G above, concerning the validity of∫
f(y) `(dy) =

∫
f(φ(x))φ′(x) `(dx).

(You may appeal to Theorems G and H in the course of your proof.)

Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let T : IR → IR be given by T (x) = x4 and µ = `T−1 be the measure induced by Lebesgue measure.

Identify µ by finding its density with respect to Lebesgue measure.

Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose that f is Lebesgue integrable on [0,+∞) and Riemann integrable on every bounded interval

⊆ [0,∞). Show that the improper Riemann integral∫ ∞
0

f(x) dx = lim
N→+∞

∫ N

0

f(x) dx

converges to
∫

[0,∞)
f d`. Prove the same thing if instead of assuming f is integrable we assume f ≥ 0.

Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If X is a positive random variable whose distribution has density p. Show that 1/X has distribution with

density p(1/x)/x2. [You may need to refine the statement of this to make it really true!]

Problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Show that the Cauchy distribution has no mean, not even an infinite one. (I.e. show that both
∫
x±(x) dµ =

+∞ where x+(x) = max(x, 0) and x−(x) = −min(x, 0).)

Problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The gamma density, with parameters α, u > 0, is

p(x) = 1(0,∞)
αu

Γ(u)
xu−1e−αx.

Show that the associated moment generating function is (1− s/α)−u for s < α and that the k-th moment is

u(u+ 1) · · · (u+ k − 1)/αk.

Problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Show that m = E[X ] is the value which minimizes E[(X −m)2].
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Problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) Suppose 0 < α < β. Show that Lyapunov’s inequality,

E[|X |α]1/α ≤ E[|X |β ]1/β,

can be deduced both from Hölder’s inequality (take g ≡ 1) and from Jensen’s inequality.

b) Show that for any positive random variable X and p > 0,

E[1/Xp] ≥ 1/E[X ]p.

Problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose that N is a random variable with standard normal distribution. Find a density for log(|N |).

Problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Use the calculations of Example 12 to compute the characteristic function of a normal random variable X

with mean 0 and variance σ2. In other words, write

eitX =
∞∑
0

(it)n

n!
Xn

and take the expected value of both sides. (Use the Dominated Convergence Theorem to justify writing

“E
∑∞

0 =
∑∞

0 E”)
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Unit IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Convergence Concepts

Suppose (Ω,F , P ) is a probability space on which are defined random variables X,Xn; n ≥ 1. There

are several different concepts of convergence “Xn → X” in common usage. We will only summarize them

and some of their properties.

Description Notation Meaning

Almost sure convergence Xn → X a.s. Xn(ω)→ X(ω) all ω /∈ N ,

some N ∈ F with P (N) = 0

Convergence in probability Xn →P X P (|Xn −X | ≥ ε)→ 0, all ε > 0

(or “in measure”)

Convergence in the mean Xn →L1 X E[|Xn −X |]→ 0

(or L1 convergence)

Lp convergence (p ≥ 1) Xn →Lp X E[|Xn −X |p]1/p → 0

Convergence in distribution Xn ⇒ X E[φ(Xn)]→ E[φ(X)], all

bounded continuous φ : IR→ IR

These are all different. The only general implications are as follows.

1. If Xn →Lp X , then Xn →Lq X for any 1 ≤ q ≤ p.
2. If Xn →L1 X , then Xn →P X

3. If Xn → X a.s, then Xn →P X

4. If Xn →P X , then Xn ⇒ X .

The first of these follows from Lyapunov’s inequality (problem III.11):

E[|Xn −X |q]1/q ≤ E[|Xn −X |p]1/p.

The second is because of the inequality

P (|Xn −X | > ε) ≤ 1

ε
E[|Xn −X |].

For 3, let C = {ω : Xn(ω) → X(ω)}. The assumption is that P (C) = 1. Consider any ε > 0 and let

An = {ω : |Xk(ω)−X(ω)| < ε all k ≥ n}. Then

An ↑ A = {ω : |Xn(ω)−X(ω)| < ε for all but finitely many n}.

Since C ⊆ A, we know that P (A) = 1. Hence P (An) ↑ 1 and P (Acn) ↓ 0. {|Xn −X | ≥ ε} ⊂ Acn and thus

P [|Xn − X | ≥ ε] → 0. The last implication takes little more. (But notice that a.s. convergence implies

φ(Xn)→ φ(X) a.s., so that Xn ⇒ X follows from the D.C.T.)

Counterexamples can be constructed to show that all other implications are false in general.

Examples 1. Ω = [0, 1), P = `. Let

Xn(x) =

{
1 if k

2m ≤ x <
k+1
2m , 0 ≤ k < 2m

0 otherwise
, where n = 2m + k < 2m+1.

Then Xn →P 0, as well as in Lp for any p > 1, but Xn(ω) diverges for every ω! If Yn = 2mXn, then

Yn →P 0, but not in any Lp.

Let Zn = sin(2πnx), then Zn ⇒ Z1, because∫ 1

0

φ(sin(2πnx)) dx = n

∫ 1/n

0

φ(sin(2πnx)) dx =

∫ 1

0

φ(sin(2πy)) dy.

However Zn 6→P Z. ��
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It is important to note that for convergence in distribution Xn and X are never compared directly! In

fact Xn ⇒ X is really a property of the respective distributions µn, µ.

E[φ(Xn)] =

∫
IR

φdµn →
∫

IR

φdµ = E[φ(X)],

all bounded continuous φ. This is denoted µn ⇒ µ and called weak convergence of the distributions. If Fn, F

are the corresponding distribution functions we also write Fn ⇒ F . It turns out that this is also equivalent

to

Fn(x)→ F (x) for all x at which F is continuous.

(But this does not mean µn(A)→ µ(A) all A ∈ B !) Thus

Xn ⇒ X (convergence in distribution)

µn ⇒ µ (weak convergence)

Fn ⇒ F (weak convergence)

all refer to the same thing.

The standard theory contains a number of additional results aimed at providing a more detailed under-

standing of what is required for µn ⇒ µ. In particular given a sequence {µn} of probability distributions

on (IR,B) it is important to know when there exists a subsequence which converges weakly to some other

probability distribution: µnk ⇒ ν. This is the issue of “tightness”; see Billingsley §25.

We will not be giving full proofs of the Laws of Large Numbers, or the Central Limit Theorem, but it

is worthwhile to understand what type of convergence these results refer to. Suppose Xn is a sequence of

independent, identically distributed random variables. (This means the σ-fields σ(Xn) are independent and

µ(·) = PX−1
n is the same for all n.) Suppose the mean m = E[Xn] is finite. Then the standard limit laws

are as follows.

Weak Law of Large Numbers (A).
1
n

∑n
i=1Xi →P m.

Strong Law of Large Numbers (B).
1
n

∑n
i=1 Xi → m a.s.

Central Limit Theorem (C). Assuming σ2 = Var[Xn] <∞,

1

σ
√
n

n∑
i=1

(Xi −m)⇒ N,

where N is a random variable with the standard normal distribution.

Problem 7 points out that the convergence in the Central Limit Theorem cannot be strengthened to a.s.

convergence.

These are the standard limit laws that most students of probability theory have seen before. There are

others that may not be as familiar.

Law of the Iterated Logarithm (D). Assume m = 0 and E[X2
n] = 1. Then

P [lim sup
n→∞

(2n log(logn))−1/2
n∑
1

Xi = 1] = 1.

In other words, 1
n

∑n
1 Xi has the “asymptotic envelopes” ±

√
2 log(log n)/n as n → ∞. (See Breiman,

Theorem 13.25 in particular, for more on the Law of the Iterated Logarithm.)
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A more interesting result is Chernoff’s Theorem. Of the limit laws stated here, it is the only one in

which the distribution of the Xi (rather than just its mean) is involved in the final assertion of the theorem.

We will need some definitions first. If M(s) = E[esXi ] is the moment generating function of the Xi, the

function

H(c) = sup
s∈IR
{cs− log(M(s))}

is called the Cramer transform of the distribution of Xi.

Examples 2. Cramer transforms of some common distributions:

Binomial (P [X = 0] = p, P [X = 1] = 1− p):

H(c) =

{
c log( c

1−p) + (1− c) log(1−c
p ) if c ∈ [0, 1]

+∞ otherwise.

Standard Normal:

H(c) =
1

2
c2.

Exponential (1[0,∞)e
−x):

H(c) =

{
c− 1− log(c) if c > 0

+∞ if c ≤ 0.

��

Chernoff’s Theorem (E). For c ≥ m,

lim
1

n
logP [

1

n

n∑
1

Xi ≥ c] = −H(c).

For c ≤ m,

lim
1

n
logP [

1

n

n∑
1

Xi ≤ c] = −H(c).

(You can find a treatment of Chernoff’s Theorem in the little book by Bahadur. Our statement above

appears more general than what you will find in Bahadur, but can be derived from it by considering Xi − c
in place of Xi.)

A Restricted Proof of the Strong Law. There is a short proof of the Strong Law of Large Numbers

under the additional hypothesis that the Xi have finite fourth moments. Let

ξ4 = E[X4
i ] <∞

σ2 = E[x2
i ] <∞.

We can assume that m = E[Xi] = 0. Let

Sn =
n∑
1

Xi.

The key is to get an upper bound on E[S4
n].

E[S4
n] =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[XiXjXkXl].

When the right side of this is multiplied out, we get 3 kinds of terms:
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a) Terms with at least one index distinct from the others. (E.g. j different from i, k, or l.) By

independence all such terms have expected value 0. (E.g. E[Xj ]E[XiXkXl] = 0).

b) Terms with indices in two distinct pairs (e.g. i = k 6= j = l.) For these we have E[·] = (σ2)2. The

number of such terms is n · 3 · (n− 1).

c) Terms with i = j = k = l. For these E[·] = ξ4, and there are n such terms.

We find that

E[S4
n] = nξ4 + 3n(n− 1)σ4 ≤ Kn2, where K = 3σ4 + ξ4.

Now apply Markov’s inequality:

P [|Sn| ≥ nε] ≤
1

n4ε4
Kn2 = n−2ε−4K.

Since ∞∑
1

P [|Sn| ≥ nε] ≤
∞∑
1

1

n2
ε−4<∞,

we can apply the first Borel-Cantelli Lemma to obtain P [Lε] = 0 where

Lε = lim sup{ω : |Sn| ≥ nε}

= {ω : | 1
n
Sn(ω)| ≥ ε for infinitely many n}.

Let N = ∪∞k=1L1/k. We know P [N ] ≤
∑∞

1 P [L1/k] = 0. For any ω 6= N and any k it follows that

| 1nSn(ω)| ≥ 1
k for only a finite number of n, so that | 1nSn(ω)| < 1

k for all sufficiently large n. Hence
1
nSn(ω) → 0 for all ω ∈ N . (The full proof is more complicated, since it must not assume the existence of

higher moments.)

