
Black-Scholes Option Pricing: PDEs, Probability, and Matlab1

Martin V. Day2

May 4, 2011

1 c©2011 Martin V. Day. Redistribution to others or posting without the express consent of the author is prohibited.
2day@math.vt.edu

Contents

Preface iv

1 Introduction and Preliminaries 1
1.1 The Black-Scholes Model . 1
1.2 No-Arbitrage and Risk-Neutral Pricing . 1
1.3 Looking Ahead . 3

2 Black-Scholes and the Heat Equation 6
2.1 Introduction to Partial Differential Equations . 6
2.2 Conversion of Black-Scholes to the Heat Equation . 7
2.3 The Heat Equation: Existence and Uniqueness . 9

2.3.1 The Heat Equation on a Strip . 12
2.3.2 The Heat Equation on a Semi-Strip . 13

2.4 The Black-Scholes Equation: Existence and Uniqueness . 14
2.4.1 Polynomial Growth and Risk-Neutral Pricing . 16

2.5 Solution Transformations . 17
2.6 Some Particular Solutions . 17

2.6.1 The Normal Distribution Function: N (x) . 17
2.6.2 The Basic Solutions v(0)–v(5) . 18

2.7 Problems . 19

3 Explicit Pricing Functions: European and Barrier Options 22
3.1 Piecewise Linear Terminal Value . 22
3.2 Barrier Options . 23
3.3 Approximations for Large and Small Price . 26
3.4 Problems . 29

4 Introduction to Finite Difference Methods: The Heat Equation 31
4.1 The Explicit Finite Difference Method . 33

4.1.1 Approximate Boundary Conditions in Heat Variables 34
4.2 Implementing the Explicit Method . 34
4.3 Testing the Explicit Method . 36
4.4 The Issue of Stability . 39
4.5 The Implicit and Crank-Nicholson Methods . 41
4.6 LU Factorization and Matlab Implementation . 44
4.7 Problems . 46

5 Finite Difference Methods in Financial Variables 48
5.1 Finite Difference Formulas . 48
5.2 Stability and Performance Issues . 52
5.3 Some Alternatives . 53
5.4 Financial vs. Heat Variables . 55
5.5 Problems . 56

i

6 Markov Chain Methods 57
6.1 Binomial Trees and Black-Scholes . 57
6.2 Finite Difference Methods and Markov Chains . 58
6.3 Financial Variables . 60
6.4 Implicataions for Stability . 62

7 Dividends 64
7.1 Continuous Dividends . 64
7.2 Discrete Dividends . 66
7.3 Problems . 68

8 American Options 70
8.1 The American Put . 70
8.2 Numerical Methods . 75

8.2.1 Explicit Methods . 75
8.2.2 Implicit Methods . 76
8.2.3 Boundary Conditions for the American Put . 76
8.2.4 About Linear Complementarity Problems . 77
8.2.5 Markov Chain Methods . 81

8.3 Other Formulae for the American Put . 82
8.4 Problems . 84

9 Asian Options 86
9.1 Continuous Arithmetic Averages . 87
9.2 Average Price Call . 89
9.3 Average Strike Call . 90

9.3.1 Boundary Condtions for Large z . 90
9.3.2 Boundary Conditions for z = 0 . 91
9.3.3 Bounds and Approximate Formulae . 91

9.4 Discrete Arithmetic Averages . 91
9.5 Problems . 95

10 Lookbacks 98
10.1 Lookback Varieties . 98
10.2 The Lookback PDE . 100
10.3 Floating Strike Puts . 101

10.3.1 Continuous Sampling . 102
10.3.2 Discrete Sampling . 103

10.4 Explicit Formula . 104
10.4.1 The Mean of the Maximal Price . 105

10.5 Problems . 107

11 Monte Carlo Methods 108
11.1 Some History . 108
11.2 Accuracy . 109
11.3 Variance Reduction . 110

11.3.1 An Example . 111
11.3.2 Antithetic Variates . 112
11.3.3 Control Variates . 113

11.4 A European Call . 114
11.5 Path-Dependent Options . 115
11.6 Problems . 116

ii

Appendix: Matlab 117
A .1 M-Files: Functions and Scripts . 117

A .1.1 Scripts . 117
A .1.2 Functions . 118

A .2 Some General Advice . 119
A .3 Global and Persistent Variables. 120

Appendix: Itô’s Formula and Martingales 121

iii

Preface

The past two or three decades has seen a bloom of interest in mathematical finance as a topic in applied
mathematics. A number of universities now have graduate programs, and many more offer at least some
introductory courses in the area. These courses attract graduate students from mathematics, statistics, the
sciences and engineering, as well as economics, business and finance.

One central topic of introductory courses is usually the problem of pricing contingent claims or “financial
derivatives.” The theoretical resolution of this problem is the risk-neutral pricing formula, which expresses the
arbitrage-free price of a contingent claim as the discounted mean with respect to a risk-neutral probability
measure. The risk-neutral probability is characterized (uniquely for complete markets) by a martingale
property of the assets in the market. Thus mathematical treatments of the subject are founded on ideas
from stochastic analysis, and those topics occupy most introductions to the subject. See for instance the
texts by Karatzas and Shreve [36], Björk [5], Musiela and Rutkowski [45].

The risk-neutral pricing formula provides a theoretical answer to the pricing problem, but there remains
the issue of computing actual numerical values of specific contingent claims from it. For binomial trees in
discrete time the calculations are elementary. The favorite continuous time formulation is the Black-Scholes
model of a single stock evolving according to a “geometric” Brownian motion. For this the pricing problem
becomes more substantial. In some instances there are explicit pricing formulae, such as the famous Black-
Scholes formula for a European call option. In others there is not, so that numerical or other approximate
methods are called for. This book is concerned specifically with the pricing problem for the
Black-Scholes model for a single stock and constant interest rate. It is not a survey of the many
ideas and models of contemporary mathematical finance.

The single-stock Black-Scholes model is simplistic for many reasons, and other more elaborate models
are studied in the literature. However the Black-Scholes model provides a relatively uncomplicated but
nontrivial setting in which to introduce many ideas and methods which will have generalizations in more
sophisticated settings. Existence and uniqueness issues for partial differential equations, change of variable
techniques, the role of boundary values and growth conditions, numerical methods for partial differential
equations, and the interplay between the stochastic and PDE points of view all are natural topics. Our
goal in this book is to use the option pricing problem in the simple Black-Scholes setting as
a laboratory in which to introduce a range of computational and analytic techniques. We will
see that the probabilistic perspective informs both the numerical and analytical treatments of these PDEs,
so we keep it closer at hand throughout our treatment than many other introductions to computational
techniques. Some other topics not common to other introductory books are more careful attention to
boundary and growth conditions as s→ 0 and s→∞, the use of bounds on hitting probabilities to justify
approximate boundary conditions, more careful discussion of the linear complementarity problems that
come up for American options, and the inclusion of Markov chain methods. Considering the many graduate
students from disciplines other than mathematics who take this course, it is particularly important to exhibit
the interdependence between conceptual/theoretical understanding and practical calculation. References to
source material or more detailed treatments are included, so that students who want to pursue topics further
will have a starting place.

Since numerical calculation is a significant part of our discussion, we discuss implementations of our
calculations. Matlab provides a particularly convenient and widely available platform for this. Many
students are already familiar with it, and those who are not pick it up quickly. We provide several examples
of Matlab code, and the problems ask for many additional calculations.

This book has evolved through teaching Math 5726 at Virginia Tech over several years. Math 5726 is the

iv

second of a two-semester course. The first covers the probabilistic background, Itô calculus and risk-neutral
pricing. That material is largely assumed here, with a brief recap in the first chapter and an appendix.
Thus the goal of this book, like the course from which it emerged, is narrowly focused on the problem of
calculating or approximating option prices for the single-stock Black-Scholes model.

We wish to thank to Prof. Don Chance, who sat through the course the first time it was taught in Spring
2001 and offered numerous suggestions and insights. We are also grateful to the many students who have
taken the course since then, enduring inconsistent notation.

Martin Day; Blacksburg, Virginia, April 2003
Notation

• We will denote random quantities with upper case letters: St, Wt, X, . . . For nonrandom quantities
we will generally use lower case letters: v(s, t), u(x, τ),. . . . Exceptions are the exercise time T and
ξn, ζn for the Markov chains in Chapter 6. Hitting times, which are random, are typically denoted T .

• Matricies and vectors will be denoted in bold, M and v, sometimes indicating them by their typical
entry written in bracketts:

M = [mij], v = [vn].

• Partial derivatives will be denoted with either subscript notation or using operator notation, with ∂s
instead of the classical but more cumbersome ∂

∂s :

vs(s, t) = ∂sv(s, t), vss(s, t) = ∂2
sv(s, t), vstv(s, t) = ∂s∂tv(s, t).

• We will generally use the superscript position for descriptive or identifying information, such as vCall,
xL, T H , d(i), and so forth. This leaves the subscript position free for partial derivatives or array
indices.

v

Chapter 1

Introduction and Preliminaries

The subject of this book is the calculation of the market price for various derivative financial assets in
the Black-Scholes single stock model. This chapter provides a summary of the Black-Scholes model, the no-
arbitrage principle, and the resulting risk-neutral valuation formula. We view these as background topics and
intend this chapter only as a summary. The reader not familiar with these topics should consult a reference
such as Björk [5], Karatzas & Shreve [36], or Musiela & Rutkowski [45] for a more thorough treatment.

1.1 The Black-Scholes Model

The Black-Scholes model postulates that the stock price St is described by a geometric Brownian motion:

dSt = αSt dt+ σSt dW
o
t , or St = S0e

(α− 1
2σ

2)t+σW o
t . (1.1)

Here W o
t is a Brownian motion process1 defined on a probability space (Ω,F , P o). The parameter σ is the

volatility and α is the mean rate of growth. The market also has a risk-free asset or “bond” with constant
interest rate r:

dBt = rBt dt, or Bt = B0e
rt.

This model originated with the work of Black and Scholes [6] and Merton [42]. It’s shortcomings as a model
of the real market have been discussed in the literature, and various modifications have been considered.
Our purpose is not to decide on the most accurate model. Without intending to diminish their importance,
we are not covering models involving multiple stocks, state-dependent or stochastic volitility, incomplete
markets, regime switching, jump-diffusions, or Lev̀y processes. Nor are we considering model calibration or
parameter estimation. Instead our purpose is to use the the simple Black-Scholes model as a “laboratory” in
which to learn various techniques for calculating the prices of financial derivatives based on the no-arbitrage
principle. The methods we learn here can be adapted to more complex models, though we will not pursue
that in this book.

1.2 No-Arbitrage and Risk-Neutral Pricing

Suppose we have a (Euroepen-style) derivative asset whose value at expiry (t = T) is given by a random
variable X. The problem is to determine the market price Vt of this asset at times t < T . The absence of
arbitrage in the market implies the following general risk-neutral pricing formula:

Vt = ertE[e−rTX | Ft]. (1.2)

The critical feature here is that the expectation is not calculated under the original probability measure P o

but with respect to the the risk-neutral probability measure, which is characterized by the property that the
discounted stock price,

St/Bt

1We have denoted it W o
t here to distinguish it from the Wt of (1.3), which will occur regularly in our analysis.

1

is a martingale. We will use P for that risk-neutral probability. It will be the underlying probability measure
throughout; we will have virtually no need for the original P o.

The hypotheses on which the formula (1.2) is based are as follows.

• The description of St and Bt is appropriate, and the values of α, r, and σ are known.

• There are no transaction costs associated with buying and selling shares of stock or bond. Stock and
bond may be held in any amounts (not limited to integral nultiples or positive amounts) and can be
traded continuously.

• The stock pays no dividends.

• For any time t ≤ T knowledge of the stock price history {Su : u ≤ t} constitutes complete knowledge
of the state of the market at time t. (I.e. there are no stochastic components of the model other than
St. The values of all market variables at time t are prescribed by knowledge of the stock price history.)
The σ-algebra Ft is determined (or “generated”) by this information.

• X is FT measurable and E[X2] <∞. (Remember, this is with respect to the risk-neutral probability
P .)

• There are no arbitrage opportunities in the market. (Mathematically, this follows from the existence
of the risk-neutral probability measure.)

An outline of how this leads to (1.2) is as follows. The effect of switching to the risk-neutral probability
P is that the original W o

t is no longer a Brownian motion. Instead

Wt = W o
t + (

α− r
σ

)t (1.3)

is a Brownian motion with respect to P . The equation for the stock price process can be reformulated as

dSt = rSt dt+ σSt dWt. (1.4)

The solution can be written explicitly:

St = S0e
(r−σ2/2)t+σWt .

Suppose that hBt and hSt comprise a self-financing portfolio with value process Vt,

Vt = hBt Bt + hSt St

dVt = hBt dBt + hSt dSt,

and which replicates X at time T :
VT = X.

(This is always possible in the Black-Scholes model provided E[X2] <∞, by the completeness property and
the martingale representation theorem.) Then it turns out that the discounted asset price Mt = Vt/Bt is
also a Q-martingale. This is because its stochastic differential works out to be

dMt = σhSt
St
Bt

dWt,

with no dt term. By the absence of arbitrage, Vt must agree with the market value at time t of the contingent
claim. The risk neutral formula (1.2) is just the statement of this martingale property:

Mt = E[MT | Ft], which we can rewrite as Vt = BtE[X/Bt | Ft].

When the value at expiry is a function of the stock price at expiry,

X = φ(ST),

2

the market price will be given by a function v(s, t) of the current time and current stock price,

Vt = v(St, t).

(One argument for this is outlined on page 87.) This v(s, t) is called the pricing function for the contingent
claim. The formula (1.2) reduces to a partial differential equation for v. We can see this if we use Itô’s
formula to derive the stochastic differential of Vt/Bt = B−1

0 e−rtv(St, t): we obtain

d[Vt/Bt] = B−1
t

([
vt(St, t) + rsvs(St, t) +

1

2
s2σ2vss(St, t)− rv(St, t)

]
dt+ vs(St, t) dWt

)
.

Since Mt = Vt/Bt must be a Q-martingale, the coefficient of the dt term must be 0. Thus we find that v(s, t)
satisfies the Black-Scholes Partial Differential Equation (see2 [5, (7.31)]):

1

2
s2σ2vss + rsvs − rv + vt = 0, for t < T, 0 < s (1.5)

with the terminal condition v(s, T) = φ(s). This equation is equivalent to the martingale property of
v(St, t)/Bt, and thus constitutes another expression of the risk-neutral formulation. Given φ(s) we want
to solve the PDE (1.5) to find the pricing function v(s, t). The following figure illustrates the pyhsical
organization of this task.

- t

6

s

T

v(s, T) = φ(s) (given)

PDE ⇒ v

1.3 Looking Ahead

The principle problem of this book is to find the pricing function v. For the standard European options
discussed above, this becomes the problem of solving the Black-Scholes PDE (1.5) with the given φ(s) as
the terminal data. For some terminal value functions φ(s) explicit formulas for the solutions can be written
down. A simple one is for a forward contract: φ(s) = s−K. In that case it is easy to check that

v(s, t) = s−Ke−r(T−t).

The most famous explicit solution corresponds to a call option: φ(s) = (s − K)+. For this we get the
Black-Scholes formula.

vCall;K,T (s, t) = sN (d(1))−Ke−r(T−t)N (d(2)), where

N (y) =

∫ y

−∞

1√
2π
e−u

2/2 du,

d(1) =
ln(s/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d(2) = d(1)(s, t)− σ
√
T − t.

We will describe this and several other explicit solutions in Chapter 3. But for other choices of φ(s) no
explicit solution is known. Here is one.

2Björk [5] gives a different argument; see his Section 7.3. Assuming that Vt = v(St, t) is traded on the same market as St

and Bt, form a self-financing portfolio Ṽt of Vt and St which is risk-free: dṼt = (· · ·) dt + 0 dWt. Then no-arbitrage requires
that dṼt = rṼt dt. This is equivalent to (1.5).

3

Example. A chooser option.

φ(s) = max(vCall;K1,T1(s, T), vPut;K2,T2(s, T)).

This corresponds to an option for which at time T the holder chooses whether the option will be a call
expiring at time T1 > T with exercise price K1, or a put expiring at time T2 > T with exercise price K2. An
explicit formula for v is known only if K1 = K2 and T1 = T2; see Hull [25].

When the terminal value function φ(s) is one for which no explicit formula for v(s, t) is available, we
must turn to some sort of approximate method. (Even when an explicit formula is possible, it still may be
that an approximate method is easier to implement than the explicit formula.) There are several general
types of approximation methods that can be considered.

• In some cases formulae can be derived which reduce the calculation to just one “inexplicit” part. The
integral formula (2.18) in Section 2.4 is one example of that; we just need to resort to numerical
integration to evaluate the integral. Another instance of this is a formula of Geman and Yor for the
value of an Asian options which boils down to inverting a Fourier transform; see Section 9.3.3.

• In some cases there are explicit formulas which are not exact but give good approximations. Such
formulae exist for both Asian and American options. An example is the formula of Rogers & Shi; see
§9.3.3.

• Monte Carlo methods try to evaluate (1.2) by computing a large number of random simulations and

averaging them: E[X] ≈ 1
N

∑N
1 Xi. This approach is used mostly for multidimensional problems,

typically with 3 or more stocks.

• A popular approach is to approximate St by a discrete time and space model based on a random walk
(called “binomial tree models” in the finance literature) and then work backwards in time to compute
E[X].

• Apply numerical methods for PDEs to the differential equation which describes v.

Broadie and Detemple [11] provide an overview of computational approaches as of 1996. A more recent book
describing a broad range of techniques is Fusari and Roncoroni [20]. The book of Musiela and Rutkowski
[45] has an extensive bibliography including both computational and analytical work.

We will emphasize the use of numerical methods for PDEs, particularly finite difference methods. These
methods have been studied extensively so a lot of theoretical and practical knowledge is available about how
to (or not to) use them effectively. Many options have additional features beyond those of the standard
European derivative described above. These are sometimes called exotic options. The numerical PDE
approach can be adapted to approximate the pricing function for virtually all of these. As we discuss
different kinds of options we will encounter most of the other approaches mentioned above as well.

In Chapter 2 we will show that the Black-Scholes PDE (1.5) is equivalent to the classical heat equation,
and use that connection to present the basic theoretical properties of its solutions. This will include the
integral formula mentioned above.

Then in Chapter 3 we will explain how for any piecewise linear φ(s) an explicit formula for v is possible.
Also in Chapter 3 we will talk about barrier options. These are an exotic option for which the value at
expiry depends on whether or not the stock price reached some “trigger” level prior to expiry. This makes
them “path-dependent” options, like Asians and Lookbacks. We include them in Chapter 3 because they
also have explicit pricing formulae, which we will derive by PDE methods.

Chapter 4 begins our look at finite difference methods in the context of the heat equation. Along with the
mathematical ideas, we will learn how to implement these calculations using Matlab. Then in Chapter 5
we will see how these methods work out for the Black-Scholes equation itself.

Finite difference methods are related to bionomial tree methods; the connection is described in Chapter 6.
We will find that this provides some insight into the issue of stability for finite difference methods.

Chapter 7 will discuss how our calculations can be generalized to dividend paying stocks, using either
discrete or continuous dividend payments.

4

European options can be exercised only at t = T , but American options allow the holder to exercise them
at any time t ≤ T . Now the value at expiry is replaced by the value at exercise, given by φ(ST , T), where
T is the chosen exercise time and φ(s, t) is a given payoff function. Naturally the market price of such an
option depends on determining the optimal exercise time. A version of the risk-neutral formula (1.2) is not
hard to write down; see (8.1). Its evaluation, however, is much harder than in the European case. From
the PDE point of view we must deal with a variational inequality, and finite difference methods now involve
solving a linear complementarity problem at each stage. These things are the subject of Chapter 8.

Chapter 9 considers Asian options. These have a value at expiry which depends on an average stock price
over 0 ≤ t ≤ T . There are several different ways to compute the average; we will talk about how we can
approach pricing calculations for these. Lookback options, considered in Chapter 10, are similar to Asians
except that a historical maximum or minimum stack price is used instead of an average stock price. We are
forced to add an extra dimension to our calculations and will want to talk about how to do that efficiently
in Matlab.

Finally, Chapter 11 will introduce the use of Monte Carlo methods.
Techniques for implementing calculations in Matlab are discussed throughout. Some additional advice

about programming in Matlab is collected in an appendix. A second appendix gives a brief synopsis of
facts about martingales and Itô’s formula.

5

Chapter 2

Black-Scholes and the Heat Equation

We will use B to denote the differential operator

Bv =
1

2
σ2s2vss + rsvs − rv,

so that the the Black-Scholes equation (1.5) is described concisely as

Bv(s, t) + ∂tv(s, t) = 0. (2.1)

We are interested in solving this for 0 < s, 0 ≤ t ≤ T , with a prescribed terminal value function

v(s, T) = φ(s). (2.2)

In this chapter we present some basic theory describing this problem. We want to explain what kind of φ(s)
can be considered; how we should understand (2.2) if φ(s) is discontinuous; whether there will always be a
solution; and whether there can be more than one solution for the same φ(s). We will show that (2.1) is
equivalent to the classical heat equation. The questions we just raised have all been answered for the heat
equation, so we can simply translate results from the literature on the heat equation into the Black-Scholes
context to obtain the answers to our questions. We will see in particular that there is an integral formula
for the solution v in terms of φ(s). We will end the chapter with a collection of explicit solutions and simple
transformations for constructing new solutions from old ones.

2.1 Introduction to Partial Differential Equations

To begin we want to place the Black-Scholes equation in the standard taxonomy of partial differential
equations. The Black-Scholes PDE is a second order, linear, homogeneous equation. It is second order
because the highest partial derivative involved is of second order. It is linear because the partial derivatives
vs, vss, vt occur simply multiplied by known functions of the independent variables (s and t) and then added.

In general a second order linear PDE for a function u(x, t) takes the form

auxx + buxt + cutt + dux + eut + fu+ g = 0. (2.3)

The coefficients are (prescribed) functions of the independent variables: a = a(x, t), . . . , g = g(x, t). When
g = 0 the equation is homogeneous. The problem is to find the function(s) u(x, t) which solve (2.3) for (x, t)
in some region, usually in conjunction with some other “boundary conditions,” i.e. properties or values of
the function which are specified on the boundary of the region. For (2.1) the region we are interested is the
vertical strip

0 ≤ t ≤ T, 0 < s

and the boundary condtion is the requirement that v(s, T) = φ(s) for all s > 0. There is no boundary
condition specified for s = 0 (or t = 0); later in this chapter we will see why this is so.

6

Assuming that a, b, and c are not all zero (else the equation would not be second order), equations of the
form (2.3) are usually categorized as one of three types: hyperbolic, parabolic, or elliptic1. The best known
examples of each type are the following.

Wave Equation (hyperbolic): uxx − utt = 0.

Heat Equation (parabolic): uxx − ut = 0.

Laplace Equation (ellptic)2: uxx + uyy = 0.

Each of the three basic PDEs above has been thoroughly studied. Other equations of the same type
(hyperbolic, parabolic, or elliptic) typically share many of the same properties as the appropriate one of
these examples. The Black-Scholes equation is parabolic. In fact it is fully equivalent to the heat equation
by means of a change of variables which we will work out in the next section. This is very convenient for us,
because every question we might ask about the Black-Scholes equation can be translated into an analogous
question about the heat equation. We can then turn to the extensive literature concerning the heat equation
(or parabolic PDEs in general) to find the answer.

2.2 Conversion of Black-Scholes to the Heat Equation

We are going to develope a change of variables which converts solutions of the Black-Scholes equation (2.1)
into solutions of the classical heat equation. We will work this out through a sequence of steps.

Step 1. First we observe that in terms of y = log(s) the terms s ∂∂s and s2 ∂2

∂2s convert to constant multiples

of ∂
∂y and ∂2

∂2y . To be specific suppose

v(s, t) = f(y, t) = f(log(s), t)

for some function f(y, t). Then we find from the chain rule that

svs(s, t) = s · 1

s
fy(log(s), t) = fy(y, t)

s2vss(s, t) = s2

[
−1

s2
fy(log(s), t) +

1

s2
fyy(log(s), t)

]
= fyy(y, t)− fy(y, t).

The time derivative is unchanged: vt(s, t) = ∂t[f(log(s), t)] = ft(y, t). If we make these substitutions in
(2.1), we find that

1

2
σ2s2vss + rsvs − rv + vt =

1

2
σ2fyy + (r − 1

2
σ2)fy − rf + ft,

where the left side is evaluated at (s, t) and the right side is evalued at the corresponding value of (y, t). So
in terms of the new variable y = log(s) we find that v(s, t) = f(y, t) solves the Black-Scholes equation (2.1)
if and only if f solves the equation

1

2
σ2fyy + (r − 1

2
σ2)fy + ft − rf = 0. (2.4)

This gives us an equation with constant coefficients, as opposed to the variable coefficients of (2.1). Also
observe that 0 < s <∞ corresponds to −∞ < y <∞.

1The terminology comes from the type of curves in the x, t-plane determinded by equations of the form ax2 + bxt + ct2 +
dx+ et+ f = 0 where a, . . . , f are constants.

2The wave and heat equations come from physical applications in with the variable t represents time. In the Laplace
equation, however, the variables usually correspond to coordinates of a point in the plane, so it is more common to write the
Lapace equation for a function u(x, y) rather than u(x, t).

7

Step 2. We want to make additional variable changes to convert (2.4) into the heat equation. The next step
is to eliminate the first order dertivative fy. This can be accomplished by a change of dependent variable:

f(y, t) = ec1yg(y, t),

for a carefully choosen constant c1. If we substitute this expression for f into (2.4) we obtain

ec1y
[

1

2
σ2gyy + (c1σ

2 + r − 1

2
σ2)gy + gt + (c1 − 1)(r + c1

1

2
σ2)g

]
= 0.

Making the choice

c1 =
1

2
− r

σ2

eliminates the gy term, so that equation (2.4) for f is equivalent to the following equation for g:

1

2
σ2gyy + gt + (c1 − 1)(r + c1

1

2
σ2)g = 0. (2.5)

Step 3. We next eliminate the undifferentiated term g by another change of dependent variable:

g(y, t) = ec2th(y, t).

This makes (2.5) equivalent to

ec2t
[

1

2
σ2hyy + ht + c2h+ (c1 − 1)(r + c1

1

2
σ2)h

]
= 0.

We make the specific choice

c2 = −(c1 − 1)(r + c1
1

2
σ2) =

(σ2 + 2r)2

8σ2
.

This makes (2.5) equivalent to
1

2
σ2hyy + ht = 0. (2.6)

Step 4. Now we make one last change variables to scale out the 1
2σ

2 and reverse the sign on the time

derivative. With x =
√

2y/σ, τ = T − t and

h(y, t) = e−c2Tu(x, τ) = e−c2Tu(
√

2y/σ, T − t)

we find that (2.6) is equivalent to the heat equation:

uxx(x, τ)− uτ (x, τ) = 0. (2.7)

Now put all the steps together to obtain the conversion formula.

v(s, t) = f(y, t)

= ec1yg(y, t)

= ec1y+c2th(y, t)

= ec1y+c2te−c2Tu(x, τ)

= e(c1σ/
√

2)x−c2τu(x, τ).

Note that the role of e−c2T in Step 4 is simply to get all the t occuring in the combination T − t = τ . This τ
is the time variable we will use for the heat equation. It is different from the t in the Black-Scholes equation.

8

To make this change of variables convenient to refer to, define the parameters µ = c1σ/
√

2 and ν = c2.
(Don’t confuse the Greek ν (“nu”) with the Latin v.) After simplifying the expressions for µ and ν, we have

v(s, t) = eµx−ντu(x, τ), where

s = eσx/
√

2

t = T − τ

µ =
1√
2

(σ
2
− r

σ

)
ν = r + µ2.

(2.8)

We will refer to v, s and t as financial variables and u, x, and τ as the corresponding heat variables. The
above formulas establish a one-to-one conversion between functions v(s, t) : (0,∞) × (−∞, T] → R and
functions u(x, τ) : (−∞,∞)× [0,∞)→ R with the propety that

Bv(s, t) + ∂tv(s, t) = 0 if and only if ∂2
xu(x, τ)− ∂τu(x, τ) = 0.

For the heat equation we usually start with values of u for τ = 0 prescribed by some initial value function,

u(x, 0) = ψ(x),

and solve for u as τ moves forward in time. For the Black-Scholes equation we start with values given at
t = T by the terminal value function, v(s, T) = φ(s), and solve for v as t moves backwards in time. Observe
that ψ(x) and φ(s) are connected by our change of variables:

φ(s) = v(s, T) = eµxu(x, 0) = eµxψ(x).

2.3 The Heat Equation: Existence and Uniqueness

We next summarize a number of important properties of the heat equation

uxx(x, τ)− uτ (x, τ) = 0; −∞ < x <∞, τ ≥ 0.

In Section 2.4 we will translate these into financial variables to obtain analogous properties of the Black-
Scholes equation. (A good first reference on PDEs in general, including the heat equation in Chapter 7, is
John [32]. For a more extensive treatment of the heat equation specifically, see Widder [60].)

First observe that if we know two solutions u(1) and u(2) of (2.7), then any linear combination of them
will also be a solution. To see this consider

u(x, τ) = c1u
(1)(x, τ) + c2u

(2)(x, τ),

where c1 and c2 are any constants. Then

uxx − uτ = (c1u
(1)
xx + c2u

(2)
xx)− (c1u

(1)
t + c2u

(2)
t)

= c1(u(1)
xx − u(1)

τ) + c2(u(2)
xx − u(2)

τ)

= 0.

This property of combining solutions is called the principle of superposition.
There are many solutions to the heat equation. As we said above, we will usually have an initial function

ψ(x) which prescribes initial data for the solution u we want. In other words, we require the solution to
match ψ at τ = 0:

u(x, 0) = ψ(x) for all x ∈ R. (2.9)

When we say u(x, τ) is a solution of (2.7) that obviously means that the partial derivatives uxx and uτ
exist, as well as the fact that they are equal. The functions ψ(x) which are of interest to us for option
pricing purposes are generally not differentiable for every x. So we can not insist that u(x, 0) = ψ(x) be
differentiable. In other words we can only expect that (2.7) holds for τ > 0, not for τ = 0. But we do want
the values of u(x, 0) = ψ(x) to be associated with the values of u(x, τ) for τ > 0. Thus what we will mean
by saying that u(x, τ) is a solution of the initial value problem (2.7) and (2.9) is that

9

• u(x, τ) is continuous in x ∈ R and τ ≥ 0,

• u(x, 0) = ψ(x) for all x ∈ R,

• u(x, τ) is twice continuously differentiable in x ∈ R and once differentiable in τ for τ > 0,

• u(x, τ) satisfies (2.7) for all x ∈ R and τ > 0.

Ocasionally we need to consider ψ(x) which is discontinuous at a finite number of x-values: x1, x2, In
that case we need to exclude (x, τ) = (xi, 0) from the first two bullets. The following picture indicates the
geometric layout of this problem.

The heat equation is intimately connected to Brownian motion. We can exploit that find a formula for
u(x, τ) in terms of ψ(x). To see the connection, consider Mt = u(

√
2Wt, T − t) and apply Itô’s formula to

see that

dMt =
√

2ux dWt + (
1

2
2uxx − uτ) dt

=
√

2ux dWt,

(2.10)

by virtue of the heat equation. So (under some integrability assumptions on ux) Mt will be a martingale.
Using that we find that

u(
√

2Wt, T − t) = Mt

= E[MT | Ft]

= E[u(
√

2WT , 0) | Ft]

= E[ψ(
√

2WT) | Ft] (2.11)

Conditioned on
√

2Wt = x,
√

2WT is a normal random variable with mean x and variance 2(T − t). So, with
τ = T − t > 0 we can continue to work out the above as

u(x, τ) =

∫ ∞
−∞

ψ(y)
1√

2π · 2(T − t)
e−(y−x)2/2·2(T−t) dy

=

∫ ∞
−∞

1√
4πτ

e−(y−x)2/4τψ(y) dy

=

∫ ∞
−∞

k(x, τ ; y)ψ(y) dy.

(2.12)

The function

k(x, τ ; y) =
1√
4πτ

e−(y−x)2/4τ

10

occuring here is called the fundamental solution of the heat equation, or the heat kernel. (Its also the
transition density for

√
2Wt.) You can check that for a fixed y, k(x, τ ; y) does solve the heat equation for

τ > 0. (See the Problem 2.A at the end of the chapter.) According the the principle of superposition, it
follows that for any choce of values yj and constants cj = ψ(yj) the sum

N∑
j=1

ψ(yj)k(x, τ ; yj)

will also be a solution. We can view (2.12) as a limiting version of of this construction. The reason (2.12)
produces a solution with u(x, 0) = ψ(x) is that as τ → 0 the graph of y 7→ k(x, τ ; y) “bunches up” at y = x,
so that when τ is small the integral only uses values of ψ(y) for y very close to x.

The formula (2.12) is called a convolution because it is of the form
∫
f(x−y)ψ(y) dy. The formula is very

nice in that it tells us how to find the solution u for any given ψ. But it is not the the whole story. There
are two important issues. One is that for some functions ψ(x) the integral might fail to exist, particularly if
ψ(x) grows too fast as x→ ±∞. Secondly, it turns out that even for the nicest ψ(x), there are always other
solutions of the heat equation with u(x, 0) = ψ(x); (2.12) gives only one of many possible solutions! For
instance, if ψ(x) = 0 then (2.12) produces u(x, τ) = 0, but there are other solutions with u(x, 0) = 0 which
have u(x, τ) 6= 0 for τ > 0. (See the treatment of the Tychonoff solution in [32].) So how do we know if the
solution produced by (2.12) is the one we want, or if we should be looking for one of the others? What sets
the solution from (2.12) apart from the others? The following theorem provides an answer to both of these
issues.

Theorem. Suppose ψ(x) is a continuous function of x ∈ R with the property that

log(1 + |ψ(x)|)
1 + |x|

is a bounded function. (2.13)

Then the integral in (2.12) does exist for all x and τ > 0, the resulting function function u(x, τ) solves the
heat equation for τ > 0 and is a continuous function of x ∈ R and τ ≥ 0 with u(x, 0) = ψ(x). Moreover u is
the only such solution with the property that for each T <∞,

log(1 + |u(x, τ)|)
1 + |x|

is a bounded function of x ∈ R, 0 ≤ τ ≤ T. (2.14)

We want to digest what this theorem says. Suppose K is a bound on the expression (2.14). That implies
that for all 0 ≤ τ ≤ T and all x,

|u(x, τ)| ≤ eKeK|x|.

On the other hand if there are positive constants k1 and k2 so that

|u(x, τ)| ≤ k1e
k2|x|, (2.15)

then

1 + |u(x, τ)| ≤ (k1 + 1)ek2|x|

= elog(1+k1)+k2|x|

≤ eK(1+|x|),

where K = max(log(1 + k1), k2). Thus (2.14) is just a way of saying that (given T) there exist constants
k1 and k2 for which (2.15) holds. We can describe this by saying that u grows at most exponentially as
|x| → ±∞. What the theorem tells us is that if ψ(x) grows at most exponentially, then the integral formula
(2.12) does indeed produce a solution with initial data ψ, and the solution it produces is the only solution
which grows at most exponentially. All the other solutions fail to satisfy the exponential growth condition
(2.14).

When ψ(x) is discontinuous at a finite number of points the assertions of the theorem remain true if we
are careful about the sense in which u(x, 0) = ψ(x). Now u will be continuous at all (x, τ) with τ > 0 and

11

at those (x, 0) for which ψ is continuous at x. And we can only say that u(x, 0) = ψ(x) at the continuity
points of ψ(x). With these adjustments, the theorem above remains true.

You won’t find the above theorem in [32], but it can be proven as a consequence of the theorems of his
Chapter 7. (We will not go through those details.) If you consult that reference you will see that more
can be said about the solution (2.12). For instance u(x, τ) has continuous derivatives of all orders, provided
τ > 0. Actually a version of this theorem is true in which (2.13) and (2.14) are replaced by something like

(2.15) but with k1e
k2x

2

on the right side. (It is in that form that you will find the pieces of this theorem in
[32].) The exponential growth condition as we have stated it is a more stringent requirement, but turns out
to be well-suited to our application to the Black-Scholes equation in Section 2.4.

2.3.1 The Heat Equation on a Strip

We also need to understand the heat equation when x is limited to an interval. Suppose we want to limit x
to an interval xL ≤ x ≤ xH. Then we would want to solve the heat equation on the “strip”

uxx − ut = 0 for xL ≤ x ≤ xH, 0 < τ,

with prescribed initial values
u(x, 0) = ψ(x) for xL ≤ x ≤ xH.

