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Preface

The careful study of stochastic processes, including Brownian motion and stochastic differential equations,
is usually a subject one only approaches after acquiring a solid foundation in measure theory and functional
analysis. However, because it has become an important tool in theoretical finance, there are many students
who need an understanding of this material, but who don’t have the background necessary for a traditional
mathematically rigorous development. Numerous introductory texts on mathematical finance try to provide
some loose intuitive explanation of these ideas. Sometimes, however, those explanations are so vague as to
be of little use, and of no help to those students who want to pursue a more careful study or application in
the future.

This primer has grown out of my efforts to provide a more accurate introduction for such students.
It is intended to provide a quick introduction to some basic ideas from probability theory and stochastic
processes, including martingales and stochastic integrals. I believe that it is possible to communicate the
main ideas relatively accurately, if one is willing to suppress the mathematician’s impulse to leave no detail
overlooked and no assertion unproven. For instance, it is possible to understand what probability measures
and σ-algebras are, without stating or proving the Caratheodory extension and monotone class theorems.
We simply need to ask students to accept some assertions without proof and let some technical details go
unresolved, just as we do in a freshman’s first exposure to calculus. I do cut plenty of corners, such as
ignoring exceptions on sets of measure zero, and leaving things like progressive measurability unexplained.
I will prove almost nothing rigorously. Thus what we offer here is an overview or user’s guide. It is not
meant to be quoted as a reference1. Even so, we will try to be as accurate as possible, within the scope of
our discussion. The student who does go on to study these topics more carefully will find, I hope, that the
presentation here is mathematically justifiable after all.

Chapters 1—4 concern the ideas needed for discrete time models (e.g. binomial trees). Chapters 5—7
will discuss Brownian motion and stochastic calculus for continuous time processes. A few problems are
included at the end of each chapter. They are labeled with a “P” (to distinguish them from problems in
other course materials.) For instance problem P.6.C is problem C from Chapter 6 of this primer. When we
refer to “the text” we mean the book [Bö] by Björk which is the main text for our course, Math 5725.

If you are enrolled in Math 5725 at Virginia Tech you may save a copy of this primer as a pdf file,
and print it for your personal use. I retain the copyright, and do not give permission for redistribution or
duplication in any form.

Martin Day; Blacksburg, Virginia, June 2004

1If in some future work of your own you need to cite a source for any of the material described here, use some of the references
listed at the end of this primer, or some of the many other fine texts available.
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Chapter 1

The Basics

1.1 Mathematical Representation of Randomness

We are used to thinking about deterministic mathematical quantities. By this we mean an object x (rep-
resenting a real number, or a matrix, or a function, or . . . ) which has a fixed or definite value. Even if x
is the solution of some equation which we have not yet solved, we still view it as having a value which is
prescribed by the equation, although we may not have discovered what the actual value is yet. But when we
talk about a quantity X as being random the fundamental idea is that its value is not fixed or determined at
all, but could take one of many possible values: X = x1, or X = x2, or . . . . Eventually one of the possible
values of X will occur as the realization of X, but we view the mechanism that determines the realized value
to be unpredictable. Until the realization actually occurs we can only ascribe probabilities to the various
possibilities. Examples might be the flip of a coin, next year’s total rainfall, or tomorrow’s closing price for
a share of IBM. All of these are things that we would call random, whose status changes from unknowable
to known with the passage of time. Although there may be trends and past information which strongly
influence the probabilities that we ascribe to the various possible realizations, we can not say with certainty
what the actual value of X will be until the event in question actually happens. Such a random quantity X is
typically called a random variable. The theory of probability provides concrete mathematical structures that
allow our ideas about random quantities and statements about probabilities to be given precise meanings,
so that theoretical statements can be proven with mathematical rigor.

We need to deal with situations in which there are many different random variables which may be related
to each other in complicated ways. Our mathematical formulation begins with a “master set” Ω whose
elements ω account for all conceivable outcomes, one (or more) for each possibility. Each ω ∈ Ω is what we
might call a possible state of the world – each ω determines specific values for all random variables under
consideration. Thus random variables are actually functions defined on Ω. For instance X : Ω → R is the
function which specifies the specific value X(ω) which is realized by X for each each possible state of the
world ω. The other basic ingredient is an assignment of probabilities to subsets A ⊆ Ω, usually indicated
P (A).

For a simple illustration suppose we want to describe a situation in which all the randomness boils down
to the outcome of flipping two coins, C1 and C2. We could take Ω = {a, b, c, d} where

a corresponds to C1=H and C2=H,

b corresponds to C1=H and C2=T,

c corresponds to C1=T and C2=H, and

d corresponds to C1=T and C2=T.