Characteristic Functions

There are several ways to identify a probability measure µ on (IR,B) in terms of more conventional mathe-

matical objects, specifically functions:

• a density with respect to Lebesgue measure,

µ((a, b]) =

∫
(a,b]

p(x) d`,

if one exists;

• the distribution function

F (x) = µ((−∞, x]);

• the moment generating function M(s) =
∫
esxµ(dx), provided it is defined on some open interval

(method of moments);

• the characteristic function

µ̂(t) =

∫
eitxµ(dx) =

∫
cos(tx)µ(dx) + i

∫
sin (tx)µ(dx).

Examples (2). Characteristic function of some common distributions:

Distribution Description µ̂(t)

Standard Normal 1√
2π
e−x

2/2 e−t
2/2,

Uniform 1[0,1]
eit−1
it

Exponential e−x1(0,∞)
1

1−it
Cauchy 1

π
1

1+x2 e−|t|

Poisson P ({k}) = 1
k!e
−1, k = 0, 1, 2, . . . ee

it−1

��
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Moment generating functions may seem more appealing than characteristic functions since they do not

involve complex numbers, but they have some drawbacks. One always has to worry about their domain, i.e.

for what s is M(s) defined? Because of that, knowing M(s) does not determine µ in all cases. Specifically,

there are many µ for which M(0) = 1 and M(s) is undefined for all s 6= 0. (The Cauchy distributions,

for any value of the parameter u, are examples.) Suppose however that Mµ(s) and Mν(s) are the moment

generating functions of two probability measures µ and ν. If there is some (nonempty) open interval (a, b)

on which both Mµ and Mν are finite and equal, then it is true that µ = ν.

Characteristic functions have a “cleaner” theory. µ̂(t) is always defined and continuous for all t ∈ IR,

and we always have |µ̂(t)| ≤ 1. (This is the complex modulus.) The following facts explain some of the

theoretical importance of characteristic functions.

• If µ and ν are two probability measures on (IR,B) with characteristic functions µ̂ and ν̂, then µ = ν if

and only if µ̂(t) = ν̂(t) for all t.

• If µn, n = 1, 2, · · · , and µ are probability measures on (IR,B) then µn ⇒ µ if and only if

µ̂n(t)→ µ̂(t) for every t.

• If X and Y are independent random variables with distributions µX and µY , then the characteristic

function of X + Y is

µ̂X+Y (t) = µ̂X(t) · µ̂Y (t).

(See Unit 5.)

Some further issues addressed in the standard theory of characteristic functions are

∗ inversion formulas, i.e. how µ((a, b]) can be calculated from µ̂(·);
∗ how properties of µ manifest themselves in µ̂;

∗ given a function ψ(t) how can we tell when it is the characteristic function of some µ: ψ(t) = µ̂(t)?

∗ given a sequence µn, how can we tell from looking at µ̂n if µn ⇒ µ for some µ? (It is possible for

µ̂n → ψ(t), but ψ(t) fail to be ψ = µ̂.)

Proving the Central Limit Theorem. We won’t provide all the details, but the basic approach to

proving the Central Limit Theorem can be quickly described. It illustrates the use of characteristic functions

for convergence in distribution. We can assume the Xj have mean m = E[Xj ] = 0. (Otherwise consider

Xj − m.) Suppose that φ(t) = E[eitXj ]. Then 1
σ
√
n

∑n
1 Xj has characteristic function φ( t

σ
√
n

)n. Since

E[eitN] = e−t
2/2, the goal is to show that for all t ∈ IR

φ(
t

σ
√
n

)n → e−t
2/2, as n→∞.

Formally,

φ(0) = 1

φ′(0) = E[iXj] = im = 0

φ′′(0) = E[−X2
j ] = −σ2.

So we expect (second order Taylor polynomial) φ(t) ≈ 1− σ2

2 t
2 for t ≈ 0. Using this it seems reasonable that

φ(
t

σ
√
n

)n ≈ (1− σ2

2

t2

σ2n
)n

= (1− 1

2
t2 · 1

n
)n → e−

1
2 t

2

.

These approximations can be justified to provide a rigorous proof.
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Infinitely Divisible Distributions and Stable Laws

The search for all probability distributions that could play the role of the standard normal in CLT-like

theorems was a major research topic in the early part of this century (1920 – 1940). (Problem 6 indicates that

the Cauchy distribution is an example.) This led to the identification of two general classes of distributions

with special properties. It was the use of characteristic functions that made a complete answer to this

problem possible. (The text by Breiman is a good reference on these topics. See Chapter 9 in particular.)

Infinitely Divisible Distributions. A probability measure µ on IR,B(IR) is called infinitely divisible if

for any n there exist i.i.d. X1, . . . , Xn so that µ is the distribution of
∑n

1 Xi. (The distribution of the Xi

may depend on n.) It turns out that µ is infinitely divisible if and only if µ̂(t) has the following form:

µ̂(t) = exp

[
iβt− 1

2
σ2t2 +

∫
(eitx− 1− itx

1 + x2
)
1 + x2

x2
ν(dx)

]
,

for some finite measure ν on IR with ν({0}) = 0. (The role of ν({0}) is played by σ2.) The normal, Poisson

and Cauchy are all examples. (For the Cauchy, β = σ2 = 0, ν(dx) = 1
π(1+x2) `(dx).)

Stable Distributions. The probability measure µ on IR is called stable if when Xi are i.i.d. with distribu-

tion µ, then for every n there exist constants an, bn so that (
∑n

1 Xi − bn)/an also has distribution µ. These

are precisely the distributions which can occur in CLT-like results for Xi i.i.d.:

1

an
(
n∑
1

Xi − bn)⇒ µ.

A distribution µ is stable if and only if it is infinitely divisible and either normal or with µ̂(t) as above using

σ2 = 0 and ν described by

1 + x2

x2
ν(dx) = (m−1(−∞) +m+1(0,+∞))

1

|x|1+α
`(dx)

for some “exponent” 0 < α < 2 and m± ≥ 0. For α < 0 no moments of order n < α exist. Thus the normal

is the only stable distribution with finite variance. (This is what makes it so important!) The Cauchy

distribution has α = 1. More explicit expressions for the characteristic functions of the non-normal stable

distributions can be given. For α 6= 1: for some β,Ω, θ ∈ IR; Ω > 0 and |θ| < 1,

µ̂(t) = exp

[
iβt−Ω|t|α(1 + iθ

t

|t|tan (
π

2
α))

]
.

For α = 1, β,Ω, θ can be as above, but the formula changes to

µ̂(t) = exp

[
iβt−Ω|t|α(1 + iθ

t

|t|
2

π
log |t|)

]
.

Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) Show that µn ⇒ µ is possible for µn having densities but µ not.

b) Show that µn ⇒ µ is possible for µ having a density but the µn not.

c) Show that it is possible for µn ⇒ µ if all the µn and µ have densities but the densities do not converge.
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Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose the distributions of random variables Xn and X have densities pn and p. Show that if pn(x)→ p(x)

for all x outside a set of Lebesgue measure 0, then Xn ⇒ X . Hint: Work in terms of the associated

distribution functions Fn(x) and F (x). Use Fatou’s lemma to show that F (x) ≤ lim inf Fn(x). Similarly,

since 1− Fn(x) =
∫

(x,∞) pn dλ, you can show that 1− F (x) ≤ lim inf[1− Fn(x)]. Now it is a basic property

of lim inf and lim sup that

lim inf[1− Fn(x)] = 1− lim supFn(x).

(You should take this for granted.) Conclude that

F (x) ≤ lim inf Fn(x) ≤ lim supFn(x) ≤ F (x).

This is equivalent to Fn(x)→ F (x).

Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If Xn → 0 a.s. then show 1
n

∑ n
k=1 Xk → 0 a.s. also. Give an example to show that this can fail if a.s.

convergence is replaced by convergence in probability.

Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose X is a random variable with characteristic function

φ(t) = E[eitX].

Find a formula for the characteristic function of α(X − β) in terms of φ. Use this to generalize the table of

characteristic functions above to the usual parameterized versions of the distributions cited.

Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose Xn is a sequence of independent, identically distributed random variables with the exponential

distribution, parameter λ (i.e. density 1[0,∞)λe
−λx). The characteristic function of this distribution is

φ(t) =
λ

λ− it .

a) Calculate the characteristic function of

1

σ
√
n

n∑
1

(Xk −m),

where m is the mean and σ2 is the variance.

b) Using the formula log(1 + z) = z − 1
2z

2 +O(z3) as z → 0, show that

1

σ
√
n

n∑
1

(Xk −m)⇒ N,

where, as in the Central Limit Theorem, N is a standard normal random variable. By O(z3) is meant

a term with |O(z3)| ≤ B|z3| for some constant B and all z sufficiently close to 0. (Do this by showing

the characteristic functions converge.)

Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose Xn is a sequence of independent, identically distributed random variables with the Cauchy distri-

bution, parameter u (i.e. density 1
π

u
u2+x2 ). The characteristic function of this distribution is

φ(t) = e−u|t|.
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(You can take this fact for granted.) By computing the characteristic function, find an exponent Ω > 0 so

that
1

nΩ

n∑
1

Xk

converges in distribution. Note that the value of Ω is not 1
2 ! Compare what you find to the Strong Law and

Central Limit Theorems. Isn’t there a contradiction?

Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Show that the convergence in the Central Limit Theorem is not almost sure convergence. Use the Law of

the Iterated Logarithm to explain the remark in parentheses at the end of problem I.16.
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Unit V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Advanced Constructions

Suppose we have two random variables X , Y defined on (Ω,F , P ). Let µX and µY be their individual

(or marginal) distributions,

µX(A) = P (X ∈ A) µY (B) = P (Y ∈ B), A,B ∈ B(IR),

and π their joint distribution:

π(C) = P ((X,Y ) ∈ C), C ∈ B(IR2).

µX and µY are easily obtained from π:

µX(A) = π(A× IR), µY (B) = π(IR ×B).

We can not determine the joint distribution π from the marginals µX and µY in general. However

if X and Y are independent (meaning that σ(X) and σ(Y ) are independent) then, for any A,B ∈ B(IR),

X−1A ∈ σ(X) and Y −1B ∈ σ(Y ) are independent as sets. Therefore

P (X−1A ∩ Y −1B) = P (X−1A) · P (Y −1B)

P ((X,Y ) ∈ A×B) = P (X ∈ A) · P (Y ∈ B)

π(A×B) = µX(A) · µY (B).

The collection of all such A×B forms a π-system which generates B(IR2). This means the joint distribution

is determined by the marginals if X and Y are independent. Based on this we might expect that calculations

with respect to π might be carried out in terms of µX and µY :∫
IR2

φ(x, y) dπ =

∫
IR

[∫
IR

φ(x, y) dµY

]
dµX (or the other order).

Here π is what we will call the product measure “π = µX × µY ” and the reduction of the “double integral”∫
dπ to an “iterated integral” is called Fubini’s Theorem. The discussion of this is our next topic.

When X and Y are not independent we cannot reconstruct their joint distribution from just the

marginals. The connection involves the idea of conditional probabilities, which will be our final topic.

Product Measure Spaces

Suppose (X,X , µ) and (Y,Y, ν) are measure spaces. The product set X × Y is just the set of all pairs

(x, y) with x ∈ X and y ∈ Y . We want to discuss the natural product σ-field X × Y on X × Y and the

product measure π = µ× ν on (X × Y,X × Y).