This by itself is not enough information to determine the solution u(x, τ). In addition we need to know the
values of u(xL, τ) and u(xH, τ) along the bottom and top of the strip. If we are given functions uL(τ) and
uH(τ) then, in addition to the heat equation and initial values, we also want to ask the the solution satisfy
the boundary conditions

u(xL, τ) = uL(τ) and u(xH, τ) = uH(τ), τ > 0. (2.16)

If ψ(x), uL(τ) and uH(τ) are continuous with agreement at the corners (ψ(xL) = uL(0) and ψ(xH) =
uH(0)) then there will be a unique function u(x, τ) which is continuous in the (closed) strip solving the
heat equation and the prescribed intial and boundary conditions. Since x is bounded, there are no growth
conditions as |x| → ∞ to worry about; the boundary condtions (2.16) have essentially taken over that
role. If there are a finite number of points of discontinuity for uL, uH, and ψ, or mismatch at the corners
(ψ(xL) 6= uL(0) or ψ(xH) 6= uH(0)) then u will not be continuous at those disconituity points and will fail to
satisfy the inital or boundary conditions at those particular points. However the existence and uniqueness
of the solution still hold.

A formula like (2.12) which gives the solution u explicitly in terms of ψ, uL, and uH is possible, using
either Fourier series (the method of “separation of variables”) or theta-functions (see [32]). We will not write
it down, because it would take us too far afield and we will not need it for any purpose below.

12

2.3.2 The Heat Equation on a Semi-Strip

The heat equation can also be considered on a semi-infinite strip like

−∞ < x ≤ xH, 0 < τ.

In that case a boundary condition is needed at x = xH

u(xH, τ) = uH(τ) for all τ > 0,

and a growth condition (2.13) and (2.14) as x → −∞. (Or we could use the strip with xL ≤ x with a
boundary conditon at x = xL and a growth condition for x → +∞.) The theory of this kind of problem is
analogous to that described above.

Example. Suppose we want to solve the above problem with uH(τ) = 1 and ψ(x) = 0. We can tease a
formula for the solution out of (2.12) by extending the defintion of ψ(x) to x > xH :

ψ(x) =

{
2 if x > xH

0 if x ≤ xH .

Let u(x, τ) be the solution produced by (2.12).

u(x, τ) =

∫ ∞
xH

2k(x, τ ; y) dy = 2N
(
x− xH√

2τ

)
.

It solves the heat equation for all x ∈ R, τ > 0. So for x < xH we have u(x, 0) = ψ(x) = 0. For x = xH and
τ > 0 we find that

u(xH , τ) =

∫
k(xH , τ ; y)ψ(y) dy = 2

∫ ∞
xH

1√
4πτ

e−(y−xH)2/4τ dy = 1.

Thus this is the solution we sought. (There is a mismatch at the corner, so strictly speaking neither the
boundary or initial conditions hold at x = xH , τ = 0.) This trick of carefully selecting the initial data on
the opposite side of the boundary in order to achieve desired values on the boundary is something we will
use again in Chpater 3 in order to price barrier options.

The solution of this example has a useful interpretation for Brownian motion. Pick a value b, take
xH =

√
2b and let u(x, τ) be the solution above. We know that

Mt = u(
√

2Wt, T − t)

is a martingale. Let T b be the first time the Brownian motion Wt reaches the value b. Then Mt∧T b is also
a martingale, so we can write

u(0, T) = M0

= E[MT∧T b]

= E[u(
√

2b, T − T b); T b ≤ T] + E[u(
√

2WT , 0);T < T b]
= E[1; T b ≤ T] + E[0;T < T b]
= P (T b ≤ T).

(In spite of the mismatch between boundary and initial conditions at the corner this formula is true, because
Px(T b = T) = 0.) Thus u(0, T) provides a formula for the distribution function of the first passage time T b
of Brownian motion:

P (T b ≤ T) = u(0, T) = 2N

(
−
√

2b√
2T

)
= 2N

(
−b/
√
T
)

By differentiating with respect to T > 0 we calculate the density of T b to be b√
2π
t−3/2e−b

2/2t, for t > 0.

13

2.4 The Black-Scholes Equation: Existence and Uniqueness

We can now use our change of variables (2.8) to translate the results for the heat equation into analogous
results for the Black-Scholes equation. Especially important is what the growth condition (2.14), or equiva-

lently (2.15), becomes in terms of financial variables. Because s = eσx/
√

2, we see that x ∈ R corresponds to
0 < s and we have

e|x| =

{
s
√

2/σ for s ≥ 1

s−
√

2/σ for 0 < s < 1
= max(s, 1/s)

√
2/σ.

Thus (2.15) means that

|v(s, t)| ≤ s
√

2µ/σe−ν(T−t)k1 max(s, 1/s)k2
√

2/σ = e−ν(T−t)k1

{
s
√

2
σ (µ+k2) for s ≥ 1

(1/s)
√

2
σ (k2−µ) for 0 < s < 1.

It follows that (2.15) in heat variables (for 0 ≤ τ ≤ T) is equivalent to saying that in financial variables there
exist constants mi so that

|v(s, t)| ≤

{
m1s

m2 when s ≥ 1

m1(1/s)m2 when 0 < s < 1
(2.17)

for 0 ≤ t ≤ T . We describe this by saying that v grows at most polynomially in s as s → ∞, and in 1/s
as s → 0. Here is what our theorem about the heat equation says when translated to the Black-Scholes
equation.

Theorem. Suppose that φ(s) is a continuous function defined for s > 0 which grows at most polynomially
in s as s→∞ and in 1/s as s→ 0. Then there is a unique function v(s, t) defined and continuous for 0 < s
and 0 ≤ t ≤ T which solves the Black-Scholes equation (1.5) for 0 < s and t < T , satisfies v(s, T) = φ(s),
and which grows at most polynomially in s as s → ∞ and in 1/s as s → 0. This solution is given by the
integral formula

v(s, t) = e−r(T−t)
∫ ∞

0

q(s, t; z, T)φ(z) dz, (2.18)

where

q(s, t; z, T) = g(T − t, z
s

)
1

s
, (2.19)

g(τ, x) =
1

σ
√

2πτ
e−µ

2(T−t)x
−
(

1+
√

2µ
σ + 1

2τσ2
log(x)

)
,

µ and ν being the parameters defined in (2.8).

14

The integral formula is simply the result of taking

ψ(x) = u(x, 0) = e−µxv(eσx/
√

2, T) = e−µxφ(eσx/
√

2),

using it in (2.12), and then changing back to financial variables (y =
√

2 log(z)/σ, ψ(y) = e−µyφ(z)).

v(s, t) = e−ν(T−t)+µx
∫ ∞
−∞

k(x, τ ; y)ψ(y) dy

= e−ν(T−t)
∫ ∞
−∞

k(x, τ ; y)eµxe−µyφ(z) dy

= e−r(T−t)
∫ ∞

0

e−µ
2(T−t)k(x, τ ; y)eµ(x−y)φ(z)

√
2

σ

1

z
dz

= e−r(T−t)
∫ ∞

0

q(s, t; z, T)φ(z) dz.

We obtain the formula (2.19) for q(s, t; z, T) by substituting variables and simplifying the expression

q(s, t; z, T) = e−µ
2(T−t)

√
2

σ
eµ(x−y)k(x, τ ; y)

1

z
.

We could arrive at this formula directly from the risk-neutral expression

v(x, t) = e−r(T−1)E[φ(ST) |St = s]

= e−r(T−t)
∫ ∞

0

q(s, t; z, T)φ(z) dz,

where q is the transition density for the stock price process, under the risk neutral probability. We can solve
the stochastic equation for St explicitly:

ST = S0e
(r−σ2/2)t+σWt

= Ste
(r−σ2/2)(T−t)+σ(WT−Wt).

Given that St = s, q(s, t; z, T) is the density (as a function of z) of above random variable. This works out
to the same expression for q as in the theorem.

15

The integral formula (2.18) is only of theoretical interest. Although it could be implemented numerically,
it would probably be easier to convert φ(s) to ψ(x); evaluate (2.12), and then convert back to financial
variables. (See Problem 2.I at the end of the chapter.) What is significant about the theorem is that,
unlike the heat equation on a semi-strip, the Black-Scholes equation does not require boundary values for
v(0, t) to be specified in order to determine a unique solution. We don’t really consider s = 0 to even be
a legitimate value of the variable s; it corresponds to x = −∞ in heat variables. Given φ(s), all that we
require about v(s, t) for s ≈ 0 is that v(s, t) is bounded by some power of 1/s as s ↓ 0. This does not mean
that lims↓0 v(s, t) does not exist or is undetermined. It only means that we don’t need values of v(0, t) to
be prescribed in order to determine v. In fact, as we will see in Section 3.3, if φ(0) = lims↓0 φ(s) exists then
lims↓0 v(s, t) = e−r(T−t)φ(0).

2.4.1 Polynomial Growth and Risk-Neutral Pricing

The solutions v(s, t) of (2.1) and (2.2) that we are interested in are those which come from the risk neutral
pricing formula

v(St, t) = E[e−r(T−t)φ(ST) | Ft]. (2.20)

We want to be sure that these are the solutions to which the above theorem applies, in other words that they
do satisfy the polynomial growth conditons of the theorem. What makes this true is that all the terminal
value functions φ(s) that we are interested in satisfy a linear bound:

|φ(s)| ≤ Cs+ C, for some nonnegative constant C and all s > 0. (2.21)

Consider some of our typical choices for φ(s).

• For a forward, φ(s) = s−K, so |φ(s)| ≤ s+K. So (2.21) holds with C = K.

• For a call or put, φ(s) = (s−K)±, so again |φ(s)| ≤ s+K.

• Even for something more complicated, like a chooser (T < Ti):

φ(s) = max(vCall;K1,T1(s, T), vPut;K2,T2(s, T)),

because of the bounds

0 ≤ vCall;K1,T1(s, T) = sN (d1)−K1e
−r(T1−T)N (d2) ≤ s,

and
0 ≤ vPut;K2,T2(s, T) = −s[1−N (d1)] +K2e

−r(T2−T)[1−N (d2)] ≤ K2,

we have |φ(s)| ≤ s+K2. Thus (2.21) holds.

If we use the linear bound (2.21) in the risk-neutral formula, we obtain

|v(St, t)| ≤ e−r(T−t)EQ[|φ(ST)| | Ft] ≤ e−r(T−t)EQ[CST + C| Ft] = CSt + e−r(T−t)C.

Therefore for all t < T , v satisfies the same linear bound as φ:

|v(s, t)| ≤ Cs+ C

This clearly satisfies the polynomial growth condition both as s→∞ and s→ 0. Thus the pricing functions
v produced by the risk-neutral formula using φ(s) satisfying the linear growth condition (2.21) do correspond
to solutions of the Black-Scholes equation described by our theorem above.

16

2.5 Solution Transformations

Suppose u(x, τ) solves the heat equation. It is easy to check that both

ũ(x, τ) = u(x+ c, τ) and ũ(x, τ) = u(−x, τ)

also solve the heat equation. If we start with a solution v(s, t) of the Black-Scholes equation, convert it to a
solution of the heat equation using (2.8), apply one of the above, and then convert back to financial variables,
we discover that the following transformations convert any solution v of the Black-Scholes equation to a new
solution ṽ:

ṽ(s, t) = v(cs, t) any constant c > 0 (2.22)

ṽ(s, t) = sκv(s−1, t) where κ = 1− 2r

σ2
=
√

2σµ. (2.23)

These are verified by direct calculation; see the problems at the end of the chapter.

2.6 Some Particular Solutions

We close this chapter by exhibiting several solutions to the Black-Scholes equation. These will be components
for building up the solutions of interest as pricing functions (which we will do in the next chapter). Most of
them involve the standard normal distribution function, so we record a few properties of it first.

2.6.1 The Normal Distribution Function: N (x)

The standard normal distribution function is the cumulative distribution function of a standard normal
random variable Y :

N (x) = P (Y ≤ x) =

∫ x

−∞

1√
2π
e−

1
2y

2

dy.

Some elementary properties are

0 < N (x) < 1, 1−N (x) = N (−x).

The following bound on the tail of N will be helpful as well:

N (x) ≤ 1

|x|
1√
2π
e−x

2/2, for x < 0. (2.24)

Most software packages (such as Matlab) provide the standard error function,

erf(x) =
2√
π

∫ x

0

e−t
2

dt,

and the complimentary error function,

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

e−t
2

dt.

(These are normalized so that erf(+∞) = 1.) There are several ways to express N (x) in terms of the error
functions; the first of these is the most succinct:

N (x) =
1

2
erfc(−x/

√
2)

=
1

2
(1− erf(−x/

√
2))

=
1

2
(1 + erf(+x/

√
2)).

17

The following simple formulas, for a standard normal random variable Y , are behind most of the nontrivial
explicit solutions to the Black-Scholes Equation. For any constants c and b,

E[ecY ; Y < b] = ec
2/2N (b− c), (2.25)

E[ecY ; b ≤ Y] = ec
2/2N (c− b). (2.26)

These are easy to derive, by completing the square in the exponent and making a change of variables in the
appropriate integrals.

2.6.2 The Basic Solutions v(0)–v(5)

For reference we number the solutions v(i) and list them along with their terminal values. The simplest ones
are

v(0)(s, t) = e−r(T−t), v(0)(s, T) = 1

v(1)(s, t) = s, v(1)(s, T) = s.

For the others we will let d(i) denote the expressions

d(1)(s, t) =
ln(s) + (r + 1

2σ
2)(T − t)

σ
√

(T − t)
, d(2)(s, t) =

ln(s) + (r − 1
2σ

2)(T − t)
σ
√

(T − t)
.

(Note that d(1)(s, t) = d(2)(s, t) + σ
√
T − t.)

v(2)(s, t) = e−r(T−t)N (−d(2)(s, t)), v(2)(s, T) = 1(0,1)(s)

v(3)(s, t) = e−r(T−t)N (d(2)(s, t)), v(3)(s, T) = 1[1,∞)(s)

v(4)(s, t) = sN (−d(1)(s, t)), v(4)(s, T) = s1(0,1)(s)

v(5)(s, t) = sN (d(1)(s, t)), v(5)(s, T) = s1[1,∞)(s).

Observe that v(2) – v(5) all have a discontinuity in their terminal values at s = 1. Thus the terminal conditions
only hold for s 6= 1. These various solutions are not unrelated to each other. For instance v(4) = v(1) − v(5)

and v(2) = v(0) − v(3). Notice that d(i) depend on r, σ and T as parameters, but we have not included that
dependence explicitly in the notation.

All of these formulas are all derived in the same way from (2.25) and (2.26). To illustrate, we work out
v(5). Observe that we can write

ST = Ste
((r−σ2/2)(T−t)+σ

√
T−tY),

where Y is a standard normal random variable independent of St (and the rest of Ft). If we let s = St then,
taking advantage of the independence of Y from Ft, we can write (2.20) as v(St, t) where

v(s, t) = se−r(T−t)E[φ(se((r−σ2/2)(T−t)+σ
√
T−tY))].

For v(5) we want to use φ(s) = s1[1,∞)(s). Now

se((r−σ2/2)(T−t)+σ
√
T−tY) ≥ 1

is equivalent to

Y ≥ − log(s)− (r − σ2/2)(T − t)
σ
√
T − t

= −d(2).

We can write the expression for v(5) in the form

v(5) = se−r(T−t) · e(r−σ2/2)(T−t) E[ecY ; b ≤ Y],

using b = −d(2) and c = σ
√
T − t. Now using (2.26) we obtain

v(5) = se−r(T−t) · e(r−σ2/2)(T−t) · e(σ
√
T−t)2/2 · N (σ

√
T − t+ d(2)) = sN (d(1)).

In case there is any doubt, one can check directly that v(5)(s, t) solves the Black-Scholes equation, although
the calculation is somewhat tedious.

18

2.7 Problems

Problem 2.A
Verify that each of the following is a solution of the heat equation.

1. u(x, τ) = x3 + 6xτ .

2. u(x, τ) = x4 + 12x2τ + 12τ2.

3. u(x, τ) = ecx+c2τ , for any constant c.

4. u(x, τ) = e−c
2τ sin(cx), for any constant c.

5. u(x, τ) = ec
2τ sinh(cx), for any constant c.

6. u(x, τ) = k(x, τ ; y) = (4πτ)−1/2e−(x−y)2/4τ for any y, provided τ > 0.

7. u(x, τ) = N (x/
√

2τ).

. A

Problem 2.B
Suppose v(s, t) solves the Black-Scholes equation in financial variables. Show that the change of variables

s = e
(σ

2

2 +r)τ+ σ√
2
x

t = T − τ
v(s, t) = erτu(x, τ)

produces a solution u(x, τ) of the heat equation. (The reason we don’t use this instead of (2.8) is that the
connection between s and x depends on t as well.)

. B

Problem 2.C
Verify by direct calculation that v(0), v(1), v(3), and v(5) are solutions of the Balck-Scholes equation.

. CheckV

Problem 2.D
Find a relationship between constants c and γ for which v(s, t) = ectsγ solves the Black-Sholes equation.

. Other

Problem 2.E
For each of our solutions v(i) of the Black-Scholes equation, let u(i) be the corresponding of the heat equation,
according to our change of variables (2.8). Find the initial functions u(i)(x, 0) for each of them.

. heati

Problem 2.F
Show that both (2.22) and (2.23) are correct. What does (2.23) correspond to in heat variables?

. invtrnsf

Problem 2.G
Here is a funtion m-file that does the conversion from heat variables to financial variables.

fh.m

19

function [v,s,t]=fh(u,x,tau,T)

%[v,s,t]=fh(u,x,tau,T) converts from heat variables to financial variables,

%using equations (2.7) in the text. v, s, u, x may all be vectors (of

%compatible sizes). It is presumed that sigma and r are already defined as

%global variables.

global sigma r

mu=(sigma/2 - r/sigma)/sqrt(2);

nu=r+mu^2;

t=T-tau;

s=exp(sigma*x/sqrt(2));

v=exp(mu*x-nu*tau).*u;

end

Write a counterpart, hf.m, that converts from financial variables to heat variables.

. hf

Problem 2.H
Write a Matlab m-file vi.m which evaluates v(i)(s, T−t) for i = 0, . . . 5. The syntax should be vi(s,tau,i)
(with tau corresponding to T − t, and i being one of the values 0, . . . , 5). You might look at BSCall.m in
the Appendix as a example to start from.

. vi

Problem 2.I
Write a Matlab function (m-file) BSconv(s,T,sL,sH,N) that computes an approximation to the solution
v(s, 0) of the Black-Scholes equation for any initial function v(s, T) = φ(s) by converting the problem to
heat variables and then using a trapezoidal rule approximation to the integral in the formula (2.12):

u(x, τ) =

∫ ∞
−∞

k(x, τ ; y)ψ(y) dy

≈
∫ xH

xL
k(x, τ ; y)ψ(y) dy

≈ trapezoidal rule calculation.

Suppose we have an m-file vT.m so that, for a vector s= (s0, . . . , sN) of positive s-values, vT(s) will return the
vector of (φ(s0), . . . , φ(sN)) of corresponding to the desired initial values. Here is how BSconv(s,T,sL,sH,N)

should work:

1. Using hf.m (from Problem 2.G) compute the values of the heat variables xL, x, and xH that correspond
to financial variables sL, s, sH.

2. Compute a vector y= (y0, . . . yN) of N + 1 evenly spaced values between y0 = xL and yN = xL. (The
linspace command makes this easy.)

3. Convert the vector y from the previous step to the corresponding vector sv of si in financial variables.
(fh.m will compute them for you.)

4. Use vT(sv) to produce the vector phi of v(si, T) = φ(si) values which you can then convert to
a vector psi of corresponding u(yi, 0) = ψ(yi) values (using hf.m). Multiplying each of these by

e−(yi−x)2/4τ/
√

4πτ will give you a vector (fv, say) of values of the integrand: k(x, τ, yi)ψ(yi) for the
integral you want to compute in (2.12).

5. The command u=trapz(y,fv) will compute the approximate value of the integral, based on the trape-
zoidal rule for the data you have generated.

6. Finally, use fh.m to convert the value u ≈ u(x, τ) back to the corresponding approximate value for
v(s, t) in original variables and return this as the value of BS conv.

20

By using hf and fh your BSconv does not need to know the values of r and σ; only hf and fh need them.
To run BSconv for different φ all you would need to do is change vT.m appropriately. An m-file vT.m for a
call option is posted, as well as an m-file BSCall.m that evaluates the Black-Scholes formula directly. Test
your program for a few choices of σ, r, K, s and T to see if it produces the same values as BSCall.m. Think
about and/or experiment with your choices for sL, sH, and N to see what is needed to get decent results.
(Including a plot(y,fv) command may be helpful for this.)

This problem is intended as an exercise to get you used to working with Matlab . You should review
the appendix on Matlab. Starting with pencil and paper, go over what your m-file needs to do, step by
step, and how you can write the Matlab instructions needed. (Especially if you are new to Matlab, don’t
try to write the whole thing at once but test/experiment with each line of your code, one at a time, to be
sure it does what you intend it to do before you go on to the next.) Try to make your m-file as efficient as
possible. You should not need any for-loops; everything can be done with vector operations. It doesn’t need
more than a dozen lines! Turn in a listing of your program and the results of testing it against BSCall.

. C

21

Chapter 3

Explicit Pricing Functions: European
and Barrier Options

The explicit solution and transformation formulas for the Black-Scholes equation of the previous chapter can
now be used to present explicit pricing functions for many European derivatives. Explicit formula are also
possible for typical barrier options. These formulas are based on the superposition principle. We mentioned
this in Section 2.3 in the context of the heat equation. It holds for the Black-Scholes equation as well: if we
have solutions v(i) then a linear combination

v(s, t) =
∑

civ
(i)(s, t), (3.1)

where ci are any constants, will also be a solution. This is because Bv =
∑
ciBv(i) and ∂tv =

∑
ci∂tv

(i), so
that

(B + ∂t)v =
∑

ci(B + ∂t)v
(i) = 0.

(Recall that B is our notation for the Black-Scholes differential operator (2.1).) Suppose we are interested
in a particular terminal value function φ(s). If we can find ci so that

φ(s) =
∑

civ
(i)(s, T),

then (3.1) will give us the desired pricing function.

3.1 Piecewise Linear Terminal Value

We can apply the above idea to get the most familiar pricing formulas.

Forwards. Here we want φ(s) = s−K = v(1)(s, T)−Kv(0)(s, T). So we get

vForward(s, t) = v(1)(s, t)−Kv(0)(s, t)

= s−Ke−r(T−t).

Calls. Now we want φ(s) = (s−K)+ = s1[K,∞)(s)−K1[K,∞)(s). We can write

1[K,∞)(s) = 1[1,∞)(s/K) = v(3)(s/K, T),

and
s1[K,∞)(s) = K(s/K)1[1,∞)(s/K) = Kv(5)(s/K, T).

We know from (2.22) that v(i)(s/K, t) are solutions, so we find

vCall(s, t) = Kv(5)(s/K, t)−Kv(3)(s/K, t)

= K(s/K)N (d(1)(s/K, t))− e−r(T−t)KN (d(2)(s/K, t))

= sN (d(1)(s/K, t))− e−r(T−t)KN (d(2)(s/K, t)), (3.2)

22

the famous Black-Scholes formula, already mentioned in Section 1.3.

Put-Call Parity. Since s−K = (s−K)+ − (s−K)−, superpositon implies that

vCall − vPut = vForward.

Puts. We can either use put-call parity (above) or just work it out directly. The desired terminal value
function is

φ(s) = (s−K)− = K1(0,K)(s)− s1(0,K)(s) = K1(0,1)(s/K)−K(s/K)1(0,1)(s/K).

So we find

vPut(s, t) = Kv(2)(s/K, t)−Kv(4)(s/K, t)

= Ke−r(T−t)N (−d(2)(s/K, t))−K(s/K)N (−d(1)(s/K, t))

= Ke−r(T−t)N (−d(2)(s/K, t))− sN (−d(1)(s/K, t)).

Digitals. These have the terminal value function φ(s) = 1[K,∞))(s) = 1[1,∞)(s/K) = v(3)(s/K, T). So we
have

vDigital(s, t) = v(3)(s/K, t)

= e−r(T−t)N (−d(2)(s/K, t)).

It should be clear from these examples that if φ(s) is any piecewise-linear function, i.e. a function whose
graph consists of a finite collection of line segments φ = mis+ bi for Ki−1 ≤ s < Ki, then it will be possible
to produce an explicit pricing function v by assembling the appropriate combination of our v(i) as above. If
φ(s) is continuous and piecewise-linear, then it is always possible to write

φ(s) = c0 +
∑

ci(s−Ki)
+

for some choice of constants ci (some negative perhaps). This means the pricing function v can be written as
a bond (c0) and a sum of calls with different exercise prices Ki. If desired, the calls can be rewritten (using
put-call parity) in terms of forwards and puts. Thus any continuous piecewise-linear φ(s) can be assembled
using the standard bond, calls, puts, and forwards that are available in the market. In the finance literature
such a combination of standard options to duplicate a desired φ(s) is usually called a package.

3.2 Barrier Options

Barrier options are different from the standard European variety in that the evolution of St prior to time
T can trigger a change in the status of the option. Suppose we have a prescribed terminal value function
φ(s), and a barrier level θ > 0. We can consider either a knock-out or knock-in version of the option. The
knock-out version expires early (with value 0) at the first moment t = T θ that St = θ. So its final value is

V k-out
T =

{
0 if T θ ≤ T
φ(ST) if T < T θ.

If the initial stock price is below the barrier, S0 < θ, this is called an up & out option. It’s a down & out if
θ < S0. A more general version provides a rebate payment R in the event that T θ < T :

V k-out
T =

{
Rer(T−T

θ) if T θ ≤ T
φ(ST) if T < T θ.

23

(The rebate R is paid at time T θ and so appreciates in value until the final time T .) The knock-in version
(with rebate R) has final value

V k-in
T =

{
φ(ST) if T θ ≤ T
Rer(T−T

θ) if T < T θ.

We have the down & in case when θ < S0 and up & in when S0 < θ. Note that when St touches θ the value
of the option becomes the value of the European version using terminal value φ, which we will write as vφ:
v(θ, t) = vφ(θ, t) for t < T .

24

Explicit formulae for the pricing function v(s, t) are possible (in principle) for any of these, provided φ(s)
is piecewise-lienar. (See [25, page 462] for the standard versions.) If we were interested in a more general
φ(s), these would be easy to approximate by the numerical methods of the later chapters.

We will describe a general procedure for finding the barrier pricing functions, assuming we can produce
the value function vφ for a European option with a piece-wise linear terminal value. The following observation
help us break down this task.

• For the case of zero rebate (R = 0) the sum of the knock-out and knock-in versions must agree with
the standard European option with terminal value φ(s): V k-out

T + V k-in
T = φ(ST). Therefore we have

vk-out(s, t) + vk-in(s, t) = vφ(s, t).

So if we have an explicit pricing formula vφ(s, t), and if we can produce a formula for vk-out(s, t), then
we will be able to produce an explicit formula for vk-in(s, t) as well.

• The value of a positive rebate R > 0 can be computed separately in both the knock-out and knock-in
cases. (See Problems 3.E and 3.F at the end of the chapter.)

As a consequence, the task of finding a pricing formula reduces to the case of a knock-out with zero rebate.
For this we now outline a general approach, based on producing the appropriate solution of the Black-Scholes
equation, and illustrate it for case of a down & out call: φ(s) = (s−K)+.

We seek a solution v of the Black-Scholes equation for θ ≤ s and t ≤ T with boundary and terminal
boundary conditions

v(θ, t) = 0, v(s, T) = φ(s).

We will construct it in several steps.

1. Given a piecewise linear φ(s), define the truncated terminal value function

φθ(s) = 1[θ,∞)(s)φ(s) =

{
φ(s) if θ < s

0 if s ≤ θ.
(3.3)

2. This φθ is also piecewise linear, though not in general continuous. Take vθ to be the solution of the
Black-Scholes equation in its full domain s > 0, t ≤ T , with the truncated terminal value function:

vθ(s, T) = φθ(s), for all s > 0.

3. Next transform vθ into a second solution using (2.22) and (2.23):

ṽθ(s, t) = θκ(s/θ2)κvθ(θ2/s, t) = (s/θ)κvθ(θ2/s, t).

4. Now consider

v(s, t) = vθ(s, t)− ṽθ(s, t)

= vθ(s, t)− (s/θ)κvθ(θ2/s, t) . (3.4)

This too is a solution of the Black-Scholes equation. Observe that for s > θ we have that θ2/s < θ, so
ṽθ(s, T) = (s/θ)κφθ(θ2/s) = 0. Consequently

v(s, T) = vθ(s, T) = φθ(s) = φ(s) for s > θ.

Next, for s = θ we have θ2/s = θ and (s/θ)κ = 1. Therefore

v(θ, t) = vθ(θ, t)− ṽθ(θ, t) = vθ(θ, t)− vθ(θ, t) = 0.

This confirms that v(s, t) is the solution we seek!

25

This construction works in general provided we can find vθ. For a call, φ(s) = (s−K)+ this is particularly
simple if θ ≤ K, because φθ = φ. So the vθ above is simply the pricing function for a Euorpean call with
exercise price K, as given by the Black-Scholes formula (3.2):

vθ(s, t) = vCall(s, t).

Using this in (3.4) gives the pricing function for the down and out call in the case θ ≤ K.
When K < θ we have

φθ(s) =

{
0 for s < θ

s−K for θ ≤ s.

= (s−K)1[θ,∞)(s)

= θv(5)(s/θ, T)−Kv(3)(s/θ, T).

So we have
vθ(s, t) = θv(5)(s/θ, t)−Kv(3)(s/θ, t),

and use this in (3.4) for the down and out call in the case of K < θ. The resulting formula is cumbersome
to write because it will have four terms, but easy to evaluate with a Matlab m-file.

For up and out options, we simply replace (3.3) by

φθ(s) = 1(0,θ](s)φ(s) =

{
0 if θ < s

φ(s) if s ≤ θ.
(3.5)

and proceed as above. Equation (3.4) still gives the correct formula, but now we are only interested in s < θ.

3.3 Approximations for Large and Small Price

The explicit solutions of the Black-Scholes equation allow us to deduce some results which will be useful to
us in the considerations of later chapters. In Section 10.4 we will see how our barrier pricing calculations
are important for lookback options. Here we will develop some results on approximate values of v(s, t) for
s very small and for s large. Such approximate formulas will be important for many of our finite difference
calculations.

We know that if φ(s) = c1s+c2 for all s > 0 then v(s, t) = c1s+c2e
−r(T−t). If φ(s) = c1s+c2 is only true

for s close to 0, but not for all s, then we might expect v(s, t) ≈ c1s+ c2e
−r(T−t) to be a good approximation

for small s. This means we could use this formula for the vL of Chapter 5 . Our goal in this section is to
use our explicit solutions to prove a theorem to this effect. The theorem also addresses the case of large s: if
φ(s) = c1s+ c2 hold for all large s then v(s, t) ≈ c1s+ c2e

−r(T−t) should be a good approximation for large
s. Here is the theorem.

Theorem. Suppose |φ(s)| ≤ C(s+1) for some constant C, and let v(s, t) be the solution of the Black-Scholes
equation with v(s, T) = φ(s). Let

ve(s, t) = v(s, T)−
(
c1s+ c2e

−r(T−t)
)
.

a) If φ(s) = c1s+ c2 for all s < K, then for all s < K and all 0 ≤ t < T we have

|ve(s, t)| ≤ C∗N (d∗(s)),

where C∗ = C(1 + K) + |c1|K + |c2| and d∗(s) = d(1)(s/K, 0). Moreover, |ve(s, t)| = o(sγ) as s → 0
for every γ > 0.

b) if φ(s) = c1s+ c2 for all s > K, then for all K < s and all 0 ≤ t < T we have

|ve(s, t)| ≤ C∗N (−d∗(s))

26

with the same C∗ as in part a), and

d∗(s) =

{ log(s/K)

σ
√
T

if r − 1
2σ

2 ≥ 0
log(s/K)+(r− 1

2σ
2)T

σ
√
T

if r − 1
2σ

2 < 0.

Moreover, |ve(s, t)| = o(s−γ) as s→∞ for every γ > 0.

We said in Section 2.4 that if φ(0) = lims→0 φ(s) existed, then lims→0 v(s, t) = e−r(T−t)φ(0). This is the
content of the following corollary.

Corollary. Suppose |φ(s)| ≤ C(s + 1) for some constant C. If φ(0) = lims→0 φ(s) exists, then for every
t < T

lim
s→0

v(s, t) = e−r(T−t)φ(0).

Let’s consider the theorem in the first case, φ(s) = c1s+ c2 for s < K. The error

ve(s, t) = v(s, t)− [c1s+ c2e
−r(T−t)]

is just the pricing function for terminal value

φe(s) = φ(s)− (c1s+ c2) =

{
φ(s)− (c1s+ c2) for K ≤ s
0 for s < K.

For K ≤ s we have 1 ≤ s/K so we can write

|φe(s)| ≤ |φ(s)|+ |c1s+ c2|
≤ C(s+ 1) + |c1|s+ |c2|

≤ C(s+
s

K
) + |c1|s+ |c2|

s

K

=
C∗

K
s, where C∗ is the value in the theorem.

So if vb(s, t) is the solution with terminal value

vb(s, T) =

{
C∗

K s for K ≤ s
0 for s < K,

then |ve| ≤ vb. But vb(s, T) = C∗

K Kv(5)(s/K, T), so we have

|ve(s, t)| ≤ vb(s, t) = C∗v(5)(s/K, t) = C∗
s

K
N (d(1)(s/K, t)).

For s < K we have s
K < 1. Since log(s/K) < 0 and r + 1

2σ
2 > 0 it follows that

d(1)(s/K, t) =
ln(s/K) + (r + 1

2σ
2)(T − t)

σ
√

(T − t)
≤

ln(s/K) + (r + 1
2σ

2)T

σ
√
T

.
= d∗(s).

Since N is monotone increasing, the bound

|ve(s, t)| ≤ C∗N (d∗(s)), for s < K

follows.
To finish part a) we need to show that N (d∗(s)) = o(sγ) as s→ 0. As s→ 0 we have d∗(s)→ −∞. The

bound (2.24) implies

N (d(1)) ≤ 1√
2π|d∗|

e−d
∗2/2.

27

Since 1√
2π|d∗| → 0, we just need to show that, as s → 0, e−d

∗2/2 is bounded by a constant time sγ . If we

define ρ by

ρ = e(r+ 1
2σ

2)T ,

then we have d∗(s) = 1
σ
√
T

log(ρK s), and so

−(d∗)2 = −
(

1

σ
√
T

log(
ρ

K
s)

)2

.

We can write

e−(d∗)2/2 =
(
elog(ρK s)

)− 1
σ2T

log(ρK s)

=
(ρ
K
s
)− 1

σ2T
log(ρK s)

For any γ > 0 we will have

γ < − 1

σ2T
log(

ρ

K
s)

for s sufficiently close to 0, and therefore

e−(d(1))2/2 ≤
(ρ
K
s
)γ

for all s sufficiently small. This confirms that N (d∗(s)) = o(sγ) as s→ 0.
Part b) of the theorem is proved in a similar manner. Now ve is the solution with terminal value

ve(s, T) =

{
0 for s > K

φ(s)− (c1s+ c2) for s ≤ K.
.

For s ≤ K we have |φ(s)− (c1s+ c2)| ≤ C∗ (with no factor of s). So |ve| ≤ vb where

vb(s, T) =

{
0 for s > K

C∗ for s ≤ K.
= C∗v(2)(s/K, T).

So using the formula for v(2) we have

|ve(s, t)| ≤ C∗e−r(T−t)N (−d(2)(s/K, t)) ≤ C∗N (−d(2)(s/K, t)).

For K < s, we bound d(2) below independently of 0 ≤ t < T , but it depends on the sign of r − 1
2σ

2:

d(2)(s/K, t) =
log(s/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

≥ d∗(s) .
=

{ log(s/K)

σ
√
T

if r − 1
2σ

2 ≥ 0
log(s/K)+(r− 1

2σ
2)T

σ
√
T

if r − 1
2σ

2 < 0.

The monotonicity of N gives us the bound

|ve(s, t)| ≤ C∗N (−d∗(s)), for K < s

and we can argue that N (−d∗(s)) = o(s−γ) for any γ > 0 in a manner similar to the above.
Lastly, consider the corollary. If φ(s) were linear on some interval (0,K), then we would have φ(s) =

c1s + φ(0) for s < K. We could just use c2 = φ(0) in the first part of the theorem. However, as stated the
corollary does not assume φ is linear near the origin, only that the limit as s→ 0 exists. Consider

ve(s, t) = v(s, t)− φ(0)e−r(T−t).