Then Ω accounts for all the possible states of the world. We would let C1 be the function described by
C1(a) = C1(b) = H and, C1(c) = C1(d) = T. The definition of C2 in a similar manner is should be clear.
Thus we have two random variables Ci : Ω → {H,T}. If the coins are assumed “fair” (i.e. heads and tails
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are equally likely, and neither coin’s outcome influences the other’s) then we would assign probabilities by
P (A) = 1

4×(the number of elements in A).
This is all very simple when the number of different possibilities that we need to account for is finite

(or countable). But as soon as we allow random variables for which any real number is a possible value
(normally distributed random variables, for instance) then Ω will be at least as large as the real numbers
R, and often much larger. This raises difficult issues for our intent to assign probabilities P (A) to subsets
A ⊆ Ω. For most situations it turns out to be impossible to define P (A) for all A ⊆ Ω without violating
some of the basic rules that probabilities should satisfy (see below). The resolution of this is that we can
only define P (A) for certain subsets A. The collection of those A ⊆ Ω for which P (A) is defined will be what
we call a σ-algebra. We will usually denote a σ-algebra with a script letter, like F . Together F and P must
satisfy a number of properties, listed below. The point at the moment is that unless A ∈ F we view P (A)
as undefined.

1.2 Properties of Probability Measures, σ-Algebras, and Random
Variables

We list here the essential properties that a probability space (Ω,F , P ) must have. These are the combined
definitions of a probability measure P and a σ-algebra F of subsets of Ω.

• Ω ∈ F , and P (Ω) = 1.

• ∅ ∈ F , and P (∅) = 0.

• For any A ∈ F , P (A) is a real number between 0 and 1.

• If A ∈ F then Ac ∈ F also, and P (Ac) = 1− P (A).

• If A1, A2, . . . is a sequence of sets in F then ∪∞1 Ai ∈ F . If in addition the Ai are disjoint (i.e. Ai∩Aj = ∅
when i 6= j), then P (∪∞1 Ai) =

∑∞
1 P (Ai).

Regarding a random variable X : Ω → R, we require the following property, which we describe by saying
that X is F-measurable:

• For every real number c, the set {ω ∈ Ω : X(ω) ≤ c} is in F .

There is a significant body of theory about the existence of σ-algebras with probability measures defined on
them. This is the subject of measure theory1. We will not concern ourselves with such technical issues – we
will just take for granted the existence of the (Ω,F , P ) that we need. However we do need to have some
understanding of σ-algebras for a different reason. They are essential in understanding how we work with
conditional probabilities and conditional expectations, i.e. situations in which we have partial but incomplete
information about the state of the world. We will say more about this in §2.1 below.

We may choose F in various ways, depending on the setting. In our simple example two fair coins above,
F can simply consist of the collection of all subsets of Ω = {a, b, c, d}. If Ω = R the standard choice of F
is the collection B(R) of the Borel sets. This is the smallest σ-algebra of subsets of R which includes the
half-open intervals (−∞, c]. Every open set is in B(R) as well as every closed set. If fact every set you can
explicitly write down, is a Borel set. However one can prove that there exist subsets of R which are not
Borel sets.

The measurability property of a random variable X says that

{ω : X(ω) ∈ A} ∈ F ,

whenever A = (−∞, c]. It can be proven that this automatically extends to any set A ⊆ R which is a Borel
set. Thus it remains true for any open or closed set A, not just intervals as explicitly required above.

1You can learn about measure theory in Math 5225 or Math/Stat 6105
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1.3 A More Complicated Example

Here is an example with more complexity2. Take Ω = [0, 1), the unit interval on the real line. Each ω ∈ Ω
has a decimal representation:

ω = .d1d2d3 . . . dn . . . (1.1)

(Some numbers have more than one representation, for instance .5000 . . . = .49999 . . . In such cases we agree
always to use the representation with repeating 0 s, not repeating 9 s.) This defines a whole sequence of
random variables Xn : Ω→ {0, 1, . . . , 9} given by Xn(ω) = dn in the decimal representation (1.1) of ω. For
a probability measure P on Ω we will use the usual length of an interval:

P ([a, b)) = b− a, assuming [a, b) ⊂ [0, 1). (1.2)

Now we face one of the technical problems of measure theory. We have only said what P (A) is if A is an
interval. But what if A is not an interval? We have to identify a collection F that has all the properties listed
above and includes all intervals, and we need to extend the definition of P (A) to all such A ∈ F in a way
that satisfies all the properties listed above and maintains (1.2) for the intervals themselves. The resulting
P is called Lebesgue measure on [0, 1) and the sets in F are the Borel sets3 in [0, 1), mentioned above. We
will simply be satisfied with the assurance that that all these technical details can be worked out.