The Product Sigma-Field. Let M consist of those subsets of X × Y which have the form A×B, where

A ∈ X , B ∈ Y. These are called the measurable rectangles. M is not a σ-field (it is not closed under

complementation) but it isa π-system. The product σ-field is defined to be

X × Y = σ(M).

Note that C ∈ X × Y does not mean C = A×B; see Example 1.
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Lemma A. Suppose A and B are classes of subsets of X and Y respectively, with the property that X = ∪Ai
and Y = ∪Bj for some Ai ∈ A and Bj ∈ B. If X = σ(A) and Y = σ(B) then X ×Y = σ(C) where C consists

of all A×B with A ∈ A, B ∈ B.

Proof: If M is the class of measurable rectangles above, then C ⊆ M implies σ(C) ⊆ M. Given B ∈ B,

the class of A ⊆ X such that A × B ∈ σ(C) is a σ-field containing A and therefore contains X . (For this

we need to know X × B = ∪Ai × B ∈ σ(C).) Now consider any A ∈ X . The class of all B ⊆ Y for which

A×B ∈ σ(C) is a σ-field which contains B and so must also contain X . This shows that M⊆ σ(C), and so

X × Y ⊆ σ(C).

Example 1. With X = Y = IR and X = Y = B(IR), the lemma (with A = B = J0 consisting just of

intervals with finite endpoints (a, b]) implies that

B(IR2) = B(IR)× B(IR).

(Our original definition of B(IR2) was given on page I.11. The R used there is the same as C is the lemma

above.) In particular the diagonal D = {(x, y) : x = y} is in the product σ-field, since it is a closed set.

However D is clearly not in M. ��

Theorem B. If C ∈ X × Y then its cross-sections are measurable:

Cx = {y ∈ Y : (x, y) ∈ C} ∈ Y for every x ∈ X ;

Cy = {x ∈ X : (x, y) ∈ C} ∈ X for every y ∈ Y.

If (Ω,F) is a measurable space and f : X × Y → Ω is X × Y/F measurable, then for each x and y

fx : Y → Ω given by fx(y) = f(x, y) isY/F measurable;

fy : X → Ω given by fy(x) = f(x, y) isX/F measurable.

The converse is false! Cx ∈ Y and Cy ∈ X for all x, y does not imply C ∈ X × Y, nor do the measurability

of fx and fy imply the joint measurability of f .

Proof: The first part of the theorem follows by applying the second to f = 1C ; e.g. fx(y) = 1Cx(y). The

second part is an application of Theorem II.A. Consider any x ∈ X . Define T : Y → X×Y by T (y) = (x, y).

For any A×B ∈M (i.e. A ∈ X and B ∈ Y) we have

T−1A×B =

{
B if x ∈ A
∅ if x /∈ A

∈ Y.

Since M generates X × Y, this proves that T is Y/X × Y measurable. Now notice that fx = f ◦ T , and is

therefore Y/F measurable.

Example 2. Suppose N ⊂ IR is a nonmeasurable set. Let C = {(x, x) : x ∈ N} ⊂ IR2 Then Cx and Cy
are either singletons or empty and thus are in B for every x, y. Let T : IR → IR2 be T (x) = (x, x). T is

measurable because T−1A×B = A ∩B ∈ B for all A×B ∈ M. But T−1C = N /∈B so C /∈ B × B. ��

Product Measure. Next, we want to define a measure π on (X × Y,X × Y) with the property that

π(A×B) = µ(A)ν(B) for all A ∈ X , B ∈ Y

This specifies π on M, but not on all of X × Y = σ(M).
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Theorem C. If (X,X , µ) and (Y,Y, ν) are σ-finite measure spaces, then there is a unique measure π on

(X × Y,X × Y) with the property that π(A ×B) = µ(A)ν(B) for all A ∈ X , B ∈ Y.

One approach to proving this is to apply the Carathéodory Extension Theorem, I.D. Another is to define π

directly by

π(C) =

∫
X

ν(Cx)µ(dx).

We need to show several things to justify this.

1. f(x) = ν(Cx) is X/B measurable for all C ∈ X × Y. If ν is finite this follows from the facts that M is

a π-system and

L = {C ∈ X × Y : ν(Cx) is measurable} is a λ-system.

If ν is σ-finite, take An ↑ Y in Y with ν(An) < ∞ and apply the preceding to νn(·) = ν(An ∩ ·):
ν(Cx) = lim νn(Cx) is therefore measurable.

2. π(C) defines a measure. This follows from monotone convergence.

3. π(A×B) = µ(A)ν(B) for all A×B ∈ M. Checking this is just a calculation:

(A×B)x =

{
B if x ∈ A
∅ if x /∈ A

, ν((A ×B)x) = ν(B) · 1A(x),

so the definition gives

π(A×B) =

∫
1A · ν(B) dµ = µ(A)ν(B).

The uniqueness follows from Theorem I.B .

We have observed that the product measure µX × µY is the joint distribution of a pair of independent

random vairables X,Y with marginal distributions µX , µY . If instead of considering X,Y as given, suppose

we know µX , µY and want to construct a probability space (Ω,F , P ) and a pair of random variables X,Y :

Ω→ IR which are independent with the prescribed marginals. Theorem C provides one way to do so: take

Ω = IR2 with F = B(IR2) and P = µX ×µY . A typical ω ∈ Ω is ω = (x, y). Define the two random variables

to be the “coordinate maps”:

X(ω) = X((x, y)) = x

Y (ω) = Y ((x, y)) = y

However what if we want to build a probability space on which are defined a full sequence X1, x2, . . . of

independent random variables, each with a specified marginal distribution µi — how might we do this? We

did it in Unit M using Ω = [0, 1) and di(ω) given by the digits in the decimal expansion of ω. In that case

µi was just the simple Bernoulli distribution. What if we want something more complicated for the µi? The

natural analogue of the above is to take

Ω = IRIN = {ω = (x1, x2, . . . ) : xi ∈ IR},

the set of all sequences of real numbers. We would define

Xi(ω) = xi

and F = σ(Xi : i = 1, 2, . . . ). For P we would want a sort of infinite product measure

P = µ1 × µ2 × . . . .

The existence of this P , an infinite dimensional version of Theorem C, is itself a special case of the even

more general Kolmogorov Existence Theorem, which also allows correlation among the Xi. See Billingsley

for more on this.
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Theorem D. Suppose (X,X , µ) and (Y,Y, ν) are σ-finite measure spaces and π = µ × ν is the product

measure on (X × Y,X × Y). Suppose f : X × Y → IR is X × Y measurable.

1. (Tonelli) If f ≥ 0, then

a)
∫
Y f(x, y) ν(dy) is X measurable,

b)
∫
X f(x, y)µ(dx) is Y measurable, and

c) ∫
X

[∫
Y

f(x, y) ν(dy)

]
µ(dx) =

∫
X×Y

f(x, y)π(d(x, y)) =

∫
Y

[∫
X

f(x, y)µ(dx)

]
ν(dy).

2. (Fubini) If f is π-integrable, then a) and b) still hold except that the functions may be undefined on

sets measure 0. The functions in a) and b) are integrable, and c) holds.

Example 3. Let X = Y = {1, 2, 3, 4, · · · }, µ = ν = counting measure, and

f(x, y) =


1 if x = y

−1 if y = x+ 1

0 otherwise.

∫ ∫
f(x, y)ν(y)µ(dx) =

∞∑
x=1

∞∑
y=1

f(x, y) =
∞∑
x=1

(1− 1) = 0

∫ ∫
f(x, y)µ(dx)ν(dy) =

∞∑
y=1

∞∑
x=1

f(x, y) = 1 +
∞∑
y=2

(−1 + 1) = 1

The problem is that Fubini’s Theorem does not apply!

∫ ∫
|f |ν(dy)µ(dx) =

∞∑
x=1

(1 + 1) =∞

��

The usual way Theorem D is used is to first calculate
∫
X

∫
Y
|f(x, y)|ν(dy)µ(dx) to verify that f is π-

integrable. If that works out, then you are justified to remove the absolute values and evaluate
∫
f dπ =∫

X

∫
Y f dν dµ.

Applications to Independent Random Variables

Suppose again that X,Y : Ω → IR are independent random variables on (Ω,F , P ). Then their joint

distribution π is the product of the marginals: π = µX×µY . Theorem D and III.H now allow us to calculate

E[|XY |] =

∫
|xy|π(d(x, y))

=

∫
|x|µX(dx) ·

∫
|y|µY (dy) (Tonelli)

= E[|X |] · E[|Y |].

So E[|X |], E[|Y |] < ∞ implies E[|XY |] < ∞, and repeating the calculation, now with Fubini, we get

E[XY ] = E[X ]E[Y ].
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Example 4. Suppose X and Y are independent, exponentially distributed r.v.s with mean 1
λ . Find the

distribution of X/Y . For z ≥ 0 we can calculate

P (
X

Y
≤ z) = P [X ≤ zY ] = π({(x, y) : x ≤ zy})

=

∫
IR

∫
IR

1{x≤zy}(x, y)µX(dx)µY (dy)

=

∫
(0,∞)

∫
(0,∞)

I{x≤zy}(x, y)λe−λy`(dx)λe−λy`(dy)

=

∫
(0,∞)

[∫ zy

0

λe−λx dx

]
λe−λy `(dy)

=

∫ ∞
0

λe−λy[1− e−λzy] dy

=

∫ ∞
0

λ[e−λy − e−λy(z+1)] dy

= 1− λ

λ(z + 1)
=

z

z + 1

For z < 0 clearly P (XY ≤ z) = 0. Thus the distribution function of X/Y is

P (
X

Y
≤ z) =

{ z
z+1 for z ≥ 0

0 for z < 0.

This distribution has density given by

p(z) =

{ 1
(z+1)2 z ≥ 0

0 z < 0

��

If MX(s) = E[esX ] and MY (s) = E[esY ] are both defined, then

MX+Y (s) = E[es(X+Y )] =

∫
esx · esyπ(d(x, y))

=

∫
esxµX(dx) ·

∫
esyµY (dy) = MX(s)MT (s) <∞.

The same holds regarding characteristic functions: for all t,

µ̂X+Y (t) = µ̂X(t) · µ̂Y (t).

Suppose that µX and µY have densities fX , fY . Then for A ∈ B(IR2) we have

π(A) =

∫ ∫
1A(x, y) νY (dy)µX(dx)

=

∫
IR

[∫
IR

1A(x, y)fY (y) `(dy)

]
fX(x) `(dx)

=

∫
IR2

1A(x, y)fX(x)fY (y) `(d(x, y)).

Thus π has density f(x, y) = fX(x)fY (y) with respect to ` on IR2. Moreover we can calculate a density for

the distribution of X + Y :

FX+Y (a) =

∫
IR

∫
IR

1{x+y≤a}(x, y)fY (y)fX(x) `(dy) `(dx).
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Now
∫

(−∞,a−x]
fY d` =

∫
(−∞,a]

fY (z − x) `(dz). For Riemann integration this would just be the simple

change of variables y = z−x, dy = dz. In our context we have to work harder to give a correct justification.