28

We want to show that lims→0 v
e(s, t) = 0. Since φ(s) → φ(0), given any ε > 0 there exists δ > 0 so that

|φ(s)− φ(0)| < ε for 0 < s < δ. It follows that |ve| ≤ vb where vb is the solution with

vb(s, T) =

{
|φ(s)− φ(0)| for δ ≤ s
ε for s < δ.

The theorem (part a) with K = δ, c1 = 0, c2 = ε) applies to vb: for any γ > 0,

vb(s, t) = εe−r(T−t) + o(sγ) as s→ 0.

Therefore
lim
s→0
|v(s, t)− φ(0)e−r(T−t)| ≤ lim

s→0
vb(s, t) ≤ εe−r(T−t).

Since ε > 0 is arbitrary, this limit in fact is 0, proving the corollary.

3.4 Problems

Problem 3.A
A capped call is an option with a terminal value

φ(s) = (min(s, L)−K)+ =


0 if s < K

s−K if K ≤ s ≤ L
L−K if L < s.

Find an explicit pricing function for this option. (Assume K < L.)

. CapCall

Problem 3.B
Pick parameters and a value t < T , and plot the values of both vPut(s, t) and (s − K)− as functions of
s. Observe that vPut(s, t) < (s −K)− for small values of s. This shows that it would be advantageous to
exercise the put prior to the exercise time T . For European options, this is not allowed, but for American
options (Chapter 8) it will be.

. AmEarly

Problem 3.C
Write a function m-file DnOutPut.m so that DnOutPut(s,tau,theta,K) willl return the value of a down &
out put for St = s and τ = T − t. It should correctly handle both cases K ≤ θ and θ < K. (You will
need to do some pencil and paper work before you are ready to write the code for the latter.) You can take
advantage of the function vi.m that you wrote for Problem 2.H. You may find Matlab’s subfunction feature
useful. If, in the same file DnOutPut.m you follow the function definition for DnOutPut with the definition
of a second function vTheta, then DnOutPut will be able to just use (3.4) to do its evaluation. (But vTheta
will be accessible only to DnOutPut; it won’t be accessible from the command line or functions defined in
other files.) So if you just get vTheta right, then your DnOutPut should execute correctly.

. DOP

Problem 3.D
Show (simply by checking the terminal and boundary conditions) that (3.4) will also produce the formula
for the value of an up & out option with terminal value φ(s) if vθ solves the standard Black-Scholes P.D.E.
with vθ(s, T) = φθ(s) as defined in (3.5). Use this to produce the value formulas for an up & out put option
in each of the two cases K ≤ θ and K > θ.

. R

29

Problem 3.E
Suppose vk-in(s, t) is the value of a knock-in option for some terminal value function φ(s). If we now add
to the contract the provision that if the option expires before the price hits the knock-in barrier (T < T θ)
then the bearer of the contract receives a rebate payment of R (paid at time T θ). This revision to the
contract should increase its value by an amount vR(s, t) where vR solves the Black-Scholes equation (on the
appropriate side of the barrier s = θ) with

vR(θ, t) = 0, and vR(s, T) = R.

Explain why this should be so. Find formulas for vR for both the down & in and up & in cases. (Your can
leave your formulas expressed in terms of the v(i) of Chapter 2.)

. S

Problem 3.F
Now we want to do the same thing as preceeding problem for the knock-out case, adding the rebate of R in
the event that the knock-out barrier is hit prior to t = T . Explain why the the contract value should now
increase by an amount vR which solves the Black-Scholes equation with

vR(θ, t) = R, and vR(s, T) = 0.

This time, to find a formula first write

vR(s, t) =
R

θ
s+ w(s, t).

Note that v(s, t) = R
θ s is itself a solution of the Black-Scholes equation. What boundary and terminal

conditions should w(s, t) satisfy? Find formulas for vR for both the down & out and up & out cases.

. T

Problem 3.G
Consider the compound option which is a put (to be exercised at t = T1 with an exercise price of K1) on a
call (with expiry time T2 > T1 and exercise price K2). Thus at time T1 the owner of this contract can, at
their discretion, sell for $K1 one unit of the call option (which will expire T2 − T1 units of time after T1).
To determine the value of this option at a time t prior to T1 we would need to find the appropriate solution
v(s, t) of the Black-Scholes equation. What would the appropriate terminal value function v(s, T1) = φ(s)
be? In order to solve the PDE on a strip 0 = sL < s < sH, for sH sufficiently large, what approximate
formulas for vL(t) and vH(t) should we use?

. E

30

Chapter 4

Introduction to Finite Difference
Methods: The Heat Equation

This chapter introduces the use of finite difference methods to approximate solutions to partial differential
equations. We introduce the technique by considering the heat equation uxx − uτ = 0 with a prescribed
initial function u(x, 0) = ψ(x). In the next chapter we will develope the technique for the Black-Scholes
equation. The basic idea is to place a “grid” of nodes of the half-plane (τ > 0), evenly spaced at intervals of
∆τ in the τ -direction and ∆x in the x-direction. Our notation will be

xn = x0 + n∆x, τm = m∆τ.

The plan is to develop a scheme for computing values umn which approximate the values of u at the nodes:

umn ≈ u(xn, τm).

To compute the umn we will replace the partial derivatives in the heat equation by approximations to them
expressed in terms of the umn . This will lead to equations for the umn , which we hope to solve. The details of
how we do this will have a big influence on the effectiveness of the resulting procedure.

First consider uτ .

uτ (x, τ) = lim
∆τ→0+

u(x, τ + ∆τ)− u(x, τ)

∆τ
,

which suggests the forward difference approximation

uτ (xn, τm) ≈ um+1
n − umn

∆τ
. (4.1)

But other approximations are also possible. From

uτ (x, τ) = lim
∆τ→0+

u(x, τ)− u(x, τ −∆τ)

∆τ

we get the backward difference approximation

uτ (xn, τm) ≈ umn − um−1
n

∆τ
, (4.2)

or from

uτ (x, τ) = lim
∆τ→0

u(x, τ + ∆τ)− u(x, τ −∆τ)

2∆τ

we get the central difference approximation

uτ (xn, τm) ≈ um+1
n − um−1

n

2∆τ
. (4.3)

31

Since these are only approximations, when we replace uτ by one of these approximations we are introducing
some error into the resulting equation. Typically the size of this error is described in terms of its order as a
power of ∆τ . Suppose we consider the second order Tayor polynomial with remainder

u(x, τ + h) = u(x, t) + huτ (x, τ) +
1

2
h2uττ (x, τ) +

1

6
h3uτττ (x, τ + h̄).

(The last term is the remainder formula; h̄ is some value between 0 and h.) Using h = ∆τ we find that

uτ (x, τ) =
u(x, τ + ∆τ)− u(x, τ)

∆τ
−∆τ

[
1

2
uττ (x, τ) +

1

6
∆τuτττ (x, τ + h̄)

]
=
u(x, τ + ∆τ)− u(x, τ)

∆τ
+O(∆τ).

The notation O(∆τ) is used to refer to an expression of the form

∆τ · (something which remains bounded as ∆τ → 0).

We don’t care about the “something;” the point is that the forward difference approximation is first order in
∆τ . If we repeat this with h = −∆τ we find that the backward difference approximation is also first order:

uτ (x, τ) =
u(x, τ)− u(x, τ −∆τ)

∆τ
+O(∆τ).

For the central difference approximation, write the Taylor approximations for both h = ±∆τ

u(x, τ + ∆τ) = u(x, t) + ∆τuτ (x, τ) +
1

2
∆τ2uττ (x, τ) +

1

6
∆τ3uτττ (x, τ + h̄).

u(x, τ −∆τ) = u(x, t)−∆τuτ (x, τ) +
1

2
∆τ2uττ (x, τ)− 1

6
∆τ3uτττ (x, τ + ĥ).

and subtract, to find

u(x, τ + ∆τ)− u(xτ −∆τ) = 2∆τuτ (x, τ) + 0∆τ2 + ∆τ3 [· · ·] .

This gives us
u(x, τ + ∆τ)− u(x, τ −∆τ)

2∆τ
= uτ (x, τ) +O(∆τ2).

In other words the central difference approximation is second order, which means that it will be considerably
more accurate for small ∆τ . On the other hand to use it to approximate uτ (xn, τm) involves both um+1

n and
um−1
n , which complicates the resulting algebraic equations. Higher order approximations for uτ (xn, τm) can

be given which involve more than two different m-values.
Similar approximations can be used for ux. For uxx we typically use the second central difference ap-

proximation

uxx(x, τ) = lim
h→0

u(x+ h, τ)− 2u(x, τ) + u(x− h, τ)

h2
. (4.4)

If we use the third order Taylor polynomial

u(x± h, τ) = u(x, τ)± hux(x, τ) +
1

2
(±h)2uxx(x, τ) +

1

6
(±h)3uxxx(x, τ) +

1

24
(±h)4uxxxx(x+ h̄, τ)

with h = ∆τ , we find that

u(x, τ + ∆τ)− 2u(x, τ) + u(x, τ −∆τ) = ∆τ2uxx(x, τ) +
1

12
∆τ4uxxxx(· · ·).

We see that the symmetric central difference approximation

umn+1 − 2umn + umn−1

∆x2
= uxx(xn, τm) +O(∆x2)

is second order. There are other finite difference approximations to uxx(xn, τm), but this will serve us well
enough for now.

32

4.1 The Explicit Finite Difference Method

To proceed, let’s use the second central difference approximation (4.4) for uxx and the forward difference
approximation (4.1) for uτ . The heat equation evaluated at the node (x, τ) = (xn, τm) says that

um+1
n − umn

∆τ
+O(∆τ) = uτ (xn, τm) = uxx(xn, τm) =

umn+1 − 2umn + umn−1

∆x2
+O(∆x2).

Now we simply ignore the O(∆τ) and O(∆x2) terms, and consider the equation

um+1
n − umn

∆τ
=
umn+1 − 2umn + umn−1

∆x2
.

This involves the values of u at four nodes in our grid. Rearranging, it becomes

um+1
n = αumn+1 + (1− 2α)umn + αumn−1, (4.5)

where α refers to the value

α =
∆τ

∆x2
.

Equation (4.5) is called the explicit finite difference method for the heat equation. It tells us how to
calculate the values of u at the τm+1 nodes in terms of the values at the τm nodes. If we use our initial
function to get us started

u0
n = ψ(xn),

we can then use (4.5) to “march” our calculations through τ1, τ2, . . . until we get to the values of umn for
whatever τm we are interested in. But remember that (4.5) is only an approximation to the actual heat
equation. Every time we use (4.5) we are introducing additional errors of magnitude O(∆τ) +O(∆x2). So
even though u0

n = u(xn, 0) is exact, all the subsequent values are only approximations:

umn ≈ u(xn, τm).

We should recognize that the cumulative effect of these errors is a concern. It is conceivable that many
applications of (4.5) might lead to a poor approximation in the end.

In spite of that concern, the simplicity of (4.5) is so appealing that it seems worth trying before we
explore the error issue any further. We want to get Matlab to do the calculations for us. There are a
couple issues to deal with before we can give it a test run. One is that we can’t really deal with all infinitely
many values of n; we must limit ourselves to n in some finite range 0 ≤ n ≤ N + 1, which corresponds to an
interval of x-values:

xL = x0 ≤ x ≤ xN+1 = xH.

Now notice that (4.5) will tell us values for um+1
n for 1 ≤ n ≤ N , but not for n = 0, N + 1. So we need to

do something different to produce the values

um+1
0 ≈ u(xL, τm+1), um+1

N+1 ≈ u(xH, τm+1).

If we know or can somehow approximate u(xL, τ) and u(xH, τ) then we will be in good shape. Since our
limitation to 0 ≤ n ≤ N + 1 means we are only considering the heat equation in the strip xL ≤ x ≤ xH,
0 ≤ τ , it is no suprize that we find the need for boundary values, as we saw in Section 2.3.1.

33

4.1.1 Approximate Boundary Conditions in Heat Variables

We saw in Section 3.3 how we could approximate pricing functions v(s, t) for small or large s:

v(s, t) = vapprox(s, t) +O(sγ) or +O(1/sγ).

We should pause to think about how accurate such approximations will be when converted to heat variables.
The concern is the factor of e−µx in the conversion formula from (2.8):

u(x, τ) = e−µx+ντv(s, t).

The sign of µ depends on r and σ, but that factor will magnify errors for for either positive or negative x.
Is it going to ruin our accuracy of O(sγ) as s→ 0, or of O(1/sγ) as s→∞, when vapprox is converted to an
approximation for u? Observe that

e−µxsγ = e−µxeγσx/
√

2.

we can make c = γ σ√
2
− µ as large (positive) as we like by our choice of γ, so that

e−µxsγ = ecx,

which → 0 exponentially fast as s→ 0 and x→ −∞. For s→ +∞ we have

e−µxs−γ = e
−(γ σ√

2
+µ)x

,

The exponential constant will be negative for large γ, so this too decays exponentially as x→∞. Thus the
approximate formulas from Section 3.3, when converted to heat variables, will differ from the true values
by an error that vanishes exponentially as x → ±∞. So provided [xL, xH] is large enough, we can use
the formulas from Section 3.3 in conjunction with (2.8) to obtain formulas for uL(τ) and uH(τ) to use as
approximate boundary values:

um0 = uL(τm), umN+1 = uH(τm).

4.2 Implementing the Explicit Method

Given formulas for ψ, uL and uH we can write a Matlab script efd.m (listed below) to carry out the finite
difference calculation. Here is how it works.

Values for xL, xH, N,M are to be specified (in Matlab variables xL,xH,N,M), as well as a final time T
(T in Matlab). We also will need function m-files to compute the following.

• u0(x)= ψ(x), the initial data,

• uL(xL,tau)= uL(τ) and uH(xH,tau)= uH(τ), the boundary conditions.

(We want uL to take xL as an argument so that if we decide to change the value we use for xL we don’t have
to rewrite the m-files. Likewise for uH and xH.) We determine the values

α = ∆τ/∆x2,

∆x =
xH − xL

N + 1
and ∆τ =

T

M
,

x0 = xL, x1 = xL + ∆x, . . . , xN = xL +N∆x, xN+1 = xH.

τ0 = 0, . . . τM = τ.

In the script, dx = ∆x, dt = ∆τ , and alpha = α. The linspace command produces an array x which
contains

x = [x0, x1, . . . , xN+1].

The full array values of τi are not calculated in advance because only the one value of τi at at time (tau in
the code) is needed in the calculation.

34

The Matlab variable u will be an N -dimensional array which will hold the values

u = [um1 , u
m
2 , . . . , u

m
N],

for the successive values m = 0, 1, 2, . . .M as the calculation proceeds. The command u=u0(x(2:N+1)) gives
it the values for m = 0: u(i)= ψ(xi). (Note that this assumes that u0 is written so that it will accept
a vector of input values and return the appropriate vector of ψ values.) Observe that we generated the
full vector of x-values, including x(1)= x0 = xL and x(N+2)= xN+1 = xH. But we left off the first and
last x values when generating the initial vector u. So after that command u will contain the values u0

n for
n = 1, . . . N . tau will hold the value of τm corresponding to the current contents of u, so we initialize
tau = 0.

Having initialized all the variables, we want to iterate (M times) the explicit finite difference formula,

um+1
n = αumn−1 + (1− 2α)umn + αumn+1, for 1 ≤ n ≤ N.

We can write this as a single vector operation, using uL and uH to give the values for um0 and umN+1.
um+1

1

um+1
2
...

um+1
N−1

um+1
N

 = α


uL(xL, τm)

um1
...

umN−2

umN−1

+ (1− 2α)


um1
um2
...

umN−1

umN

+ α


um2
um3
...
umN

uH(xH, s)

 .
In thie script, this is the fourth line from the bottom. The occurences of u on the right are the values for
the “old” tau = τm. The u on the left will then have the values for the “new” tau = τm+1, which we
reset after updating u. This explains the update loop. When the for-loop is finished u contains the values
corresponding to tau= τM = T . The last line of the script puts the two boundary values back onto u, so
that its entries correspond to the full list of xn in x.

efd.m

% Script for explicit finite difference method.

% Initial values are to be provided by u0(x).

% Boundary values are to be provided by uL(xL,tau), uH(xH,tau).

%

% Before running the script, m-files for u0, uL, and uH need to

% be provided and values need to be given to the following variables:

% xL = lower boundary

% xH = upper boundary

% N = number of spatial intervals (less 1)

% M = number of time steps

% T = final time

%

dx=(xH-xL)/(N+1);

dt=T/M;

alpha=dt/(dx)^2;

x=linspace(xL,xH,N+2);

u=u0(x(2:N+1));

tau=0;

%

% Update Loop:

for m=1:M

u=alpha*[u(2:N),uH(xH,tau)]+(1-2*alpha)*u+alpha*[uL(xL,tau),u(1:N-1)];

tau=m*dt;

end

%

u=[uL(xL,T),u,uH(xH,T)];

35

4.3 Testing the Explicit Method

We want to test the explicit method, as implemented in our script efd.m, on a problem for which we know
what the values of the true solution u(x, τ) actually are, so that we can compare our computed results to
the values they are supposed to be approximating. We will use the values for a call option, but in their heat
variables form. The initial values are v(s, 0) = (s−K)+, and we use

v(s, t) ≈ 0 for s ≈ 0, v(s, t) ≈ s−Ke−r(T−t) for s ≈ ∞.

These give formulas for φ(s), vL(s, t) and vH(s, t) (in financial variables) and are converted to heat variables
to give the values returned by u0.m, uL.m, and uH.m. For instance here are the m-files we use for uH.m and
vH.m.

uH.m

function u=uH(x,tau)

%uH(x,tau) gives the upper boundary values for finite difference

%calculations in heat variables. The values are obtained simply by

%evaluating vH in financial variables and converting to heat variables.

[junk,s]=fh(0,x,tau,tau);

v=vH(s,0,tau);

u=hf(v,s,0,tau);

end

vH.m

function v = vH(s,t,T)

%vL(s,t,T) returns the approximate upper boundary value at (s,t)

%for terminal time T.

global r K

v=s-K*exp(-r*(T-t)); %for a call

end

We use values of the stock price s in a specified range sL ≤ s ≤ sH, and then do the explicit finite difference
calculation on the corresponding range of x-values: xL ≤ x ≤ xH using the script efd.m above. The
resulting values uMn should approximate the true values u(xn, T). We get the true values from BS Call.m

and conversion to heat variables. Here is the script which carries out the evaluation and presents the results.

rune.m

%Script for test calculations using efd to calculate call values.

%Initial and boundary values provided by u0(*), uL(*) and uh(*).

%xL and xH are converted form sL and sH.

[junk,x]=hf(0,[sL,sH],0,0); % Convert [sL,sH] to xL, xH.

xL=x(1);

xH=x(2);

% Run explicit method

efd

% Compute true values: BSCall and convert to heat variables

[junk,s]=fh(0,x,0,0);

true=hf(BSCall(s,T,K),s,0,T);

36

% Display results

plot(x,true,’r’)

hold on

plot(x,u,’*’)

% Print summary

title(’Explict Finite Difference Results (in heat variables)’)

hold off

fprintf(’\n[xL,xH]=[%g , %g]\n’,xL,xH)

fprintf(’dx=%g, using N+1=%g x-intervals.\n’,dx,N+1)

fprintf(’T=%g, dt=%g, using M=%g time steps.\n’,T,dt,M)

fprintf(’alpha=%g\n’,alpha)

fprintf(’Minimal M for stability=%g\n’,ceil(2*T/(dx^2)))

fprintf(’Maximum error=%g\n\r’,max(abs(u-true)))

We now present the results from this calculation using the parameter values K = 10, r = .05, σ = .2,
T = 2, with sL = 2 and sH = 25. The computed values are plotted (with asterisks) along the with the true
values (the solid lines) for comparison using various values of N and M .

0 5 10 15 20 25
0

50

100

150

200

250
Explict Finite Difference Results (in heat variables)

[xL,xH]=[4.90129 , 22.7609]

dx=1.6236, using N+1=11 x-intervals.

T=2, dt=0.5, using M=4 time steps.

alpha=0.189676

Minimal M for stability=2

Maximum error=0.338661

We have used N = 10 and M = 4. The results
here are not bad, considering we only used 4 time
steps. To get better accuracy we can try increasing
N .

0 5 10 15 20 25
0

50

100

150

200

250
Explict Finite Difference Results (in heat variables)

[xL,xH]=[4.90129 , 22.7609]

dx=0.850457, using N+1=21 x-intervals.

T=2, dt=0.5, using M=4 time steps.

alpha=0.691298

Minimal M for stability=6

Maximum error=1.02033

Increasing to N = 20 did not improve the accuray
s we expected. Rather the error has increased!
Let’s try increasing N some more.

37

0 5 10 15 20 25
−150

−100

−50

0

50

100

150

200

250
Explict Finite Difference Results (in heat variables)

[xL,xH]=[4.90129 , 22.7609]

dx=0.576116, using N+1=31 x-intervals.

T=2, dt=0.5, using M=4 time steps.

alpha=1.50643

Minimal M for stability=13

Maximum error=117.886

With N = 30 the error is even worse worse, hope-
lessly bad in fact. Let’s try increasing M instead.

0 5 10 15 20 25
0

50

100

150

200

250
Explict Finite Difference Results (in heat variables)

[xL,xH]=[4.90129 , 22.7609]

dx=0.576116, using N+1=31 x-intervals.

T=2, dt=0.133333, using M=15 time steps.

alpha=0.401716

Minimal M for stability=13

Maximum error=0.0506617

This made a big improvement, the error is now
much smaller than previously. To improve the er-
ror lets increase both M and N some more.

0 5 10 15 20 25
−8

−6

−4

−2

0

2

4

6

8
x 1016 Explict Finite Difference Results (in heat variables)

[xL,xH]=[4.90129 , 22.7609]

dx=0.176828, using N+1=101 x-intervals.

T=2, dt=0.02, using M=100 time steps.

alpha=0.639631

Minimal M for stability=128

Maximum error=7.88723e+16

With N = M = 100 the error is so large that it
has completely swamped the calculation, making
the results useless. Increasing M helped before.
Let’s try that again.

38

0 5 10 15 20 25
0

50

100

150

200

250
Explict Finite Difference Results (in heat variables)

[xL,xH]=[4.90129 , 22.7609]

dx=0.176828, using N+1=101 x-intervals.

T=2, dt=0.01, using M=200 time steps.

alpha=0.319815

Minimal M for stability=128

Maximum error=0.00291943

With N = 100 and M = 200 we have the best
results yet. The error is quite small.

Reviewing the above, we observe that the results seem good when α ≤ 1
2 , but worthless otherwise. There is

obviously an issue here that we need to understand.

4.4 The Issue of Stability

To understand what is going on, observe that our update formula (4.5) can be written in the following matrix
form: 

um+1
1

um+1
2
...

um+1
N−1

um+1
N

 = A


um1
um2
...

umN−1

umN

+ α


uL(τm)

0
...
0

uH(τm)

 ,
where A is the tridiagonal matrix

A(α) =



(1− 2α) α 0 · · · 0

α (1− 2α) α 0
...

0 α
. . .

. . . 0
...

. . . α (1− 2α) α
0 · · · 0 α (1− 2α)


If we use um = [um·], bL = αe1, and bH = αeN we can write it even more succinctly as

um+1 = Aum + uL(τm)bL + uH(τm)bH. (4.6)

To simplify our discussion, consider the special case of uL(τ) = uH(τ) = 0. Then we have um+1 = Aum.
The result of our calculation is simply raising A to successively higher powers:

um = Amu0.

It turns out that the problem that we observed in our test calculations is that in some cases it is possible
for successive powers of A to magnify certain vectors. This easiest to see in terms of the eigenvalues of A.
Recall that λ is an eigenvalue of A if there is a nonzero vector v for which

Av = λv.

39

This implies that Amv = λmv. If |λ| > 1, then λm will grow without bound as m increases. Although u0

may not be the eigenvector v, the effects of roundoff error, and the adddition of the boundary terms bL and
bH are likely to introduce small multiples of v into um as the calculation proceeds. Once um includes a
small multiple of v, subsequent multiplications by A will magnify it until it dominates the intended values
for um· . That is what we saw happening in the “bad” calculations from the previous section. In order for
this phenomenon not to occur, we need to know that |λ| < 1 for all the eigenvalues of A.

For our particular matrix A(α) we can write down exactly what the eigenvalues are. (See the Problem 4.A
at the end of the chapter.)

λk = 1− 2α

[
1− cos

(
kπ

N + 1

)]
; k = 1, . . . , N.

The crucial question is under what circumstances all of these satisfy |λk| ≤ 1. This is what determines
whether our explicit finite difference calculation succeeds or not. Since α ≥ 0 and 1− cos(kπ/(N + 1)) > 0
it is clear that λk < 1. But we also want −1 < λk. This is equivalent to

α <
1

1− cos(kπ/(N + 1))
, all k = 1, . . . , N.

The right side is smallest when the cos(·) is closest to −1, namely for k = N . So |λk| < 1 for all k is
equivalent to

α <
1

1− cos(N
N+1π)

.

The right side is slightly larger than 1/2, but very nearly equal to 1/2 for large N . So if α ≤ 1/2 then all
|λk| < 1. But if α > 1/2, then for sufficiently large N there will be one or more eigenvalue with |λk| > 1,
which means our numerical calculations will “blow” up for increasing m. This is the issue of numerical
stability. What this means for our explicit finite difference method is that we need to be sure

∆τ ≤ 1

2
∆x2

in order to get useful results. The number M of time steps needs to be relatively large compared to the
number N of spacial steps.

The actual definition of stability for a numerical method is more involved. The choice of ∆t determines
how large the power m in Am will be. We could allow A to magnify some vectors slightly depending on
how large m will be. For a thorough treatment see Richtmeyer & Morton [47]. A sufficient condition is that
there is some constant K so that

‖Amx‖ ≤ K‖x‖ for all m = 1, 2, 3, · · · and all x ∈ RN , (4.7)

This will be true if

1. all eigenvalues λ of A have |λ| ≤ 1, and

2. any |λ| = 1 are simple.

We have been able to verify this directly for the A of the explicit method. In more complicated situations,
like Chapter 5, we won’t be able to calculate λ explicitly. However, in Chapter 6 we will find a convenient
sufficient condition.

For the actual heat equation, we see from (2.12) that if the initial function ψ(x) is bounded, then u(x, τ)
also reamins bounded for τ > 0. For the heat equation on a strip with boundary conditions (2.16), the same
is true: if ψ(x), ua(τ), and ub(τ) are bounded functions, then the solution u(x, τ) will be bounded. The
phenomenon of “blowing up” as τ = τm increases that we observed in the “bad” calculations of Section 4.3
is not a problem of the heat equation itself, but is a property of the numerical method we are using to
approximate the heat equation. Now we know how to avoid it: make sure that ∆τ ≤ 1

2∆x2. But there is a
better way!

40

4.5 The Implicit and Crank-Nicholson Methods

It turns out that by changing the choice of finite difference approximations we can produce numerical methods
that have better stability properties. Let’s view

uτ (xn, τm+1) =
um+1
n − umn

∆τ
+O(∆τ)

as the backward difference approximation (4.2) at (xn, τm+1), instead of the forward difference formula at
(xn, τm). Now the heat equation at (x, τ) = (xnτm) says that

um+1
n − umn

∆τ
+O(∆τ) = uτ (xn, τm+1) = uxx(xn, τm+1) =

um+1
n+1 − 2um+1

n + um+1
n−1

∆x2
+O(∆x2)

We drop the O(·) terms as before, and rearrange. With the same α = ∆τ/∆x2 as before, this gives the
formula

−αum+1
n−1 + (1 + 2α)um+1

n − αum+1
n+1 = umn . (4.8)

We use uL and uH to provide values for n = 0, N + 1 as before. Instead of giving a formula for um+1
n in

terms of the umn values, (4.8) gives us a set of equations which must be solved to find the um+1
n values. We

call (4.8) the implicit method for the heat equation because it only gives um+1
n implicitly.

If we write it in matrix form we get

Mum+1 = um + uL(τm+1)bL + uH(τm+1)bH. (4.9)

Here bH and bH are the same as previously (see the line above (4.6)), and M = A(−α) using the same
formula for A as before, just with −α in place of α. Provided M is invertible, we have

um+1 = M−1
[
um + uL(τm+1)bL + uH(τm+1)bH

]
.

In fact, we know that M is invertible because we know its eigenvalues are λk = 1 + 2α(1− cos(kπ/(N + 1))
which are all > 1. (If M were not invertible, then 0 would be an eigenvalue.)

In the next section we will talk about how to implement the M−1 efficiently in Matlab . But first let’s
consider the stability issue. We want to know when all the eigenvalues of M−1 have |λk| ≤ 1. But λk is an
eigenvalue of M−1 if and only if λ−1

k is an eigenvalue of M. And since M = A(−α) we have a formula for
those. So the eigenvalues of M−1 are

λk = [1 + 2α(1− cos(kπ/(N + 1))]
−1
, k = 1, · · · , N.

Since α(1− cos(kπ/(N + 1)) > 0 we see that 0 < λk < 1 for all k with no restriction on α! This is usually
described by saying that the implicit method is unconditionally stable. This is our reward for the extra
difficulty of dealing with M−1.

Before we rush to implement the implicit method, we can actually do even better for only a little more
computational effort. To explain this lets first establish some notation that will help us work out the

41

development of finite difference methods more systematically. Let C be the N ×N matrix

C =



−2 1 0 · · · 0

1 −2 1 0
...

0 1
. . .

. . . 0
...

. . . 1 −2 1
0 · · · 0 1 −2


. (4.10)

The vector of our second order central difference approximations to uxx(xn, τm) (n = 1, . . . , N) can be
written 

...
uxx(xn, τm)

...

 ≈


...
umn+1−2umn +umn−1

∆x2

...

 =
1

∆x2
Cum +

1

∆x2
uL(τm)e1 +

1

∆x2
uH(τm)eN (4.11)

This is our discrete approximation to ∂2
xu at (x1, . . . , xN) and τm. The forward difference approximation for

uτ at these same points is 
...

uτ (xn, τm)
...

 ≈ 1

∆τ
(um+1 − um).

With this notation the explicit method is derived by using the above approximations in
...

uτ (xn, τm)
...

 =


...

uxx(xn, τm)
...


to obtain

1

∆τ
(um+1 − um) =

1

∆x2
Cum +

1

∆x2
uL(τm)e1 +

1

∆x2
uH(τm)eN .

Solving for um+1 we get

um+1 = um + α
(
Cum + uL(τm)e1 + uH(τm)eN

)
= (I + αC)um + uL(τm)bL + uH(τm)bH.

This is (4.6), just written in different notation. For the implicit method, we use the backward difference
approximation instead: 

...
uτ (xn, τm+1)

...

 ≈ 1

∆τ
(um+1 − um).

Now we approximate the right side of
...

uτ (xn, τm+1)
...

 =


...

uxx(xn, τm+1)
...


using (4.11) with m+ 1. We obtain

(I− αC)um+1 = um + uL(τm+1)bL + uH(τm+1)bH.

This is our implicit method (4.9).

42

Now we can introduce a clever improvement on the implicit method. Instead of evaluating the heat
equation at the points (xn, τm+1) we are going to evaluate it at (xn, τm+1/2), where

τm+1/2 =
1

2
(τm + τm+1).

We can view
um+1
n − umn

∆τ
= uτ (xn, τm+1/2) +O(∆τ2)

as the central difference approximation (4.3) at (xn, τm+1/2) with an increment size of 1
2∆τ . This gives us

the higher order accuracy of O(∆τ2). To approximate uxx(xn, τm+1/2) we will use the average of the values
at the left and right gridpoints,

uxx(xn, τm+1/2) ≈ 1

2
[uxx(xn, τm) + uxx(xn, τm+1)] ,

and then approximate each term on the right using the second central difference approximation (4.4). It
turns out that this is again an O(∆x2) approximation. So overall this pair of finite difference approximations
is of order O(∆x2) +O(∆τ2), which is better than the O(∆x2) +O(∆τ) for both the explicit and implicit
methods. So we approximate the heat equation

...
uτ (xn, τm+1/2)

...

 =


...

uxx(xn, τm+1/2)
...


by

1

∆τ
(um+1 − um) =

1

2

[
1

∆x2
Cum+1 +

1

∆x2
uL(τm+1)e1 +

1

∆x2
uH(τm+1)eN

]
+

1

2

[
1

∆x2
Cum +

1

∆x2
uL(τm)e1 +

1

∆x2
uH(τm)eN

]
.

When reorganized this becomes

(I− α

2
C)um+1 = (I +

α

2
C)um +

uL(τm) + uL(τm+1)

2
bL +

uH(τm) + uH(τm+1)

2
bH. (4.12)

This is the Crank-Nicholson method for the heat equation. You might observe that it it is exactly the result
of averaging the explicit and implicit formulas above. But it has the advantage of being a higher order
approximation to the actual heat equation.

What about its stability? For that we consider the case of uL = uH = 0:

(I− α

2
C)um+1

· = (I +
α

2
C)um·

43

which is the same as
um+1
· = (I− α

2
C)−1(I +

α

2
C)um· .

We want to know about the eigenvalues. Observe that in Problem A below the eigenvectors vk do not
depend on α. We have

A(α/2)vk = [1− α(1− cos(kπ/(N + 1))]vk

A(−α/2)vk = [1 + α(1− cos(kπ/(N + 1))]vk

A(−α/2)−1vk = [1 + α(1− cos(kπ/(N + 1))]−1vk.

We find that vk is an eigenvector of

(I− α

2
C)−1(I +

α

2
C) = A(−α/2)−1A(α/2)

with eigenvalue

λk =
1− α(1− cos(kπ/(N + 1))

1 + α(1− cos(kπ/(N + 1))
.

Since the denominator is > 1, we find that

λk ≤
1

1 + α(1− cos(kπ/(N + 1))
< 1.

And the inequality −1 < λk is equivalent to

−[1 + α(1− cos(kπ/(N + 1))] ≤ 1− α(1− cos(kπ/(N + 1)),

which simplifies to −1 < 1 which is always true. So we find that |λk| < 1 is always true, meaning that the
Crank-Nicholson method is unconditionally stable!

Observe that all three methods we have discussed use the same approximation (4.11) to to ∂2
xu. The

difference between them is based on how we view the discretiaztion of ∂τu. There are yet other possibilities.
For instance Tavella & Randall [57, page 85] describe a multi-time step method.

4.6 LU Factorization and Matlab Implementation

Both the implicit and Crank-Nicholson methods are of the form

Mum+1 = Num + bm.

We need to solve this equation for um+1. The right side involes only quantities we know or can calculate
from uL and uH. The matricies M and N are likewise known. Mathematically the solution is

um+1 = M−1(Num + bm).

What is the best way to implement this for computer evaluation? The naive thing to do would be to
calculate M−1 once at the beginning of our program, store it and then reuse it for the matrix multiplication
to calculate each new um+1

· . But this is not the best way. We expect to do this calculation a large number
of times (m = 1, 2, . . . ,M). Writing our program to do it efficiently can make a big difference in how quickly
the program runs, especially for large N and M . Effecient solution of large linear systems is very important
in many scientific computing applications, there has been much study of how best to carry it out. Matlab
was designed to do this kind of calculation, so we ought to take advantage of its abilities. The matricies M
that we are interested in are tridiagonal, meaning that the only nonzero entries are either on or immediately
above or below the diagonal:

M =



d1 f1 0 · · · 0

e2 d2 f2 0
...

0
. . .

. . .
. . . 0

...
. . . eN−1 dN−1 fN−1

0 · · · 0 eN dN


44

There are more efficient ways to solve Mu = b than calculating M−1 and then multiplying b by it. Matlab
’s “backslash” command M\b will compute the solution using an effieient form of Gaussian elimination called
the LU method. Here is how it works.

Step 1. First factor M = LU where L is (unit) lower triangular and U is upper triangluar. This is easy to
do with the command [L,U]=lu(M), which goes quite fast if M is tridiagonal. When M is tridiagonal
the resulting L and U will have the form

L =



1 0 0 · · · 0

∗ 1 0 0
...

0
. . .

. . .
. . . 0

...
. . . ∗ 1 0

0 · · · 0 ∗ 1


, U =



∗ ∗ 0 · · · 0

0 ∗ ∗ 0
...

0
. . .