Now lets think about what we have created. Consider one of the random variables, say X2. This is a
random variable whose value can be any of the single digits 0, 1, . . . 9. To calculate the probability that it
takes a specific value, say P (X2 = 3), we first find the associated set of ω:

A = {ω : X2(ω) = 3} = [.03, .04) ∪ [.13, .14) ∪ . . . [.93, .94)

and then compute P (A):

P (X2 = 3) = P ([.03, .04) ∪ [.13, .14) ∪ . . . [.93, .94))
= .01 + .01 + · · ·+ .01 = .1

Although the sets are more complicated in general, you should be able to convince yourself that P (Xn =
j) = .1 for all n ≥ 1 and every j = 0, . . . , 9. Thus each Xn has the probabilistic structure of a fair “10-sided
dice”. But the story doesn’t end here. We can specify the values of any number of the Xi simultaneously
and ask for the probability. For instance if each of j1, . . . jm is a single digit, then we would calculate

P (X1 = j1, X2 = j2, . . . , Xm = jm)

by identifying the set B of ω so that X1(ω) = j1 and X2(ω) = j2 . . . and Xm(ω) = jm, and then calculating
P (B). After a little thought you should see that

B = [b, b+ 10−m),

where b is the number .j1j2 . . . jm. Thus P (B) = 10−m = (.1)m, which is what we expect if the X1, . . . , Xm

are “independent”, i.e. don’t influence each other’s outcomes.
Next suppose we want to know the probability that

lim
n→∞

1
n

n∑
i=1

Xi = 4.5,

a possibility that depends on the full sequence of digits in (1.1), not just the first few. This defines a set

L = {ω ∈ Ω : lim
n→∞

1
n

n∑
i=1

Xi(ω) = 4.5}.

2This example is adapted from [Bi], where it was based on dyadic expansions and coin tossing. We have converted it to
decimal expansions, since they are more familiar.

3In treatments of real analysis, such as Math 5225, a larger collection F called the Lebesgue sets is typically used.
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Although L is not an interval or even a union of intervals, it does turn out that L ∈ F (i.e. is a Borel set)
and that P (L) = 1, which is what we might have expected, since 4.5 is the average of the possible values
0, . . . , 9. (That P (L) = 1 is consequence of the Strong Law of Large Numbers, stated in Chapter 4 below.)

There are many different ways to assign probabilities to the sets A ⊆ [0, 1) which are in A ∈ F . Another
would be to take

P̃ ([a, b)) =
∫ b

a

f(x) dx,

where f(x) can be any (Riemann integrable) function f(x) ≥ 0 on [0, 1) with
∫ 1

0
f(x) dx = 1. For instance

take f(x) = 2x. This leads to a different probability measure P̃ on the same Ω and F . With respect to this
measure the Xi will no longer behave like independent fair dice. For instance,

P̃ (X1 = 0) = .01, P̃ (X2 = 0) = .091, and P̃ (X1 = 0 and X2 = 0) = .0001. (1.3)

(You can check my calculations; see Problem P.1.A.) We have not changed what the random variables Xi,
as functions of ω ∈ Ω. We have only changed the assignment of probabilities to sets of ω. But this does
change how we would describe the Xi.

1.4 Standard Constructions and Quantities

If Ω is something simple and explicit, like our examples so far, we can often define P (A) directly. For instance
if Ω = {1, 2, 3 . . . } , the positive integers, we can define a P using any infinite series

∑∞
1 pi = 1 with pi ≥ 0:

P (A) =
∑
i∈A

pi.

Or, if Ω is a set on which we know how to integrate (e.g. Ω ⊆ R or Ω ⊆ Rn for instance) and f(ω) ≥ 0 is an
integrable function with

∫
Ω
f(ω) dω = 1, then we can start with a definition like that of P̃ at the end of the

last section, using f as a probability density function:

P (A) =
∫
A

f(ω) dω, (1.4)

and appeal to measure theory to help us get it extended to some suitably large σ-algebra F of subsets. You
should observe that in this case knowing the value of P ({ω}) for each singleton set A = {ω} is not enough
to determine P (A) for infinite sets A. Regardless of the choice of density f in (1.4) we will find P ({ω}) = 0.
But for larger sets (such as intervals) P (A) genuinely depends on the choice of f . This is one reason why in
general we must assign probabilities to sets A ⊆ Ω, not simply to individual ω ∈ Ω.