Consider T (z) = z − x. By checking intervals (a, b] you can confirm that then `T−1 = `. (This is problem

I.8.) Now using III.H it follows that∫
(−∞,a]

fY (z − x) `(dz) =

∫
1(−∞,a−x](T (z))fY (T (z)) `(dz)

=

∫
1(−∞,a−x](y)fY (y) `T−1(dy)

=

∫
1(−∞,a−x](y)fY (y) `(dy)

=

∫
(−∞,a−x]

fY d`,

as claimed. Therefore

FX+Y (a) =

∫
IR

∫
(−∞,a]

fY (z − x)fX(x) `(dz)`(dx)

=

∫
(−∞,a]

[∫
IR

fY (z − x)fX(x) `(dx)

]
`(dz).

Thus µX+Y has density

fX ∗ fY (z) =

∫
IR

fY (z − x)fX(x) `(dx).

This is called the convolution of the density functions fX and fY .

The Radon-Nikodym Theorem

If µ, ν are two measures on the same (Ω,F) we have said that ν has density ρ with respect to µ if ρ : Ω→ IR

is measurable, ρ ≥ 0, and

ν(A) =

∫
A

ρ dµ, all A ∈ F .

If we are given µ and ν how might we check to see if such a ρ exists? (This will be the foundation of

conditional probabilities!) Note that if a density exists then for any A ∈ F with µ(A) = 0 we must also have

ν(A) =
∫

1A ρdµ = 0. In other words

(1) ν(A) = 0 whenever A ∈ F and µ(A) = 0.

When (1) holds we say that ν is absolutely continuous with respect to µ, written “ν � µ”.

Example 5. (Ω,F) = (IR,B), ν(A) =
∑∞
−∞ 1A(n), counting measure on the integers, Z. ν 6� ` because

`(Z) = 0 but ν(Z) =∞. Also ` 6� ν because `((0, 1)) = 1 but ν((0, 1)) = 0. Let µ = `+ ν. Then µ(A) = 0

implies ν(A) = 0 so ν � µ. In fact ν(A) =
∫
A 1Zdµ so ν has density 1Z with respect to µ. ��

Example 6. Let P and Q be two probability measures on (Ω,F) and suppose Xi, i = 1, 2, . . . are i.i.d.

with respect to both P and Q. Then Q� P requires the distribution of Xi to be the same under P as under

Q! (Absolute continuity is more difficult in infinite dimensional settings.) To see why, suppose for some a

p = P (Xi ≤ a) 6= Q(Xi ≤ a) = q.

Then the Strong Law of Large Numbers says that

1

n

n∑
1

1(−∞,a](Xi)→
{
p P a.s.

q Q a.s.

��
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We have explained that if ν has density with respect to µ, then ν � µ. The next important theorem

says that (for σ-finite measures) the converse is also true!

The Radon-Nikodym Theorem (E). If µ and ν are both σ-finite measures on (Ω,F) with ν � µ, then

ν has a density with respect to µ. The density is unique up to sets of µ-measure 0.

The density (lets call it ρ) is often called the Radon-Nikodym derivative of ν with respect to µ and is indicated

by the notation

ρ =
dν

dµ
.

(This notation agrees nicely with “dν = ρ dµ” as in Theorem III.G.) Notice that if g ≥ 0 is any other

measurable function on Ω with ρ = g µ-almost surely, then ν(A) =
∫
A
ρ dµ =

∫
A
g dµ. Thus g deserves to

be called the density just as much as ρ. In other words, densities are only determined “up to” almost sure

equivalence.

Conditioning

Let (Ω,F , P ) be a probability space. What do we mean by a conditional probability? The next three

examples review some “primitive” formulas.

Example 7. If A,B ∈ F and P (B) > 0 then

P [A|B] =
P (A ∩B)

P (B)
.

In other words P [A|B] = ρ is the value that makes the formula

ρ · P (B) = P (A ∩B)

correct. ��

Example 8. Suppose Y is a simple random variable.

P [A|Y = yi] = P [A|Bi] where Bi = {Y = yi},

provided P (Y = yi) > 0. ��

Example 9. Suppose X,Y have joint density f(x, y). Then

P (Y ∈ B) =

∫
IR×B

f(x, y) `(d(x, y)).

P (Y = y) = 0 for any individual y, so P [X ∈ A|Y = y] can’t be defined as above. But most elementary

texts will define the conditional density

fX|Y (x|y) =
f(x, y)∫

f(x, y) `(dx)
.

Then if A = {X ∈ C} where C = (a, b], you would calculate

P [A|Y = y] = P [a < X ≤ b|Y = y] =

∫ b

a

fX|Y (x|y) dx.

Or,

P [X ∈ C|Y = y] =

∫
C

fX|Y (x|y) `(dx).

��
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What is the unifying idea behind these definitions? The key is to focus on how they depend on what we

condition with respect to. In the above examples define (respectively)

ρ(ω) =

{
P [A|B] ω ∈ B
P [A|Bc] ω ∈ Bc

, G = {∅,Ω, B,Bc}(Ex.6)

ρ(ω) = ΣP [A|Y = yi]1{Y=yi}(ω), G = σ(Y )(Ex.7)

ρ(ω) =

∫
C

fX|Y (x, Y (w))`(dx), G = σ(Y ) A = {X ∈ C}(Ex.8)

In each case a function ρ(ω) and σ-field G are defined (except possibly on a set of probability 0) and are

characterized by the following properties:

(i) ρ : Ω→ IR is G measurable;

(ii) P (A ∩B) =
∫
B
ρ dP for all B ∈ G.

These properties provide the general definition.

Definition. Suppose (Ω,F , P ) is a probability space and G ⊆ F is a sub-σ-field. If A ∈ F , then P [A|G] is

defined to be any G measurable random variable ρ : Ω→ IR with the property that∫
B

ρ dP = P (A ∩B)

for all B ∈ G.

Thus P [A|G](ω) = ρ(ω) is a measurable function – this usually takes some getting used to. The

examples above describe its values in certain simple settings. In Example 7, to be G measurable means

ρ(ω) = c11B + c21Bcwhere c1 = P [A|B] and c2 = P [A|Bc]. I.e. P [A|B] is the constant value of ρ = P [A|G]

over B. Similarly in Example 8, to be G measurable requires ρ be constant over each set {Y = yi}. The

value it takes on this set is what we denoted by P [A|Y = yi] in Example 8.

Example 9 (continued). Define

ψ(y) =

∫
C

fX|Y (x|y) `(dx).

We want to show that ρ(ω) = ψ(Y (ω)) satisfies the definition we have given. With G = σ(Y ) ρ will be G
measurable if ψ is B measurable from IR→ IR. First, define

fY (y) =

∫
f(x, y) `(dx).

Tonelli’s Theorem says that fY is B measurable. The careful definition of fX|Y (x, y) would be

fX|Y (x, y) =

{
f(x,y)
fY (y) if fY (y) 6= 0

0 if fY (y) = 0
.

(Note that f(x, y) = fX|Y (x, y)fY (y) a.e., because if N = {fY (y) = 0} then
∫
N

∫
IR
f(x, y) `(dx) `(dy) =∫

NfY (y) `(dy) = 0.) Another application of Tonelli’s Theorem yields that

ψ(y) =

∫
C

fX|Y (x, y) `(dx)

is B measurable as desired.

Next we need to show that ∫
B

ρ dP = P (A ∩B) for all B ∈ G.
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Recall that A = {X ∈ C}. First note that fY is the density of the distribution of Y ; i.e. the marginal

density:

µY (D) = P (Y ∈ D)

=

∫
1D(y)f(x, y) `(d(x, y))

=

∫ ∫
1D(y)f(x, y) `(dx) `(dy)

=

∫
D

fY (y) `(dy).

Now, if B ∈ G then B = Y −1D for some D ∈ B. We can now use III.G and F to verify the following sequence

of equations. ∫
B

ρ(ω)P (dω) =

∫
Y −1D

ψ(Y (ω))P (dω)

=

∫
D

ψ(y)µY (dy)

=

∫
D

[∫
C

fX|Y (x|y) `(dx)

]
fY (y) `(dy)

=

∫
D

∫
C

f(x, y) `(dx)`(dy)

=

∫
C×D

f(x, y) `(d(x, y))

= P (X ∈ C, Y ∈ D)

= P (A ∩B)

Therefore, ψ(Y (ω)) = P [A|σ(Y )](ω). ��
Definition. IfX is an integrable random variable, we define E[X |G](ω) = ρ(ω) if ρ : Ω→ IR is G measurable

and ∫
B

ρ dP =

∫
B

X dP for all B ∈ G.

In other words, ρ = E[X |G] is a partially averaged/smoothed version of X making it G measurable but

maintaining it integrated values over G-sets. Observe that

P [A|G] = E[1A|G].

Also note that P [A|G] and E[X |G] are only defined up to G measurable sets of P = 0. We can have different

versions ρ1(ω) and ρ2(ω) of E[X |G](ω) (but both must be G measurable).

Example 8 (continued). If P (Y = yi) = 0 in Example 8, then E[A|σ(Y )] may be given any value on

{Y = yi}. ��
Example 10. If G = {∅,Ω}, then E[X |G] ≡ E[X ] and P [A|G] ≡ P (A) are constant functions. ��

One might ask, “doesE[X |G] always exist?” Lets assumeX is integrable. IfX ≥ 0 then ν(B) =
∫
B
X dP

defines a finite measure on (Ω,G) and ν � µ where µ = P |G . The Radon-Nikodym says there does exist a

G measurable ρ with

E[X ;B] = ν(B) =

∫
B

ρ dµ =

∫
B

ρ dP.

So, using the R.N. derivative notation, we can say

E[X |G] =
dν

dP |G
.

In general E[X |G] = E[X+|G]−E[X−|G] works.
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Elementary Properties. Conditional probabilities and expectations obey many of the same properties

as ordinary probabilities and expectations (integrals). We assume all random variables mentioned here are

integrable.

• 0 ≤ P [A|G] ≤ 1 almost surely.

• If An are disjoint, then P [∪∞1 An|G] =
∑∞

1 P [An|G] a.s.

• If X = c a.s. then E[X |G] = c a.s.

• E[αX + βY |G] = αE[X |G] + βE[Y |G] a.s. (any α, β ∈ IR)

• If X ≤ Y a.s., then E[X |G] ≤ E[Y |G] a.s.

• |E[X |G]| ≤ E[|X ||G] a.s.

• If |Xn| ≤ Y a.s. and Xn → X a.s. then E[Xn|G]→ E[X |G] a.s.

• If φ(·) is a convex function, with φ(X) and X both integrable, then

φ(E[X |G]) ≤ E[φ(X)|G] a.s.

The next two properties are very important tools for manipulating conditional expectations.

• If X is G measurable and Y,XY are both integrable, then

(2) E[XY |G] = X ·E[Y |G].

• If G1 ⊆ G2 ⊆ F are nested sub-σ-fields, then

(3) E[X |G1] = E[E[X |G2]|G1].