. . .
. . . 0

...
. . . 0 ∗ ∗

0 · · · 0 0 ∗


Step 2. Write Mu = b as L(Uu) = b and solve it in two stages:

Lv = b

Uu = v.

Matlab ’s backslash command looks for triangular structure and takes advantage of it, so this calcu-
lation will execute very fast with the single line u=U\(L\b).

In general u=M\b does both of these steps. But we don’t want to use this directly in our code because it
would waste effort by re-calculating L and U in Step 1 every time. So the efficient thing is to do Step 1
once, saving the resulting L and U, and then just repeat Step 2 with a new bm+1 for each new um+1.

One more thing — most of the matricies we are working with are sparse, which means most of the entries
are 0. A sparse matrix can be stored more efficiently by just storing the non-zero entries. Matlab has a
special format for storing sparse matrices, and special versions of many of its commands which will take
advantage of the sparse structure to speed up the calculation. Here is a Matlab script which implements
the implicit method using these efficiency techniques, and some results using it for N = M = 100, with the
other parameters the same as for our previous tests.

imlu.m

% Script for the fully implicit method, using LU factorization.

% Initial values are to be provided by u0(x).

% Boundary values are to be provided by uL(x,tau), uH(x,tau).

%

% Before runing the script, m-files for u0, uL, uH need to

% be provided and values given to the following variables:

% xL = lower boundary

% xH = upper boundary

% N = number of spatial intervals (less 1)

% M = number of time steps

% T= final time

%

dx=(xH-xL)/(N+1);

dt=T/M;

alpha=dt/(dx^2);

e=ones(N,1); %Note: this needs to be a column

A=spdiags([-alpha*e,(1+2*alpha)*e,-alpha*e],[-1,0,1],N,N);

[L,U]=lu(A);

bL=sparse(1,1,alpha,N,1); %[alpha;zeros(N-1,1)];

bH=sparse(N,1,alpha,N,1); %[zeros(N-1,1);alpha];

45

x=linspace(xL,xH,N+2);

u=u0(x(2:N+1))’;

tau=0;

%

%Update Loop:

for m=1:M

tau=m*dt;

rhs=u+uL(xL,tau)*bL+uH(xH,tau)*bH;

u=U\(L\rhs);

end

u=[uL(xL,T),u’,uH(xH,T)];

0 5 10 15 20 25
0

50

100

150

200

250
Implict Finite Difference Results (in heat variables)

[xL,xH]=[4.90129 , 22.7609]

dx=0.176828, using N+1=101 x-intervals.

T=2, dt=0.02, using M=100 time steps.

alpha=0.639631

Maximum error=0.0162208

We see that this worked well, in spite of α > .5.

4.7 Problems

Problem 4.A
Let A be the N ×N matrix

A =



1− 2α α 0 . . . 0

α 1− 2α α
. . .

...

0 α
. . .

. . . 0
...

. . .
. . . α

0 . . . 0 α 1− 2α



46

and vk the vector

vk =


sin(kπ

N+1 · 1)

sin(kπ
N+1 · 2)

...
sin(kπ

N+1 ·N)

 .
Show by direct calculation that

Avk = λvk

where

λk = 1− 2α(1− cos(
kπ

N + 1
)).

This shows that λk is indeed an eigenvalue of A for each k = 1, . . . , N , as claimed in class. Since each such
choice of k produces a different value of λk, this exhibits N distinct eigenvalues, and hence there are no
others. Hint: You will need a trig identity for the calculation.

. D

Problem 4.B
Create a Matlab sctipt to carry out the Crank-Nicholson method using the LU factorization technique for
the heat equation on a strip xL < x < xH, 0 < τ . First test it on the solution of Problem 2.A part 2 to
insure that it is working correctly. Then use it to compute the solution of the heat equation on the strip
0 < x < 1 for 0 < τ < 2 with the following initial and boundary values:

u(x, 0) = 2x, u(0, τ) = 0, u(1, τ) = 2− τ.

Plot the graph of the resulting u(x, 2). Find the value of x as accurately as you can which maximizes u(x, 2).

. F

47

Chapter 5

Finite Difference Methods in
Financial Variables

In Chapter 4 we learned about finite difference calculations for the heat equation. If we are interested in
a particular solution v of the Black-Scholes equation, we can convert the problem to an equivalent one for
the heat equation, use a finite difference calculation for the heat equation to approximate u, then convert
the results back to financial variables. This is not difficult to do; we did it many times in Chapter 4. But
there are several reasons to consider doing the finite difference calculation directly in financial variables.
For one, if xn are the evenly spaced grid points for the heat equation then the corresponding grid points

in financial variaables, sn = eσxn/
√

2, will be very closely spaced for small s and quite widely spaced for
large s. We might prefer to have the sn values themselves evenly spaced, in which case just doing the whole
finite difference calculation in financial variables seems simpler. Another reason is that for some alternative
models of the stock price, the resulting PDEs do not readily convert to the heat equation. (See for instance
the Cox model in [26].) In that case we have no alternative but to work in the original variables. However,
working in financial variables also raises some new issues, as we will see in this chapter.

5.1 Finite Difference Formulas

We will use a grid consisting of sn = sL + n∆s, (n = 0, . . . , N + 1) and tm = m∆t (m = 0, . . . ,M). The
value sL = 0 is the simplest choice for the boundary; we will need to an pick upper boundary sN+1 = sH.
The time of expiry will be T = tM . Given a terminal value function φ(s) we seek approximations

vmn ≈ v(xn, tm)

to the Black-Scholes equation

∂tv(s, t) + Bv(s, t) = 0, sL < s < sH, t < T

satisfying the terminal conditon
v(s, T) = φ(s).

Note that instead of starting at m = 0 and proceeding up to m = M as we did for the heat equation, in
financial variables we will start at m = M and work backwards until we reach m for the desired t = tm.

The first thing we must do is develop a finite difference approximation to Bv(s, t) analogous to that of
(4.11). We can do this systematically, following our precedent from the last chapter. With the same matrix
C as (4.10), and the same notational conventions,

...
vss(sn, tm)

...

 ≈ 1

∆s2
Cvm +

1

∆s2
vL(tm)e1 +

1

∆s2
vH(tm)eN .

48

Let S be the diagonal matrix with entries si:

S =


s1 0 · · · 0

0 s2 0
...

...
. . .

. . .
...

0 · · · 0 sN

 .
We can write the vector of [s2

· vss(s·, tm)] simply as S2[vss(s·, tm)], so we get
...

σ2

2 s
2
nvss(sn, tm)

...

 =
σ2

2
S2


...

vss(sn, tm)
...


≈ σ2

2∆s2
S2Cv(s·, tm) +

σ2

2∆s2
vL(tm)S2e1 +

σ2

2∆s2
vH(tm)S2eN .

For the vs term, we need to decide which of the several possible difference approximations to use. Since
the approximation we are using for vss is of second order accuracy, we ought use an approximation to vs
which is also (at least) second order. That suggests the central difference approximation (4.3) (applied to
the s-variable). Using our boundary formulas for s0 and sN+1, this leads us to

...
vs(s·, tm)

...

 ≈ 1

2∆s
Fvm − 1

2∆s
vL(tm)e1 +

1

2∆s
vH(tm)eN ,

where

F =



0 1 0 · · · 0

−1 0 1 0
...

0 −1
. . .

. . . 0
...

. . . −1 0 1
0 · · · 0 −1 0


.

This gives 
...

rsnvs(sn, tm)
...

 ≈ r

2∆s
SFvm − r

2∆s
vL(tm)Se1 +

r

2∆s
vH(tm)SeN .

Also, 
...

rv(sn, tm)
...

 = rIvm.

It will be convenient to use

α =
∆t

∆s2
, and β =

∆t

∆s
.

Putting the pieces together, we get the O(∆s2) approximation
...

Bv(sn, tm)
...

 ≈ 1

∆t

([
σ2

2
αS2C +

r

2
βSF− r∆tI

]
vm

+vL(tm)

[
σ2

2
αS2 − r

2
βS

]
e1 + vH(tm)

[
σ2

2
αS2 +

r

2
βS

]
eN

)

49

This looks messy, but it will be the basic ingredient of the explicit, implicit and Crank-Nicholson methods,
just like (4.11) was in the last chapter. Of most importance is the matrix

B =
σ2

2
αS2C +

r

2
βSF− r∆tI.

It will be helpful to write it differently. Let L and U be the matricies with 1s on the sub- and superdiagonals.

L =


0 0 · · · 0

1 0
. . .

...
. . . 0

...
0 · · · 1 0

 , U =


0 1 · · · 0
... 0

. . .
...

. . .
. . . 1

0 · · · 0 0

 .
We can write

C = L− 2I + U, and F = U− L,

and substitute these in the expression for B to obtain

B =
1

2
σ2αS2C +

1

2
rβSF− r∆tI

=
1

2
σ2αS2(L− 2I + U) +

1

2
rβS(U− L)− r∆tI

=
1

2
(σ2αS2 − rβS)L− (σ2αS2 + r∆tI) +

1

2
(σ2αS2 + rβS)U.

From this we can read off the subdiagonal, diagonal and superdiagonal entries of B. Define

an =
1

2
(σ2αs2

n − rβsn), bn = σ2αs2
n + r∆t, cn =

1

2
(σ2αs2

n + rβsn). (5.1)

Our approximation is 
...

Bv(sn, tm)
...

 ≈ 1

∆t

[
Bvm + vL(tm)bL + vH(tm)bH

]
, (5.2)

where
bL = a1e1, bH = cNeN , (5.3)

and B is the tridiagonal matrix

B =



−b1 c1 0 · · · 0

a2 −b2 c2 0
...

. . .
. . .

. . .
... 0 aN−1 −bN−1 cN−1

0 · · · 0 aN −bN


. (5.4)

We are ready now to write down our three basic finite difference formulations. The explict method uses

∂tv(sn, tm) ≈ v(sn, tm)− v(sn, tm−1)

∆t

in vt(sn, tm) + Bv(sn, tm) = 0. Using (5.2) we obtain

vm−1 = (I + B)vm + vL(tm)bL + vH(tm)bH. (5.5)

The implicit method uses

∂tv(sn, tm−1) ≈ v(sn, tm)− v(sn, tm−1)

∆t

50

in vt(sn, tm−1) + Bv(sn, tm−1) = 0 to obtain

(I−B)vm−1 = vm + vL(tm−1)bL + vH(tm−1)bH. (5.6)

For the Crank-Nicholson method we use

vt(sn, tm−1/2) ≈ v(sn, tm)− v(sn, tm−1)

∆t

and

Bv(sn, tm−1/2) ≈ 1

2
[Bv(sn, tm) + Bv(sn, tm−1)] ,

with each B-term on the right approximated by (5.2). When these are used in ∂tv(sn, tm−1/2)+Bv(sn, tm−1/2) =
0 we obtain

(I− 1

2
B)vm−1 = (I +

1

2
B)vm +

vL(tm−1) + vL(tm)

2
bL +

vH(tm−1) + vH(tm)

2
bH. (5.7)

Thus once we generate the tridiagonal matrix B the implementation of any of these methods will be largely
the same as for the heat equation, using the LU factorization for the implicit and Crank-Nicholson methods.

The following script will generate B, the boundary vectors bL and bH and other relevant quantities.

genB.m

% Script to generate matricies for the discrete approximation B to the

% Black-Schole operator, in financial variables. The following variables

% need to be defined:

% boundary values 0<=sL<sH need to be specified,

% the number N of subintervals,

% time increment dt

% interest rate r,

% volatility sigma.

% The script will generate the following:

% spatial increment ds,

% vector of N price values s=[sL+ds, ... , sH-ds] (row),

% vectors a, b, c of coefficients (columns)

% the matrix B.

ds=(sH-sL)/(N+1);

s=linspace(sL+ds,sH-ds,N);

alpha=dt/ds^2;

beta=dt/ds;

a=(sigma^2*alpha*s.^2-r*beta*s)’/2;

b=(sigma^2*alpha*s.^2+r*dt*ones(size(s)))’;

c=(sigma^2*alpha*s.^2+r*beta*s)’/2;

B=spdiags([[a(2:N);0],-b,[0;c(1:N-1)]],[-1,0,1],N,N);

bL=sparse(1,1,a(1),N,1);

bH=sparse(N,1,c(N),N,1);

Here is a script to implement the Crank-Nicholson method.

cnf.m

% Script for Crank-Nicolson finite difference method in financial

% variables using explicit boundary values. The variables sL, sH, N, M, r,

% sigma, and T should be set at the command line before running the script.

% (r, sigma, and K should be global). Separate m-files vT, vL, and vH give

% initial and boundary values.

51

dt=T/M;

genB %Generate matricies and coefficients

Mat=speye(N)-B/2;

[L,U]=lu(Mat);

Mat=speye(N)+B/2;

v=vT(s)’; %Initialize

t=T;

for m=M-1:-1:0 %Time-step loop

rhs=Mat*v+(vL(sL,t,T)*bL+vH(sH,t,T)*bH)/2;

t=m*dt;

rhs=rhs+(vL(sL,t,T)*bL+vH(sH,t,T)*bH)/2;

v=U\(L\rhs);

end

s=[sL,s,sH]; %Include boundaries and

v=[vL(sL,t,T),v’,vH(sH,t,T)]; %Convert results to rows

Example. To illustrate, consider the down & out call option. The pricing function solves the Black-Scholes
equation in s > θ with v(θ, t) = R and terminal value v(s, T) = (s − K)+. We will work in an interval
[sL, sH] with sL = θ and sH some “artifical” upper boundary (it should be significantly larger than K and
than the ranges of s-values for which we are interested in v(s, t)). The boundary values (using a rebate R)
should be

vL(t) = R, vH(t) = sH − e−t(T−t)K.

This gives all the ingredients to do the numerical calculation. We simply incorporate these specifications
into vT.m, vL.m, and vH.m, specify the parameters at the command line and run the script cnf.m. Here is
a plot of the results using r = .05, σ = .2, T = 2, sL = θ = 5, R = 1, K = 10, sH = 30, N = 200, and
M = 100.

5 10 15 20 25 30
0

5

10

15

20

25
Down and Out Call

s

v

(From Section 3.2 we have an exact formula for v to which we can compare our numerical values.)

5.2 Stability and Performance Issues

What about the stability of these various methods? For explicit methods (with or without boundary condi-
tons) we expect some restriction on ∆s and ∆t to be necessary. According to Wilmott [61] both the implicit
and Crank-Nicholson methods, using boundary values, are stable with no stepsize restrictions. Although
we cannot present an explicit calculation of eigenvalues to justify these claims, it is not hard to test them

52

experimentally using Matlab. In the problems at the end of the chapter you will do the same thing for the
modified versions using (5.9).

As an example we can check the eigenvalues numerically for the explicit, implicit and Crank-Nicholson
methods based on (5.2). First observe that if γk are the eigenvalues of B, then the eigenvalues for our three
basic methods are as follows:

1. Explicit method: λk = 1 + γk ∈ (−1, 1) iff −2 < γk < 0.

2. Implicit method: λk = (1− γk)−1 ∈ (−1, 1) iff γk < 0 or 2 < γk.

3. Crank-Nicholson method: λk = 1+γk/2
1−γk/2 ∈ (−1, 1) iff γk < 0.

We take N = 100 and ∆s = .1, with [sL, sH] = 0, 10.1] (so sN = 10), and the parameter values r =
.05, σ = .2. Using ∆t = .1 we calculate B using the script genB.m above, and then the command
gamma=sort(eig(full(B))) to produce a sorted list of all the eigenvalues. We find that the eienvalues
γk are all real, with the largest being ≈ −.0064. Now we can plot the list of λk = 1 + γk for the explicit

method and λk = 1+γk/2
1−γk/2 for Crank Nicholson and examine the results. Here is what we find.

0 10 20 30 40 50 60 70 80 90 100
−80

−70

−60

−50

−40

−30

−20

−10

0

10
Eigenvalues for Explicit Method

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Eigenvalues for CN Method

We see that B has several large negative eigenvalues, the largest being ≈ −73. Consequently the explicit
method is unstable. The Crank-Nicholson and implicit methods are stable. In fact this follows from γk < 0.

We might ask how small ∆t needs to be (all other paramters being the same) in order for the explicit
method to be stable. By calculating as above for ∆t = .005 (α = .5) we find that it is still unstable, but
for ∆t = .001 it is stable. This is consistent with what we found for the heat equation: the explicit method
will be stable if ∆t is small enough, relative to ∆s. But no such restriction is necessary for the implicit and
Crank-Nicholson methods.

Our eigenvalue calculation reveals one drawback that some authors have pointed out for the Crank-
Nicholson method. The large negative γk correspond to eigenvalues λk ≈ −1. While these still have
|λk| < 1, so that the method is stable, the contributions to Mm from these “modes” will alternate in sign
like (−1)m, before the |λk|m → 0 takes over (which happens rather slowly since |λk| ≈ 1). This means we
can expect the error in a Crank-Nicholson calculation to oscillate with m. For the implicit method, from
γk < 0 it follows that all 0 < λk, so it will not have this oscillatory behavior. Tavella & Randal [57] consider
“multi-level” methods that use the v-values from more than one apreviously computed tm to compute the
next time, and show that this can remove the oscilatory phenomon, while maintaining the second order
accuracy and stability with no stepsize constraints.

5.3 Some Alternatives

Mathematically we know that a solution of the Black-Scholes equation is uniquely determined by the terminal
value function φ(s). The values of v(0, t) don’t need to be specifed in advance but are in fact are determined

53

after the solution is formed: v(0, t) = lims→0 v(s, t). But our finite difference methods, applied on [sL, sH]
do require that we provide values for v(sL, t) fand v(sH, t) in the form of boundary value functions vL and
vH. In the case of sL = 0 we are fortunate to know the exact formula from the corollary in Section 3.3:

v(0, t) = e−r(T−t)φ(0).

In fact this is what we would deduce by formally plugging s = 0 into the Black-Scholes equation:

vt(0, t)− rv(0, t) = 0, with v(0, T) = φ(0). (5.8)

For sH(t) we have relied on the approximate formula

v(s, t) ≈ c1s+ c2e
−r(T−t) = vH(t),

valid for sufficiently large s provided φ(s) = c1s+ c2 for s larger than some K.
There are alternatives to relying on approximate formulas for vL(t) and vH(t). The idea is to find

some sort of discrete equation to help us solve for vm0 and vmN+1. For sL = 0 we can just use a discrete
approximation to (5.8), using the same discrete approximation to vt(0, tm) as for the other sn values.

• vm0 − vm−1
0

∆t
= rvm0 for the explicit method: vm−1

0 = (1− r∆t)vm0 .

• vm0 − vm−1
0

∆t
= rvm−1

0 for the implicit method: (1 + r∆t)vm−1
0 = vm0 .

• vm0 − vm−1
0

∆t
= r

1

2
(vm0 + vm−1

0) for the Crank-Nicholson method: (1 + r∆t/2)vm−1
0 = (1− r∆t/2)vm0 .

Instead of the boundary condition vm0 = vL(0) we can use the appropriate choice of the above equations.
The effect of this is to include a new n = 0 component to vm and add a new top row to the matricies I±B,
eliminating the bL terms from the descriptions of the methods on page 50. As a result we would no longer
need vL(t) at all. Since our formula for vL(t) when sL = 0 is exact, this does not seem very beneficial,
because we have replaced our exact formula for vL(t) by a discrete approximation to the equation (5.8). The
only benefit is that the finite difference formula is cleaner and a little simpler to implement.

A similar device is often used to eliminate the boundary condtion at sH (and at sL if it is positive but
close to 0). The idea is that for large (or small) s our approximate formula v(s, t) ≈ c1s+c2e

−t(T−t) suggests
that vss(sN , t) ≈ 0. In our second order approximation this becomes

v(sN+1, t)− 2v(sN , t) + v(sN−1, t)

∆s2
≈ 0, or vmN+1 ≈ 2vmN − vmN−1. (5.9)

We can use this formula, instead of vH(tm), to produce the value of vmN+1 needed in the finite difference
approximation for Bv(sN , tm). This eliminates the bH terms on page 50 and the need for vH(t), while
modifying the N th row of B. The tridiagonal structure of B is preserved, so we can still use our LU
factorization method to implement the implicit and Crank-Nicholson versions of the method. You will work
out the details in Problem 5.B at the end of the chapter. This approach is quite popular in the literature. A
good discussion of it is in Tavella & Randall [57]. They make the point (page 121) that in some complicated
situations it can be hard to produce decent approximate formulas for vH, so these boundary value-free
methods can be particulary useful. We will encounter that for Asian options.

We have seen that the boundary at s = 0 is actually rather nice, because we can produce an exact formula
for v(0, t). This works because the coefficients of vs and vss in the Black-Scholes equation have a factor of
s in them, so that they become 0 at s = 0, leaving us with the simplified equation (5.8). There is another
change of variables in which the price variable 0 < s < ∞ is replaced by a variable 0 < ξ < 1 so that the
coefficients of ∂/∂ξ and ∂2/∂ξ2 in the resulting equation vanish at both ξ = 0, 1. This eliminates the need
for an artificial upper boundary sH, in the same way that sL = 0 is not artificial but the natural lower limit
of s-values. Now something like (5.8) is possible at both boundaries ξ = 0, 1, so there is no need for artificial
or approximate boundary values at all. This approach is developed in the text by Zhu, Wu, and Chern [63].

54

The Black-Scholes equation has a first order term, rsvs while the heat equation does not. The presence
of a first order term (called a “convection” term) along with a diffusion term (vss) is known to degrade
the performance of finite difference methods. For this reason the heat equation formulation is sometimes
considered preferable to the financial variables formulation. Another approach which improves the perfor-
mance is to use “upwind differencing.” This means using a carefully selected asymmetrical finite difference
approximation for vs. Most common is

vs(s, t) ≈
−3v(s, t) + 4v(s+ ∆s, t)− v(s+ 2∆s, t)

2∆s
. (5.10)

This should be used when the coefficient of vs is positive (as it is for us: rs > 0). If the coefficient were
negative we would replace ∆s by −∆s in (5.10) and use that instead. In future chapters we will encounter
situations in which the coefficient changes sign. Then we use (5.10) for some sn and the −∆s version
for others. This generally improves the performance of the finite difference calculation, but the resulting
matricies I±B/2 are no longer tridiagonal; they have an additional nonzero superdiagonal two steps away
from the main diagonal. You can find some discussion of this in [63] (see page 300) as well as [52], and [26]
in the context of American options.

When the terminal value function ψ(s) is nondifferentiable, as it typically is for us, that degrades the
accuracy of the computed approximations. One way to remediate this is to use some reference function
w(s, t) and use the finite difference approach to compute the difference v(x, t)− w(x, t) rather than v itself.
If w is choosen so that v−w is smooth, including t = T then the computation of v−w will be more accurate,
and we just need to add w to the result to get v. This idea is developed in [63], where it is called the
“singularity separating” approach.

Chapter 4 of [57] describes a number of refinements that can achieve an order of magnitude reduction
of errors, such as cell-averaging of terminal values, and using cubic spline iterpolation when needed for
discontinuous updates, such as across dividend payment times. In general, to develope high accuracy methods
involves fine tuning the methods to the features of the praticular problem at hand, using a variety of special
techniques such as those described above. A careful treatment of these things is beyond the scope of our
discussion. We have tried simply to indicate what some of them are and provide a reference or two for
interested readers to pursue.

5.4 Financial vs. Heat Variables

We have considered approaches to numerical approximation of pricing functions both in the original financial
variables as well as in the equivalent heat equation formulation. In this section we want to indicate some of
the pros and cons of these two approaches.

The use of heat variables has these advantages.

• The finite difference equations take a simple symmetric form, and stability can be verified explicitly.

• The absence of a first order “convection” term ∂xu in the equation helps the performance of the
numerical methods. No special up-wind differencing schemes are needed.

The use of financial variables has these advantages.

• We ultimately want the results in financial variables. The regular grid spacing in financial variables
will be more useful for interpolating values for nongrid points.

• We can use the natural boundary at s = 0, for which we usually have an exact formula for v(0, t) =
vL(t). (In heat variables, both boundary functions uL(τ) and uH(τ) will be approximations only.)

• When we consider path-dependent options (Asians and lookbacks) we will obtain modifications of the
Black-Scholes equations in the financial variable setting. These will not convert to the heat equation
as readily as the standard Black-Scholes equation.

55

5.5 Problems

Problem 5.A
In this problem you are to work out the modification of the Crank-Nicholson method based on using (5.8)
instead of an explicit approximate formula for vH, and its analogue base on vss(s1, t) = 0 for vL. You should
end up with a revised version of (5.7) using a modified version of B and no bL or bH terms. Write revisions
of genB.m and cnf.m and test it on a call option to see how it works.

. ABdry

Problem 5.B
Explore the stability of the version of our methods using the B from Problem 5.A. Take sL = 0, sH = 20,
r = .05, σ = .3, andN = 100. Choose ∆t, generate B and calculate the list of its eigenvalues (eig(full(B))).
Following what we did on page 52 you can convert this to the list of eigenvalues for the appropriate M and
then find the largest (max(abs(...))). Experiment with different values of ∆t. How small does ∆t need
to be for the explicit method to be stable? What do you find regarding the stability of the implicit and
Crank-Nicolson methods?

. H

Problem 5.C
Compare the accuracy of the Crank-Nicolson method for a standard European call option, using explicit
boundary value approximations vL(t) = 0, vH(t) = sH − Ke−r(T−t), to the alternate version of Crank-
Nicolson from the preceeding problem. I.e. implement each method in Matlab and compare the computed
results with the exact values. Try sH moderately close to K as well as significantly larger than K. Which
method produces more accurate results? (You choose values of the parameters to use.)

. I

Problem 5.D
Implement the Crank-Nicolson method in financial variables using the SOR approach in place of the LU
method. Run it first for a standard European call option (parameters of your choice). Find the typical value
of the relaxation parameter ω used by the algorithm, and the typical number of iterations used in the SOR
loop. Next set it up for a “cash-or-nothing” option – this is a (European) option whose terminal value is
given by

φ(s) =

{
C if s ≥ K
0 if s < K,

where C and K are positive constants. (You can choose parameter values to work with, and will need to
work out the approximate boundary value expressions.) Are the typical values of ω and the iteration count
any different in this case?

. J

Problem 5.E
Use a finite difference calculation to compute and plot v(s, 0) where v is the pricing function of the put on
call from Problem 3.G. Use K1 = 15, K2 = 10, T1 = 1, T2 = 2, r = .03, σ = .2. You decide on the rest of
the particulars. Try to choose a range [sL, sH] which is appropriate considering the features of the problem.

. Compound

56

Chapter 6

Markov Chain Methods

We have been finding the pricing function implied by the risk-neutral formula

v(s, t) = e−r(T−t)E[φ(ST) |St = s]

by characterizing v(s, t) as a solution of the Black-Scholes equation and then constructing approximations
to the solution by means of finite differences. The finite difference approach reduces consideration to just a
finite set of possible values for the variables: s = sn, t = tm. Instead of “discretizing” the PDE, we could
consider discretizing the process St itself, approximating it by a process that assumes only a finite set of
possible values, at a finite set of possible times. Since St is a Markov it seems natural to use a Markov chain.
We will use the same set of times tm and price values sn as in our finite difference chapter. The idea is to
find such a chain ξm, m = 0, 1, . . . ,M taking values in the set {0, 1, . . . , N + 1} so that

Stm ≈ sξm .

A Markov chain is determined by its transition probabilities:

pk,` = P (ξm+1 = ` | ξm = k).

If we can pick the transition probabilities to that Stm ≈ sξm is a good approximation (in some sense), then
we can hope to approximate

v(sn, tm) = e−r(T−tm)E[φ(ST) |Stm = sn] ≈ e−r∆t(M−m)E[φ(sξM) | ξm = n] = vmn .

Calculating the right side will be easy, very like our explicit finite difference method calculations.
This chapter considers the problem of approximating option prices from this point of view. We will see

that (depending on ∆s and ∆t) our finite difference calculations can be viewed in these terms, even the
implicit and Crank-Nicholson Methods. In particuar this implies some sufficient condtions for stability and
provides another approach to finding good finite difference approximations.

6.1 Binomial Trees and Black-Scholes

Random walks (often called bionomial trees in the finance literature) are often considered as first models to
explain the idea of arbitrage-free pricing, and the role of risk neutral probabilities, without reference to the
Balck-Scholes model. In other words if a random walk is assumed as the description of the random evolution
of the stock price, then no-arbitrage considerations lead to risk-neutral transition probabilities which are
used to calculate option prices at each node in the tree, working from t = T backward to the initial time
t = 0. But if the tree is designed carefully it can be viewed as an approximation to the continuous time
Black-Scholes model itself (under the risk-neutral probability). Some discussion of this can be found in
Higham [23] or Tavella [56] for instance.

57

6.2 Finite Difference Methods and Markov Chains

We are going to explore the interpretation of our finite difference methods as Markov chain calculations.
This point of view lends additional insight to those calculations.

We want to start with the explicit method for the heat equation (2.7). We have already observed a
stochastic interpretation of the heat equation, but it involves a reversal of the time axis: the t = T − τ in
(2.10). It will be more natural for the present discussion if we write the heat equation in terms of x, t, rather
than x, τ .

uxx + ut = 0, with u(x, T) = ψ(x).

Now our finite difference calculations start at tM = T and proceed through decreasing time steps tm → tm−1,
in the same way as for financial variables. The explicit finite difference method for the heat equation takes
the form

um−1
n = αumn+1 + (1− 2α)umn + α.umn−1. (6.1)

We want to view the coefficients α, 1− 2α, and α as transition probabilities for a Markov chain. We can do
this provided α ≤ 1

2 so that the probabilities are nonnegative. They do add up to 1 as probabilites should.
Let ξm be the random walk that moves through the integers in the following way. If ξm−1 = n then the

transition ξm−1 → ξm will occur according to the following transition probabilities.

• n→ n− 1 occurs with probability pn,n−1 = α.

• n→ n occurs with probability pn,n = 1− 2α.

• n→ n+ 1 occurs with probability pn,n+1 = α.

All other transitions have probability 0. In terms of this random walk our finite difference formula (6.1) can
be expressed as

um−1
n = E[umξm | ξm−1 = n].

Using the tower law,

um−1
n = E[umξm | ξm−1 = n]

= E[um+1
ξm+1

| ξm−1 = n]

...

= E[uMξM | ξm−1 = n].

We can convert the random walk ξm to a Markov chain on our finite difference grid by

Xtm = xξm .

58

Since uMk = ψ(xk), we can write the result of the explicit method calculation as

um−1
n = E[ψ(XT) |Xtm−1

= n].

We observe how much this resembles (2.11):

u(x, t) = E[ψ(
√

2Wt) |
√

2Wt = x]; (6.2)

we simply have Xt in place of
√

2Wt.
Thus we can view the explicit method finite difference calculation as the result of making the approxi-

mation Xt ≈
√

2Wt in the conditional expectation (6.2) which produces the exact value of u(x, t). So the
accuracy of the explicit method should be related to the accuracy of this approximation – the better Xt

approximates
√

2Wt the better (6.1) will produce approximations to the heat equation.
As evidence that Xtm is a reasonable approximation to

√
2Wtm we offer the following.

E[Xtm −Xtm−1
] = E[xξm − xξm−1

] = ∆x(1 · α+ 0 · (1− 2α)− 1 · α) = 0

which agrees with
E[
√

2(Wt+∆t −Wt)] = 0.

Checking the second moments of the increments,

E[(Xtm −Xtm−1
)2] = E[(xξm − xξm−1

)2] = ∆x2(1 · α+ 0 · (1− 2α) + 1 · α) = 2α∆x2 = 2∆t

which agrees with
2E[(Wt+∆t −Wt)

2] = 2∆t.

To use prescribed boundary conditions at x0 = xL and xN+1 = xH we stop the chain as soon as it reaches
either boundary and evaluate u there without letting ξm continue to evolve. Let η be the value of m < M
at which ξm hits 0 or N + 1 for the first time (a discrete stopping time), or else M if ξm does not reach the
boundaries. Then take

Uη =


uH(xH, tη) if η < M and ξη = N + 1

ψ(ξN) if η = M

uL(xL, tη) if η < M and ξη = 0.

Then our explicit finite difference calculation can be interpreted as

um−1
n = E[Uη | ξm−1 = n].

59

Implicit methods can also be given a Markov chain interpretation. Consider the implicit method for the
heat equation.

−αum−1
n−1 + (1 + 2α)um−1

n+1 − αum−1
n = umn .

This can be rearranged as

um−1
n =

α

1 + 2α
um−1
n−1 +

1

1 + 2α
umn +

α

1 + 2α
um−1
n+1 .

This too can be interpreted as the single-step mean for a Markov chain on our grid, with the new feature
that the chain can move “vertically” to a different state value while staying at the same time value. We will
call this a space-time Markov chain, and will denote it by (ξk, ζk). Now k is simply the counter for the chain
(with no fixed connection to actual time); ξk gives the state index and ζk gives the time index of the chain.
There are two types of transitions:

• Same-time transitions: (ξk, ζk) = (n,m)→ (n± 1,m) = (ξk+1, ζk+1) occuring with probability α
1+2α ;

• Next-time transitions: (ξk, ζk) = (n,m)→ (n,m+ 1) = (ξk+1, ζk+1) occuring with probability 1
1+2α .

Observe that these are a valid set of probabilities for any α > 0; no gridsize restrictions are needed to
interpret the implicit method probabilistically.

We can interpret our calculations by letting our space-time chain start at (ξk, ζk) = (n,m) and letting it
run until the first time η that it reaches the border of our grid-strip.

umn = E[Uη | (ξk, ζk) = (n,m)].

6.3 Financial Variables

Now consider the explicit method in financial variables:

vm−1
n = anv

m
n−1 + (1− bn)vmn + cnv

m
n+1.

To interpret the coefficients as transition probabilities we would need an ≥ 0, 1− bn ≥ 0 and cn ≥ 0, using
the coefficient formulas from (5.1). We see that cn ≥ 0 is always true but the other two entail restrictions
on the stepsizes: an ≥ 0 is equivalent to

r

σ2
≤ sn

∆s
(6.3)

60

for every n. If we insist on sL = s0 = 0 this is equivalent to

σ2 ≥ r.

But more generally this can be achieved by fixing s1 > 0 and then taking ∆s sufficiently small.
The inequality 1− bn ≥ 0 is equivalent to

sn
∆s
≤
√

∆t−1 − r
σ

We could insure this for all n by making ∆t sufficiently small.
The implicit method is

−anvm−1
n−1 + (1 + bn)vm−1

n − cnvm−1
n+1 = vmn ,

which rearranges as

vm−1
n =

1

(1 + bn)
[anv

m−1
n−1 + vmn + cnv

m−1
n+1].

This can be interpreted probabilistically whenever an ≥ 0, which is (6.3).
The Crank-Nicholson method is

−1

2
anv

m−1
n−1 + (1 +

1

2
bn)vm−1

n − 1

2
cnv

m−1
n+1 =

1

2
anv

m
n−1 + (1− 1

2
bn)vmn +

1

2
cnv

m
n+1.

We rearrange this as

vm−1
n =

1

1 + 1
2bn

[
1

2
anv

m−1
n−1 +

1

2
cnv

m−1
n+1 +

1

2
anv

m
n−1 + (1− 1

2
bn)vmn +

1

2
cnv

m
n+1

]
.

This can be interpreted as a space-time Markov chain provided an ≥ 0 and 1− 1
2bn ≥ 0. The first of these

is (6.3) again and the second is equivalent to

sn
∆s
≤
√

2/∆t− r
σ

.

In each case we see that a step size constraint is needed to interpret the methods in terms of Markov
chains. The implicit method is least restrictive since only (6.3) is needed. For both the explicit and Crank-
Nicholson methods there is a second constraint. One way to avoid these step size restrictions is to use a

different finite difference approximation to vs. Instead of vs(sn, tm) ≈ vmn+1−v
m
n−1

2∆s , suppose we use

vs(sn, tm) ≈
vmn+1 − vmn

∆s
.

This is an example of “up-wind” differencing, as mentioned earlier. As we said previously, it is known to have
better computational properties in various circumstances. However this is only a O(∆s) approximation, not
second order as was the cetral difference formula. So we are giving up some accuracy in making this change.
But it has the benefit of giving us a probabilistic interpretation. It leads to revised coefficient formulas

a′n =
1

2
σ2s2

nα,

b′n = σ2s2
nα+ rsnβ + r∆t,

c′n =
1

2
σ2s2

nα+ rsnβ.