Whatever (Ω,F , P ) is, there are some standard probabilistic constructions and definitions that we need
to understand. The first is the idea of the distribution µX of a random variable X. This refers to the
assignment of probabilities to sets of possible values of X (as opposed to subsets of Ω): for a (Borel) subset
C ⊆ R,

µX(C) = P (X ∈ C).

We would calculate this from P by µX(C) = P (A) where A = {ω ∈ Ω : X(ω) ∈ C}. Figure 1.1 is an effort
to illustrate this.

For instance in our example with a sequence of 10-sided dice, each of the random variables X1, X2, . . .
has what we would describe as the uniform distribution on {0, 1, 2, . . . 9}. Also, the Xi all have the same
distribution, even though they are quite different as functions Xi : Ω→ {0, 1, . . . 9}. This makes an important
point: the distribution of a random variable tells you what the probabilities of the outcomes of that single
random variable X are, but it does not tell you what the underlying Ω is, how X : Ω→ R is actually defined,
or how its probabilities are related to those of other random variables.
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Figure 1.1: The distribution of a random variable

If we say that Y is a standard normal random variable4, that means that its distribution is described by

µY ([a, b]) = P (a ≤ Y ≤ b) =
∫ b

a

1√
2π
e−x

2/2 dx. (1.5)

The function φ(x) = 1√
2π
e−x

2/2 appearing above is the standard normal density function5. By knowing it
(even though we might not know Ω, F , or P ) we can calculate probabilities of things which depend only on
the value of Y .

Also associated with a random variable X are several numbers that describe its distribution: its mean,
expectation, or expected value

m = E[X];

its variance
σ2 = E[(X −m)2];

its standard deviation
σ =

√
E[(X −m)2];

its moments
mk = E[Xk], k = 1, 2, . . . ;

its characteristic function
µ̂X(s) = E[eisX ], s ∈ R;

its distribution function
FX(x) = P (X ≤ x);

and others which we need not mention here. Notice that all of these are expected values of some function of
X: E[g(X)] for some g(x). So we will discuss expectations in general.

If we have an explicit description of the distribution of a random variable, then there are explicit formulas
for the expectation E[g(X)]. For our examples above,

E[g(X2)] =
9∑
j=0

g(j)/10 in the setting of (1.1) and (1.2),

E[g(Y )] =
∫ ∞
−∞

g(y)φ(y) dy in the setting of (1.5).

(There is nothing special about the standard normal density φ here. It can be replaced by whatever the
appropriate density for Y might be.) However there is a generalized definition of the expected value that
does not depend on the specific form of the distribution. This is important theoretically because there do

4A common notation for this is to say that Y has an N [0, 1] distribution. More generally Y has an N [µ, σ] distribution if

the density function in (1.5) is replaced by 1√
2πσ2 e

−(x−µ)2/2σ2
.

5Note that φ is a density for the distribution of Y , not for P itself as in (1.4).
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exist random variables for which neither summations or Riemann integrals are adequate to describe their
expectations. The general definition of the expectation of a random variable (or a function of) is the same
as the definition of the measure-theoretic integral

E[g(X)] =
∫

Ω

g(X(ω)) dP (ω)

that you would learn about in Math 5225, or 6105. We can pursue that no further here. For our purposes
it is enough to know that there is a generalized notion of integral (over Ω with respect to P ) that defines
E[X] =

∫
Ω
X(ω) dP , and obeys all the usual properties of integrals that you are used to. If X,Y : Ω → R,

are both random variables (and therefore F-measurable), then

• E[aX + bY ] = aE[X] + bE[Y ] for any constants a, b.

• If A ∈ F and 1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A

, then E[1A] = P (A).

• X(ω) ≤ Y (ω) for all ω implies E[X] ≤ E[Y ].

• |E[X]| ≤ E[|X|].

There is one other qualification to the definition of E[X] which concerns the possibility that an ambiguous
∞−∞ somehow arises in the calculation. To avoid this we will insist that X be integrable, which means
that

E[|X|] <∞.
(It turns out that if X ≥ 0 then E[X] can always be defined, possibly with value +∞, so E[|X|] always
makes sense.) We should emphasize that E[X] depends on both the random variable X and the probability
measure P . Changing either will change the value of E[X], or even make it undefined!