Why are these true? (2) means that if ρ(·) = E[Y |G] then
∫
AXρdP =

∫
AXY dP all A ∈ G. Note if

X =
∑n

1 ci1Biwith Bi ∈ G, then∫
A

XρdP =
n∑
1

ci

∫
A∩Bi

ρ dP =
n∑
1

ci

∫
A∩Bi

Y dP =

∫
A

XY dP.

Now pass to limit from simple approximants: |Xn| ≤ |X | with Xn → X and G-measurable. Actually the

mechanics of this are somewhat tricky. We want to apply the Dominated Convergence Theorem on each

side, using |Xn||Y | ≤ |X ||Y | on the right and |Xn||ρ| ≤ |X ||ρ| on the left. We know that |XY | is integrable;

the tricky part is to show that |X ||ρ| is also integrable. Since |Xn| is simple, what we have already argued

justifies

E[|Xn||ρ|] ≤ E[|Xn|E[|Y | |G]] = E[|Xn||Y |] ≤ E[|XY |] <∞.
Now applying Fatou’s Lemma to this tells us that

E[|X ||ρ|] ≤ E[|XY |] <∞.

Justifying (3) is easier. first notice that E[E[X |G2]|G1] is G1-measurable. Now we check that for any

A ∈ G1 ∫
A

E[E[X |G2]|G1] dP =

∫
A

E[X |G2] dP

=

∫
A

X dP since A ∈ G2 also.

If G,H ⊆ F are independent and B ∈ H, then

P (A ∩B) = P (A)P (B) =

∫
A

P (B) dP

for all A ∈ G. I.e. P [B|G] ≡ P (B). If X is independent of G (i.e. σ(X) and G are independent) then

E[X |G] ≡ E[X ]. (See problem 10.)
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Sufficient Statistics

In statistics we often observe various events ⊆ Ω and attempt to draw conclusions re. P . Suppose we are

trying to identify the true P from among a collection {Pθ : θ ∈ Θ} of possibilities. A sufficient statistic is

a random variable T (ω) so although θ ∈ Θ affects the distribution of T , θ does not affect the conditional

probabilities given T : for each A ∈ F , i.e.

(4) Pθ[A|T ] = ρ(ω)

should be σ(T ) measurable but not depend on θ. Thus for T to be sufficient should mean that for each

A ∈ F there exists a measurable f giving a θ-independent version probabilities of A given T :

Pθ[A|T ] = f(T (ω)) for all θ ∈ Θ,

Factorization Theorem(F). Suppose µ is a σ-finite measure on (Ω,F) and Pθ � µ for every θ. A

necessary and sufficient condition that a random variable (or vector) T be sufficient for {Pθ} is that there

exist a measurable h : Ω→ [0,∞) and for each θ a (Borel) measurable gθ : IR→ [0,∞) so that

dPθ
dµ

= h(ω)gθ(T (ω)).

.

Example 11. The “exponential families” of Bickel and Doksum describe commonly occuring parameterized

families Pθ for which a sufficient statistic exists, by appeal to the Factorization Theorem. Here T (x) and

c(θ) are vector valued and we write c(θ) · T (x) in place of
∑
i ci(θ)Ti(x):

p(x, θ) = exp [c(θ) · T (x) + d(θ) + S(x)] 1A(x)

= exp [c(θ) · T (x) + d(θ)] · exp [S(x)] 1A(x)

= gθ(T (x)) · h(x)

When interpreted as a density the reference mesaures is µ = ` (on IR or IRd). When interpreted as a “fre-

quency function” the reference measure µ is counting measure on the appropriate set e.g. A = {1, 2, 3, . . .}.)
��

Example 12. Let X1, X2 be a pair of independent random variables each with uniform distribution on

[0, B]. We view B (= θ) ∈ (0,∞) (= Θ) as a parameter for wihich we want to consider a sufficient statistic.

PB will be the distribution of X = (X1, X2), a probability measure defined on Ω = IR2 with F = B(IR2). A

typical ω ∈ Ω is ω = (x1, x2) and Xi(ω) = xi.

Take ` as the common reference measure on Ω. Then PB � ` with

dPB
d`

=
1

B2
1[0,B](X1(ω))1[0,B](X2(ω)).

Define

M(ω) = max(X1(ω), X2(ω)), m(ω) = min(X1(ω), X2(ω)).

Then we can rewrite the density

dPB
d`

=
1

B2
1[0,∞)(m(ω))1[0,B](M(ω))

= h(ω)gB(M(ω)),
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as in the Factorization Theorem. Thus M = max(X1, X2) is a sufficient statistic. However m = min(X1, X2)

is not. In other words

1) PB(A|σ(M)) should have a B-independent version for any A ∈ F ;

2) PB(A|σ(m)) should fail to have a B-independent version for some A ∈ F ;

We would like to see these features in terms of some more explicit calculations. For this purpose we will use

the joint density for (m,M). By checking various cases you can convince yourself that for 0 ≤ α, β ≤ B

PB[m ≤ α; M ≤ β] =

∫
[0,α]

∫
[0,β]

φ(u, v) d`(u, v),

where

φ(u, v) =

{ 2
B2 0 ≤ u ≤ v ≤ B

0 otherwise.

This is therefore the density.

For an example of 1), take A = {ω : m(ω) ≤ 1}. Following Example 9 we calculate

φm|M (u|v) =
1

v
1[0,v](u) for 0 ≤ u, v ≤ B (0 otherwise).

From here we find

PB(A|σ(M)) =

{
1

M(ω) if 1 ≤M(ω)

1 if M(ω) ≤ 1

We see no dependence on B, as expected.

For an example of 2), take A = {ω : M(ω) ≤ 1}. Now we start with

φM|m(v|u) =
1

B − u1[u,B](v) for 0 ≤ u, v ≤ B (0 otherwise)

and find

PB(A|σ(m)) =
1

B −m(ω)

{
1−m(ω) if m(ω) ≤ 1

0 if m(ω) > 1.

This obviously does depend on B. ��

We will present a proof of the Factorization Theorem, since it exercises our understanding of conditional

constructions and their manipluations. We start by assuming that dPθ/dµ = h(ω)gθ(T ) and prove that T is

sufficient. For this we start with a special case: µ is a probability measure and h is integrable with respect

to µ. For a given A ∈ F we need to exhibit a θ-independent version of Pθ(A|F). We will show that the

following works. Let N = {Eµ[h|T ] = 0} and define

ρ = 1N
Eµ[1Ah|T ]

Eµ[h|T ]
.

Since N ∈ σ(T ) ρ is σ(T ) measurable. Notice that ρ is defined independent of any θ. It will follow that T is

sufficient if we can verify that ρ satisfies the integral identity that defines ρ = Pθ(A|F). Notice that for any

θ we have

Pθ(N) = Eµ[hgθ(T );N ]

= Eµ[Eµ[hgθ(T )|T ];N ]

= Eµ[gθ(T )Eµ[h|T ];N ]

= 0.
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Consider any B ∈ σ(T ). Since Pθ(B ∩N) = 0 we have∫
B

ρ dPθ =

∫
B∩Nc

Eµ[1Ah|T ]

Eµ[h|T ]
hgθ(T ) dµ+ 0

=

∫
B∩Nc

Eµ[1Ah|T ]gθ(T ) dµ

=

∫
B∩Nc

1Ahgθ(T ) dµ = Pθ(A ∩B ∩N c) = Pθ(A ∩B).

We will prove the general case by reducing it to the special case of µ a probability measure. The

following lemma is the key to that reduction.

Lemma. If Pθ � µ for all θ where µ is σ-finite, there exists a countable collection θ1, θ2, . . . so that

Pθn(A) = 0 for all n is equivalent to Pθ(A) = 0 for all θ.

We will prove this lemma after using it to complete the proof of the theorem.

Let θ1, θ2, . . . be as in the lemma and define a new probability mesaure by

Q(A) =
∞∑
1

2−nPθn(A).

Notice that Q(A) = 0 implies that Pθn(A) = 0 for all n and therefore Pθ(A) = 0 for all θ. I.e. Pθ � Q for

all θ. In addition, if dPθ/dµ = h(ω)gθ(T (ω)), define

f =
∞∑
1

2−ngθn .

Then dQ/dµ = h · f(T ), so that f plays the role of gQ. Next for each θ define

rθ =

{
gθ/f if f > 0

0 if f = 0.

We will show that dPθ/dQ = rθ(T (ω)) · 1 for each θ. This means that the argument for the special case

above applies (with Q in the pace in µ and 1 = h) to see that T is sufficient. Let

C = {ω : f(T (ω)) = 0}.

Then Q(C) = 0 so that Pθ(C) = 0 for all θ. For A ⊆ Cc we have∫
A

rθ(T (ω)) dQ =

∫
A

gθ(T )

f(T )
f(T )h dµ

=

∫
A

gθ(T )h dµ = Pθ(A).

This completes the proof of the sufficiency half of the theorem.

We now turn to the necessity assertion. Suppose that T is sufficient. We must prove the existence of

an appropriate factorization of dPθ/dµ. Let θn be as in the lemma again and Q the same as we constructed

above. Let A ∈ F and

ρ(T (ω)) = Pθ(A|σ(T ))

be a θ-independent version, which des exist by the sufficiencey assumption. Consider any B ∈ σ(T ).∫
B

ρ(T ) dQ =
∞∑
1

2−n
∫
B

ρ(T ) dPθ

=
∞∑
1

2−nPθn(A ∩B) = Q(A ∩B).
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Thus ρ(T ) = Q(A|σ(T )) as well.

Let

dθ =
dPθ
dQ

and gθ(T ) = EQ[dθ|σ(T )].

We will show that gθ(T ) = dPθ/dQ. Consider any A ∈ F .∫
A

gθ(T ) dQ =

∫
1Agθ(T ) dQ

=

∫
EQ[1Agθ(T )|σ(T )] dQ

=

∫
EQ[1A|σ(T )]EQ[dθ|σ(T )] dQ

=

∫
EQ[EQ[1A|σ(T )]dθ|σ(T )] dQ

=

∫
EQ[1A|σ(T )]dθ dQ

=

∫
ρ(T )dθ dQ

=

∫
Pθ(A|σ(T )) dPθ = Pθ(A).

This confirms that gθ(T ) = dPθ/dQ. Therefore we have

dPθ
dµ

= gθ(T )
dQ

dµ

= gθ(T (ω))h(ω),

where h = dQ/dµ. This establishes the desired factorization and completes the proof of the theorem.

Proof of the Lemma. Because µ is σ-finite there exist An ∈ F with µ(An) < ∞ and Ω = ∪An. We can

assume the An are disjoint. Define a new measure ν by dν = k dµ where

k(ω) =

{
2−n/µ(An) if ω ∈ An, µ(An) > 0

0 if ω ∈ An, µ(An) = 0.