Now a′n ≥ 0 and c′n ≥ 0. For explicit and Crank-Nicholson methods we would still need an upper bound on
b′n. But the implicit method takes the form

vm−1
n =

a′n
1 + b′n

vm−1
n−1 +

1

1 + b′n
vmn +

c′n
1 + b′n

vm−1
n+1 ,

61

in which all the coefficients are positive, so no step size restriction is needed.
There is a second issue in the interpretation of the above methods in terms of Markov chains: the

coefficients don’t sum to 1. Let’s consider the standard implicit method in financial variables.

an
1 + bn

+
1

1 + bn
+

cn
1 + bn

=
1 + bn − r∆t

1 + bn
< 1.

So the terms on the left do not comprise a full set of probabilities. We can remedy this by using a discount
factor 0 < ρ < 1, chosen so that

an
1 + bn

+ ρ−1 1

1 + bn
+

cn
1 + bn

= 1. (6.4)

Solving this for for ρ we find ρ = (1 + r∆t)−1. We can now use the three terms in (6.4) as the transition
probabilities for a space-time Markov chain with no gridsize restrictions. A single step of the implicit method
formula takes the form

vm−1
n = E[ρ(ζk+1−ζk)v

ζk+1

ξk+1
| (ξk, ζk) = (n,m− 1)].

The idea is that the terms of the expection for which the time component ζ moves forward, ζk = m− 1 →
ζk+1 = m, the discount factor ρ is applied. The result of the full implicit method takes the form

vmn = E[ρ(ζη−ζk)v
ζη
ξη
| (ξk, ζk) = (n,m− 1)].

Here η would be the first time the space-time chain reaches the boundary of our strip.
We recognize that this is an approximation to our risk-neutral formula based on

ρ ≈ e−r∆t,

together with Stζk ≈ sξk . In particular we see that the extra factors of ρ turn out to be just what is needed
to account for the discounting in the risk-neutral formula. For the explicit or Crank-Nicholson methods the
appropriate formula for ρ works out a little differently, but the same idea still applies. In general, if the
error in these approximations converges to 0 as ∆t→ 0 and ∆s→ 0, then the results of the finite difference
calculation will converge to the value v given by the risk-neutral formula. The idea of developing Markov
chain approximations based on such moment approximations has been explored by Duan, Gauthier and
Simonato [15]. Kushner and Dupuis [38] provide the analysis needed to prove the convergence of the finite
difference calculations to the true v(s, t) by means of these ideas.

6.4 Implicataions for Stability

We have noted that the Markov chain interpretation provides a way to theoretically prove that the results
of our finite difference calculations do indeed to converge to the value defined by the risk-neutral formula,
and in a “direct” manner that does not depend on the connection with partial differential equations. There
is another, more practical consequence of a Markov chain interpretation: stability. Whenever a finite dif-
ference method can be interpred as a Markov chain approximation, the method is stable. In this section
we will explain this assertion. A method can be stable even if the grid sizes are such that a Markov chain
interpretation is not possible, so this is not necessary for stability, but it does provide a sufficient conditon.

To explain this, we describe the same-time and next-time transition probabilities fseparately. Let pij be
the probability of the next-time transition

ξk = i, ζk = m− 1 → ξk+1 = j, ζk+1 = m,

and qij be the probability of the same-time transition

ξk = i, ζk = m− 1 → ξk+1 = j, ζk+1 = m− 1.

Let P = [pij] and Q = [qij] be the matricies of these probabilities, and R = diag(ρi) be the diagonal matrix
of the discount factor(s), as in (6.4). In these terms the method can be written in matrix-vector form

vm−1 = Qvm−1 + RPvm + b,

62

where b is the contribution of the boundary conditions. To investigate stability we usually just consider
b = 0. What we want to show is that given vm, the solution vm−1 of the above obeys ‖vm−1‖ ≤ ‖vm‖; see
(4.7). If we solve for vm−1 we find

vm−1 = (I−Q)−1RPvm.

Here is a brief outline of how stability follows from this formula. First observe that there is a value 0 < r < 1
so that Q1 ≤ r1 (coordinatewise). This is because for each i there is a positive probability pij of making
a time-forward jump, so the sum of the same-time jump probabilities

∑
j qij is less than 1. It follows that

0 ≤ Qn1 ≤ rn1. Using this we see that the infinite series
∑∞

0 Qn converges. It is easy to check that
this series gives the inverse: (I−Q)−1 =

∑∞
0 Qn. This series representation shows us that all entries of

(I−Q)−1 are nonnegative. Therefore all entries of (I−Q)−1RP are nonnegative.
Next, since (Q + P)1 = 1 and all ρi ≤ 1 we have

Q1 + RP1 ≤ 1, which we can rewrite as RP1 ≤ (I−Q)1.

Since all entries of (I−Q)−1 are nonnegative it follows that

(I−Q)−1RP1 ≤ 1.

So all entries of (I−Q)−1RP1 are nonnegative and each row sums to at most 1. In other words if [hij] =
H = (I−Q)−1RP, then 0 ≤ hij and

∑
j hij ≤ 1. Now vm−1 = Hvm. Pick any entry vm−1

n . Then (using
the sup-norm ‖u‖ = max(|un|)) we have

|vm−1
n | =

∣∣∣∣∣∣
∑
j

hnjv
m
j

∣∣∣∣∣∣ ≤
∑
j

hnj |vmj | ≤
∑
j

hnj‖vm‖ ≤ ‖vm‖.

This implies ‖vm−1‖ ≤ ‖vm‖, proving stability.

Problem 6.A
Check that for the Markov chain approximation associated with the implicit method for the heat equation,
the mean increment is o(∆t) and the second moment should is 2∆t+ o(∆t).

. Hcst

Problem 6.B

a) Consider the Crank-Nicholson method for the heat equation. We know that, like the implicit method,
the Crank-Nicholson method is stable regardless of the stepsizes ∆x and ∆t. Are limitations on the
stepsizes necessary in order to interpret the method in terms of a Markov chain? Describe the jumps
and their probabilities for the Markov chain.

b) Now consider the Crank-Nicholson method for the Black-Scholes equation. Arrange the method so that
it can be interpreted in terms of a state-time Markov chain (ξn, ζn). (Assume that any step size and
parameter restrictions needed to validate a Markov chain interpretation are satisfied.) Observe that
the quantities that appear in the positions of the probabilities do not sum to 1, so like our discussion of
both the explicit and implicit methods in financial variables, a discount factor ρ needs to be included
in order to formulate a chain interpretation. This leads to a formula

vmn = Em,n[ρζη/∆tv(ξη, T − ζη)].

Find ρ. The expression for ρ should be such that

ρ1/∆t → e−r, as ∆t→ 0.

Confirm this.

. BB

63

Chapter 7

Dividends

In this chapter we generalize what we have done to a dividend-paying stock.

7.1 Continuous Dividends

Let’s go back to our original description (1.1) of the stock, using the real-world probability measure and the
associated Brownian motion:

dSt = αSt dt+ σSt dW
o
t .

First assume that the stock pays dividends at a continuous rate δSt where δ > 0 is a constant1. What we
mean by this is that if Dt denotes the cumulative amount paid in dividends (on one share) between time 0

and time t, then Dt =
∫ t

0
δSu du, or in brief,

dDt = δSt dt.

This is nice mathematically, but it is more realistic to consider dividends which are paid at discrete times.
We will discuss that in Section 7.2. The technique we develop for the case of continuous payment will be
valuable there as well.

The pricing of financial derivatives based on such a stock requires a modified version of the Black-Scholes
equation (1.5). To make that point, suppose we (naively) tried to price derivatives in the same way as
before, simply ignoring the dividends. Consider for instance a simple forward contract for one share of stock
in exchange for K in cash at time T . Our usual pricing function (for a non-dividend-paying stock) is

v(s, t) = s−Ke−r(T−t).

If the market really offered these contracts for that price, but the stock paid dividends, there would be an
arbitrage opportunity in the market. At time t = 0 suppose we do the following:

• Sell one contract, receiving S0 −Ke−rT .

• Buy one share of stock, spending S0.

• Borrow Ke−rT by selling bonds to finance the difference.

We have spent a total of $0 on this transaction, but now have a portfolio consisting of the stock, our obligation
as the writer of the contract, and our obligation to pay the bond holder at time T . Consider the value of
this portfolio at time T . It consists of

• Our obgligation to the buyer of the contract, which is worth −(ST −K).

• One share of stock, worth ST .

1More generally we could assume that δ = δ(St) is a function of the stock price, but we will be content with the simpler
case of a constant δ.

64

• The dividends DT > 0 on the stock we have owned.

• Our obligation to pay back the bonds we sold, −K.

Totalling these up, we have earned DT > 0 from an initial expenditure of $0. This is an arbitrage opportuity,
and tells us that the price of v(S0, 0) the market paid for the forward contract was too high.

The source of the problem here is that the notion of a self-financing portfolio on which the derivation
of the Black-Scholes equation was based is no longer appropriate, because it ignores the revenue produced
by the dividend payments. The correct notion of self-financing for a portfolio V ht = hBt Bt + hSt St using our
dividend-paying stock is

dV ht = hBt dBt + hSt (dSt + δSt dt). (7.1)

Based on this we could revise the derivation of Section 1.2 to find the correct revision of the Black-Scholes
equation to use with such a dividend-paying stock. But there is an alternate approach which will account
for the case of discrete dividends as well. The idea is to use the dividend stream to continually purchase
additional shares of stock, creating a reinvested stock portfolio S̃t = htSt, where h0 = 1 and increases as
dividends are used to purchase new shares. The dividend revenue of this portfolio will increase at the rate

ht
dDt

dt
= htδSt

allowing new shares to be purchased at the rate

h′t =
htδSt
St

= δht.

Since h0 = 1 we deduce that ht = eδt. Thus

S̃t = htSt, where ht = eδt.

Observe that

dS̃t = ht dSt + St dht (because dSt dht = 0)

= ht dSt + Stδht dt

= ht (dSt + δSt dt) ,

agreeing with he description (7.1) of self-financing for the portfolio htSt. We now view S̃t as another non-
dividend paying asset in the market, with stochastic differential

dS̃t = (α+ δ)S̃t dt+ σS̃t dW
o
t .

If we price everything as functions of S̃t and t, then our former pricing calculations for a non-dividend
paying stock apply. In the market consisting of Bt and S̃t as the two primary assets, the risk-neutral
probability measure would make S̃t/Bt a martingale, and S̃t would be described by

dS̃t = rS̃t dt+ σS̃t dWt.

The market price of a (European) contingent claim with VT = X is given by the risk-neutral formula

Vt = BtE[X/Bt | Ft].

If the value of a (European) contingent claim is expressed as a function ṽ(S̃t, t), then ṽ(s̃, t) should satisfy
the usual Black-Scholes equation in the variables s̃ and t:

1

2
σ2s̃2ṽs̃s̃ + rs̃ṽs̃ − rṽ + ṽt = 0. (7.2)

We want to express all this in terms of the actual stock price St. Since St = S̃t/ht and dh−1
t = −δh−1

t dt,
we find that with respect to the risk neutral probability the stock price obeys

dSt =
1

ht
(rS̃t dt+ σS̃t dWt)− S̃tδ

1

ht
dt

= (r − δ)St dt+ σSt dWt.

65

And with (s̃, t) and (s, t) related by s̃ = eδts, if v(s, t) = ṽ(s̃, t), then

ṽ(s̃, t) = v(e−δts̃, t).

Using ṽs̃ = e−δtvs, ṽs̃s̃ = e−2δtvss, and ṽt = vt − δe−δtvs, we find that (7.2) is equivalent to

1

2
σ2s2vss(s, t) + (r − δ)svs(s, t) + vt(s, t)− rv(s, t) = 0. (7.3)

This is the generalization of the Black-Schoes equation which should be used for all pricing calculations for
stocks paying continuous dividends. Generalizing the notation of (2.1), we define the differential operator

BDv =
1

2
σ2s2vss + (r − δ)svs − rv,

so that we can write (7.3) in the more concise form

∂tv(s, t) + BDv(s, t) = 0.

The pricing of European and barrier options proceeds just as before, but using BD instead of B.

7.2 Discrete Dividends

For an individual stock dividends are typically paid at discrete moments in time, not continuously. We can
handle these too, with some adjustments. Suppose there is a sequence of times T1 < T2 < · · · at which
dividends are paid and that the amount of the payment at time Ti is

δSTi−.

(The Ti− denotes the limit from the left.) Again δ > 0 is a constant, but now we assume that δ < 1 as
well. A δ > 1 would mean the stock pays a dividend greater than its market value (which would create an
arbitrage opportuity). We will see below that δ = 1 would mean the stock liquidates itself, paying out its
value in cash and becoming worthless (ST1+ = 0), at the first dividend payment time T1. We will not bother
ourselves with that extreme case, and so assume 0 < δ < 1.

In between the Ti the stock should evolve according to our usual description, dSt = αSt dt + σSt δW
o
t .

But at a dividend payment time the price of the stock makes a discontinuous jump down. The value of the
stock STi− just prior the dividend payment must be the same as the value of the stock STi+ just after the
dividend payment plus the dividend amount:

STi− = STi+ + δSTi−.

(If this were not so there would exist an arbitrage opportunity.) As a consequence we find that

STi+ = (1− δ)STi−.

66

We can work out pricing calculations in the same way as for continuous dividends by thinking in terms
of the value S̃t = htSt of the pure stock portfolio that results from reinvesting the dividends. We start with
h0 = 1. At Ti we should have

hTi+ = hTi− +
hTi−δSTi−
STi+

=

(
1 +

δ

1− δ

)
hTi−

= (1− δ)−1hTi−.

In general we see that
ht = (1− δ)−n(t),

where n(t) is the number of Ti ≤ t.
For Ti−1 < t < Ti between dividend times ht is constant, so S̃t satisfies our usual stochastic equation

dS̃t = αS̃t dt+ σS̃tDWt. At a dividend time we have

S̃Ti+ = hTi+STi+ = (1− δ)−1hTi−(1− δ)STi− = hTi−STi− = S̃Ti−.

In other words S̃t is continuous across the Ti and therefore our usual stochastic equation

dS̃t = αS̃t dt+ σS̃t δW
o
t

in fact holds for all 0 ≤ t. So in terms of S̃t and t asset prices will follow

Vt = ṽ(S̃t, t),

where ṽ(s̃, t) satisfies our usual Black-Scholes equation in the variables s̃, t.
We would like to express this as a function v(s, t) of the actual stock price St.

v(s, t) = ṽ(s̃, t) where s̃ = hts.

For t between the Ti we know that ht is constant, so everything converts simply:

s̃∂s̃ṽ =
s̃

ht
∂sv = s∂sv, s̃2∂2

s̃v = s2∂2
sv, ∂tṽ = ∂tv,

and we find that v(s, t) satisfies our standard Black-Scholes equation. At t = Ti there is a discontinuity in
the relationship between s̃ and s which becomes a discontinuity in v itself. Because hTi+ = (1 − δ)−1hTi−,
the values s− and s+ corresponding to s̃ just before and after Ti are related as follows.

s+ =
s̃

hTi+
= (1− δ) s̃

hTi−
= (1− δ)s−.

So

v(s−, Ti−) = ṽ(s̃, Ti) = v(s+, Ti+)

= v((1− δ)s−, Ti+).

The value of the option the instant prior to the dividend payment for stock price s− equals the value just
after the payment for stock price s+ = (1 − δ)s−. This is a discontinuity in the function v, but the owner
of the option will not see a jump in the value of their option, because the stock price will make exactly the
same jump across Ti: STi+ = (1− δ)STi−.

67

To implement this numerically, here is how the calculation should be organized.

• Start with v(s, T) = φ(s) and t = T .

• Use some method for solving the Balck-Scholes equation to work incrementally down through t values,
t→ t−∆t→ t− 2∆t · · · until we get to the next dividend payment time t = Ti. The values of v are
now the values for v(s, Ti+)

• Update the values across Ti using the jump condition above: v(s, Ti−) = v((1− δ)s, Ti+).

• Repeat the second step to get to the next highest payment time, t = Ti−1.

• Update the values across Ti−1 using the jump condition.

• . . . (continue the above) . . .

• Stop when reaching t = 0.

There are some some technical issues to consider in doing this.

• It would be most convenient if all the Ti are among our time-nodes tm: Ti = tmi . If that is not
practical, we could make some special small time steps ∆′t = tm−Ti to hit the desired payment times,
or use different ∆t on the different [Ti−1, Ti].

• It would be most convenient if for each price-node s− = sm the corresponding s+ = (1 − δ)sn is also
a price-node. Unfortunately that will be impossible in financial variables; if (1 − δ)sn = (1 − δ)n∆s
is also an integer multiple of ∆s for every n = 1, 2, . . . N , then 1 − δ would have to be an integer.
But 0 < 1 − δ < 1. However this is possible in heat variables, because if x = log(

√
2s−/σ) then

x = log(
√

2(1−δ)s−/σ) = log(1−d)+x. So if we pick ∆x so that − log(1−δ)/∆x is an integer we will
have a “node-to-node” update across Ti. If we want to stay in a financial variable formulation, then we
should interpolate between the values of v(sn, Ti+) to obtain values for v((1 − δ)sn, Ti−). Tavella &
Randal [57] make the point that it is important to use something better than mere linear interpolation,
such as cubic splines (and that’s easy to do in Matlab).

7.3 Problems

Problem 7.A
Use Itô’s formula to verify that if dSt = (r − δ)St dt+ σSt dWt and v(s, t) satisfies (7.3), then v(St, t)/Bt is
a martingale.

. D-verify

68

Problem 7.B
Find an explicit pricing formula for a digital option on a stock paying continuous dividends at rate δ > 0
with threshold K. (I.e. solve (7.3) for terminal function φ(s) = 1[K,∞)(s).)

. digit-D

Problem 7.C
We expressed our finite difference methods for the original Black-Scholes PDE in terms of formulas for
coefficients an, bn, cn. Find modified versions of the formulas for an, bn, cn that should be used be to apply
our methods to the equation (7.3) in the presence of continuous dividends.

. O

Problem 7.D
As described in class, the equation describing the valuation function v(s, t) for a derivative based on a stock
which pays dividends continuously at the rate δ is (7.3). Suppose that v(s, t) solves this equation.

1. Show that v̄(s, t) = e−δtv(s, t) will solve the original Black-Scholes PDE (1.5) if the interest rate is
replaced by r̄ = r − δ. (This provides a second way to obtain explicit solutions of (7.3) using the
explicit solutions of Section 2.6.)

2. Find an explicit formula for the solution of (7.3) if v(s, T) = (s − K)+, a European call for a stock
paying dividends. Show (pick some parameter values and produce a graph) that for δ > 0 it can happen
that v(s, t) < (s−K)+. In other words early exercise can be advantageous for calls on dividend paying
stocks!

3. Find the explicit formula for the solution of (7.3) if v(s, T) = c1s+ c2, where c1, c2 are any constants.
(This will be the formula we should use to predict approximate boundary values for v(s, t) as s→∞
(or s→ 0) when we know v(s, T) ≈ c1s+ c2 as s→∞ (or s→ 0).)

. M

Problem 7.E
Consider a stock which makes a single dividend payment of amount δST1− at time t = T1 > 0, and a
(European) call on this stock whose value at expiry t = T > T1 is (ST −K)+. At a time t < T1 what explicit
formula in terms of St and the various parameters gives the market value of the call option? (Think carefully
about how you would compute the value in terms of the price of the dividend-reinvested portfolio value S̃t.
In particular what is the value at expiry in terms of S̃T versus ST ?) We said above that the option price is
continuous across the dividend payment date:

v(ST1−, T1−) = v(ST1+, T1+).

Show however that the value of ∂sv is not continuous across the payment date:

vs(ST1−, T1−) 6= vs(ST1+, T1+).

(Use the formula for v that you derived. Recall the s-derivative of the Black-Scholes formula:

∂s[sN (d(1))−Ke−r(T−t)N (d(2))] = N (d(1)).

This was non-trivial because d(i) = d(i)(s/K, t) depend on s. You should use this fact (without re-deriving
it) if it is helpful.)

. N

69

Chapter 8

American Options

We now turn our attention to American options. The holder of an American option can choose to exercise
it at any time up to and including T . They don’t need to wait until the time of expiry, as they would for a
European option. This has a big influence on how we characterize and calculate the value of the option.

8.1 The American Put

Let’s start with an American put, whose pricing function will be denoted vA-Put(s, t). Exercise can occur
on or before the expiry date T . If we exercise the option at time t its value (at t) will be (St − K)−. In
problem 3.B of Chapter 3 we observed that the price of the European put can satisfy vE-Put(s, t) < (s−K)−

for small s. This means when St is small it would be better to exercise the option now, rather than waiting
until T . If I own an American option, I can (though it would be foolish) choose to treat it like a Euorpean
option and simply wait until T to exercise it. So the inequality

vA-Put(s, t) ≥ vE-Put(s, t)

must hold. Since I can choose to exercise it immediately, we also have the inequality

vA-Put(s, t) ≥ (s−K)−.

Our goal is to find ways to compute or approximate the values of vA-Put.
The situation is different for American calls on non-dividend-paying stocks. It follows from (s−K)+ ≥

(s−K) that a European call is more valuable than a forward:

vE-Call(s, t) ≥ vForward(s, t) = s− e−r(T−t)K > s−K.

Since vE-Call(s, t) ≥ 0 as well, we see that

vE-Call(s, t) ≥ max(s−K, 0) = (s−K)+.

In other words there is never an advantage to exercising a call early; European and American calls have the
same value. This is why we focus on puts to study American options. (In Problem 7.D of Chapter 7 we saw
that for dividend paying stocks early exercise is advantageous.)

So how do we determine the value of an American put? Any strategy that we might devise for deciding
when to exercise it corresponds to the choice of an exercise time T ≤ T . For example, we might decide
to exercise it as soon a the stock price falls below some level θ. Then T would be the first moment that
St ≤ θ. In general T is a time-valued random variable; its value depends on how the stock price evolves.
But whether T ≤ t or not can only depend on the stock price history up to time t. In other words T must
be a stopping time. If we acquire the option at time t, then our strategy must be t ≤ T ≤ T , and its market
value must be at least as much as our exercise strategy will produce from it:

vA-Put(St, t) ≥ E[e−r(T −t)(ST −K)− | Ft].

70

The market price ought to be the highest possible value obtainable from the option, considered over all
such exercise strategies, otherwise there would be an arbitrage opportunity. This leads us to the American
risk-neutral formula:

vA-Put(St, t) = sup
T
E[e−r(T −t)(ST −K)− | Ft], (8.1)

the supremum being over all stopping times t ≤ T ≤ T . This is called an optimal stopping problem; the
problem is to find the stopping time T ∗ corresponding to the optimal exercise strategy. This point of view
can be exploited in a Markov chain approach; see Section 8.2.5 below. But it is not very helpful for the PDE
approach. For that we will need a different point of view.

We anticipate that the set of possible (s, t) values can be classified into one of two types: those for which
is would be best to exercise the option immediately, and those for which it would be best to wait at least a
little longer. We will let the exercise region (or stopping region) E consist of those (s, t) for which

vA-Put(s, t) = (s−K)−.

These are the locations at which immediate exercise is optimal. The continuation region C consists of those
(s, t) for which

vA-Put(s, t) > (s−K)−,

These are the locations at which immediate exercise is not optimal.

Since vA-Put ≥ vE-Put > 0 but (K − s)+ = 0 when s ≥ K, we see right away that C includes all (s, t) with
s ≥ K. Moreover, for t < T we have vA-Put(K, t) > 0 while (K − K)− = 0 so that (K, t) ∈ C. So E is
some subset of (0,K) × [0, T]. We expect these two regions to be separated by some curve s = χ(t), called
the exercise boundary. The best strategy for the owner of the option is to exercise at the first time T ∗ that
(St, t) ∈ E . (We will explain below why it would be a mistake to wait beyond that time.)

The exercise boundary is the new feature in the pricing of American options. If we knew the location of
the exercise boundary s = χ(t) in advance, the pricing problem would consist of solving the Black-Scholes
equation in the region χ(t) < s with the boundary condition

vA-Put(s, t) = (s−K)− for s = χ(t),

and the usual terminal condition: vA-Put(s, T) = (s−K)−. But we don’t know χ(t); it has to be determined
as part of solving the problem. From this perspective we have a free boundary problem; the boundary is
“free” in the sense that it is not specified at the outset, but must be determined so as to satisfy all the
requirements of the problem (which we have yet to formulate).

We need to find how to characterize vA-Put in each of the two regions, using the Black-Scholes equation,
and whatever special properties the excercise boundary s = χ(t) must have. We can put this into our general
risk-neutral context by reasoning as follows. Start at t = 0 with S0 = s. Let T ∗ be the first time (St, t)

71

touches E . At that moment we exercise the option, which gives us (K−ST ∗)+ and invest this in bonds until
we reach the expiration date T . At time T we will have

er(T−T
∗)(ST ∗ −K)−.

If we reach t = T without contacting E , then we just cash in the option for its terminal value vA-Put(s, T) =
(K − ST)+. In this way we convert the option into a European-style option with final value given by

X =

{
er(T−T

∗)(ST ∗ −K)− if T ∗ ≤ T
(ST −K)− if t < T ∗

Of course to do this requires that we now what E is. Also note that this X is path-dependent, not of the
simple form φ(ST). Even so, the value of the option should be given by the risk-neutral formula

Vt = ertE[e−rTX | Ft],

and e−rtVt should be a martingale:

d(e−rtVt) = 0 dt+ (· · ·) dWt.

Prior to T ∗, while (St, t) is in C, we have Vt = vA-Put(St, t), so Itô’s formula says

d(e−rtvA-Put) = e−rt[∂tv
A-Put + BvA-Put] dt+ e−rtσStv

A-Put
s dWt.

So inside the continuation region C the pricing function vA-Put should satisfy our usual Black-Scholes equation:

∂tv
A-Put + BvA-Put = 0.

Inside E we know that s < K, so that vA-Put = K − s. Observe that

∂tv
A-Put + BvA-Put = rs+ r(s−K) = −rK < 0. (8.2)

In general, if a function v satisfies ∂tv+Bv < 0 everywhere, then Itô’s formula would tell us that for t1 < t2,

e−rt2v(St2 , t2) =

∫ t2

t1

e−rt(∂tv + Bv) dt+

∫ t2

t1

· · · dWt + e−rt1v(St1 , t1)

E[e−rt2v(St2 , t2) | Ft1] < 0 + 0 + e−rt1v(St1 , t1).

In other words wherever ∂tv + Bv < 0 we lose value by holding an asset with pricing function v; the asset
should always be exercised or sold immediately if (St, t) is a point where ∂tv+Bv < 0. This is the situation
in the exercise region E , where vA-Put(s, t) = K − s; to fail to exercise immediately means a loss of value.

The above is not a completely rigorous argument. Itô’s formula generally requires that the function v
is twice continuously differentiable. That may be a reasonable assumption inside each of C and E , but we
should be suspicuous of such an assumption on the exercise boundary, where we know that characterization
of vA-Put changes.

What can we say about vA-Put on the exercise boundary s = χ(t)? Since we are going to exercise the
option on the exercise boundary, certainly vA-Put(s, t) = (s − K)− when s = χ(t) agreeing with its value
inside E . And we would naturally expect that for s > χ(t) (i.e. inside C) but close to χ(t), we should have
vA-Put(s, t) ≈ (s−K)−. In other words we expect vA-Put to be continuous in the full region 0 < s, 0 ≤ t ≤ T .
In particular it should be continuous across the exercise boundary.

But this is still not enough to determine where s = χ(t) actually is. We could choose virtually any
reasonably smooth curve s = G(t), solve the Black-Scholes equation for G(t) < s with a boundary conditon
v(s, t) = (K − s)+ on s = G(t), and then define v(s, t) = (s −K)− for 0 < s < G(t). This solution would
satisfy every thing we have said so far about vA-Put with χ(t) = G(t) but would not have any connection
to the true optimal exercise boundary. What determines the true optimal exercise boundary? The answer
involves the values of vA-Put

s on the exercise boundary. Notice that below the boundary, in E , vA-Put = K−s
and so vA-Put

s = −1. Consider a cross-section of the graph of vA-Put corresponding to a fixed value of t < T .
Let’s consider the possible values of vA-Put

s (χ(t)+, t), i.e. the derivative evalued from the C side.

72

(a) If vA-Put
s (χ(t)+, t) < −1, then vA-Put would drop below K − s for s > χ(t), which we know is not true,

since vA-Put ≥ K − s.

(b) If vA-Put
s (χ(t)+, t) > −1, then it appears that lowering the value of χ(t) would have the effect of

increasing the value of vA-Put(s, t) near the original χ(t). Since vA-Put(s, t) is the largest possible value
for all choices of stopping rule, this should not be possible.

Putting these (purely heuristic) arguments together, it seems that we should have

vA-Put
s (χ(t)+, t) = −1.

In other words vA-Put
s should be continuous across the exercise boundary s = χ(t).

We know that vA-Put(s, t) = K− s for small s (below χ(t)). Large values of s correspond to a large stock
price St, in which case the stock price is nearly certain to remain large all the way until T , so that the option
is nearly worthless. Thus we anticipate that vA-Put(s, t)→ 0 as s→∞.

Collecting the above, here are the features of vA-Put that we anticipate.

1. vA-Put(s, T) = (s−K)−;

2. vA-Put(s, t) is continuous in s > 0, 0 ≤ t ≤ T ;

3. χ(t) is a continuous function of with 0 < χ(t) < K for t < T ;

4. for s > χ(t), ∂tv
A-Put + BvA-Put = 0;

5. vA-Put(s, t)→ 0 as s→ +∞, for each 0 ≤ t ≤ T ;

6. for s = χ(t), vA-Put
s (χ(t)+, t) = −1;

7. for s ≤ χ(t), vA-Put = K − s.

We have only offered intuitive arguments for these features. Mathematical proofs are more than we can
undertake here. See Jacka [29], as well as van Moerbeke [44] and McKean [40], for a careful treatment.

We observe that the exercise boundary χ(t) appears explicitly in several of the above properties. To base
a numerical approximation on the above we would need to devise some method that tracks the location of
the exercise boundary as part of the calculation. (Such a method is developed in Chapter 7 of [63].) But
there is an alternate formulation in which χ(t) does not appear explicitly. The idea is to observe that in both
regions C and E it is true that

73

• ∂tvA-Put + BvA-Put ≤ 0 (in E this is (8.2));

• (K − s)+ − vA-Put ≤ 0;

• in either region one of the above is an equality, so in general[
∂tv

A-Put + BvA-Put
]
·
[
(s−K)− − vA-Put

]
= 0.

This formulation is called a variational inequality. Observe that there is no reference to the exercise boundary
s = χ(t). In fact it makes no prseumption that C and E are separated by the graph of a function s = χ(t).
For this reason, the variational inequality formulation applies with more general payoff functions than just
(s−K)−. We should be able to specify a rather arbitry payoff function φ(s, t) which gives the value of the
option if exercised at time t with St = s. In general C and E could consist of several disconnected pieces;
the variational inequality formulation above ought to be able to deal with that. The general form of the
variational inequality is that for t < T and 0 < s,

• ∂tv + Bv ≤ 0,

• φ− v ≤ 0,

• [∂tv + Bv] · [φ− v] = 0;

and v(s, T) = φ(s, T). If we can solve the variational inequality for vA-Put, then we can determine the
exercise region from

E = {(s, t) : v(s, t) = φ(s, t)}.
This is the approach we will follow.

We should point out that understanding what ∂tv + Bv actually means on the exercise boundary is a
serious issue. We know from (8.2) that this expression is not continuous there. Although vs is well-defined,
vss is not continuous, so we must question if vss(χ(t), t) actually exists in the usual sense. Suffice it to say
that there is a mathematically sound way to understand ∂tv+Bv in such situations, but it is far more than
we can explain here. Details can be found in Menyi [41]. We will base our finite difference calculations on the
variational inequality formulation, and once we have discretized everything no issue of differentiability will
remain. In fact, based on the Markov chain interpretation of our finite difference calculations, convergence
of the results to vA-Put can be justified independently of the variational inequality. (This sort of thing is
worked out in [38].)

Variational inequalities are not foreign to our everyday experience. A simple application in which one
arises is called the obstacle problem. Imagine a hill whose height is desrbied by a smooth (C1) function g(x)
for −1 ≤ x ≤ 1. We are going to stretch a rope over the top of the hill and tie down the ends at (−1, g(−1))
and (1, g(1)). The rope will touch the hill at some points but be above the hill at others.

74

The rope will follow the graph of a curve u(x), which we woud like to determine. The function u(x) should
be a continuously differentiable function on [−1, 1] with u(−1) = g(−1) and u(1) = g(1), and for −1 < x < 1
satisfies

u′′(x) ≤ 0, u(x) ≥ g(x), and u′′(x) · (g(x)− u(x)) = 0.

Where the rope is in the air above the hill it shoud be perfectly straight, so u′′(x) = 0. This can only fail
where it contacts the hill, and there the hill shoud be concave, so at the contact points u′′(x) = g′′(x) ≤ 0.
Since it is at least as high as the hill, u(x) ≥ g(x). We see that this has the same form as our variational
inequality above: two differential inequalities, one or the other of which has to be an equality at each x.
The points where the rope leaves the ground are the “free boundary” points. Notice that it is important to
insist that u′ be continuous to rule out things like

See pages 108, 117 in [62].

8.2 Numerical Methods

We want to develop a finite difference methodology to approximate vA-Put using the variational inequality
formulation above. As always, we could convert everything to heat variables u(x, τ) and ψ(x, τ) and do
our approximations in that setting. We choose to stay in financial variables, but will consider the case of a
general payoff function φ(s, t) in place of the specific φ(s, t) = (s−K)− for the put.

8.2.1 Explicit Methods

First consider explicit methods. The situation is quite simple here. (The price we pay is the grid size
constraint that is needed for stability.) With our usual notation vm = [vm·] and φm = [φm·], suppose we have
calculated vm and are ready to solve for vm−1. The condition φ− v ≤ 0 discretizes as

vm−1 ≥ φm−1.

(Again, such an inequality of two vectors means that the inequality holds for every coordinate.) Using the
explicit method approximation (5.2) and our usual

∂tv(sn, tm) ≈ v(sn, tm)− v(sn, tm−1)

∆t

we see that [∂t + B]v ≤ 0 discretizes as

vm−1 ≥ (I + B)vm + vL(tm)bL + vH(tm)bH.

75

(We will give expressions for vL and vR shortly.) The complementarity condition says that for each coordinate
n one of the two inequalities above must be an equality. This is very easy to solve. Just calculate the right
side

q = (I + B)vm + vL(tm)bL + vH(tm)bH,

and then take the coordinate-wise maximum:

vm−1 = max(φm−1,q).

The same simple implementation will be possible for any explicit method, including space-only Markov
chains.

8.2.2 Implicit Methods

We now consider implicit methods by looking specifically at the Crank-Nicholson method in financial vari-
ables. Using our approximation (5.7) and the central difference approximation for ∂tv we see that [∂t+B]v ≤ 0
discretizes as

(I− 1

2
B)vm−1 ≥ (I +

1

2
B)vm +

vL(tm−1) + vL(tm)

2
bL +

vH(tm−1) + vH(tm)

2
bH.

We also require
vm−1 ≥ φm−1

and the complementarity condition. These three conditions comprise what is called a linear complementarity
problem. We need to solve this problem to determine vm−1. We will use the following following definitions
to express the problem in a standard form. Let

M = I− 1

2
B,

q = Mφm−1 −
{

(I +
1

2
B)vm +

1

2
[vL(tm) + vL(tm−1)]bL +

1

2
[vH(tm) + vH(tm−1)]bH

}
,

z = vm−1 − φm−1.

With M and q given the problem is to find z which satisfies

Mz + q ≥ 0

z ≥ 0

(Mz + q) · z = 0.

(8.3)

(The 0 on the right in the first two lines is the vector of all 0s, and again we mean the inequalities to be
true for each component.) This is the standard form in which linear complementarity problems are usually
discussed in the literature. In implicit methods for American options the linear complementarity problem
replaces the problem of solving Mv = b that we used LU factorization for in the case of European options.

8.2.3 Boundary Conditions for the American Put

To implement the above methods we will need approximations

vL(sL, t) ≈ vA-Put(sL, t), vH(sH, t) ≈ vA-Put(sH, t).

for sL small (close to 0) and sH large. This is easy for the American put (but not necessarily so easy for a
general φ(s, t)). In fact for s < χ(t) we know vA-Put(s, t) = K − s is exact, so we should use

vL(s, t) = K − s.

For St = sH large the probability that Su will ever reach a value less than K is almost 0, so there is very
little chance of being able to exercise the option for a positive price. Thus we should use

vH(s, t) = 0.