Just as we often want to calculate integrals over specific sets, e.g.
∫ b
a
g(t) dt or

∫
[a,b]

g(t) dt, we sometimes
want to do the same thing with an expectation. The usual notation is E[X;A], where A ⊆ Ω (and A ∈ F).
There are a couple equivalent ways to express the same quantity:

E[X;A] = E[X · 1A] (see above for the notation 1A) (1.6)

=
∫
X(ω)1A(ω) dP (ω)

=
∫
A

X(ω) dP (ω)

Notice that

X(ω) · 1A(ω) =

{
X(ω) if ω ∈ A
0 if ω /∈ A

is simply a new random variable that agrees with X on A but has been set to 0 outside A. We should add
to the list properties of expectations the usual “additivity” with respect to A in E[X;A]:

• E[X;A ∪B] = E[X;A] + E[X;B], provided A,B ∈ F and A ∩B = ∅.

1.5 Problems

P.1.A Check the calculations in (1.3).

P.1.B A normal random variable X with mean µ and standard deviation σ (i.e. with distribution N [µ, σ])
is one whose distribution is described by the density function

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

6



Verify the following calculations:∫ ∞
−∞

xp(x) dx = µ; mean of X∫ ∞
−∞

x2p(x) dx = σ2 + µ2; second moment∫ ∞
−∞

eθxp(x) dx = e
1
2σ

2θ2+µθ; moment generating function. (1.7)

You are to work to integrals out by hand. Do not appeal to tables, formulas that you may have learned
elsewhere, or software. The point is for you to verify that these formulas for the normal density are indeed
correct. You may take for granted that

∫∞
−∞ p(x) dx = 1 for all σ > 0 and all µ. The standard normal

distribution function (associated with µ = 0 and σ = 1) is

Φ(x) =
∫ x

−∞

1√
2π
e−x

2/2 dx (1.8)

Express the distribution function for X (arbitrary µ and σ) in terms of Φ.

P.1.C Suppose X has distribution N [µ, σ] as in P.1.B. Consider the random variable

S = S0e
X ,

where S0 is a positive constant. (This is often called a log-normal random variable. The Black-Scholes model
of stock prices that we will consider in Chapter 3 will produce stock price random variables with this kind
of distribution.)

1. Show that
E[S] = S0e

µ+ 1
2σ

2
.

You may use the formulas of problem P.1.B.

2. Find a probability density function for S, i.e. a function f(s) so that for all real numbers c

P [S ≤ c] =
∫ c

−∞
f(s) ds.

3. Using S0 = 1, µ = 2, and σ = 1/2 produce a plot of f(s) for −1 ≤ s ≤ 20.

P.1.D A Cauchy random variable is one whose distribution is given by a density of the form

f(x) =
1
π

u

u2 + x2
,

for some parameter u > 0. Explain why a Cauchy random variable does not have finite moments. What is
the distribution function of such a random variable?
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Chapter 2

Conditioning

2.1 Time and Knowledge: Partial Information

In the context we have described so far, our point of view is that initially we don’t know which of the possible
states of the world ω ∈ Ω will be realized but we can ascribe probabilities P (A) to sets of possibilities. Later,
one particular ω will emerge as the realized state of the world, and so a specific value X(ω) will be realized
for a random variable X. However we often need to deal with situations where the realization of ω occurs
progressively over time, not all at once. We deal with this using σ-algebras and conditional expectations.

For starters, imagine that we have two random variables Z and W defined on the same probability space
(Ω,F , P ). Initially (at time 0) we know nothing about which state of the world will be realized. At time
s > 0 we are told the value of Z, but not W . Later, at time t > s, the rest of the realization occurs and the
value of W becomes known. For instance suppose that at time s we learn that Z = 9. Then we know that
any ω with Z(ω) 6= 9 is no longer a possibility. Whatever state of the world ω is ultimately realized, our
information that Z = 9 tells us that the possibilities are now limited to those in

C9 = {ω ∈ Ω : Z(ω) = 9}.

Within C9 we may still find that W can take many different possible values, and at time s we do not know
which of them the actual realization will be. So at time s we can still only ascribe probabilities to different
subsets A ⊂ Ω (A ∈ F), and expected values to random variables like W whose value is still uncertain, but
now we would ascribe different probabilities and expected values because of the partial knowledge we have
from Z = 9. Moreover, our new probabilities and expectations at time s will depend on what value of Z
was actually revealed at time s; we would compute different numbers if we had learned that Z = 3 instead
of Z = 9. So the probabilities and expectations that we would compute based on what we learn about Z
at time s will also depend on the actual value of Z(ω), and so describe some function φ(Z(ω)) retaining
some dependence on ω. What we are beginning to describe are conditional probabilities and conditional
expectations.