Since ν(Ω) ≤
∑∞

1 2−n = 1, ν is a finite measure. Now suppose ν(A) = 0. For any An with µ(An) > 0,

k(ω) > 0 for ω ∈ An. Since ν(An ∩A) = 0 we conclude that µ(An ∩A) = 0 as well. Thus ν(A) = 0 implies

µ(An ∩A) = 0 for all n, so that µ(A) = 0 and therefore Pθ(A) = 0 for all θ. In other words, we can replace

µ by the finite measure ν.

Let

fθ =
dPθ
dν

and Sθ = {ω : fθ(ω) > 0}.

We want to pick a countable C ⊆ Θ so that ν(∪θ∈CSθ) is as large as possible. Let

α = sup{ν(∪CSθ) : countable C ⊆ Θ}.

Then α ≤ ν(Ω) <∞ is finite. For each n there is a countable Cn with

ν(∪CnSθ) > α− 1

n
.

Then C∗ = ∪∞1 Cn is also countable and for each n we have

α− 1

n
< ν(∪CnSθ) ≤ ν(∪C∗Sθ) ≤ α.
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Therefore

ν(∪C∗Sθ) = α.

We will now show that C∗ does what we want, i.e. that Pθ(A) = 0 for all θ ∈ C∗ implies Pθ(A) = 0 for

all θ. Let

K = ∪C∗Sθ.

If Pθ′(K
c) > 0 for some θ′, then 0 <

∫
Kc fθ′ dν implies ν(Sθ′ ∩K) > 0 so that θ′ /∈ C∗. By adding θ′ to C∗

we would increase the measure of ν(∪C∗Sθ), which is not possible. We conclude that Pθ(K
c) = 0 for all θ.

Suppose then that Pθ(A) = 0 for all θ ∈ C∗. Write

A ∩K = ∪θ∈C∗(A ∩ Sθ)

and consider a θ ∈ C∗. Since Pθ(A) = 0 we know

0 = Pθ(A ∩ Sθ) =

∫
Sθ

1Afθ dν.

Since fθ > 0 on Sθ, it follows that ν(A ∩ Sθ) = 0 for all θ ∈ C∗. Therefore ν(A ∩K) = 0 which implies that

Pθ(A ∩K) = 0 for all θ. Since we already know Pθ(K
c) = 0 for all θ, we conclude that Pθ(A) = 0 for all θ,

as desired.

Basics of Stochastic Processes

Suppose (Ω,F , P ) be a probability space. A stochastic process is intended to model a situation in which

a random quantity as well as the information available to us both evolve in time. Time can be considered

discrete or continuous.

Discrete Time. n = 0, 1, 2, 3, . . . . The information available to us at the various times is described by an

increasing sequence of σ-fields (called the “filtration”):

F0 ⊆ F1 ⊆ F2 ⊆ F3 ⊆ · · · ⊆ F .

The evolving random quantity is described by a sequence of random variables,

X0, X1X2, X3, . . .

such that Xn is Fn measurable. (I.e. we know Xn at time n.)

Continuous Time. t ≥ 0. Now the filtration consists of a time-indexed family of σ-fields: Ft, t ≥ 0. We

assume

Fs ⊆ Ft ⊆ F , when s ≤ t.

The process itself should consist of random variables Xt, each being Ft measurable.

We will introduce two general types of stochastic processes here, considering primarily the discrete

time case. Each of these two types, defined below, captures a certain type of dependency or evolutionary

relationship between the successive Xn.

Definintion. Xn is a martingale with respect to the Fn if for each n E[|Xn|] <∞ and

E[Xn+1|Fn] = Xn.
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Definition. Xn is a Markov process with respect to the Fn if for each n and evey A ∈ B(IR) it is possible

to express E[Xn+1 ∈ A|Fn] as a function of Xn alone.

There are additional technical hyopotheses in the continuous time case, but the essential properties are

E[Xt|Fs] = Xs, s < t (for martingales),

and

E[Xt ∈ A|Fs] depends only on Xs, s < t (for Markov processes).

There are also important connections – Markov process problems can often be formulated as martingale

problems. We will just present a few examples and applications to illustrate the use of these types of

processes.

Martingales

Example 13. Suppose ξ1, ξ2, . . . are i.i.d. random variables defined on (Ω,F , P ) with E[ξi] = 0. Let

F1 = σ(ξ1), F2 = σ(ξ1, ξ2), . . .Fn = σ(ξ1, ξ2, . . . , ξn),

and

Xn =
n∑
1

ξi = Xn−1 + ξn.

Then Xn in Fn measurable, and

E[Xn+1|Fn] = E[Xn + ξn+1|Fn]

= E[Xn|Fn] +E[ξn+1|Fn]

We know E[Xn|Fn] = Xn since Xn is Fn measurable, and E[ξn+1|Fn] = E[ξn+1] = 0 since ξn+1 is indepen-

dent of Fn. Therefore Xn is a martingale. ��

Example 14. Imagine in the preceeding that the ξi are the successive outcomes of a “game of chance”.

The Xn is the “fortune” of the gambler after n plays. We could enhance this by allowing the gambler to

choose a wager wn for play #n, determined in some way from the observed values of ξ1, . . . , ξn−1. I.e. wn is

an Fn−1 measurable random variable. The gambler wins wnξn as a result of play #n. Then

Xn =
n∑
1

wiξi

is still a martingale:

E[Xn+1|Fn] = E[Xn + wn+1ξn+1|Fn]

= E[Xn|Fn] + wn+1E[ξn|Fn]

= Xn.

The martingale property is interpreted as meaning this gambling system constitutes a fair game. ��
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Application to Likelihood Ratios. Suppose Y1, Y2, . . . is a sequence of random variables on (Ω,F) and

there are two possible probability measures P and Q on Ω. The Yi are i.i.d with respect to both P and Q,

but their actual distribution under each of them is different. We observe the Yi successively and based on

these observations want to decide which of P or Q is the true measure. One way to do this is to look at the

likelihood ratios:

Xn =
n∏
1

q(Yi)

p(Yi)
.

Here p and q are the densities (with respect to ` on IR) of the distribution of Yi with respect to P and Q

respectively. (We asssume q, p exist and p > 0.) A large value of Xn indicates Q is more likely; small values

indicate P .

Lets suppose P is the correct measure and consider Xn as random variables on (Ω,F , P ). Take Fn =

σ(Y1, . . . , Yn). Then the Xn form a martingale. To see this we will check that for each n

(5) Q(A) =

∫
A

Xn dP

for all A ∈ Fn. If (5) is true, then since any A ∈ Fn is also A ∈ Fn+1 it will follow that∫
A

Xn dP = Q(A) =

∫
A

Xn+1 dP.

Since Xn is clearly Fn measurable, this will show that E[Xn+1|Fn] = Xn, verifying the martingale property.

Any A ∈ Fn can be written as

A = {ω : (Y1, . . . , Yn) ∈ H},

for some H ∈ B(IRn). (See Theorem II.F.) Let µQn and µPn be the distributions of (Y1, . . . Yn) with respect

to Q and P respectively, and ` Lebesgue measure on IRn.

dµQn
d`

=
n∏
1

q(yi);
dµPn
d`

=
n∏
1

p(yi).

Now we can verify (21) as follows (y = (y1, . . . , yn) here):∫
A

Xn dP =

∫
1H(Y1, . . . Yn)

n∏
1

q(Yi)

p(Yi)
dP

=

∫
1H(y)

n∏
1

q(yi)

p(yi)
µPn (d(y1, . . . , yn))

=

∫
1H(y)

n∏
1

q(yi) d`

=

∫
1H(y) dµQn

=

∫
1H(Y1, . . . , Yn) dQ

= Q(A)

This application and the examples above illustrate that there are a number of naturally occuring situ-

ations which have the structure that we have labeled “martingale”. What make recognizing this common

structure valuable is that there are a number of theorems that can be proven for martingales in general.

Among the most important are convergence theorems, such as the following.
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Theorem H. Suppose Xn is a martingale with respect to Fn and the E[|Xn|) are bounded. (I.e. there is K

with E[|Xn|] ≤ K for all n.) Then the Xn converge almost surely as n→∞. (I.e. limn→∞Xn(ω) = X∞(ω)

exists almost surely.)

We can use this in our likelihood ratio application, because (using (21))

E[|Xn|] = E[Xn] =

∫
Ω

Xn dP = Q(Ω) = 1.

Therefore the limit of the likelihood ratios limXn = X∞ exists a.s. The important issue in considering

the likelihood rations as statistical indicators is what this limit actually is. If we assume p 6= q, i.e. the

distribution of an individual Yi under P is different than under Q, we will show that

Xn =
n∏
1

q(Yi)

p(Yi)
→ 0 = X∞.

Fatou’s Lemma tells us that∫
A

X∞ dP =

∫
A

limXn dP ≤ lim inf

∫
A

Xn dP.

Now if ∈ Fk then for any n ≥ k,
∫
A
Xn dP = Q(A). Therefore we have∫

A

X∞ dP ≤ Q(A)

for A ∈ ∪∞1 Fk. The Monotome Class Theorem (I.C) extends this to all A ∈ F∞ = σ(∪∞1 Fk) = σ(Y1, Y2, . . . ).

This would mean that X∞ ≤ dP/dQ if the latter exists on F∞. In fact quite the oppostie is true!

Since p(·) 6= q(·) there is some bounded function φ(·) for which

mP = EP [φ(Yi)] =

∫
φ(y)p(y) d` 6=

∫
φ(y)q(y) d` = EQ[φ(Yi)] = mQ.

The Strong Law of Large Numbers tells us that

1

n

n∑
1

φ(Yi(ω))→
{
mP a.s. under P

mQ a.s. under Q
.

If we define

AP = {ω ∈ Ω :
1

n

n∑
1

φ(Yi(ω))→ mP }

AQ = {ω ∈ Ω :
1

n

n∑
1

φ(Yi(ω))→ mQ},

then AP and AQ are disjoint, both in F∞, and

P (AP ) = 1 while Q(AP ) = 0

P (AQ) = 0 while Q(AQ) = 1.

This says that P and Q are about as far from having densities with respect to each other as possible. With

regard to X∞ we find that ∫
Ω

X∞ dP =

∫
AP

X∞ dP ≤ Q(AP ) = 0.

This implies that X∞ = 0 a.s.

What we see from all this is that

Xn → 0 almost surely with respect to P.

Interchanging the roles of P and Q above would imply that 1/Xn → 0 almost surely with respcet to Q, or

Xn →∞ almost surely with respect to Q.

This explains (rather convincingly) why the likelihood ratio (for large n) is a indicator of whether P or Q is

the true probability measure.
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Markov Processes

The defining property of a Markov Process Xn (with respect to Fn) is that for each A ∈ B, P [Xn+1 ∈ A|Fn]

should depend only on Xn. In other words,

P [Xn+1 ∈ A|Fn] = Pn(Xn(ω), A),

for some function Pn(x,A) called the transition probability. This should be a measure with respect to A ∈ B
(for each x, n) and a measureable function of x (for each n and A ∈ B). Often Pn does not depend on n. (In

the simple examples we look at the transition probability can be given explicitly, but in many applications

it can not be – the process would have to be identified in another way.)

Symmetric Random Walk. Here Xn ∈ Zd, the “integer lattice” in d dimensions. The transition proba-

bility is

P (x, {y}) =

{ 1
2d

if |x− y| = 1

otherwise
.