76

8.2.4 About Linear Complementarity Problems

The linear complementarity problem (8.3) is not as familiar as the basic linear equation, so in this section
we provide a little background on it. We know the linear system Mv = b has a unique solution for all b
precisely when M is an invertible matrix. For (8.3) the analogous result requires the following definition.

Definition. An N×N matrix M is a P-matrix if all the real eigenvalues of M and its principal submatricies
are positive.

(A principal submatrix of M is any matrix obtained by deleting a collection of rows and the same collection
of columns.) Here is the basic existence and uniqueness theorem for linear complementarity problems.

Theorem. The N × N (real) matrix M is a P-matrix if and only if for every vector q the linear comple-
mentarity problem (8.3) has a unique solution.

A standard reference on linear complementarity problems is the book by Cottle, Pang, and Stone [14].
(Also see Huang and Pang [26] and Kinderlehrer and Stampacchia [37].) The proof of this theorem can be
found there. There are several equivalent characterizations of a P-matrix which can also be found in [14]. A
simple sufficient condtion for M to be a P-matrix is that M be positive definite. This means that

x ·Mx > 0 whenever x 6= 0. (8.4)

So any positive definite matrix is a P-matrix. In fact (8.4) is equivalent to saying that the symmetric matrix
M + MT is positive definite. It is easy to test whether a symmetric matrix is positive definite in Matlab1.
If we test the matricies M = I− 1

2B that arise in our American option calculations, we find that virtually
all of them do satisfy (8.4), although in financial variables they are not symmetric.

Although the proof of the above theorem would be too much of a diversion to present here, the proof of
uniqueness under the stronger assumption (8.4) is very short, so we include it. Suppose z and z̄ are both
solutions. Since Mz + q ≥ 0 and z̄ ≥ 0, it follows that

(z− z̄) · (Mz + q) = 0− z̄ · (Mz + q) ≤ 0.

The same inequality must be true with z and z̄ reversed:

(z̄− z) · (Mz̄ + q) ≤ 0.

But this is the same as
(z− z̄) · (q + Mz̄) ≤ 0.

Adding, we obtain (z− z̄) ·M(z− z̄) ≤ 0. But from this (8.4) implies z = z̄.

The PSOR Method

There are both direct methods and iterative methods for solving linear complementarity problems. Most
direct methods are “pivoting” methods. The best known of these is called Lemke’s method. You can find
Matlab implementations of it on the web. The method we will use is an iterative method.

The basic idea of an iterative method is to make a rough initial guess z(0) ≈ z for the solution to (8.3),
and then use some kind of scheme for improving the accuracy of our guess to get a new improved guess z(1).
Then use the improvement scheme on z(1) to get an even better approximation z(2). This will (hopefully)
produce a sequence of increasingly accurate approximations which converge to the true solution:

z(0) → z(1) → z(2) → · · · z(k) · · · → z as k →∞.
1As suggested in [24], if the command [R,p]=chol(M+M’) retruns p= 0 then M + MT is positive definite. If it’s not, p will

be a positive integer.

77

To give you the idea, consider this approach applied to a simpler problem: find the solution x of x2 = a.
Of course x =

√
a, but how could we approximate it numerically? Start by rearranging the equation.

x2 = a

x =
a

x

2x = x+
a

x

x =
1

2
(x+

a

x
)
.
= h(x).

We want the (positive) fixed point of h, i.e. the x > 0 for which x = h(x). Depending on the properties of h
you can often find the fixed point by iteration:

x0 = guess

x1 = h(x0)

x2 = h(x1)

...

xk+1 = h(xk)

If limxk = x exists, then x = limxk+1 = limh(xk) = h(limxk) = h(x), so that x is the solution. With a
decent approximation for x0 ≈

√
a this converges very quickly and is a very effective way to calculate

√
a. In

practice we can’t continue calulating xn forever. Instead we monitor the size of the improvement xk − xk−1

and stop the calculation when it is acceptably small.
We want a similar approach for (8.3), namely a rearrangement of the equation so that the desired solution

z is a fixed point h(z) = z. If our time step size ∆t is small, then when we are solving (8.3) whose solution is
z = vm−1, the solution from the preceeding time vm is probably very close and so should be a good starting
value z(0) for the fixed point iteration. So we take z(0) = vm and then iterate z(k+1) = h(z(k)) and stop
when the improvements get small, and take the final z(k) as a suitable approximation for vm−1.

To find a rearrangement of (8.3) that is suitable for iteration, Start by splitting M into its subdiagonal
(E), diagonal (D) and superdiagonal (F) parts.

M = E + D + F.

Observe that for us the diagonal entries of D are all positive. Rearrange the complementarity problem as

Dz + p(z) ≥ 0, where p(z) = q + (E + F)z;

z ≥ 0;

(Dz + p(z)) · z = 0.

If we actually knew what p(z) was, this would be a simple linear complementarity problem to solve, because
the first line is equivalent to z ≥ −D−1p(z), and the solution is given simply by

z = max(0,−D−1p(z)),

where the maximum is computed coordinate-wise. Of course we don’t really know p(z), so the above is really
a fixed-point descripton of z. The idea would be is to start with some approximate z(0) and then complute
the sequence of iterates

z(k+1) = max(0,−D−1p(z(k))). (8.5)

Provided the sequence of iterates converges, z(k) → z, the limit z will solve the complementarity problem.
This is called the projected Jacobi method.

The projected Jacobi method is easily implemented in Matlab , but is not used much because other
methods converge faster. A more commonly used method for calculating American option prices is the

78

projected successive over-relaxation (PSOR) method. This involes a relaxation parameter ω > 0 which must
be choosen carefully. We rearrange the complementarity problem as

(E +
1

ω
D)z + p(z) ≥ 0, where p(z) = q + ((1− 1

ω
)D + F)z;

z ≥ 0;

((E +
1

ω
D)z + p(z)) · z = 0.

(8.6)

If we view p(z) = [pn] as known, we can use the fact that E + 1
ωD is lower triangular to solve the problem

directly. We do this by working from z1 successively through zN . If en and dn are the entries in the nth

rows of E and D respectively, the equation for z1 is simply

d1

ω
z1 + p1 ≥ 0, z1 ≥ 0, and (

d1

ω
z1 + p1)z1 = 0.

The solution is simply
z1 = max(0,−ωp1/d1).

The equations for zn are

dn
ω
zn + enzn−1 + pn ≥ 0, zn ≥ 0, and (

dn
ω
zn + enzn−1 + pn)zn = 0.

So given zn−1 we have
zn = max(0,−ω(enzn−1 + pn)/dn).

(This uses the fact that di > 0.) Starting with z(k), using this to produce p = p(z(k)), we then calculate z1,
z2, . . . zN as above. These are the corrdinates of z(k+1), the next in the sequence of iterates of for the PSOR
method.

In order to apply this method we need to pick the overrelaxation parameter ω. Normally ω is selected
in the range 0 < ω < 2. There are theorems which guarantee that the PSOR iteration does converge to the
solution of the complementarity problem if ω satisfies some bounds (which depend of properties of M). See
for instance Murty [43]. Usually the convergence is faster for some ω values and slower for others. Wilmott
[62] suggests a simple method for automatically adjusting ω as part of the calculation, trying to keep it near
its optimal value automatically. The m-file below implements his approach.

PSOR.m

function [z,wlast,clast]=PSOR(q,z0)

% Projected over-relaxation solver for the LC problem Mz+q>=0, z>=0.

% To initialize use PSOR(M,tol) with no output variables.

% To solve with initial estimate z0 use z=PSOR(q,z0).

% [z,w,count]=PSOR(q,z0) provides the most recent relaxation parameter w

% and teration count. The algorithm is based on Wilmott’s version with

% marching relaxation parameter.

persistent N e d DF tol w dw count

%

if nargout==0

% Initialize; q=M and z0=tol here

N=length(q);

e=full([0;diag(q,-1)]);

d=full(diag(q));

DF=spdiags(zeros(N,1),[-1],q);

tol=z0; w=1; dw=.05; count=1000;

%

else

79

% Solve

z=z0;

count_old=count;

er=1; count=0;

while er>tol % PSOR iteration

p=q+DF*z-d.*z/w;

z_old=z;

z(1)=max(0,-w*p(1)/d(1));

for i=2:N

z(i)=max(0,-w*(p(i)+e(i)*z(i-1))/d(i));

end

er=norm(z-z_old);

count=count+1;

end

if count>count_old % Adjust relaxation parameter

dw=-dw;

end

wlast=w;clast=count;

w=w+dw;

end

The reader interested in more discussion of the application of linear complementarity methods to Amer-
ican options should study [26], were different complementarity solvers are employed for different problem
formulations.

As an example, we apply the above to the American put using K = 10, [sL, sH] = [0, 20], r = .05, σ = .3,
T = 2, using N = 400, M = 200, with tol=10−4. The following script carries out the calculations (after all
parameters are specified from the command line).

runa.m

% Script to solve the American BSPDE

dt=T/M;

genB %Generate matricies and coefficients

ML=speye(N)-B/2;

MR=speye(N)+B/2;

PSOR(ML,tol); %Initialize

exbd=zeros(1,M);

t=T;

v=exercise(s,t)’;

z=zeros(N,1);

for m=M-1:-1:0 %Time-step loop

q=-(MR*v+(vL(sL,t,T)*bL+vH(sH,t,T)*bH)/2);

t=m*dt;

phi=exercise(s,t)’;

q=q+ML*phi-(vL(sL,t,T)*bL+vH(sH,t,T)*bH)/2;

z=PSOR(q,z);

v=z+phi;

exbd(m+1)=s(min(find(v>phi))); %locate exercise boundary (for put)

end

exbd=[exbd,K];

s=[sL,s,sH]; %Include boundaries and

v=[vL(sL,t,T),v’,vH(sH,t,T)]; %Convert results to rows

The variable exbd(m) records the computed approximations to the exercise boundary χ(tm). The following

80

plot displays the results.

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12
Computed Exercise Boundary

8.2.5 Markov Chain Methods

Suppose we have a “space-only” Markov chain ξm which approximates St on a grid, as we discussed in
Chapter 6. Viewing sξm as a discrete time, discrete space approximation to St (at t = tm) it seems natural
to consider the optimal stopping problem for the chain,

vmn = sup
0≤η∗≤η

E[ρη
∗
ψ(sξη∗ , tη∗) | ξm = n].

At each gridpoint (sn, tm) we are faced with the alternative of stopping where we are with value φ(sn, tm)
or continuing at least one more step, in which case the value now will be E[ρvm+1

ξm+1
| ξm = n]. This is straight

forward to calculate. We start with the values of vMn = ψ(sn, T) and then work backwards through time in
our usual way. Given the values for vm+1

· we calculate vmn as follows. First calculate the expected value

E[ρvm+1
ξm+1

| ξm = n] = ρ
∑
n′

pn,n′v
m+1
n′ ,

then take the larger of this with ψ(sn, tm) to obtain vmn : For a space-only chain these are very easy to
calculate:

vmn = max(ψ(sn, tm), E(n,m)[ρv
m+1
ñ]).

When the Markov chain approximation comes from an explicit finite difference formulation, the above is
the same as the calculation of Section 8.2.1. In particular, for grid sizes which allow a probabilistic inter-
pretation of our explicit finite difference mehtod (or any other space-only approximating chain) no lineary
complementarity problem is involved, making it very easy to implement.

Using a space-time chain, (ξk, ζk), the resulting equation is more complicated, because of the possibility
that ξk can jump between the spacial nodes for the same tm before making the jump to the next time node.
Somehow we have to weigh the likelihood of reaching a node for the same tm at which it would be optimal
to stop against all the other possibilities. Again suppose we know all the optimal vm+1

· values and we are
located at ξk = n, ζk = m. If it is not optimal to stop here, then the value at this node must be

vmn = E[ρζk+1−mv
ζk+1

ξk+1
| ξk = n, ζk = m]

=
∑
n′

qn,n′ρ
0vmn′ +

∑
n′

pn,n′ρ
1vm+1
n′ .

81

If it is optimal to stop where we are then vmn = φ(sn, tm). In general vmn must be the larger of these two
values. Let g = [gn] where

−gn = ρ
∑
n′

pn,n′v
m+1
n′ .

Then we see that

vmn ≤
∑
n′

qn,n′v
m
n′ − gn,

vmn ≤ φ(sn, tm),

with one of these being an equality. Thus we again have a linear complementarity problem:

(I−Q)vm + g ≤ 0, vm ≤ ψm, with ((I−Q)vm + g) · (vm − ψm) = 0.

Linear complementarity problems arise naturally from optimal stopping problems for Markov chains.

8.3 Other Formulae for the American Put

No explicit expression is known for the pricing function vA-Put of the American put is known. Naturally
many efforts have been made to approxximate it’s values. Several are summarized in Salopeck [51]. To finish
this chapter we want to describe an interesting formula connecting vA-Put with it’s European counterpart,
vE-Put. We will give only a heuristic development, but the formula can be justified rigorously; see Carr,
Jarrow and Myneni [12] for instance. Consider a t0 < T and stock price St0 = s0 > χ(t0) above the exercise
boundary. We are going to describe a self-financing portfolio strategy which begins with value vA-Put(s0, t0)
and at the final time will have value (ST −K)−+ something. Taking e−r(T−t)E[· | Ft] of this will give a
formula relating vA-Put to vE-Put.

Start by buying the American option for vA-Put(s0, t0). We will hold this untill St drops below the
exercise boundary χ(t). At the moment when that happens (T1 in the figure) we exercise the option, which
has value K −ST1 . We convert this to K in bonds and −1 share of stock. We hold these until the next time
(T2 in the figure) that St recrosses the exercise boundary into the continuation region, at which time we buy
back the option for K − ST2 .

Our bond holdings have grown in value to
Ker(T2−T1).

We only need to sell K in bonds for our transaction at time T2, leaving us with bonds of value

Ker(T2−T1) −K = KerT2
∫ T2
T1

re−ru du.

82

By time T this will have grown in value to

KerT
∫ T2
T1

re−ru du.

We continue to do this, selling the option when St enters the exercise region, and buying it back when St
enters to contiuation region. When we reach the final time we will have earned a total of

KerT
∫ T

t0

re−ru 1Su<χ(u) du, (8.7)

beyond the terminal value of (K − ST)+. Our policy (which is self-financing) yields a terminal value of

X = (ST −K)+ +KerT
∫ T

t0

re−ru 1Su<χ(u) du.

Now we would be correct to question whether this portfolio managment strategy can really be carried
out, because St will actually cross χ(t) infinitely many times, if at all. So our strategy would require infinitely
many sell and buy transactions. That’s why this is only a heuristic development. But the formula is correct
even if our explanation is not supportable. The conclusion is that

vA-Put(s0, t0) = ert0Es0,t0 [e−rT (K − ST)+ +K

∫ T

t0

re−ru 1Su<χ(u) du]

= vE-Put(s0, t0) + ert0Es0,t0 [K

∫ T

t0

re−ru 1Su<χ(u) du].

The last term is the early exercise premium. We can work out a more explicit expression for it.

ert0Es0,t0

[
K

∫ T

t0

re−ru 1Su<χ(u) du

]
=

∫ T

t0

Kre−r(u−t0)Ps0,t0(Su < χ(u)) du.

The P here is the risk-neutral probability, with respect to which we know

Su = s0e
(r−σ2/2)(u−t0)+σ(Wu−Wt0

).

Now Wu−Wt0 is
√
u− t0 Y for a standard normal random variable Y . So, Ps0,t0(Su < χ(u)) is the probability

that

s0e
(r−σ2/2)(u−t0)+σ

√
u−t0Y < χ(u)

(r − σ2/2)(u− t0) + σ
√
u− t0Y < log(χ(u)/s0),

or

Y <
log(χ(u)/s0)− (r − σ2/2)(u− t0)

σ
√
u− t0

.

So we have

Ps0,t0(Su < χ(u)) = N
(

log(χ(u)/s0)− (r − σ2/2)(u− t0)

σ
√
u− t0

)
.

Putting the pieces together, here is the formula we have derived.

vA-Put(s, t) = vE-Put(s, t) +

∫ T

t

Kre−r(u−t)N
(

log(χ(u)/s)− (r − σ2/2)(u− t)
σ
√
u− t

)
du. (8.8)

If we knew the exercise boundary χ(t) then (8.8) would be an exact formula connecting the American and
European pricing functions, and could be evaluated by numerical integration. If we have bounds on χ(t),

83

like b∞ ≤ χ(t) ≤ K (where b∞ is the exercise boundary for the perpetual American put from the problems
below), then using the bounds in place of χ(t) in (8.8) will give us bounds on vA-Put.

Another way to exploit (8.8) is to consider it specifically for s = χ(t). Since vA-Put(χ(t), t) = K − χ(t)
we have the equation

K − χ(t) = vE-Put(χ(t), t) +

∫ T

t

Kre−r(u−t)N
(

log(χ(u)/χ(t))− (r − σ2/2)(u− t)
σ
√
u− t

)
du.

This is an integral equation for χ(t) for t ≤ T , and could be used as the basis of an approach to nu-
merically approximate χ(t). (A simpler integral equation for χ(t) results from using (8.8) together with
vA-Put
s (χ(t), t)) = −1; see [12].)

The exercise boundary χ(t) is known to be continuous and increasing, with χ(T) = K; see [29] for
instance. It appears from our finite difference calculations above to have a vertical tangent at the point of
contact. Several efforts have been made to find approximations to χ(t) for t ≈ T . It turns out that a good
approximation (for t ≈ T) is

χ(t) ≈ K −Kσ
√

(T − t) log(T − t).

A development of this can be found in Jiang [31] among other places. Also in Jiang [31] (see §3.6) is an
unusual formula connecting the American put and call with each other, via a price inversion and interchange
of interest and dividend rates.

8.4 Problems

Problem 8.A
Use an up-wind discretization of the Black-Scholes equation, with step sizes choosen to insure stability
according to the probabilistic interpretation of Chapter 6. Implement the explicit method based on this
approach to approximate the value of an American put.

. uwAM

Problem 8.B
To understand our free boundary formulation of the value of American put options, it is helpful to consider
the perpetual American put, which is an American put which never expires: T =∞. Its market value should
be given as a function of the stock price alone: v(s) = vPAP(s). The exercise boundary s = χ(t) of the
usual American put (page 71) becomes just a constant χP in the perpetual version. The description of v(s)
becomes the following. v(s) is a continuous function of s > 0 and χP = b is a constant such that the following
hold.

1. v(s) solves 1
2σ

2s2v′′(s) + rsv′(s)− rv(s) = 0 for s > b;

2. v(s) = (s−K)− for 0 < s ≤ b ;

3. lims→b+ v
′(s) = −1;

4. lims→∞ v(s) = 0.

Determine the value of χP by directly solving this problem. Specifically, carry out the following:

• First, check that there are two values of γ for which v(s) = sγ solves 1
2σ

2s2v′′(s) + rsv′(s)− rv(s) = 0.
One of them is γ = 1, the other is γ = M for a certain constant M . Find M . According to the
general theory of linear ordinary differential equations, this means that the solutions of the differential
equation for v(s) in item 1 above are

v(s) = c1s+ c2s
M

for some choice of constants c1, c2.

• Assuming that 0 ≤ b ≤ K, use items 2 and 4 above to determine values of c1 and c2. Show that there
is a unique value of b for which item 3 is satisfied. This value of b is χP.

84

Next we are going to see that item 3 characterizes the optimality of χP. Let v(s) be as determined by
items 1, 2, and 4 for an arbitrary 0 ≤ b ≤ K. For any s > K show that the value of 0 ≤ b ≤ K which
maximizes v(s) is the same b = χP that you found in b). Take σ = .3, r = .05, K = 10. Calculate χP. Pick
values 0 < b1 < χP < b2 < K and for each of b = b1, b = χP and b = b2 plot v(s) for bi ≤ s ≤ 15, together
with (K − s)+. (You should get a picture like the one on page 73.)

It can be shown (though you are not being asked to) that the formula for vPAP(s) derived above (v(s)
for b = χP) is the limit limT→∞ vA-Put(s, 0) of the usual American put’s value as the time to go becomes
infinite, and that χP = limT→∞ χ(0) is likewise the limiting value of its exercise boundary when we are far
from expiry.

. K

Problem 8.C
Revise runa.m so that it keeps a record (like exbd for the exercise boundary) of the value of the relaxation
parameter w and interation count used in each call to PSOR. (Note that PSOR.m is written so that it will
return these vaues if asked.) Run your script with the same parameters as in the notes. Produce graphs of
the lists of w and count values. What are the average values of w and count for this calculation?

. runtest

Problem 8.D
Consider an American option with exercise value φ(s, t) = sγ , where γ > 0 is a parameter. Using Problem 2.D
you can write down an explicit formula for the price v(s, t) of the European version of this option: v(s, T) =
sγ . Show that if γ > 1 you would never exercise the American option early. What if γ < 1?

. power

Problem 8.E
Suppose that M = E + D + F is a tridiagonal (real) matrix with subdiagonal entries ei, diagonal en-
tries di and superdiagonal entries fi. Show that if M satisfies (8.4) then all di > 0. Suppose that
z(0), z(1), . . . , z(k), . . . is a sequence of vectors produced by the PSOR method applied to our standard linear
complementarity problem (8.3). Suppose that the limit limk→∞ z(k) = z exists. Show that z does solve the
complementarity problem. (Hint: If you let k → ∞ in the description of the PSOR method you will get a
collection of equations satisfied by the coordinates zi and some auxiliary variables yi.)

. L

Problem 8.F
The linear complementarity problem that describes American options on stocks paying continuous dividends
is

vt + BDv ≤ 0

φ− v ≤ 0

(vt + BDv) · (φ− v) = 0,

where BD is as in Chapter 7, and φ(s, t) is the formula for the value of the option when exercised. Develop
Matlab code to apply the PSOR method in the Crank-Nicholson formulation to compute a solution to this
for a call option. Modify runa.m as appropriate to plot the optimal exercise boundary s = χ(t). Try it
for r = .08, δ = .05, σ = .3, K = 20 over a period of T = 1. Plot both your rough approximation to the
exercise boundary χ(t) with respect to t, and the resulting v(s, 0) with respect to the stock price s. Mark
the approximate exercise boundary point on this latter graph.

. P

85

Chapter 9

Asian Options

We now turn our attention to path-dependent options. By this we mean that VT depends on the history of
the stock price, {St : 0 ≤ t ≤ T}, not just ST alone. These generally arise by taking the terminal value for
our usual call or put, (ST −K)± and replacing either K or ST by some value computed from the history of
St. In the next chapter we consider lookback options, which use a historical maximum (or minimum) stock
price ZT rather than an average. In this chapter we will discuss Asian options, in which we use some sort
of average stock price, AT . For instance, the average price1 call has terminal value

VT = (AT −K)+,

and the average strike put has
VT = (ST −AT)−.

There are several ways we might compute an average stock price.

• The continuous arithmetic average: AT = 1
T

∫ T
0
St dt.

• A discrete arithmetic average: AT = 1
R

∑R
1 STi (0 ≤ T1 < · · ·TR ≤ T).

• A discrete geometric average: AT =
(∏R

1 STi

) 1
R

= exp(1
R

∑R
1 log(STi)).

• The continuous geometric average: AT = exp(1
T

∫ T
0

log(St) dt).

Although geometric averages are not really used in financial markets, they have been considered in the
literature because explicit price formulas can be developed for them, which can then be used as a “control
variate” in a Monte Carlo approach. Observe that the geometric average is always bounded above by the
corresponding arithmetic average. This is because exp(·) is a convex function, and so

exp(
1

N

N∑
1

log(STi)) ≤
1

N

N∑
1

STi .

The continuous version is a limit of this. An average price call would therefore have a higher value with
an arithmetic average than it would for a geometric average. So explicit formulas in the case of geometric
averages can be used as lower bounds for the arithmetic averaged versions. Having made these observations
we will limit our discussion to arithmetic averages.

We first consider the PDE approach to pricing Asian options. Then we mention briefly two other
treatments, and then consider how we might handle discrete arithmetic averages.

1Also called “fixed strike”.

86

9.1 Continuous Arithmetic Averages

Our general risk-neutral valuation formula says that

Vt = E[e−r(T−t)X | Ft],

where X is the random variable giving the value at expiry. Previously we had X = φ(ST), a function of the
final stock price. This is no longer true for Asians. But if we define the “running integral”

Yt =

∫ t

0

Su du,

then the arithmetic average is AT = 1
T YT . So we can write the terminal value as a function of the pair

ST , YT :
φ(ST , YT).

For instance, the average strike put would use

φ(s, y) = (s− y/T)−.

We will argue that the option’s market price must be a function v(s, y, t) evalued at (St, Yt, t),

Vt = v(St, Yt, t),

and will derive a generalization of the Black-Scholes equation which describes the pricing function v(s, y, t).
Then we will consider how we might calculate the appropriate solutions.

We begin with ST = St
ST
St

. The key observation is that for t < T we have that ST /St is independent of
Ft, because

ST /St = e(r−σ2/2)(T−t)+σ(WT−Wt).

A general fact about random variables is that when W and Z are independent, W being G-measurable and
Z being independent of G, then

E[f(W,Z) | G] =

∫
f(W, z)pZ(z) dz, (9.1)

where pZ(·) is the density of Z. In other words the conditional expectation “integrates out” the independent
random variable Z. (See the appendix.) This explains why, in the standard European case,

Vt = e−r(T−t)E[φ(St · [ST /St]) | Ft]

is expressible as some function of St and t. In the case of Asian options we also have dependence on YT .
But we can write

YT = Yt +

∫ T

t

Su du

= Yt + St

[∫ T

t

Su/St du

]
.

In the second line the integral is also independent of Ft. So in

Vt = e−r(T−t)E[φ(St · [ST /St], Yt + St

[∫ T

t

Su/St du

]
) | Ft]

the ST /St and
∫ T
t
Su/St du will integrate out, so this should be a function of St, Yt and t:

Vt = v(St, Yt, t).

87

Whatever Asian option we are interested in, we want to find the pricing function v(s, y, t) associated
with it. Observe that v is now a function of three variables. We need the appropriate generalization of the
Black-Scholes equation. The essential property is that

e−rtVt = e−rtv(St, Yt, t)

should be a martingale. Itô’s formula will lead us to what we want. Becuase

dSt = rSt dt+ σSt dWt and dYt = St dt

we have that
(dYt)

2 = 0 = dYt dSt and (dSt)
2 = σ2 dt.

Using these we calculate that

d[e−rtv(St, Yt, t)] = e−rtvs dSt + e−rt
1

2
vss (dSt)

2 + e−rtvy dYt + e−rt(vt − rv) dt

= e−rtσvsSt dWt + e−rt
[

1

2
σ2S2

t vss + rStvs + Stvy + vt − rv
]
dt.

(All the v and its partial derivatives are evaluated at (St, Yt, t) of course.) In order for this to be a martingale,
the [· · ·] dt term in the second line must be 0. Thus the Asian Black-Scholes eqaution which characterizes
the pricing function v for an Asian option based on the continuous arithmetic average must be

1

2
σ2s2vss + rsvs + svy − rv + vt = 0. (9.2)

Note the new term svy compared to our former (1.5). We will abbreviate this as

BAv + ∂tv = 0,

where

BAv =
1

2
σ2s2vss + rsvs + svy − rv.

The ranges of the variables are 0 < s and 0 ≤ t ≤ T as before, and 0 < y (because Yt =
∫ t

0
Su du > 0).

The v we seek is the solution of (9.2) with the terminal value

v(s, y, T) = φ(s, y),

for the specific option we are studying, and some sort of growth condition as s → 0,∞ and y → 0,∞. In
particular, it turns out that if |φ(s, y, t)| ≤ c1s+c2y+c3 for some constants ci, then the risk neutral valuation
formula implies that for some contants c′i,

|v(s, y, t)| ≤ c′1s+ c′2y + c′3.

(See Problem 9.B.) Such a growth condition identifies the unique solution of (9.2) and the terminal condi-
tions.

We can produce a few explicit solutions of (9.2). (See the Problem 9.C.) These allow us to write down
put-call parity relations. For the average strike case,

vCall(s, y, T) = (s− y/T)+, vPut(s, y, T) = (s− y/T)−.

So vCall − vPut is the solution of (9.2) with terminal value φ = s− y/T . This is easily checked to be

vCall − vPut = s− s

rT
(1− e−r(T−t))− 1

T
e−r(T−t)y.

For the average price case,

vCall(s, y, T) = (y/T −K)+, vPut(s, y, T) = (y/T −K)−.

88

So vCall − vPut is the solution of (9.2) with terminal value φ = y/T −K. This is checked to be

vCall − vPut =
s

rT
(1− e−r(T−t))− e−r(T−t)(K − y

T
).

In light of these we concentrate on calls in what follows.
A finite difference approach to solving (9.2) would invole a 3-dimensional grid (sn, yk, tm) = (n∆s, k∆y,m∆t)

and approximate values
vmn,k ≈ v(sn, yk, tm).

We would then form a discretized approximation to the equation (9.2), along the lines of what we did
previously. Observe that there are two space dimensions, s and y. For each time tm, instead of a vector [vm·]
as before, we now have a N ×K matrix [vm·,·] of values. The finite difference equation would give us a way of
calculating Vm−1 = [vm−1

·,·] from Vm = [[vm·,·]. The finite difference approximations to (9.2) can be arranged
as a matrix equation in the form

MVm−1G = NVmH + B

for appropriate matricies G, H, and B. Work out the details . . . Since there is no vyy term in the equation,
it is particularly important that vy is discretized appropriately. Since y > 0 we should use an up-wind
approximation such as

vy(sn, yk, tm) ≈
vmn,k+1 − vmn,k

∆y
.

In addition, we would either need to find approximate formulas to use for v around the four sides (boundary)
of our grid rectangle s0 ≤ s ≤ sN+1, y0 ≤ y ≤ yK+1, or else decide on alternative boundary conditions,
along the lines we talked about in Section 5.3. Although there are new levels of complexity and detail, it
is possible to implement such a calculation in Matlab. Fortunately, in the particular cases of interest to
us there are ways to eliminate one spacial variable, and bring the problem back to the level we are more
comfortable with.

9.2 Average Price Call

For the average price call we want to consider φ(s, y) = (yT −K)+. We first make an important observation.

Suppose that at some t < T we have 1
T Yt−K ≥ 0. Since Yt =

∫ t
0
Su du is increasing we know with certaintity

(probability 1) that
YT /T −K ≥ Yt/T −K > 0.

So the call option will be in the money at expiry. The corresponding put will be worthless with probability
1. Our put-call parity formula now implies the following exact expression for v for such y values:

v(s, y, t)− 0 =
s

rT

(
1− e−r(T−t)

)
− e−r(T−t)(K − y

T
), if y ≥ TK. (9.3)

A change of variables will reduce the problem to one space dimension. Consider the new variable

x =
K − y/T

s
.

If we write
v(s, y, t) = sc(x, t),

then we find (Problem 9.D) that (9.2) is equivalent to

1

2
σ2x2cxx − (

1

T
+ rx)cx + ct = 0. (9.4)

The terminal values can be written

v(s, y, T) = (y/T −K)+ = s ·
(
y/T −K

s

)+

= s(−x)+ = sx−,

89

so we want the solution of (9.4) with terminal values

c(x, T) = x−.

Moreover when x ≤ 0 our explict formula (9.3) applies, so

sc(x, t) =
s

rT

(
1− e−r(T−t)

)
− e−r(T−t)(K − y

T
) = s ·

[
1

rT

(
1− e−r(T−t)

)
− e−r(T−t)x

]
.

Thus for x ≤ 0 we have the exact formula

c(x, t) =
1

rT

(
1− e−r(T−t)

)
− e−r(T−t)x.

Another interesting observation is that K does not appear in the equation (9.4), the terminal values, nor
the boundary values c(0, t). Thus c(x, t) must be be independent of K. (The conversion from x, t back to
s, y, t does involve K, so this independence from K is not true for v.)

To compute c(x, t) by finite differences we only need approximate boundary values for large x. Suppose
we hold s and y fixed and let K → ∞. This corresponds to x → +∞ in c(x, t). With St = s and Yt = y
given, the probability of YT > TK will approach 0 as K →∞. It follows that

0 = lim
K→∞

v(s, y, t) = lim
x→∞

sc(x, t).

We deduce that
lim
x→∞

c(x, t) = 0.

Using c(x, t) ≈ 0 as boundary conditions for large x we have all we need to carry out a finite difference
computation.

9.3 Average Strike Call

Now we consider the terminal value φ(s, y) = (s− y/T)+. Define the new variable

z = y/s > 0.

Observe that if
v(s, y, t) = s · w(z, t),

then for v to solve (9.2) is equivalent to w solving

1

2
σ2z2wzz + (1− rz)wz + wt = 0. (9.5)

The terminal values for v
v(s, y, T) = (s− y/T)+ = s · (1− z/T)+

correspond to terminal values for w:
w(z, T) = (1− z/T)+.

So to find the pricing function v for the average strike call, we can apply our finite difference approach to
(9.5). All we need are approximate boundary conditions for z = 0 and z large.

9.3.1 Boundary Condtions for Large z

Since z = y/s, large z corresponds to both to s→ 0 with y > 0 fixed, and to y →∞ while s > 0 is fixed. The
second of these is more revealing about w for large z. Suppose we hold s at a fixed value and think about
the value v(s, y, t) of the option as y →∞. For the option to expire with positive value we need ST > YT /T.

90

If Yt = y, then YT /T > y/T . So starting from St = s for the option to expire in the money it is necessary
that ST > y/T . For s fixed, the probability of this happening → 0 as y →∞. Thus we must have

s lim
z→∞

w(z, t) = lim
y→∞

v(s, y, t) = 0.

We conclude that
lim
z→∞

w(z, t) = 0.

Therefore w(z, t) ≈ 0 for large z.

9.3.2 Boundary Conditions for z = 0

This is more difficult - it is hard to produce an explicit approximate expression for w(0, t). This is a situation
where an alternative boundary conditon seems more reliable. Wilmott [62] suggests that at z = 0 we should
use

wz(0, t) + wt(0, t) = 0.

This is the result of simply substituting z − 0 in (9.5). It can be supported by the following argument.
From the problems at the end of the chapter we know that v = s · w is bounded. If we presume that
limz→0 z

2wzz = c exists, then for z ≈ 0 we would have wzz ≈ c/z2 which suggests that w is something like
c log(z). Unless c = 0 this would mean that v = z ·w(z, t) is unbounded as y → 0 with s > 0 fixed. Since we
know this is not the case, it would have to be that z2wzz → c = 0 as z → 0. So taking the limit in (9.5) as
z → 0 leads us to wz + wt = 0. This is not a rigourus justification, but it seems reasonable.

To implement this in the Crank-Nicholson approach, we would add a new discrete equation for z0 = 0,
using

wt(0, tm−1/2) =
wm0 − wm−1

0

∆t
+O(∆t2)

wz(0, tm−1/2) =
1

2
wz(0, tm) +

1

2
wz(0, tm−1) +O(∆z2),

approximating each wz term by

wz(0, tm) =
wm1 − wm0

∆z
+O(∆z).

A higher order (but one sided) difference approximation to wz could be used for an O(∆z2) approximation.
As mentioned previously, the price we pay for this increased accuracy is that the resulting system is no
longer tridiagonal.

9.3.3 Bounds and Approximate Formulae

There have been numerous efforts to find approximate or semi-explicit formulae for asian options. We simply
wish to mention two of the most important. Rogers and Shi [48] develop lower bounds which turn out to
be fairly close to the true value. Geman and Yor [21] develope a formula which is explicit except for the
inversion of a Laplace transform, for which there are good numerical methods. Additional references of this
type can be found in [45] and [62]. Develop some of this . . .

9.4 Discrete Arithmetic Averages

We now turn our attention now to the use of discrete arithmetic averages, options with a terminal value
φ(ST , AT) where

AT =
1

R

R∑
1

STi ,

91

where 0 < T1 < · · · < TR being the record times. There are some differences from the continuously-sampled
case, but many similarities as well. Now we will use Yt for the “running sum” of stock prices at the record
times up to t:

Yt =
∑
Ti≤t

STi .

This Yt is piecewise constant making upward jumps at the record times:

YTi+ = YTi− + STi .

Again we expect the market value to be given by some function v(St, Yt, t). As for discrete dividends, we
need to be careful about how our calculations handle the jumps at the record times. On an interval (Ti−1, Ti)
between record times Yt is constant (dYt = 0) so by our usual reasoning that e−rtv(St, Yt, t) is a martingale,
Itô’s formula together with dYt = 0 leads us to the conclusion that the usual Black-Scholes equation applies,
with no vy term. At a record time v(St, Yt, t) must be continuous.

v(STi , YTi−, Ti−) = v(STi , YTi+, Ti+)

= v(STi , YTi− + STi , Ti+).