Perhaps the most unnatural part of this topic is the use of σ-algebras to describe a specified amount of
information. To introduce this consider another random variable which is a function of Z, R(ω) = Z(ω)2

for instance. When time s arrives and the value of Z is realized, then we will also know with certainty the
realized value of R. We might say that the information we obtain by knowing Z(ω) is sufficient for us to
know R as well. Another way to say it is that a set of ω described in terms of the value of R(ω) can also be
described in terms of Z(ω). For instance

A = {ω : R(ω) ≤ c}

is the same as

A =

{
{ω : Z(ω) ∈ [−

√
c,
√
c]} if 0 ≤ c,

{ω : Z(ω) ∈ ∅} if c < 0.

The subsets of Ω that can be descirbed in terms of Z(ω), i.e. the sets of the form

A = {ω : Z(ω) ∈ B}
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for some (Borel) set B ⊆ R, form a σ-algebra. This is the σ-algebra generated by Z, often denoted σ(Z). We
will refer to it as G for the time being. What we have said above is that if a random variable like R = Z2 is
a function of Z, then R is G measurable. It turns out that the converse is true, namely if R is G-measurable,
then R is a function of Z: R(ω) = f(Z(ω)) for some function f(·). In other words, for R to be determined
by the information we obtain by knowing Z is the same as saying the R is measurable with respect to the
σ-algebra G = σ(Z). This may seem like a cumbersome way to say that R(ω) = f(Z(ω)), but it is the point
of view that allows the rules for manipulating conditional expectations to be expressed in succinct form; see
Section 2.3 below.

To understand how the σ-algebra G is different from F you might think of it this way. Z partitions Ω
into clumps which we will call “Z-cells1”, each cell consisting of those ω for which Z(ω) has a single common
value. For instance our C9 above is one such cell. Any random variable like our R = Z2, whose value is
known to us once the value of Z is known, must be constant on each such cell. A set of the form

A = {ω : R(ω) ≤ c}

must be a union of the cells associated with Z. Each Z-cell

Cx = {ω ∈ Ω : Z(ω) = x}

must be entirely contained in A (if x2 ≤ c) or else completely disjoint from A (if x2 > c). For R to be
a random variable, sets of the form A must be in our σ-algebra F . But to be a random variable with the
additional property that its value is determined by the value of Z, the sets A must not only be in F but must
also be a union of the Z-cells. I.e. all sets of the form of A above must belong to a more limited collection
of sets than F . This more limited collection of sets is our σ-algebra, G. We write G ⊆ F to indicate that G
is a more limited collection of sets. The intuitive idea is that a set A is in G if A ∈ F and A can be written
as a union of Z-cells.

The σ-algebra G is the mathematical object that describes for us exactly what information we will have
about states of the world at time s. At time s we will know which of the Z-cells the final state of the world
will be taken from. For any subset A ∈ G, at time s we will be able to give a definitive “yes” or “no” answer
to whether the realized state of the world will be found in A.

A simple example may help. Suppose Ω consists of all pairs ω = (i, j) where i and j are integers between
1 and 6, and for any A ⊆ Ω, P (A) = 1

36× (the number of elements in A). We will let F consist of all subsets
of Ω. Let Z((i, j)) = i+j and W ((i, j)) = i−j. In Figure 2.1 we have illustrated Ω as a 6×6 rectangular grid
of dots in the plane, with i horizontally and j vertically. The Z-cells are just the backward diagonals of the
grid, separated by lines in the figure. What we called C9 above is {(3, 6), (4, 5), (5, 4), (6, 3)}, the boxed-in
backward diagonal in the figure. The sets in G = σ(Z) are just those that are unions of some selection of the
backward diagonals. The main (forward) diagonal D = {(1, 1), (2, 2), . . . (6, 6)} is an example of a set which
is in F but not in G.

Continuing with this simple example, lets go on to the issue of revising the probabilities and expectations
based on the value of Z that is revealed to us at time s. Suppose for instance that at time s we find that
Z = 9. Now this tells us that the state of the world ω must belong to our Z-cell C9, but beyond that
we can’t yet say which ω ∈ C9 it actually is. What if I am now, at time s, asked for the probability of
A = {ω : W (ω) ≥ 3}? The ω ∈ A are the solid dots of the figure, another example of a set which does
not beling to G. We want to take advantage of the information that Z(ω) = 9 provides and calculate a
more informed probability of W ≥ 3. What we are asking for here is the value of the conditional probability
usually denoted P (W ≥ 3| Z = 9). The standard definition is

P (W ≥ 3| Z = 9) =
P (W ≥ 3 and Z = 9)

P (Z = 9)
=

1/36
4/36

=
1
4
. (2.1)

Thus P (W ≥ 3| Z = 9) represents the fraction of the probability of Z = 9 that corresponds to W ≥ 3. (For
comparison, P (W ≥ 3) = 1/6.)