To complete the specification of the process we need to prescribe X0; lets say X0 = 0.

An interesting question concerning the random walk is that of its recurrence: does Xn eventually return

to 0 (a.s) or is there some positive probability that Xn 6= 0 for all n ≥ 1? To formulate this precisely, define

the random variable

η =

{
inf {n ≥ 1 : Xn = 0} if Xn does return to 0

+∞ if Xn never returns.

This is a “time-valued” random variable of the type called a stopping time:

{ω : η ≤ n} ∈ Fn, for each n.

The question then is whether P (η <∞) = 1 or < 1. The answer depends on the dimension d:

d = 1 d = 2 d ≥ 3

P (η <∞) = 1 = 1 < 1

E[η] <∞ =∞ =∞.

In fact for d ≥ 3 lim |Xn| =∞ a.s.

We will not justify all these assertions, but simply want to point out how the analysis of these recurrence

questions involes a key feature of Markov processes, namely that probabilities involving them can often be

described in terms of functions on “state spce” and appropriate difference or differential equations. To see

this for the recurrence issue, consider the function φ(x) defined by

P [Xm = 0 some m ≥ n|Fn] = φ(Xn).

Here 0 ≤ φ(·) ≤ 1 is a function on Zd which satisfies

1) φ(0) = 1;

2) φ(x) =
∫
φ(y)P (x, dy), x 6= 0.

In the case of d = 1, 2) above translates into a simple difference equation:

φ(x) =
1

2
φ(x− 1) +

1

2
φ(x+ 1).

So we can answer the recurrence question by looking for solutions of this equation with 0 ≤ φ ≤ 1 and

φ(0) = 1. The equation is equivalent to

φ(x) − φ(x− 1) = φ(x + 1)− φ(x)

φ(x) = φ(0) + x ·m, x ≥ 1.
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This makes it clear that φ(x) ≡ 1 is the only solution. The same conclusion works out for d = 2 though the

reasoning is much harder. However in d ≥ 3 there is a solution with 0 < φ(x) < 1 for x 6= 0 – this accounts

for the non-recurrence in those dimensions.

There are numerous other discrete time examples of Markov processes (general Markov chains, branching

processes) but we want to mention continuous time examples as well. Here the Markov property takes the

form

P [Xt ∈ A|Fs] = P (Xs, t− s,A) for s ≤ t.

We will mention the example of Brownian motion brieΩy. Some other examples of continuous-time Markov

processes are the Poission, contact and Cauchy processes.

Brownian Motion. (Wiener Process)

P (x, h, dy)/`(dy) = (2πh)−d/2e−|y−x|
2/2h.

This means that Xt −Xs is Gaussian (normally) distrbuted with mean 0, variance=
√
t− s (in d = 1). (In

d > 1, the covariance matrix is
√
t− s · I.) Given t0 < t1 < · · · < tn, it follows that

Xt0 , Xt1 −Xt0 , . . . Xtn −Xtn−1

are independent with the Gaussian distributions indicated.

The remarkable fact (proven by N. Wiener in 1923) is that the Xt(ω) can be constructed so that, for

each ω ∈ Ω, Xt(ω) is continuous in t. The Xt form a random continuous function. Here, brieΩy, are some

properties:

P (
d

dt
Xt exists for some t > 0) = 0

For any f(x) with f ′ and f ′′ bounded,

Mt = f(Xt)−
∫ t

0

1

2
f ′′(Xs) ds is a martingale.

This is for d = 1. For d > 1 the f ′′ in the above integral is replaced wit;h the Laplace operator :

∆f =
d∑
1

∂2

∂x2
i

f.

The expression ∆f is central to a number of partial differential equations important in the sciences. As a

result, Brownian motion can be used to “solve” such equations by taking expected values of appropriate

expressions involving integrals of Xt.

Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose f is a nonnegative function on a σ-finite measure space (Ω,F , P ). Let

A = {(ω, y) : 0 ≤ y ≤ f(ω)}

be the region “under the graph” of y = f(ω). Show that the integral gives the area under the curve in the

sense that ∫
Ω

f dµ = µ× `(A).

Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prove for any probability distribution function F and c ∈ IR that∫
IR

[F (x+ c)− F (x)] `(dx) = c.
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Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If X ≥ 0 is a random variable, show that for any positive integer n

E[Xn] =

∫
[0,∞)

nxn−1P [X > x] d`.

Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let Ω = [0,∞) × [0, 2π), with the typical point being ω = (r, θ). On Ω consider the measure µ having

density r with respect to Lebesgue measure. Let Φ : Ω → IR2 be given by Φ(r, θ) = (r cos θ, r sin θ). Let R
be the class of subsets of Ω of the form [r1, r2)× [θ1, θ2). σ(R) = B(Ω) are the Borel sets in Ω. Let

P = {S ⊆ IR2 : Φ−1S ∈ R}.

a) Show that P is a π-system and that σ(P) = B(IR2).

b) If Φ−1S = [r1, r2) × [θ1, θ2), what should `(S) be? (Just tell me what the correct formula is; don’t

actually verify it by careful calculation.)

c) Using a) and b), prove that ` = µΦ−1.

d) Suppose f : IR2 → IR is (Borel) measurable. Show that∫
IR2

f(x, y) `(d(x, y)) =

∫
[0,2π)

∫
[0,∞)

f(r cos θ, r sin θ)r `(dr)`(dθ)

if f ≥ 0. Show that f is `-integrable on IR2 if and only if r · f ◦ Φ is µ-integrable on Ω, in which case

the above formula also holds. (See III.F and G, and Example III.6)

Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Show that if X and Y are independent random variables, both with the standard normal distribution, then

X/Y has the Cauchy distribution with parameter u = 1.

Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let µ, ν and λ be σ-finite measures on the common space (Ω,F).

a) Show that ν � µ and µ� λ imply that ν � λ and

dν

dλ
=
dν

dµ
· dµ
dλ
.

b) Suppose µ� λ and ν � λ. Let A be the set where dν/dλ > 0 = dµ/dλ. Show that ν � µ if and only

if λ(A) = 0, in which case

dν

dµ
=

{
dν/dλ
dµ/dλ if dµ/dλ > 0

0 if dµ/dλ = 0
.

Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prove Bayes’ Theorem in the form

P [G|A] =

∫
G
P [A|G] dP∫

Ω
P [A|G] dP

,

for G ∈ G.

Problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose X is a random variable on (Ω,F , P ) with finite second moment and G ⊆ F is a sub-σ-field. Show

that for any G-measurable g

E[(X − g)2] = E[(X −E[X |G])2] +E[(E[X |G]− g)2].

In particular, g = E[X |G] minimizes E[(X − g)2] over all such g.



V: 22

Problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose P and Q are two probability measures on (Ω,F), with Q� P and f = dQ/dP . If X is a random

variable having EQ[|X |] <∞, show that for any sub-σ-field G ⊆ F ,

EQ[X |G] = 1Ac
EP [Xf |G]

EP [f |G]
a.s. w.r.t. Q,

where A = {EP [f |G] = 0}.

Problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Show that the independence of X and Y implies that

(6) E[Y |X ] = E[Y ]

and that (6) implies

(7) E[XY ] = E[X ] ·E[Y ].

Find simple examples to show that both reverse implications are false.
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Unit S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Mathematical Supplements

We summarize here a number of mathematical details and facts which are used in our discussion. This is

only a quick summary, not a thorough treatment. Please talk to me if you want more on these or other

background topics.

Elements, Sets and Classes

Our discussions with sets involve three distinct types of objects:

• elements (denoted by lower case letters like ω, a or x);

• sets (denoted by upper case letters like Ω, A or X);

• classes (denoted using script letters such as A, F , or B).

Elements are the most basic objects. A set is a collection of elements. Classes are collections of sets.

The statement x ∈ A means that x is one of the elements which belongs to the set of elements called A.

A subset B ⊆ A is another set with the property that every element of B is also an element in A, in other

words

x ∈ A whenever x ∈ B.
The empty set is the set containing no elements at all: ∅ = { }. It is considered to be a subset of every

set: ∅ ⊆ A, regardless of what the set A is. We typically use Ω for the total collection of all elements under

consideration, the master set . All sets are then subsets of Ω.

The operations of intersection, union and difference of sets should be familiar:

A ∩B = {x : x ∈ A and x ∈ B}

A ∪B = {x : x ∈ A or x ∈ B}.
A \B = {x : x ∈ A but x /∈ B}.

If we have a sequence A1, A2, . . . , An, . . . of sets, we write their intersection and union as

∩∞n=1An = ∩An = {x : x ∈ An for every n = 1, 2 . . .},

∪∞n=1An = ∪An{x : x ∈ An for some n = 1, 2 . . .}.
Set compliments only make sense with reference to the master set Ω:

Ac = {ω ∈ Ω : ω /∈ A} = Ω \A.

We can write A \B = A ∩Bc provided A and B are subsets of the same master set.

A class is a collection of subsets of the master set, Ω. The σ-fields and π-systems of our discussion are

important examples of classes. It is tempting to talk about classes as “sets of sets” but this would be using

the word “set” in two different ways and leads to some logical paradoxes. We insist therefore on reserving

the word “set” for collections of elements, and “class” for collection of sets. It is important to keep the three

types of objects (element, set and class) distinct in our thinking.

Example 1. Let the master set consist of all real numbers: Ω = IR. Thus elements are individual real

numbers x. Some examples of sets are

A = {x ∈ IR : x > 0} = (0,∞) and I = [−1, 2] = {x ∈ IR : −1 ≤ s ≤ 2}.

A is called the set of positive real numbers. I is an example of what we call a (bounded) closed interval.

I ⊆ IR but neither I ⊆ A nor A ⊆ I. It should be obvious that

A ∩ I = (0, 2] A \ I = (2,+∞) I \A = [−1, 0].

��
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A set such as B = {−3} containing exactly one element is called a singleton set. Note that −3 and {−3}
are different mathematical objects; the first is an element , the second is a set (which in this case contains

exactly one element). Again, do not mix the concepts of element and set.

Now lets look at some classes of subsets of Ω = IR. Let C be the collection of all (bounded) closed

intervals [a, b] with a ≤ b. In other words to say J ∈ C means that J is a subset of IR of the particular form

J = {x ∈ IR : a ≤ x ≤ b} for some a ≤ b. With A, B and I as already defined, A /∈C while B ∈ C and

I ∈ C. (Note that B = [a, b] using a = b = −3, which falls within the scope of sets allowed in C.)
Do not confuse the statement that B = {−3} ∈ C, which is true, with −3 ∈ C, which is entirely incorrect!

Anything in C must be a subset of Ω, not an element. Classes contain sets; sets contain elements. It would

be legitimate to ask whether Ω ∈ C, since Ω is a set and hence could conceivably be in the class C. The

answer however is no since Ω = IR cannot be written as a bounded closed interval [a, b]. Our requirement

a ≤ b implies that ∅ /∈ C.
Consider also the class U of all singleton sets. Then we would say U ⊆ C, because every singleton set is

a closed interval: {x} = [x, x]. But C ⊆ U is false.