This gives us the jump condition for v across a record time:

v(s, y, Ti−) = v(s, y + s, Ti+). (9.6)

Finite difference calculations in financial variables are easy to implement here. We would set up a
3-dimensional grid (sn, yk, tm) = (n∆s, k∆s,m∆t) and approximate values

vmn,k ≈ v(sn, yk, tm).

There is every reason to use ∆s = ∆y, and we will assume that in what follows. We will work on the finite
grid sL = s0 < sn < sN+1 = sR and yL = y0 < yk < yL+1 = yH and will need approximate formulas

vL(sL, y, t) ≈ v(sL, y, t)

vH(sH, y, t) ≈ v(sH, y, t)

vR(s, y, t) ≈ v(s, y, t) for y ≥ yH.

92

(No formula for y ≤ yL will be needed.) We will come back to the choice of formulas for these. First we want
to see how the finite difference calculations are organized. For each time node tm our approximate values
vmn,k (n = 1, . . . , N , k = 1, . . . , L) are organized into an N ×L matrix Vm = [vm·,·]. Each column corresponds
to a single yk value.

We start at tM = T and fill in the values of VM using the desired formula for terminal values,

φ(s, y) = (s− y/R)± for an average strike call or put,

= (y/R−K)± for an average price call or put.

Next we want to use one of our methods, Crank-Nicholson say, to step backwards through the time nodes,
VM → VM−1 → VM−2 · · · until we reach the larget record time Ti = tmi . These backwards time steps
are computed using the Crank-Nicholson method. Since there are no vy terms in the equation in this
itme interval, the calculations apply to each column separately. We can do the calculations on all columns
simultaneously:

MVm−1 = NVm + B,

where B is the matrix of columns of the boundary terms:

B =


1
2a1(vm−1

0,1 + vm0,1) 1
2a1(vm−1

0,2 + vm0,2) · · · 1
2a1(vm−1

0,L + vm0,L)

0 0 · · · 0
...

...
...

0 0 · · · 0
1
2cN (vm−1

N+1,1 + vmN+1,1) 1
2cN (vm−1

N+1,2 + vmN+1,2) · · · 1
2cN (vm−1

N+1,L + vmN+1,L)

 .

We will use
vL:m = [vL(sL, y1, tm), · · · , vL(sL, yL, tm)]

for the row vector of boundary values along the bottom of our grid box, and similarly

vH:m = [vH(sH, y1, tm), · · · , vH(sH, yL, tm)]

for the row of values along the top. We can use this with the notation bL and bH from page 50 to write

B = bL(vL:m−1 + vL:m)/2 + bH(vH:m−1 + vH:m)/2.

Though B is cumbersome to write, the calculation is easy to execute in our usual way (mixing Matlab
and mathematical notation): for M =LU,

Vm−1 = U\L\(NVm + B).

Having reached the mi corresponding to the record time Ti, the values of Vmi have the approximate
values for v(·, ·, Ti+). Before proceeding we implement the jump conditon (9.6):

v(sn, yk, tm−) = v(sn, yk + sn, tm+).

The values on the right are the “old” values; the values on the left are the “new” values. Because ∆s = ∆y,
we implement the jump conditon as follows.

vmn,k =

{
vmn,k+n if k + n ≤ L
vR(sn, yk + sn, tm) if k + n > L.

Now Vmi contains the desired values for tm−. We resume the Crank-Nicholson calculations until we reach
the next largest record time tmi−1 = Ti−1. Then implement the jump condition again, and continue. We
repeat this until we reach t0 = 0.

To close our discussion of these calculations we will discuss what formulas2 to use for vL, vH and vR in
the average price case. The natural choice for s0 is 0. For St = s0 = 0 we have Su = 0 for all t ≤ u ≤ T .
Therefore YT = Yt = y, and

VT = (
y

R
−K)+,

2We would like all of these to accept a vector of yk values and return the corresponding vector of v values.

93

so that Vt = e−t(T−t)(yR −K)+. Thus we should use

vL(0, y, t) = e−r(T−t)(
y

R
−K)+.

In the continuously averaged case, both the large s and large y approximations used the explicit formula
from the put-call parity relationship. So we need the discrete version of that.

V c
T − V

p
T =

YT
R
−K,

so

V c
t − V

p
t = e−r(T−t)E

[
1

R

∑
STi −K | Ft

]
= e−r(T−t)

(
1

R

∑
E[STi | Ft]−K

)
.

Now

E[STi | Ft] =

{
STi if Ti < t

er(Ti−t)St if t ≤ Ti.

Therefore

V c
t − V

p
t = e−r(T−t)

1

R

∑
Ti≤t

STi + e−r(T−t)
1

R

∑
t<Ti

er(Ti−t)St − e−r(T−t)K

= e−r(T−t)
1

R
Yt +

1

R

[∑
t<Ti

e−r(T−Ti)

]
St − e−r(T−t)K

To express this more concisely, define

ρ(t) =
1

R

[∑
t<Ti

e−r(T−Ti)

]
,

provided there is at least one record time after t: t < TR ≤ T . If no record times remain, TR < t, then

ρ(t) = 0.

Thus the put-call parity formula is

V c
t − V

p
t = e−r(T−t)

1

R
Yt + ρ(t)St − e−r(T−t)K.

Now we are ready to finish our discussion of approximate boundary formulas for the average price Asian
call, using a discretely sampled average. Just as for the continuously sampled case, if ever Yt ≥ RK, then
we know with certainty that Yt ≥ RK and so the corresponding put is worthless. Therefore we have the
following exact formula for all y ≥ RK:

vR(s, y, t) = vc − vp = e−r(T−t)
1

R
y + ρ(t)s− e−r(T−t)K.

Finally consider large s, for y, t fixed. Given that St = s is very large, the probability is nearly 1 that
STi will be very large for any t < Ti which remain. So the put has value nearly 0 and the call is given
approximaty by the same formula as above, again provided there is at least one record time Ti after t.

vH(s, y, t) = vc − vp = e−r(T−t)
1

R
y + ρ(t)s− e−r(T−t)K.

If TR < t < T , so no record times remain, then Yt will not change between t and the final time T . So
VT = (1

RYt −K)+ is known today. The option is essentially a bond with face value VT , so its value today is

vH(s, y, t) = e−r(T−t)(
1

R
Yt −K)+.

94

9.5 Problems

Problem 9.A
Work out the explicit formulas for average price call and puts using a continuous geometric average.

. Geometric

Problem 9.B
The risk-neutral probability measure was chosen so that e−rtSt is a martingale. In particular that means
that for t < u

E[Su| Ft] = er(u−t)St.

Let Yt =
∫ t

0
Su du and compute

E[YT | Ft] (9.7)

as an expression in terms of r, St, Yt, and t < T . (Hint: It is legitimate to interchange
∫
· du and E[·| Ft]:

E[

∫
· du| Ft] =

∫
E[·| Ft] du.

Use this and the formula for E[Su| Ft] above.) Suppose

|φ(s, y)| ≤ c1s+ c2y + c3 (9.8)

(where ci are constants) and that

v(St, Yt, t) = ertE[φ(ST , YT)e−rT | Ft]. (9.9)

Show that
|v(s, y, t)| ≤ c̃1s+ c̃2y + c̃3

for some other constants c̃i. In other words among all the possible solutions of (9.2), those that correspond
to the value of an Asian option whose final value is VT = φ(ST , YT), where φ is some function satisfying
(9.8), have the property that v(s, y, t) likewise grows at most linearly in s and y.

. U

Problem 9.C
Since each v(i) for 1 = 1, . . . , 6 from Section 2.6 have no y-dependence, they must also solve (9.2). (Explain
this.) Show that the following also solves (9.2):

v(6)(s, y, t) = e−r(T−t)(s− ry)

By finding a linear combination of v(i) which has the correct value at t = T , find the explicit formulas for

1. The solution with v(s, y, T) = y;

2. the put-call parity expression vCall − vPut for the case of average strike Asian options;

3. the put-call parity expression vCall − vPut for the case of average rate Asian options.

(Your answer for item 1 should be consistent with the expression you derived for (9.7) above. Your answers
for items 2 and 3 should agree with the expressions we earlier in this chapter.)

. V

Problem 9.D
Show that if x = K−y/T

s and functions v(s, y, t) and c(x, t) which are related to each other according to

v(s, y, t) = sc(x, t),

95

then v solves the Asian version (9.2) of the Black-Scholes equation if and only if c solves (9.4). Find an
example of an explicit solution c of (9.4) which involves both variables x and t.

. W

Problem 9.E
The computation of an Asian fixed-strike put or call based on a discrete time arithmetic average can be
carried out in terms of the same change of variables as in Section 9.2. In this problem you are asked to work
out some details of such an approach. Specifically, answer the following questions:

1. What PDE should c(x, t) solve between record times: Ti−1 < t < Ti?

2. If we solve for approximate values cmn ≈ c(xn, tm) on a grid, how would the “jump condition” (9.6)
appear in the calculations?

3. What constraints on the step sizes ∆x and ∆t are appropriate?

4. In the case of a call, what terminal and boundary values should be used for c(x, t)?

. Z

Problem 9.F
There is an alternate change of variables for the average price call. Let

θ = s/y = 1/z.

Write
v(s, y, t) = y · u(θ, t)

and show that the appropriate equation for u(θ, t) is

1

2
σ2θ2uθθ + θ(r − θ)uθ + ut + (x− r)u = 0,

and the terminal values for u are

u(θ, T) = (θ − 1

T
)+.

For θ = 0 we should use u(0, t) = 0. Can you speculate on a derivative boundary conditon for large θ based
on our wzz ≈ 0 for small z above?

. apalt

Problem 9.G
Find coefficient formulas an, bn, cn so that the Crank-Nicolson method applied to equation (9.4) above takes
the same form (5.7) as our previous calculations for the Black-Scholes equation. (Simply revise the derivation
leading to (5.1) to obtain the new B, bL, and bH that correspond to (9.4).)

. X

Problem 9.H
Write Matlab code to compute the solution c(x, t) to equation (9.4) associated with a average price Asian
call option, using the explicit boundary conditions that we developed in class. Use your computed values to
plot v(s, 0, 0) versus s and compare it to the price of the standard European call vE-Call(s, 0) with the same
parameters. Try a few different choices for the parameter values. Based on what you observe, conjecture a
relationship between the Asian and standard European call options.

Writing the code should not be too bad; you can just modify genB.m and cnf.m appropriately. It would
be a good idea to change variable names to match the notation we have used in the notes: x instead of s,
cL.m instead of vL.m and so forth. That will help minimize confusion. To check that your code is working,
you could first try it on the explicit solution from Problem 9.D before you set up the terminal and boundary
conditions for the average price (which means the same as “fixed strike”) Asian call.

96

There are several things to think about in order to use your calculated values of c(x, 0) to answer
the rest of the problem. You will probably calculate c(xn, 0) for a uniformly spaced vector of xn values:
0 = xL = x0 < x1 < · · ·xN < xN+1 = xH. You will need to decide what xH to use. You don’t want it so
small that the boundary condition at xH is inconsistent with the the other values of c(xn, 0) for large n. Nor
do you want xH so large that most of your c(xn, 0) values are wasted calculations that just end up agreeing
with the approximate boundary values. Plot your computed c(x, 0) values and experiment with xH to see.

Once you are satisfied with xH, you need to convert your xn and c(xn, 0) values to corresponding sn and
v(sn, 0, 0) values. The order of the resulting sn values will be reversed, and they will be unevenly spaced.
You will probably get some very large sn values. (In fact x0 = 0 corresponds to s0 = ∞!) If you plot
v(s, 0, 0) versus s, you won’t want to include the full range of s values, because the ”important” part of the
graph would only be a tiny part of it. You can either plot only some of the s and v values, or else plot them
all and then use an axis command to limit the part of the plot that is displayed. You may find it convenient
to produce the value of v(sref , 0, 0) for some reference sref -value for comparison purposes as you vary the
parameters (as per the problem’s instructions). Since sref is not likely to be one of the sn values you will
need to interpolate from the sn, v(sn, 0, 0) values. That is easy to do with an interpolation command, like
interp1(s,v,sref).

As a check if you run the calculation using r = .05, σ = .2, T = 2, with K = 10, you should a value
v(10, 0, 0) ≈ .87.

. Y

Problem 9.I
Find the out-call parity relation for average strike options using discretely computed arithmetic averages. If
we write v(s, y, t) = sw(z, t), z = y/s as we did for continuous time averages, describe the jump condition
at record times, initial values, and boundary conditions for z = 0 and z →∞.

. das

97

Chapter 10

Lookbacks

In this chapter we consider options whose value at expiry depends on both ST and the historical maximum
(or minimum) stock price. These are generally called lookback options. For instance a floating strike put
uses

VT = ZT − ST ,
with ZT = max0≤t≤T St being the maximum stock price to date. Other variants are described below.

10.1 Lookback Varieties

The historical maximum (or minimum) stock price can be computed either using continuous sampling,

Zt = max
0≤u≤t

Su (or Zmin
t = min

0≤u≤t
Su),

or using discrete sampling based on a prescribed sequence of record times 0 ≤ T1 < T2 < · · · ,

Zt = max
Ti≤t

STi (or Zmin
t = min

Ti≤t
STi).

Discrete sampling is more realistic for describing real-world financial calculations, but continuous sampling
is more natural mathematically. If the record times are many and closely spaced then we would expect
continuous sampling to provide a good approximation. We will consider both in our discussion below.

Although only ZT is needed when we actually determine the final value VT , the evolution of Zt as t
progresses from t = 0 to t = T is important for our calculations of V0. In the case of continuous sampling
Zt is a continuous nondecreasing stochastic process with many flat sections in its typical path:

This makes it a rather different kind of stochastic process than we have encountered before.
In the discretely sampled case Zt is constant between record times Ti and makes upward jumps at the

record times themselves:

98

Our discussion of this will be somewhat similar to that of discrete dividend payments in Chapter 7 and
discretely averaged Asian option in Chapter 9; things will be very Black-Scholes-like between the record
times, and some sort of discontinuity has to be worked out at the record times themselves.

Given the choice of discrete or continuous sampling, there are serveral varieties of lookback options that
are usually considered.

• Floating Strike Put (also called a Lookback Put):

VT = (ST − ZT)−,

where ZT is maximum stock price (either continuously or discretely sampled). In the continuously
sampled case ZT ≥ ST always holds, so (ST − ZT)− = ZT − ST , but in the discretely sampled case, if
T is not a record time Ti then ST > ZT is possible so we need to keep the (·)−.

• Floating Strike Call (also called a Lookback Call):

VT = (ST − Zmin
T)+,

The (·)+ is unnecessary in the continuously sampled case.

• Floating Price Put (also called a Forward Lookback Put):

VT = (Zmin
T −K)−.

• Floating Price Call (also called a Forward Lookback Call):

VT = (ZT −K)+.

These are all of the form
VT = φ(ZT , ST)

where φ is one of the functions φ(s, z) = (s − z)± or φ(s, z) = (z − k)±. In general we are interested in
computing the pricing function v(s, z, t) which gives the option’s market value in terms of the current values
of the St, Zt:

Vt = v(St, Zt, t).

We will consider PDE descriptions of v first. For continuous sampling explicit formulae for v are available
for all of option types above. That will be discussed in the final section.

99

10.2 The Lookback PDE

We first consider the continuously sampled case. We always have St ≤ Zt. As always the risk-neutral pricing
formula tells us that

e−rtv(St, Zt, t)

is a martingale. We know the terminal value,

v(s, z, T) = z − s.

In those time intervals where St < Zt we know Zt is constant, so we expect that

d[e−rtv(St, Zt, t)] = e−rt[
1

2
σ2s2vss + rsvs + vt − rv] dt+ (· · ·) dWt,

with no terms involving vz. Thus we anticipate that for s < z and t < T we should have our usual
Black-Scholes equation for v = v(s, z, t):

1

2
σ2s2vss + rsvs + vt − rv = 0.

But something new will be involved for s = z. To see what it should be we need to know how to deal with
dZt when we work out the stochastic differential of our risk neutral martingale. It is not simply some new
formula of the form dZt = (· · ·) dt + (· · ·) dWt. Zt is a different kind of stochastic process than we have
encountered before, a process of “bounded variation.” Integrals

∫
· · · dZt are Rieman-Stieltjes type, closer

to
∫
· · · dt than to Ito’s stochastic integrals

∫
· · · dWt. The details of stochastic calculus with processses of

bounded variation thrown in is more complicated than we can try to summarize here. (The courageous
reader may want to consult Rogers & Williams [50].) In the end however it does turn out that a version of
Ito’s formula still holds, if in addition to the basic differential rules (dt)2 = dt dWt = 0 and (dWt)

2 = dt we
add

(dZt)
2 = dt dZt = dZt dWt = 0.

If we are willing to take all this for granted, then we are led to the following stochastic differential expression
for our risk-neutral martingale.

d[e−rtv(St, Zt, t)] = e−rtvz dZt + e−rt
[

1

2
σ2s2vss + rsvs + vt − rv

]
dt+ (· · ·) dWt.

To be a martingale it is necessary that both the dt and dZt components vanish. In other words the dt and
dZt are incompatible, just like dt and dWt are, so these terms can’t cancel. They must be 0 individually.
When St < Zt we have dZt = 0, but when St = Zt we have dZt 6= 0 so it must be that its coefficient e−rtvz
in the equation above vanishes. This leads us to the following PDE description of v(s, z, t).

1

2
σ2s2vss + rsvs + vt − rv = 0 for 0 < s < z, t < T,

vz = 0 for s = z,

v(s, z, 0) = z − s for t = T.

(10.1)

In the discretely sampled case there is no requirement that s ≤ z, and since Zt is contant between record
times the appropriate PDE is just the usual Black-Scholes equation ((10.1) with no vy term). But there
are discontinuities at the record times t = Ti. We need to develope the appropriate jump conditions. The
maximum observed stock price has a jump at Ti:

ZTi+ = max(ZTi− , STi).

Since the market price Vt = v(St, Zt, t) must be continuous in t, it follows that

v(s, z, Ti−) = v(s,max(z, s), Ti+). (10.2)

100

This describes how the values of v are to be adjusted as a calculation moves from values of t > Ti to values
t < Ti.

To continue with this PDE formulation we would need approximate boundary conditions, as well as
the difficulties of coping with the wedge-shaped domain of (10.1). For the particular case of floating strike
options we can make a simplifying variable change, as we did for Asians. The next section deals specifically
with that case.

10.3 Floating Strike Puts

We will focus on the floating strike put, and will consider both the continuous and discretely sampled versions.
The terminal value function is

φ(s, z) = (s− z)−.

A stochastic argument will lead us to the desired change of variables.

v(St, Zt, t) = Vt = e−r(T−t)E[ZT − ST | Ft].

We know St = S0e
(r−σ2/2)t+σ2Wt . For t ≤ u we can write

Su = StGt,u,

where
Gt,u = Su/St = e(r−σ2/2)(u−t)+σ2(Wu−Wt).

The important observation is that Gt,u is independent of Ft because Wu −Wt is. Now write

ZT = max(Zt, St max
t≤u≤T

Gt,u)

= Zt max(1, ξt max
t≤u≤T

Gt,u), where ξt = St/Zt.

Likewise
St = StGt,T = ZtξtGt,T .

So we find that

Vt = e−r(T−t)E[ZT − ST | Ft]
= e−r(T−t)E[Zt max(1, ξt max

t≤u≤T
Gt,u)− ZtξtGt,T | Ft]

= e−r(T−t)ZtE[max(1, ξt max
t≤u≤T

Gt,u)− ξtGt,T | Ft].

Now ξt is Ft measurable, and both Gt,T and maxt≤u≤T Gt,u are independent of Ft. This implies (see (9.1))
that the conditional expectation above is of the form

E[max(1, ξt max
t≤u≤T

Gt,u)− ξtGt,T | Ft] = g(ξt, t)

for some function g(·, ·). We find then that

Vt = Zte
−r(T−t)g(ξt, t) = Ztw(ξt, t)

for some function w(ξ, t) of two variables. In brief, we should look for v(s, z, t) in the form

v(s, z, t) = zw(ξ, t), where ξ = s/z. (10.3)

This agrument is also valid in the discretely sampled case if we replace maxt≤u≤T Gt,u with maxt<Ti≤T Gt,Ti .

101

10.3.1 Continuous Sampling

In the case of continuous sampling, the limitation to 0 < s < z means we are only interested the function
w(ξ, t) defined in the strip 0 < ξ ≤ 1, t ≤ T . The interior of this region, ξ < 1, corresponds to s < z. The
Black-Scholes PDE converts easily: v(s, z, t) = zw(s/z, t) so

0 =
1

2
σ2s2vss + rsvs − rv + vt

=
1

2
σ2s2z z−2wξξ + rsz z−1wξ + rzw − zwt

= z[
1

2
σ2ξ2wξξ + rξwξ − rw + wt].

In other words, in the strip 0 < ξ < 1, t < T the function w(ξ, t) again satisfies the Black-Scholes PDE but
now in the new variables (ξ, t):

0 =
1

2
σ2ξ2wξξ + rξwξ − rw + wt.

Terminal Conditions

The terminal conditions are

zw(ξ, T) = v(s, z, T) = z − s = z(1− ξ), so w(ξ, T) = 1− ξ.

Boundary Conditions

For boundary conditions, Problem 10.A will provide approximate values for ξ ≈ 0 which can be used for
lower boundary conditions.

The boundary at ξ = 1 corresponds to s = z which is where we require vz = 0. Since v(s, z, t) = zw(s/z, t)
we have

vz = w + z(
−s
z2

)wξ = w − ξwξ,

so the boundary condition for w at ξ = 1 is

w(1, t) = wξ(1, t).

We can incorporate this boundary condition into finite difference calculations just as we did previously.
(Recall that for discrete sampling we had w(ξ, Tm−) = ξw(1, Tm+) for ξ > 1. Thus wξ(1, Tm−) =

w(1, Tm+) just after each update. If we think of continuous sampling as the limit of discrete sampling as
the record times fill up a dense set in [0, T], it seems natural that the wξ(1, Tm−) = w(1, Tm+) at record
times should lead to wξ(1, t) = w(1, t) at all t < T in the continuous case.)

102

10.3.2 Discrete Sampling

We have already observed that Zt is constant between the record times Ti, and that v(s, z, t) should satisfy
the standard Black-Scholes PDE in the variables (s, t) for each value of z:

1

2
σ2s2vss + rsvs + vt − rv = 0, for Ti−1 < t < Ti.

As in the continuous case, this is equivalent to

1

2
σ2ξ2wξξ + rξwξ + wt − rw = 0.

We also need to work out the appropriate reformulation of the jump condition (10.2) in terms of w. First
observe that

ZTi+ = max(ZTi−, STi) = max(1, STi/ZTi−)ZTi− = max(1, ξTi−)ZTi−,

and therefore

ξTi+ =
STi
ZTi+

=
STi

max(1, ξTi−)ZTi−
= min(1, 1/ξTi−)ξTi− = min(ξTi−, 1).

The continuity requirement becomes

v(STi , ZTi−, Ti−) = v(STi , ZTi+, Ti+)

ZTi−w(ξTi−, Ti−) = ZTi+w(ξTi+, Ti+)

= max(1, ξTi−)ZTi−w(min(ξTi−, 1), Ti+),

or simply that

w(ξ, Ti−) = max(1, ξ)w(min(1, ξ), Ti+)

=

{
ξw(1, Ti+) for ξ > 1

w(ξ, Ti+) for ξ ≤ 1.

The following figure illustrates.

In order to implement this, it would be very helpful to arrange for ξ = 1 to be a grid point.

Terminal Conditions

Assume that T = TR is a record time. Then the final value is

v(s, z, T) = z − s = z(1− ξ),

and therefore we would use
w(ξ, TR) = 1− ξ

103

to get finite difference calculations started.
If the last record time is prior to the terminal time, TR < T , then for TR ≤ t ≤ T we have Zt = ZTR . The

option’s value final value is (ST − ZTR)−, essentially a put on the stock, with exercise price ZTR . Its value
for at TR is therefore vPut;T,K=ZTR . This is the value we should use for v(STR , ZTR+, TR+). This can be
expressed in the form ZTRw(ξTR , TR+). We should start our calculations with the values from this formula,
immediately apply the jump condition to obtain the values of w(ξTR , TR−) and then proceed with the finite
difference calculations until we reach the next largest record time, implement the jump conditions again,
and continue.

Boundary Conditions

Problem 10.A will develope boundary conditions to use for ξ = 0. We focus on an approximate formula for
ξ → ∞. Suppose at least one record time is still to come, Ti−1 < t < Ti. (Otherwise we have an exact
formula, above.) On this time interval Zt = ZTi−1 is constant, so for ξ = St/Zt → ∞ means that s = St is
very large compared to ZTi−1 . That means the probability is nearly 1 that STi will be greater than ZTi−1 ,
in which case ZTi = STi . So with near certainty the value at Ti will be

VTi = ZTiw(1, Ti) = STiw(1, Ti).

Therefore the value at t will very nearly equal

Vt = Stw(1, Ti).

Thus for Ti−1 < t < Ti, an approximate formula as ξ →∞ is

zw(ξ, t) ≈ sw(1, Ti) = zξw(1, Ti),

or simply
w(ξ, t) ≈ ξw(1, Ti).

As we calculate for values of t decreasing through this interval we will have the value of w(1, Ti) available for
use. We note that Wilmott [61] has suggested using the derivative boundary condition wξ(ξ, t) = 1

ξw(ξ, t)
on the upper boundary ξ = ξb. We see that this is consistent with our approximate formula.

10.4 Explicit Formula

When ZT is continuously sampled, explicit formulas exist for all the lookback versions described above; see
Conze and Viswanathan [13]. This is because the joint distribution of (ZT , ST) conditional on Ft is known.
So if VT = φ(ZT , ST) for some function φ(z, s), we can (in principal) work out a formula for Vt based on the
risk-neutral valuation formula

Vt = ertE[φ(ZT , ST)e−rT | Ft]

by integrating φ with respect to the known conditional distribution of (ZT , ST), provided we can get through
the details of the integration. In this section we want to chart our way through these calculations, and work
out at least some of the particulars.

We are interested in the conditional joint distribution function

P (St ≤ y and ZT ≤ θ | Ft).

The conditioning makes this dependent on s = St and z = Zt, and we are only interested in 0 < s ≤ z. Since
z = Zt ≤ ZT , the above probability is 0 if θ < z. And if z ≤ θ, then ZT ≤ θ if and only if supt≤u≤T Su ≤ θ.
Thus the dependence on z is only whether or not z ≤ θ. We will assume t = 0, Z0 = S0 = s and work out

F (y, θ) = P (ST ≤ y and ZT ≤ θ).

(For the general case of s < z and 0 < t < T we just multiply by 1[0,θ](z) and replace T by T − t.)

104

Notice that F (y, θ) = 0 if θ < s, and since ST ≤ ZT it is constant in y ≥ θ. So we will concentrate on
0 < y ≤ θ and 0 < s ≤ θ.

Because (as (10.4) will confirm) F is continuous we have

F (y, θ) = P (ST ≤ y and ZT ≤ θ)
= P (ST < y and ZT < θ)

= P (ST < y and T < T θ), using the notation of Section 3.2

= E[1(0,y)(ST); T < T θ].

This is the expected terminal value of an up & out barrier option with terminal value function φ(s) = 1(0,y)(s).
So F (y, θ) = erT v(s, 0) where v is the pricing function for that barrier option. We can find v by working
out the development of Section 3.2. We observe that since y ≤ θ the truncated terminal value (3.5) is again
1(0,y)(s).

1(0,y)(s) = 1(0,1)(s/y) = v(2)(s/y, T),

Therefore vθ(s, t) = v(2)(s/y, t), and so

v(s, t) = v(2)

(
s

y
, t

)
−
(s
θ

)κ
v(2)

(
θ2

sy
, t

)
.

We deduce the following formula for the joint distribution function.

F (y, θ) = N
(
−d(2)

(
s

y
, 0

))
−
(s
θ

)κ
N
(
−d(2)

(
θ2

sy
, 0

))
; 0 < y ≤ θ, 0 < s ≤ θ. (10.4)

Observe that we get F = 0 for s = θ as well as in the limit as y ↓ 0 (because d(2) →∞).
In principle f(y, θ) = ∂y∂θF (y, θ) would produce a formula for the joint density of (ST , ZT). Then, for a

given lookback terminal value function φ we calculate the initial price of the option (if S0 = s, Z0 = 0) by
working out the integral

v(s, 0, 0) = e−rTE[φ(ST , ZT)] = e−rT
∫∫

D

φ(y, θ)f(y, θ) dy dθ,

where D = {(y, θ) : 0 < y ≤ θ, s ≤ θ}.

10.4.1 The Mean of the Maximal Price

To illustrate, consider again the floating strike put. We want to find

v(s, 0, 0) = e−rTE[ZT − ST] = e−rTE[ZT]− s.

105

So all we really need is E[ZT]. By taking y = θ in (10.4) we get the distribution function of ZT :

FZT (θ) = P (ZT ≤ θ)

=

{
0 if θ ≤ s
N
(
−d(2)

(
s
θ , 0
))
−
(
s
θ

)κN (−d(2)
(
θ
s , 0
))

if s < θ.
(10.5)

Recall from (2.23) that κ = 1− 2r
σ2 , and that

d(2) (u, 0) =
ln(u) + (r − 1

2σ
2)T

σ
√
T

.

It will be more convenient to work in terms of

ζ = log(ZT /s) and x = log(θ/s).

This makes ζ a nonnegative random variable, with distribution function

F ζ(x) = P (ζ ≤ x) = N
(
x− (r − σ2/2)T

σ
√
T

)
− e−κxN

(
−x− (r − σ2/2)T

σ
√
T

)
.

Since ZT = seζ , what we are after is

v(s, 0, 0) = e−rTE[ZT]− s = s(e−rTE[eζ]− 1).

We could differentiate to find an expression for the density of ζ, but it is more convenient work directly in
terms of the distribution functions. We can do that with the following “integration by parts” formula, valid
for any random variable X with a continuous distribution function FX(x) and any real numbers b, c:

c

∫ ∞
b

ecx(1− FX(x)) dx = E[ecX ; X ≥ b]− ecb(1− FX(b)). (10.6)

If we apply the formula with c = 1 and b = 0 we obtain

E[eζ] = 1 +

∫ ∞
0

ex
(
1− F ζ(x)

)
dx

= 1 +

∫ ∞
0

ex
(

1−N
(
x− (r − σ2/2)T

σ
√
T

))
dx+

∫ ∞
0

e(1−κ)xN
(
−x− (r − σ2/2)T

σ
√
T

)
dx

= 1 +

∫ ∞
0

ex
(

1−N
(
x− (r − σ2/2)T

σ
√
T

))
dx+

∫ ∞
0

e(1−κ)x

(
1−N

(
x+ (r − σ2/2)T

σ
√
T

))
dx.

Each of these integrals can be resolved by using (10.6) again in conjunction with (2.26). For instance, in the
first integral we can write

FX(x) = N
(
x− (r − σ2/2)T

σ
√
T

)
where X = σ

√
T Y + (r − σ2/2)T and Y is a standard normal random variable. So in (10.6) we can write

E[eX ; X ≥ 0] = e(r−σ2/2)TE

[
eσ
√
T Y ; Y ≥ − (r − σ2/2)T

σ
√
T

]
,

for which we can use the formula (2.26). This leads to a formula for the first integral, and the second is
worked out in a similar manner. One has to be careful in working out the details, but the point is that we
do a strategy to produce a formula. When worked out this leads to

v(s, 0, 0) = s ·
{
e−rT

(
1− σ2

2r

)
N
(

(−r + σ2/2)T

σ
√
T

)
+
σ2

2r
N
(

(r + σ2/2)T

σ
√
T

)
−N

(
−(r + σ2/2)T

σ
√
T

)}
.

This is the formula only for the initial price of the put, t = 0 with Z0 = s. The general formula for 0 < t < T
the formula also involves z = Zt; you can find it as (14) in [13]. Our point here is just to illustrate that it is
possible to work out such formulas with the tools we have developed. References such as [13] and [45] which
develop the formulas in more generality resort to some additional devices to simplify the development.

106

10.5 Problems

Problem 10.A
If we write the value function for a lookback put in the form v(s, z, t) = z w(ξ, t) with ξ = s/z, then the
appropriate boundary values for w when ξ = 0 are

w(0, t) = e−r(T−t).

Explain why this is correct, regardless of whether Zt is a discretely or continuously sampled maximum stock
price up to time t.

. AA

107

Chapter 11

Monte Carlo Methods

Finite difference methods can be used effectively in up to 3 space dimensions. But they become unwieldly
beyond that point. (We have seen that path-dependent options for a single stock lead us to 2 space di-
mensions. If we were to consider multiple stocks that would also produce multiple space dimensions.) The
conventional wisdom is that in higher dimensions Monte Carlo methods are preferable. (See Tavella [56].)
Here we offer a brief look at the general idea of Monte Carlo methods.

According to the risk-neutral formula, the price v of an option (for given current stock price St0 = s0)
involves the mean of a certain random variable:

v = e−r(T−t0)E[X].

The plan is to generate a sequence X1, X2, . . . , Xn of i.i.d. random variables each with the distribution of
X, and then take the sample mean as an approximation to the true mean m = E[X]:

m ≈ 1

N

N∑
1

Xi.

The validity of this is based on the Strong Law of Large Numbers, which says that 1
N

∑N
1 Xi → m almost

surely as N →∞. Before using this for an option pricing calculation we will talk about the idea in general.

11.1 Some History

The earliest known instance of a Monte Carlo calculation seems to be in 1777 when the French scientist
Georges-Louis Leclerc, Comte de Buffon, flipped a coin 2084 times as part of an experiment to resolve the
St. Petersburg problem. The St. Petersburg problem involves an infinite mean, so that is not a very good
example for us. But he also designed an experiment intended to produce an approximate value for π. This
has come to be known as Buffon’s Needle Problem: rule parallel lines on the floor separated by a units. Take
a “needle” or piece of wire ` units long and throw it randomly on the floor. The problem is to find the
probability that the wire will land crossing or touching one of the lines. The answer (for a “short” needle:
` < a) works out to be

p =
2`

aπ
.

In 1864, Asaph Hall, an astronomer at the U. S. Naval Observatory, decided to carry out the the experiment.
He engaged a recovering sea caption (O. C. Fox) to repeatedly throw a wire on a floor with lines ruled on
it and count the number of times the wire landed on a line. Each throw of the wire determines a random
variable Xi according to

Xi =

{
1 if it lands on a line

0 if it lands not touching a line.

108

Using the estimate p ≈ 1
N

∑N
1 Xi leads to an approximate value of π. One of his experiments used ` = 3

and a = 4, and throwing the wire N = 530 times he found that
∑N

1 Xi = 253. This implies that

2 · 3
4 · π

≈ 253

530
, which says that π ≈ 2 · 3 · 530

4 · 253
= 3.14229 · · ·

The technique was suggested again in a more serious context by S. Ulam, a mathematician working on
the development of the atomic bomb at Los Alamos durring World War II. He said that it first occurred to
him as a quick way to estimate the probability of a successful solitare hand. In 1946 he proposed it to John
von Neumann as a potentially useful tool for the Los Alamos work, and the two of them started working out
details. All the work at Los Alamos was very secret, so the work needed a code name. Von Neumann chose
“Monte Carlo” as the code name, after the mediterranean city famous for it’s gambling casinos. Ulam later
wrote that he thought the catchy name contributed to the spread of interest in the technique.

By the 1950’s Monte Carlo calculations were being used by the Rand Corporation for a number of
strategic studies. This required a source of random numbers, but computers were still in their infancy and
not yet ready for that task. To fill that need the Rand Corporation developed an electronic system for
producing random integers (digits 0, 1, . . . , 9 actually) and used it in 1955 to publish a large collection of
random numbers as the book, A Million Random Digits with 100,000 Normal Deviates, which you
can still find in many university libraries. Since then much has been written about computer algorithms to
generate random numbers. It is an important topic, since bad random numbers will lead to bad Monte Carlo
results. We will not delve into that, but will rely on the algorithms built into Matlab’s rand and randn

commands to produce random numers for us.

11.2 Accuracy

The sample mean

m̂ =
1

N

N∑
1

Xi

produces an approximation to the true value m that we seek. It will never be exact. Moreover m̂ is itself
a random variable. If we repeat the calculation with new values of Xi we will get a different result for m̂.
Thus it is important to understand some basic estimates related to the accuracy of the results.