1The terminology of “cells” or is not standard - you won’t find it used anywhere else but here because it is not quite adequate
as a definition to base a rigorous development on. But it is very convenient for the intuitive understanding that we are trying
to develop.
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Figure 2.1: Example, with grading for G-sets

If we change the value for Z in these calculations, the value of the conditional probability will change.
For instance you can check that

P (W ≥ 3| Z = 8) =
1
5

and P (W ≥ 3| Z = 10) = 0.

Comparing this to (2.1) we see that P (W ≥ 3| Z = k) does depend on k. If we are asked for P (W ≥ 3| Z)
(without a sepcification of k), we should say that the answer depends on the value of Z(ω). If Z = 9 the
conditional probability is 1/4. If Z = 10 the conditional probability is 0. We can put all the possibilities
together by saying

P (W ≥ 3| Z) =



0 if Z(ω) ≤ 4
1
4 if Z(ω) = 5
1
5 if Z(ω) = 6
1
3 if Z(ω) = 7
1
5 if Z(ω) = 8
1
4 if Z(ω) = 9
0 if Z(ω) ≥ 10

Viewed this way, P (W ≥ 3| Z) is a function of ω, another random variable! We really should write
P (W ≥ 3| Z)(ω). You might think of it this way:

ω 7→ Z(ω) = k 7→ P (W ≥ 3| Z = k) = P (W ≥ 3| Z)(ω).

Moreover, P (W ≥ 3| Z) is a G-measurable random variable because its value is determined by the value of
Z(ω). The usual notation is to write P (W ≥ 3| G) instead of P (W ≥ 3| Z), or P (W ≥ 3| G)(ω) when we
want to make the ω-dependence clear. Again, we view G as the object that actually specifies the information
we have by knowing the value of Z.

As a prelude to the general definition of the next section, lets look at what we have said another way.
Let Y be the random variable we called P (W ≥ 3| G) above:

Y (ω) = P (W ≥ 3| Z = k) if Z(ω) = k.
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Then Y is a G-measurable random variable, which means it takes constant values vk = Y (ω) on each of
the cells ω ∈ Ck. Now (2.1) says that v9 is the value determined by the formula v9P (Z = 9) = P (W ≥
3 and Z = 9), or written another way, and for any value of k,

E[Y ;Ck] = vkP (Ck) = P ({W ≥ 3} ∩ Ck).

Since every A ∈ G is a union of some selection of Ck, we see that

E[Y ;A] = P ({W ≥ 3} ∩A) for every A ∈ G.

This formula and the fact that Y is G-measurable identify the random variable Y that we call the conditional
probability P (W ≥ 3| G).

A conditional expectation of W , or more generally of g(W ), would be calculated using the conditional
probabilities:

E[g(W )| Z = 9] =
∑
k

g(k)P (W = k| Z = 9)

=
∑
k

g(k)P (W = k and Z = 9)/P (Z = 9)

= E[g(W );C9]/P (Z = 9) = (g(3) + g(1) + g(−1) + g(−3)) · 1
36
/

1
9
.

Letting m9 denote this value, the above can be summarized as E[m9;C9] = E[g(W );C9]. If we calculate
mk = E[g(W )| Z = k] for the other values of k and put them together as a single random variable,

E[g(W )| G](ω) = mk for that k with k = Z(ω),

then just as above, Y = E[g(W )| G] is the unique G-measurable random variable with the property that

E[Y ;A] = E[g(W );A] for every A ∈ G. (2.2)

Notice that if we take

g(k) =

{
1 for k ≥ 3
0 for k < 3

,

Then E[g(W );A] = P ({W ≥ 3} ∩ A) so that our conditional probability is in fact a special case of our
conditional expectation. In general P (B| G) = E[1B | G], so we will just talk about conditional expectations
from now on.

It may seem unnatural to you to view P (A| G) or E[W | G] as random variables. But it turns out
that this is the point of view that allows the ideas to be generalized to settings where the above simple
constructions fail. For instance if P (Z = 9) = 0, which would happen if Z were a standard normal random
variable for instance, then the formulas we used above make no sense. Different formulas can be used in
some circumstances. But the definition of E[·| G] based on (2.2) turns out to be the correct formulation in
all contexts, and is the natural setting in which to list the essential properties that we need to know about
manipulating conditional expectations.

2.2 Definition and Calculation of Conditional Expectations

Suppose that X is an (integrable) random variable on (Ω,F , P ), and G ⊆ F is a smaller σ-algebra. The
general definition of E[X| G] is the following.

• E[X| G] is a G-measurable random variable.

• E[X| G] has the property that for any set A ∈ G, the following holds:

E[E[X| G] ;A] = E[X;A].