The collection of all A ⊆ IR with {0, 1} ⊆ A forms another class; lets call it P . We can intersect classes;

P ∩ C would consist of all intervals J = [a, b] which contain both elements 0 and 1, in other words J = [a, b]

with a ≤ 0 and 1 ≤ b. Likewise we can form unions of classes, such as U ∪ P . Note that U ∩ C = U , while

U ∩ P contains no sets at all (not even ∅). ��

Notice that we use the same symbols (∈, ∩, ∪, ⊆) to discuss classes and the sets which they contain as

we do to discuss sets and the elements they contain. If An is a class for each n then we can form new classes

by forming the intersection or union of all of them:

∩An = {F ⊆ Ω : F ∈ An for every n},

∪An = {F ⊆ Ω : F ∈ An for some n}.

Product Sets. If X and Y are any two sets we can form a new set X×Y from them, called their cartesian

product . X × Y is the set of all ordered pairs (x, y) where x ∈ X and y ∈ Y . X2 is shorthand for X ×X .

Thus IR× IR = IR2 is the familiar x, y plane from calculus. Likewise we can form the product of more than

two sets:

X × Y × Z = {(x, y, z) : x ∈ X, y ∈ Y, z ∈ Z};

Xn = {(x1, . . . , xn) : xi ∈ X for each i = 1, . . . , n}.

If A ⊆ X and B ⊆ Y then A×B ⊆ X × Y , but A 6⊆ X × Y .

DeMorgan’s Laws and Logical Negations

The compliment of an intersection (union) is the union (intersection) of the compliments:

(A ∩B)c = (Ac) ∪ (Bc), (∩An)c = ∪Acn;

(A ∪B)
c

= (Ac) ∩ (Bc), (∪An)
c

= ∩Acn.

These are called DeMorgan’s laws in set theory. They are essentially the same as the rules for negating

statements involving the logical quantifiers “for every” and “for some”. For instance consider the statement

x ∈ ∩An; we can write it using logical quantifiers as

(1) for every n, x ∈ An.
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The negation of this is the statement that x ∈ (∩An)
c
. DeMorgan’s law says that (∩An)c = ∪Acn, so that

the negated statement can be expressed as

(2) for some n, x /∈ An.
Observe that the “for every” in (1) changed to “for some” in (2) and the phrase “x ∈ An” changed to

its negation, “x /∈An”. Complicated logical expressions are negated by reversing the quantifiers from the

outside in, negating the inner statements as you proceed.

Example 2. Consider the statement that limx→a f(x) exists. Using the definition of limit this can be

expressed using quantifiers as

(3) There exists ` so that for every ε > 0 there is some δ > 0 so that for every x with |x − a| < δ the

inequality

|f(x)− `| < ε holds.

The negation of this, i.e. the statement that limx→a f(x) does not exist, becomes

(4) For every ` there is some ε > 0 so that for every δ > 0 there is some x with |x − a| < δ for which the

inequality

|f(x)− `| < ε fails.

Let L = {f(·) : limx→a f(x) exists }. The statement (3) says

L = ∪` ∩ε>0 ∪δ>0 ∩x∈Bδ Aε,x,
where

Bδ = {x : |x− a| < δ} and Aε,x= {f(·) : |f(x)− `| < ε}.
Now (4) is the expression for Lc obtained by DeMorgan’s laws:

Lc = [∪` ∩ε>0 ∪δ>0 ∩x∈Bδ Aε,x]
c

= ∩` ∪ε>0 ∩δ>0 ∪x∈Bδ Acε,x.
��

Countability

Sets which contain an infinite number of distinct elements are called infinite sets, naturally. However some

infinite sets must be considered as “bigger” than others. The “smallest” kind are those we call countable.

An infinite set A is called countably infinite if its elements can be listed (in their entirety) as a sequence,

A = {a1, a2, . . . , an, . . . } = {an : n = 1, 2, . . .}.
Another way to say this is that there is a way to put the elements of A in one-to-one correspondence with

the positive integers IN = {1, 2, . . . }; IN and A have the same “number of elements”. This defines what it

means for an infinite set to be countable; every finite set is also considered countable. Thus a countable set

is one which is either finite or countably infinite. Here are some properties and examples.

• If A and B are each countable then A∪B is also countable. In fact a countable union of countable sets

is countable: ∪∞n=1An is countable if each An is countable.

• If A is countable and B ⊆ A then B is also countable.

• Every infinite set has a countably infinite subset.

• The set of all integers {· · ·− 3,−2,−2, 0, 1, 2, 3, . . .} is countable.

• The rational numbers Q = {x ∈ IR : x = n/m where n,m are integers} is countable.

• The reals numbers IR is uncountable.

• The set Ω of all infinite sequences ω of 0’s and 1’s, such as

ω = 010110111000101001010101101101110001010001110100001 . . .

is uncountable.
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Infimums and Supremums in IR

If A ⊆ IR is a nonempty, finite set then it has a maximum element and a minimum element: a = minA is

that a ∈ A with the property that

(5) a ≤ x for all x ∈ A;

similarly for maxA. However infinite subsets of IR may fail to have maxima and/or minima. For instance

A = (0, 1] has a maximum (maxA = 1) but no minimum! We can’t call 0 the minimum element because 0

is not an element of A. But otherwise 0 is what we would identify as the “bottom value” of A. The proper

statement is that 0 is the infimum of A: 0 = inf A. The infimum of a set is not required to be one of its

elements. The definition of α = inf A is that (5) holds for a = α but for no value of a > α; i.e. α = inf A is

the greatest lower bound for A. Similarly the supremum supA is defined to be the smallest upper bound for

A. When A has a minimum element then minA = inf A, but the infimum makes sense even when the idea

of a minimum element does not. In fact it is a fundamental property of IR that inf A does exist for any set

A ⊆ IR which is nonempty and bounded below (i.e. (5) holds for some a ∈ IR) . Likewise every nonempty

set which is bounded above has a supremum.

The infimum and supremum have the following monotonicity property, as you can convince yourself: if

A ⊆ B then

supA ≤ supB and inf A ≥ inf B.

Example 3. Let A = {1/n : n = 1, 2, . . .}. A is bounded (both above and below) and is nonempty so inf A

and supA are guaranteed to exist. supA = 1 = maxA. inf A = 0, but minA does not exist. ��

Extended Real Numbers

Sometimes it is convenient to add two additional elements, ±∞, to IR. This “enlarged” version of the real

numbers is called the extended real numbers, denoted by either IR∞ or [−∞,+∞]. Most rules of arithmetic

and inequalities extend to the new elements ±∞ in a natural way. For instance x/±∞ = 0 for all finite x.

If x > 0 then x · ±∞ = ±∞ (the signs would reverse if x < 0). The convention

±∞ · 0 = 0

may not seem obvious, but it is the right thing for our discussion of measure theory. We do however leave

∞−∞ and ∞/∞ undefined.

The inequalities

−∞ ≤ x ≤ +∞

hold for all x ∈ IR∞ . This is obvious, but it has the consequence that every set A ⊆ IR∞ has both an

infimum and supremum in IR∞ . For instance sup IN = +∞, even though IN is not bounded in the usual

sense. (In fact inf ∅ = +∞ and sup ∅ = −∞. However A = ∅ is the only set for which supA < inf A!)

Limits Superior and Inferior

You are familiar with the notion of the limit of a sequence of real numbers {an}, expressed by

lim
n→∞

an = ` or just lim an = `.

Of course not all sequences have limits; an = (−1)n diverges for instance. The more general notions of

limit superior (lim sup an) and limit inferior (lim inf an) are useful because they often exist even when the
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conventional limit does not. For instance, if we are discussing a sequence {an}, but don’t know yet whether

or not lim an exists, we can still talk about lim inf an and lim sup an.

The formal definitions are

lim inf an = lim
k→∞

(inf{an : n ≥ k}); lim sup an = lim
k→∞

(sup{an : n ≥ k}).

The idea is that for any value b < lim inf an there will be only a finite number of the an below b, while

for any value b > lim inf an there will be infinitely many an with an < b. An equivalent way to say it is

that ` = lim inf an is the smallest value to which a subsequence {ank} can converge, ` = limk ank . Likewise

lim sup an is the largest value to which any subsequence can converge.

Example 4. lim inf(−1)n = −1 and lim sup(−1)n = +1. ��

We still need to assume something about the sequence {an} to insure that lim inf an and lim sup an exist

as real numbers. For instance if {an} is bounded they will both exist. However if we accept ±∞ as legitimate

values (i.e. work in IR∞ ) then lim inf an and lim sup an will always exist, regardless of the sequence {an}.
Some general properties are as follows.

• lim inf an ≤ lim sup an for any sequence {an}.
• If an ≤ bn with only a finite number of exceptions, then lim inf an ≤ lim inf bn and lim sup an ≤

lim sup bn.

• lim sup−an = − lim inf an.

• lim an = ` if and only if lim inf an = ` = lim sup an. (This holds in particular for ` = ±∞.)

Note that the first inequality means that simply showing lim sup an ≤ lim inf an is enough to imply that

lim an exists!

Convergence and Topology in IRd

We are used to calling an interval J ⊆ IR open if it does not contain its endpoints; J = (a, b), or (−∞, b) for

instance. In general a set A ⊆ IR is called open if for every a ∈ A there is some ε > 0 so that (a−ε, a+ε) ⊆ A.

A is called closed if its compliment Ac is open. While it is true that every open set is a union of a countable

number of open intervals, A = ∪(an, bn), it is not true that every closed set is a countable union of closed

intervals!

In IRd the role of an interval (a− ε, a+ ε) is taken over by the ball of radius ε centered at a:

Bε(a) = {x ∈ IRd : d(x, a) < ε},

where d(x, y) =
√

(x1 − y1)2 + · · ·+ (xd − yd)2 is the usual Euclidean distance between two points. Thus

A ⊆ IRd is called open if for every a ∈ A, there is some ball centered at a entirely contained in A: Bε(a) ⊆ A
for some ε > 0. A is closed if Ac is open. Of course many sets are neither closed nor open.

We should also mention compact sets. K ⊆ IRd is compact if it is both closed and bounded. (This is

not the definition but is equivalent to it by the Heine-Borel Theorem).

A sequence {an} in IRd converges to b when each of its coordinate sequences converges to the respective

coordinate of a. In other words if

an = (an,1, . . . , an,d) b = (b1, . . . , bd)

then lim an = b means

lim
n→∞

an,i= bi for each i = 1, . . . , d.
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Compact sets K have the property that any sequence of points in it, an ∈ K, will have a convergent

subsequence {anm}, with limm anm also in K.

Finally we mention continuous functions. Several different descriptions can be given of what it means

for f : IRd → IRr to be continuous. The two most useful for us are

• whenever A ⊆ IRr is open, then f−1A = {x ∈ IRd : f(x) ∈ A} is also open;

or

• whenever {xn} is a convergent sequence in IRd then {f(xn)} converges in IRr to the value

lim
n
f(xn) = f(lim

n
xn).