Suppose for the moment that we know the true mean and variance of the Xi.

m = E[Xi], σ2 = Var[Xi] = E[(Xi −m)2].

We choose N and do our Monte Carlo experiment to obtain a value for m̂ = 1
N

∑N
1 Xi. If we want our

estimate m̂ to be accurate to within a specified error,

|m− m̂| < ε,

what is the probability that we succeeded? To calculate this exactly would be a difficult calculation using
the distribution of Xi, much harder than calculating the mean m itself. But we can use the Central Limit
Theorem to get an approximate probability. The Central Limit Theorem says that

1

σ
√
N

N∑
1

(Xi −m)⇒ Y,

where Y is a standard normal random variable. In particular this means that

P (−δ < 1

σ
√
N

N∑
1

(Xi −m) < δ)→
∫ δ

−δ

1√
2π
e−y

2/2 dy = 2N (δ)− 1.

Now −δ < 1
σ
√
N

∑N
1 (Xi −m) < δ is equivalent to

|m̂−m| < δσ√
N
.

109

So we have the approximation (for large N)

P

(
|m− m̂| < δσ√

N

)
≈ 2N (δ)− 1.

This is used in the following way. Pick a probability or “confidence level,” say p = .95. That determines
a corresponding value of delta, in our case δ ≈ 1.96 corresponds to 2N (δ)− 1 = .95. We can then say with
“confidence level of p” that |m− m̂| < ε = δσ/

√
N . I.e.

m̂− ε < m < m̂+ ε.

The interval [m̂ − ε, m̂ + ε], with ε = 1.96σ/
√
N is called the 95% confidence interval for m. A higher

probability requires a larger δ which means a bigger confidence interval (i.e. less accuracy). Probability of
.99 uses δ = 2.5758. Probability of .5 uses δ = .6745. (These values are calculated from δ = N−1(1+p

2) using
Matlab’s norminv to evaluate N−1.) Here is a graph of p = 2N (δ) − 1, with the point corresponding to
p = .95 marked.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p

δ

The value of ε corresponding to p = .5 is sometimes called the probable error. This value, ε = .6745σ/
√
N ,

is the error level for which |m− m̂| > ε and |m− m̂| < ε are equally likely. Thus it constitutes an indication
of the size of the typical error.

Whatever confidence level p we select, we see that the accuracy ε = δσ/
√
N is proportional to σ/

√
N .

To get one more digit of accuracy (with the same confidence level) we would need to increase N by a factor
of 100. If σ = 1 for instance and we wanted to know m to within ε = 10−5 with 95% confidence, we would
need to use about 38 billion samples! The upshot is that it is hard to get high accuracy from a Monte Carlo
calculation.

11.3 Variance Reduction

There are various refinements that can be made that improve this accuracy somewhat. We will illustrate
two of them below using a simple example.

110

11.3.1 An Example

If U is a uniformly distributed random variable on [0, 1], then

π = E[4
√

1− U2] =

∫ 1

0

4
√

1− u2 du. (11.1)

We will do a Monte Carlo calculation to estimate π from this formula. Suppose we use rand to generate a
vector of N = 1000 independent realizations Ui. We form Xi = 4

√
1− U2

i and then compute the sample
mean. The result of one such calculation was

3.1779 =
1

N

N∑
1

Xi.

In order to use this to produce a confidence interval we need the variance of X = 4
√

1− U2. This is easy to
work out (σ2 = 32

3 − π
2 ≈ .7971) but we want to be able to do these calculations without needing to work

out means and variances by hand. An effective technique is to use the sample variance

σ̂2 =
1

N − 1

N∑
1

(Xi − m̂)2. (11.2)

in place of the true variance σ2. (The Strong Law of Large Numbers implies that σ̂2 → σ2 as N → ∞.)
Using σ̂ we can produce approximate confidence intervals. The following simple code will analyze a list of
random samples, returning the sample mean and printing a brief summary, including the 95% confidence
interval, in the command window.

MCanl.m

function m = MCanl(data)

%MCanl(data) returns the sample mean and prints a simple

%summary of the data and 95% confidence error.

N=length(data);

m=mean(data);

v=var(data);

fprintf(’\nSample variance=%g\n’,v)

fprintf(’Probable error=%g\n’,.6745*sqrt(v/N))

fprintf(’95%% interval=[%g, %g]\n’,1.96*sqrt(v/N)*[-1,1]+m)

end

Using it for the Xi of our test calculation we found σ̂ = .7746 and so calculated the 95% confidence interval
to be

[3.12333, 3.23244].

This gives us the first digit of π with reasonable certainty. To get the next digit we need to increase N by a
factor of 100, to N = 105. Repeating the calculation with this N gives m̂ = 3.1399 with a 95% confidence
interval of

[3.13435, 3.14545].

We got our second digit, but we can see that further accuracy improvements will be increasingly expensive.
This is typical of Monte Carlo calculations. They will effectively produce a ball-park figure but do not easily
produce high accuracy results.

111

11.3.2 Antithetic Variates

It is natural to simply increase N to improve the accuray of our Monte Carlo estimate. But the basic
acccuracy relation ε = δσ/

√
N suggests a second approach: reduce σ. One way to do that is the use of

antithetic variates. In our example above, observe that if U is unifromly distributed on [0, 1], then so is

Ũ = 1 − U . If we formed X̃ = 4
√

1− Ũ2, then X and X̃ will have the same mean and variance. If we use
both of them at the same time,

Y =
1

2
(X + X̃),

it turns out that while the mean is still the same, the variance is significantly less. If we write it this way

X = f(U), where f(u) = 4
√

1− u2

Y = g(U), where g(u) =
1

2
(4
√

1− u2 + 4
√

1− (1− u)2),

we can see why. Since both means are π, the variances are

Var[X] =

∫ 1

0

(f(u)− π)2 du ≈ .7971

Var[Y] =

∫ 1

0

(g(u)− π)2 du ≈ .1097.

The variances measure how far the functions f and g are from the constant function with value π. If we look
at the graphs of f and g we can see that g has a “flatter” graph than f ; it stays closer to the mean overall.
That accounts for its smaller variance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f(u)
g(u)
π

A trial calculation with this antithetic approach, using N = 1000, produced m̂ = 3.1444 with a sample
variance σ̂ = 0.108762 and a 95% confidence interval [3.12392, 3.1648]. This is a significant improvement
over the original approach.

The features that make this effective are

1. the symmetry of the uniform distribution: Ũ = 1− U has the same distribution as U itself, and

112

2. the monotonicity of f(u) = 4
√

1− u2.

When we form X = f(U) and X̃ = f(Ũ) = f(1− U) using the same copy of U , X decreases as U increases
while X̃ increases as U increases. So in Y = 1

2 (X + X̃) the increasing/decreasing effects counteract each
other, at least partially, producing a random variable with a “flatter” dependence on U and therefore a
smaller variance. We will see that these same features are present for some option pricing problems, which
means that in those cases an antithetic variant approach will be useful.

11.3.3 Control Variates

Another technique to obtain improved accuracy from a Monte Carlo calculation of the mean of X is to find
another random variable X̃ whose mean mX̃ = E[X̃] we do know and such that X ≈ X̃. We then use Monte
Carlo to estimate

Z = X − (X̃ −mX̃). (11.3)

The mean is still the same, E[Z] = E[X]− E[X̃] +mX̃ = E[X]. The variance

Var[Z] = Var[X − X̃]

will be small if X ≈ X̃ is a good approximation. The approximating random variable X̃ is called a control
variate. The success of this approach depends on finding a good choice for X̃.

In our example, we can easily calculate all the moments of U :

E[Un] =

∫ 1

0

un du =
1

n+ 1
.

So if X̃ is a polynomial function of U we will be able to calculate its mean. One idea is to simply use
X̃ = 4(1 − U2) as an approximation to X = 4

√
1− U2. We have mX̃ = 8/3. Trying this (with N = 1000)

we obtained m̂ = 3.1650, σ̂ = .34967 with a 95% confidence interval of [3.12835, 3.20165]. That’s better than
the basic approach (with N = 1000) but not as good as as the antithetic calculation.

To make the point that the use of a control variate can be effective, consider

X̃ =
4

81
√

3
(142− 19U + 16U2 − 200U3 + 224U4 − 128U5).

This is the result of using the fifth degree Taylor polynomial approximation to f(u) = 4
√

1− u2 at u0 = 1
2 .

We are able to work out this approximation for our simple example, but we would not be able to do
anything comparable in a more complex setting. However it will illustrate the power of the method when
a good approximating control variate is available. Using the moments of U above we can work out that
mX̃ = 742

135
√

3
. Applying Monte Carlo to Z as in (11.3), with N = 1000, we obtained m̂ = 3.1398 with a 95%

confidence interval of [3.13381, 3.14588]. This is significantly better than the other estimates, but that is to
be expected with such a “fine-tuned” control variate.

The following script will carry out all four of the calculations we have described for our example (11.1).

pimc.m

%Demonstration script for Monte Carlo Estimation of pi.

U=rand(1,N);

%

disp(’Basic Method:’)

X=4*sqrt(1-U.^2);

MCanl(X)

%

disp(’Antithetic Method:’)

Y=(X+4*sqrt(1-(1-U).^2))/2;

MCanl(Y)

113

%

disp(’Simple Control Variate:’)

Z=X-4*(1-U.^2)+8/3;

MCanl(Z)

%

disp(’High Order Control Variate:’)

Z5=X-4*(142-19*U+16*U.^2-200*U.^3+224*U.^4-128*U.^5)/(81*sqrt(3))+742/(135*sqrt(3));

MCanl(Z5)

Once a choice of X̃ has been made, a further refinement is to use θX̃ instead of X̃, where the parameter
θ is chosen to minimize the variance Var[X − θX̃]. The optimal choice of θ can be shown to be θ∗ =
Cov[X, X̃]/Var[X̃] and this can be estimated once the collection of random samples for X and X̃ have been
generated, and then used in the final estimation of E[Z] = E[X − θ∗(X̃ − mX̃)]. We will not develop
that refinement further. There are several other techniques for improving the accuracy of Monte Carlo
calculations, which you can read about in the many references on the method.

11.4 A European Call

We now turn our attention to the use of Monte Carlo to estimate option prices, starting first with a European
call. Of course we have no need of a Monte Carlo calculation here. For the case of a general terminal value
function φ(s) our finite difference methods are quite effective, and for piecewise linear φ(s) we have explicit
formulas. But developing a Monte Carlo calculation here is a simple first step toward the more complicated
cases of path-dependent options.

v(s, 0) = e−rTE[φ(ST) |S0 = s].

We just need a sequence of random variables with the distribution of

ST = se(r−σ2/2)T+σWT .

This is easy. Matlab’s randn will generate a vector of independent samples of standard normal random
variables Y . Then

√
TY will have the distribution of WT , which we can use in the above formula for ST . So

the random variable whose mean we want is

X = e−rTφ(se(r−σ2/2)T+σ
√
TY).

When φ(s) is monotone (as it is for both calls and puts) we should get some benefit from an antithetic
approach. Since Ỹ = −Y is also standard normal, we should average X above with

X̃ = e−rTφ(se(r−σ2/2)T−σ
√
TY).

The following script will execute both methods for a call.

EuroCall.m

%Script for basic and antithetic Monte Carlo evaluation of a European call option.

Y=randn(1,N);

ST=s*exp((r-sigma^2/2)*T+sigma*sqrt(T)*Y);

STa=s*exp((r-sigma^2/2)*T-sigma*sqrt(T)*Y);

VT=max(0,ST-K);

VTa=max(0,STa-K);

disp(’Basic Method:’)

MCanl(exp(-r*T)*VT)

disp(’Antithetic Method:’)

MCanl(exp(-r*T)*(VT+VTa)/2)

disp(’Exact Value:’)

BSCall(s,T,K)

114

Trying this out, we see that the antithetic version is generally better, especially for larger s values (where
the monotonicity of φ(s) = (s−K)+ is stronger).

11.5 Path-Dependent Options

Finally let’s consider path-dependent options. Since these are more difficult to address by finite differences,
we might take a Monte Carlo approach more seriously here. The Monte Carlo calculations are also more
complicated, but still quite manageable.

To be specific, let’s look at an Asian option, starting from time t = 0 with S0 = s. If YT =
∫ T

0
Su du, we

are interested in the contingent claim with terminal value VT = φ(ST , YT) for some function φ(s, y):

V0 = e−rTE[φ(ST , YT) | Ft],

We will need to generate a sequence of random trials for (ST , YT). For a single realization of this pair we
will need a discretely sampled path for St:

S = [S0, St1 , . . . , StM].

Recall the formula St = se(r−σ2/2)t+σWt . We start with Y = [0, Y1, . . . , YM] using M independent standard
normal random variables Yi. For ∆t = T/M we can build a discretely sampled Brownian path as

W0 = 0, Wt1 =
√

∆t Y1, Wt2 =
√

∆t (Y1 + Y2), WtM =
√

∆t

m∑
1

Yi,

Matlab’s cumsum(Y) command will compute the vector of cumulative sums the entires of a vector Y,
so this is easy to do: W=sqrt(dt)*cumsum(Y). This gives us a discretely sampled Brownian path W =
[W0, Wt1 , . . .WtM]. Let T = [0, t1, . . . , tM]. We can now form a discretely sampled St path:

S = se(r−σ2/2)T+σW,

the exponential being applied coordinate-by-coordinate. The last entry of S will be ST . For YT we simply
use

YT =

∫ T

0

St dt ≈ dt*trapz(S).

The preceding produces just one realization of the pair (ST , YT). For a Monte Carlo calculation we need
a large number N of independent realizations. You might think to just write a for-loop to repeat the above
N times. But Matlab is designed so we can avoid that. The commands cumsum and trapz will accept a
matrix argument, in which case they will operate on each column individually. So if we start with an M ×N
matrix of independent stand normal random variables, we can skip the for-loop and get all N copies of ST
and YT at once. The following script demonstrates this, using our known solution v(6) for demonstration
purposes.

Asian.m

% Script for Monte Carlo calculation of Asian option.

% Values for r, sigma, T, s, N, and M must be prescribed.

dt=T/M;

W=sqrt(dt)*cumsum([zeros(1,N);randn(M,N)]);

S=s*exp((r-sigma^2/2)*linspace(0,T,M+1)’*ones(1,N)+sigma*W);

ST=S(M+1,:); YT=trapz(S)*dt;

%

VT=ST-r*YT; %v(6)(s,y,T) for demonstration

MCanl(exp(-r*T)*VT)

exp(-r*T)*s %known true value = v(6)(s,0,0)

115

Lookbacks would be quite similar, just with the maximum (or minimum) of St in place of the integral.
For the average or floating price cases (both Asians and lookbacks) the terminal value is monotone in YT
(or ZT) so that an antithetic modification should produce some improvement. For Asians, the price for a
geometric average makes a good choice of control variate (because an explicit pricing formula is available).
American options are particularly hard to approach with a Monte Carlo calculation; it is not apparent how
the optimization of the stopping rule can by included in a simulation-based approach. Even so, there have
been serious efforts to price American options by Monte Carlo. The survey paper of P. Boyle, M. Broadie,
and P. Glasserman [8] is a good place to start if you want to pursue the applications of Monte Carlo to
option pricing further.

11.6 Problems

Problem 11.A
Based on the results of the Hall-Fox needle throwing experiment, find the 95% confidence interval for p = 2`

aπ .
(Use the sample variance (11.2).) Based on that what would be a 95% confidence interval for π itself?

. Fox

Problem 11.B
Modify the script Asian.m to estimate the price of the average strike Asian call. Use it to estimate the price
at t = 0 if S0 = 10 if the parameters are r = .03, σ = .2, S0 = 10 and the option expires at T = 2. Run it
more than once. (Turn in a listing of your script and the results you obtained.)

. MCAsian

Problem 11.C
Modify Asian.m to estimate the price of the lookback option which pays 1 if ZT < K and 0 otherwise. Try
it out with r = .03, σ = .2, K = 20, and T = 2, assuming that S0 = 10. Run your script more than once.
This is the same as the price of an certain barrier option. Based on that calculate the exact value of the
price. (Turn in a listing of your script and the results you obtained.)

. MCBarrier

116

Appendix: Matlab

There are many resources for those just getting started with Matlab. The Matlab software includes a
number of video “demos”. (The Getting Started with Matlab demo is a good one if you’ve never used
Matlab before.) If you want a written introduction, Mathworks has a Getting Started Guide [39] which is
available as a pdf file for free. (Chapter 2 covers what a beginner would need.) A particularly nice book is
[24]. Extensive description of individual commands is available from “Product Help” under Matlab’s help
menu1.

We will assume the reader is familiar with basic command syntax and the use of the command window.
Our purpose here is to give brief descriptions of those features that are important for our use of Matlab in
this book.

A .1 M-Files: Functions and Scripts

Entering commands one-by-one in the command window is fine for simple tasks, but for more complicated
tasks you will want to write programs, which are called m-files for Matlab. These can be one of two types:
scripts and functions. The files themselves are simply text files and can be edited with any text editor, or
with the file editor that is part of Matlab.

A .1.1 Scripts

A script is nothing more than a predefined sequence of commands, typed just as you would enter at the
command line. The commands are simply read from an m-file and executed when you type the name of
the m-file at the command line. The only special feature is the provision for including comments. Matlab
treats anything that follows the percent sign % as a comment which will be ignored when the commands are
executed. This is how we include documentation in an m-file. The initial group of comment lines at the top
of the file play a special role; they are what Matlab will display if you ask for help on the m-file. Putting a
concise description of the m-file’s purpose here can be very helpful later if you need a quick reminder about
how to use it. We saw one example of a script on page 36. Here is another.

rune.m

%Script for test calculations using efd to calculate call values.

%Initial and boundary values provided by u0(*), uL(*) and uh(*).

%xL and xH are converted form sL and sH.

[junk,x]=hf(0,[sL,sH],0,0); % Convert [sL,sH] to xL, xH.

xL=x(1);

xH=x(2);

% Run explicit method

efd

% Compute true values: BSCall and convert to heat variables

[junk,s]=fh(0,x,0,0);

true=hf(BSCall(s,T,K),s,0,T);

1Or online at http://www.mathworks.com/help/techdoc/index.html.

117

% Display results

plot(x,true,’r’)

hold on

plot(x,u,’*’)

% Print summary

title(’Explict Finite Difference Results (in heat variables)’)

hold off

fprintf(’\n[xL,xH]=[%g , %g]\n’,xL,xH)

fprintf(’dx=%g, using N+1=%g x-intervals.\n’,dx,N+1)

fprintf(’T=%g, dt=%g, using M=%g time steps.\n’,T,dt,M)

fprintf(’alpha=%g\n’,alpha)

fprintf(’Minimal M for stability=%g\n’,ceil(2*T/(dx^2)))

fprintf(’Maximum error=%g\n\r’,max(abs(u-true)))

The initial block of comment lines are what will be displayed if you type help rune at the command line.
This particular script is what we used to carry out the test calculations for the explicit method in Section 4.3.
Before running this script we make sure (from the command line) that the variables sigma, r, and K are
defefined as global and that all the required variables have been given the desired values: T, N, M, sL, sH.
We run the script by just entering efd at the command prompt. The script will produce values for xL, xH

before invoking efd. It obtains the true solution from BSCsll and conversion to heat variables by hf. The
results are plotted and some summary information is printed in the command window. When it is finished,
u will contain the results and all the output will have been displayed on the screen.

It is important to note the semicolon after each of the executable statements. This keeps Matlab from
printing the result of that line to your screen each time it is executed. Leaving them out can be helpful for
debugging, but you really do want them for your finished version. Note that a script can call another script;
here rune calls efd.

A .1.2 Functions

A function m-file defines a new named function, which takes prescribed inputs and returns an output deter-
mined by the calculations contained in the m-file. Once defined you can use the new named function just
as you would any other Matlab function. As an example, here is an m-file to define the function BSCall

which evaluates the standard Black-Scholes formula (3.2).

BSCall.m

function c=BSCall(s,tau,K)

%BSCall(s,tau,K) evaluates the standard Black-Scholes

%formula. s (which may be a vector) is the stock price(s), tau is

%the time to expiry, K is the exercise price. The volatility sigma

%and the risk-free rate r are supplied as global variables.

global sigma r

d1=(log(s/K)+(r+sigma^2/2)*tau)/(sigma*sqrt(tau));

d2=d1-sigma*sqrt(tau);

c=(s.*erfc(-d1/sqrt(2))-K*exp(-r*tau)*erfc(-d2/sqrt(2)))/2;

%Note that erfc(-x/sqrt(2))/2 gives the standard normal distribution

%function.

The first line of the file identifies this m-file as the defintion of a function BSCall, and specifies the variable
names which will be used inside the m-file to refer to the input arguments (s, tau, K) and output value
(c). The Black-Scholes forumla also requires values for sigma and r. Since these parameters will always be
the same throughout any calculation we have chosen to make these global variables (see Section A .3). That
makes them available to all m-files without having to pass them back and forth as arguments all the time.

118

The initial group of of comment lines (%...) following the function line at the top of the file are what
Matlab will display if you type help BSCall at the command line.

The executable part of BSCall is only three lines long, and should be easy to recognize as implementing
the formula from (3.2). As the comment lines explain, this code allows the input argument s to be a vector
of values, in which case the output c will be the corresponding vector of values of the Balck-Scholes formula.
In the notation of . . . , if s = [s1, . . . , sn] then the output of BSCall with tau = T − t will be the vector of
values

[vCall,K(s1, T − t), . . . , vCall,K(sn, T − t)].
In other words you get a whole vector of values of vCall,K with a single call to BSCall – you don’t need to get
them one at a time with a for-loop. This is ability to “vectorize” caluculations is one of Matlab’s great
strengths, and should be taken advantage whenever possible!

A typical use of BSCall is in the script efd above. Note that as invoked in efd the middle argument was
T while in BSCall.m the middle variable was called tau. You can put whatever you want in the argument
positions when you invoke a funtion. Those values will be placed into the argument variables (s,tau,K) for
use inside the m-file. In general the variables used inside the m-file are not acessible from the command
line or other m-files. If at the command line you have defined variables such as s,K,d1, . . . with the same
names as those in the m-file, the command line versions and m-file versions are completely separate. You
might think of the m-file as a separate little world whose only connection to the outside world is what is
passed in as arguments and what it sent out as the returned value. (Global variables are the one exception to
this; we will talk more about that below.) Any variables in an m-file, like d1,d2,c above, must be provided
with values by the sequence of commands in the m-file. They are just empty when the m-file is evoked, and
cleared out when the m-file is done. (Permanent variables are an exception to this; see below.)

A .2 Some General Advice

We collect here some general advice for programming in Matlab.

• Wherever possible use vector operations instead of for-loops. Scalar operations are vectorized by using
the “dot” form of the command. For instance if we have two vectors x= [x(i)] and y= y(i)], and we
want to compute z= [z(i)] = [x(i) · y(i)], the way to do it is z=x.*y, not with a for-loop. There will
be times when there is no alternative to a for-loop, but avoid them when you can.

• Include explanatory comments in your programs; it can make modifying them later much easier.

• Calculations that you will use repeatedly in several places are best written as separate m-files. Breaking
up a project into smaller tasks will help organize your project.

• When you start developing a program, first organize what you want it to do on paper. Decide on
variable names, how you might want to make repeated tasks into separate m-files.

• As you write your m-files, especially if you are using commands you are not too familiar with, it is
good to experiment and test each line of code from the command line and with simple examples, to be
sure it behaves the way you think it does. Don’t try to write the whole thing at once and expect it to
work properly.

You need to make sure Matlab can find the m-files you have written. It will always look in your current
working directory. The command pwd will tell you what the working directory is. You can change it by
navigating to wherever you want using the directory window on the left side of the standard Matlab display.
(Or using the cd command, which works the same way as the UNIX command of the same name.) So if you
create a directory for each project you are working on, you can put the m-files you create for that project in
that folder. However some m-files you will want to use on more than one project. For instance we will want
to use hf.m, fh.m, BSCall.m for several different projects. So instead of putting new copies of them in each
project folder, you can put them in a separate reference directory and then add that directory to the search
path, which is the list of directories that Matlab searches when looking for m-files. (You can do this from
Set Path under the File menu, or from the command line using the addpath. See Matlab’s documentation
for more details.)

119

A .3 Global and Persistent Variables.

The variables defined inside a function m-file are not accessible from outside. So if the calculation the m-file
performs requires some parameters, then those parameters would need to be included in the variables used
to call the function. However there is a way around this using global variables. For instance, the parameters
r and σ occur in many of our calculations so we might find it convenient to avoid having to always include
them in the list of arguments for every function. If we declare these to be global variables then they will
be acessible from the command line and any m-file (which also declares them to be global). To make these
global variables, at the command line enter the following command.

global sigma r

Then include a similar global statement at the top of any m-file you want to have access to these variables.
We saw an example of the in BSCall.m above. As another example, the following function gives the terminal
value of a call option, which depends on the parameter K.

vT.m

function v=vT(s)

%v0(s) evaluates the terminal conditions, in financial variables,

%for the Black-Scholes equation.

global K

v=max(s-K,0); %for a call

end

This function is going to be called by one of our finite difference methods, but the code for that doesn’t
need to even know about the existence of K — only vT needs to know about that. The global K statement
gives the function access to the same value of K as the command line, so if you give the declaration global

K at the command line and give it a value (before vT is called) then vT will use that value when it is called.
Note that the global K statement needs to be issued at the command line as well as being in the text of
any m-file which needs to use it.

Any variables that are defined inside a function m-file (like d1 and d2 in BSCall above) will be cleared
from memory at the end of each call to the function. In some cases you may want to preserve the values of
internally defined variables from one function call to the next. A good example is PSOR.m in Chapter 8 —
there were several variables N, e, d, DF, tol, w, dw, count whose values we wanted to preserve from
one call to the function to the next. We accomplished this by declaring those variables to be persistent, and
writing the code to avoid re-creating them on subsequent calls.

120

Appendix: Itô’s Formula and
Martingales

This appendix briefly summarizes facts about Brownian motion, Itô’s formula, martingales. For more on
these topics readers might consult [36], [45], [50] or other more advanced texts on stochastic processes.

Brownian motion, Wt, is a stochastic process with these properties.

1. W0 = 0.

2. For any 0 ≤ s < t, Wt −Ws is a normal random variable with mean 0 and variance t− s.

3. For any increasing selection of times, 0 = t0 < t1 < · · · < tn, the increments ∆Wti = Wti −Wt−1
are

independent of each other.

4. As a function of t ≥ 0, Wt is continuous.

We generally denote by Ft the σ-algebra generated by Wu for 0 ≤ u ≤ t. For t < u the third bullet above
says that Wu−Wt is independent of Ft. We can take advantage of that to compute many of the conditional
expectations encountered in these notes, using a general separation formula for conditional expectations.
Suppose we want

E[X | Ft].

If we can write X as a function of some other random variables,

X = g(Y,Z),

where Y is measurable with respect to (i.e. dependent on) Ft and Z is independent of Ft, then the conditional
expectation is given by

E[g(Y, Z) | Ft] = h(Y),

where
h(y) = E[g(y, Z)].

In words, we average out the Z-dependence of g(y, Z) to get a function h of y alone, and then plug the random
variable Y into that. (A special case is g(y, z) = yz for which the above leads to E[Y Z | Ft] = Y E[Z].) This
is used several places in the notes above: Sections 2.6.2, 9.1, and 10.3. (The calculation on page 10 could
also have been expressed this way.)

The notion of stochastic integrals with respect to Wt and other stochastic processes allows the develop-
ment of a stochastic calculus, with which calculations with stochastic processes can be carried out in much
the same way that “freshman calculus” is used to work with conventional deterministic functions. Itoô’s
formula provides a sort of stochastic chain rule, which is the key to many calculations using stochastic cal-
culus. This is usually expressed in terms of stochastic differentials. We simply state Itô’s formula as formal

rule. Suppose f(x1, . . . , xn) is a C2 function and X(1)(t), . . . , X
(n)
t are stochastic processes with stochastic

differentials dX
(i)
t . Then f(Xt) = f(X(1)(t), . . . , X

(n)
t) has a stochastic differential given by

df(Xt) =

n∑
i=1

fxi(Xt) dX
(i)
t +

1

2

n∑
i=1

n∑
j=1

fxi,xj (Xt) dX
(i)
t dX

(j)
t .

121

When the dX
(i)
t can be expressed in terms of dWt and dt, the products dX

(i)
t dX

(j)
t are determined from

simple product rules such as dt dWt = dt dt = 0, dWt dWt = dt. In general dX
(i)
t dX

(j)
t is the differential of

the quadratic covariation process. For an accurate understanding, consult an advanced stochastic processes
text such as references such as [27] or [50].

122

Bibliography

[1] F. AitSahlia and P. Carr, American options: a comparison of numerical methods, in [49], pp. 67–87.

[2] B. Alziary, J.-P. Decamps, and P.-F. Koehl, A P.D.E. approach to Asian options: analytical and
numerical evidence, Journal of Banking and Finance, v. 21 (1997), pp. 613-640.

[3] S. Asmusssen and P. W. Glyn, Stochastic Simulation and Analysis, Springer, NY, 2007.

[4] A. Bensousan, On the theory of options pricing, Acta. Appl. Math. 2 (1984), pp. 139–158.

[5] T. Björk, Arbitrage Theory in Continuous Time, Oxford Univ. Press, Oxford, 1998. This is
the text for Math 5725.

[6] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Economy v. 81
(1973), pp. 637–654.

[7] J. F. Botha and G. F. Pinder, Fundamental Concepts in the Numerical Solution of Dif-
ferential Equations, Wiley, New York , 1983.

[8] P. Boyle, M. Broadie, and P. Glasserman, Monte Carlo methods for security pricing, J. Economic
Dynamics and Control 21 (1997), pp. 1267–1321.

[9] P. Brandimarte, Numerical Methods in Fianace: A MATLAB-based Introduction, Wiley,
2002. Discusses and illustrates a wide range of numerical techniques in finance in the specific context
of Matlab.

[10] M. Brennan and E. Schwartz, The valuation of American put options, J. Finance 32 (1977), pp. 449–
462.

[11] M. Broadie and J. Detemple, Recent advances in numerical methods for pricing derivative securities,
in [49], pp. 43–66.

[12] P. Carr, R. Jarrow, and R. Myneni, Alternaitve characterization of American put options, Math. Fi-
nance v. 2 (1992), pp. 87–106.

[13] A. Conze and Viswanathan, Path dependent options: the case of lookback options, J. Finance v. 41
(1991), pp. 1893–1907.

[14] R. W. Cottle, J. S. Pang, and R. E. Stone, The Linear Complementarity Problem, Academic
Press, Boston, 1992.

[15] J.-C.Duan, G. Gauthier and J.-G. Simonato, A Markov chain method for pricing contingent claims,
in Stochastic Modeling and Optimization with Applications in Queues, Finance and
Supply Chains (Yao, Shang, Zhou editors), Springer, 2003.

[16] J.-C.Duan, G. Gauthier, and J.-G. Simonato, American option pricing under GARCH by a Markov
chain approximation, Journal of Economic Dynamics and Control Volume 25, Issue 11, November
2001, pp. 1689–1718.

123

[17] C. M. Elliott and J. R. Ockendon, Weak and Variational Methods for Moving Boundary
Problems, Pitman, Boston, 1982.

[18] E. Fournié, J. M. Lasry, and N. Touzi, Monte Carlo methods for sotchastic volatility models, in [49],
pp. 146–164.

[19] A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free
boundary, J. Funct. Anal. 18 (1975), pp. 151–176.

[20] G. Fusari and A. Roncoroni, Implementing Models in Quantative Finance: Methods and
Cases, Springer, Berlin, 2008.

[21] Geman and Yor, Pricing and hedging double barrier options: a probabilistic approach, Math. Finance
6 (1996). pp. 365–378.

[22] D. J. Higham, An Introduction to Financial Option Valuation, Cambridge Univ. Press,
2004.

[23] D. J. Higham, Nine ways to implement the binomial method for option valuation in Matlab, SIAM
44 (2002), pp. 661–677.

[24] D. J. Higham and N. J. Higham, Matlab Guide, SIAM, Philadelphia, 2005.

[25] J. C. Hull, Options, Futures, & Other Derivatives (4th edition), Prentice-Hall, NJ, 1989.

[26] J. Huang and J.-S. Pang, Option pricing and linear complementarity, J. Comp. Finance, 2 (1998),
pp. 31–60.

[27] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,
North-Holland, Amsterdam, 1989.

[28] K. Itô and H. P. McKean, Diffusion Processes and their Sample Paths, Springer-Verlag,
Berlin, 1974.

[29] S. D. Jacka, Optimal stopping and the American put, Math. Finance 1 (1991), pp. 1–14.

[30] P. Jaillet, D. Lamberton and B. Lapeyre, variational inequalities and the pricing of American options,
Acta Appl. Math. 21 (1990), pp. 263–289.

[31] L. Jiang, Mathematical Modeling and Methods of Option Pricing, World Scientific, Sin-
gapore, 2005.

[32] F. John, Partial Differential Equations (3rd edition), Springer-Verlag, New York, 1978.

[33] H. E. Johnson, An analytic approximation for the American put price, J. Fin. Quant. Anal. 18 (1983),
pp. 141–148.

[34] I. Karatzas, On the pricing of American options, Appl. Math. Opt. 17 (1988), pp. 37–60.

[35] I. Karatzas, Optimization problems in the theory of continuous trading, SIAM J. Cont. Opt. 27
(1989), pp. 1221-1259.

[36] I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer, New York, 1998.

[37] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and
their Applications, Academic Press, New York, 1980.

[38] H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in
Continuous Time, Springer, New York, 2001.

[39] Matlab Getting Strated Guide, The Mathworks, Natic, MA, 2009. Available at

124

http://www.mathworks.com/help/techdoc/matlab_product_page2.html

[40] H. P. McKean, A free boundary problem for the heat equation arising from a problem in mathematical
economics, Industrial Management Review 6 (1965), pp. 32–39.

[41] R. Menyi, Pricing of the American option, Ann. Prob. 2 (1992), pp. 1-23.

[42] R. C. Merton, Theory of rational option pricing, Bell J. Econ. Management Sci. 4 (1973), pp. 141–183.

[43] K. G. Murty and F.-T. Yu, Linear Complementarity, Linear and Nonlinear Programming,
Internet Edition:

http://ioe.engin.umich.edu/people/fac/books/murty/linear_complementarity_webbook/

[44] P. van Moerbeke, On optimal stopping and free boundary problems, Arch. Rat. Mech. Anal. 60 (1976),
pp. 101–148.

[45] M. Musiela and M. Rutkowski, Martingale Methods in Financial Modeling, Springer, Berlin,
1998.

[46] M. Parkinson, Option pricing: the American put, J. Business 50 (1997), pp.21–36.

[47] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems (2nd
edition), Wiley, New York, 1967.

[48] L. C. G. Rogers and Z. Shi, The value of an Asian option, J. Appl. Prob. 32 (199), pp. 1077-1088.

[49] L. C. G. Rogers and D. Talay (ed.s), Numerical Methods in Finance, Cambridge Univ. Press,
1997.

[50] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales (2 vol.s),
Cambridge Univ. Press, 2000.

[51] D. M. Salopek, American Put Options, Addison Wesley Longman, Essex, 1997.

[52] R. Seydel, Tools for Computational Finance, Springer-Verlag, Berlin, 2002.

[53] W. Shaw, Modelling Financial Derivatives with Mathematica, Cambridge Univ. Press,
1999.

[54] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference
Methods, Clarendon Press, Oxford, 1985.

[55] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (2nd ed.), Springer-Verlag, New
York, 1993.

[56] D. Tavella, Quantitative Methods in Derivatives Pricing: an Introduction to Compu-
tational Fiance, J. Wiley, N.Y., 2002.

[57] D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method,
J. Wiley & Sons, New York, 2000.

[58] R. J. Vanderbi and M. Ç. Pinar, Pricing American Perpetual Warrants by Linear Programming,
SIAM Rev. v. 51 (no.4) 2009, pp. 767–782.

[59] R. S. Varga, Matrix Iterative Analysis, Springer-Verlag, Berlin, 2009.

[60] D. V. Widder, The Heat Equation, Academic Press, New York, 1975.

[61] P. Wilmott, Derivatives: The Theory and Practice of Financial Engineering, Wiley,
Chichester, 1998.

125

[62] P. Wilmott, S. Howison, and J. Dewynne, The Mathematics of Financial Derivatives: A
Student Introduction, Cambridge Univ. Press, 1995.

[63] Y,-I. Zhu, X. Wu, and I.-L. Chang, Derivative Securities and Difference Methods, Springer,
NY, 2004.

126