11



I like to think of E[X| G] as a “smoothed out” version of X – within each G-cell it has been replaced by
a constant, an averaged value of X over that cell. That makes it G-measurable (intuitively). However this
averaging only takes place within individual G-cells. The second property above is just (2.2) again. Note
that using A = Ω in particular,

E[E[X| G]] = E[X].

It is possible (measure theory again) to prove that E[X| G] always exists. The practical question is how
we actually calculate it. Of course that depends on the particulars of (Ω,F , P ) and G. We can state some
formulas for special cases. You should try to view these as expressions of the idea of smoothing or averaging
X within G-cells.

Suppose we have a setting like the above involving two random variables Z and X each assuming only a
finite number of possible values. Suppose

P (Z = i and X = j) = pij

and, as before let G = σ(Z), the σ-algebra associated with knowing only Z. For ω in the Z-cell

Ci = {ω : Z(ω) = i}

we would calculate

E[g(X)| G](ω) =

∑
j g(j) pij∑
j pij

.

This agrees with E[g(X);Ci]/P (Ci), which is the way we thought of it before. There is a helpful way to see
what we are doing in terms of the probabilities pij themselves. Let

p̄i =
∑
j

pij = P (Z = i), and

pj|i =
pij
p̄i

= P (X = j| Z = i), assuming p̄i 6= 0.

Then for all i, j pairs we can write
pij = pj|ip̄i.

Notice that
∑
i p̄i = 1, and

∑
j pj|i = 1 for each i. We can give a complete formula (i.e. not just for one Ci

at a time) as
E[g(X)| G] =

∑
j

g(j)pj|Z(ω). (2.3)

In other words by finding an appropriate factorization of pij we can write a simplified formula.
Now consider a different situation in which there is a density for the joint distribution of (Z,X). By this

we mean that there is a density function f(z, x) which allows us to calculate probabilities associated with
the pair (Z,X) as follows:

P (Z ≤ a and X ≤ b) =
∫ b

−∞

∫ a

−∞
f(z, x) dz dx.

Observe that we cannot define E[X| Z = z] like we did before, using E[X;Z = z]/P [Z = z], because

P [Z = z] =
∫ z

z

∫ ∞
−∞

f(z, x) dx dz = 0.

We would be dividing by 0, so the ratio makes no sense. However there is a formula for this case, analogous
to the one above. If we can factor f(z, x) as a product

f(z, x) = f̄(z)f(x|z) (2.4)

of the marginal density f̄(z) for Z alone,

P (Z ≤ a) =
∫ a

−∞
f̄(z) dz,
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and a so-called conditional density f(x|z), which is a density in x for each value of z individually,∫ ∞
−∞

f(x|z) dx = 1 for each z,

then conditional expectations with respect to G = σ(Z) are computed by

E[g(X)| G](ω) =
∫
g(x)f(x|Z(ω)) dx. (2.5)

Usually f̄(z) and f(x|z) can be computed from the original f(z, x).

f̄(z) =
∫
f(z, x) dx

f(x|z) =
f(z, x)
f̄(z)

.

(If f̄(z) = 0 occurs then it is a little more complicated.)
What makes (2.5) correct? Its comforting that it follows a similar pattern to (2.3), but that’s not logically

sound reason. The reason (2.5) is correct is that it satisfies the definition we stated at the begining of this
section, as you will verify in problem 2.B. The formula (2.5) generalizes to conditional expectations of any
function of the pair (Z,X); just integrate out the W dependence using f(x|Z(ω)):

E[g(Z,X)| G](ω) =
∫
g(Z(ω), x)f(x|Z(ω)) dx. (2.6)

2.3 Properties of Conditional Expectations

There are a number of general properties of conditional expectations that allow us to work with them
efficiently. These are all provable as theorems, based on the definition we gave above. Most of them are
generalized versions of the properties of expectation that we listed earlier. (In fact the standard expectation
E[X] is the same as the conditional expectation E[X| G0] using the “trivial” σ-algebra G0 = {∅,Ω}. The
only G0-measurable random variables are constants.) Here are the essential properties. We assume X,Y are
both integrable random variables.

1. If c is a constant, E[c| G] = c.

2. if X(ω) ≤ Y (ω) for (almost) all ω, then E[X| G](ω) ≤ E[Y | G](ω) for (almost) all ω.

3. For any two constants α, β,

E[αX + βY | G] = αE[X| G] + βE[Y | G]

4. |E[X| G]| ≤ E[|X| | G].

5. If Y is already G-measurable (and XY is integrable) then

E[XY | G] = Y E[X| G].

6. (Tower Law) If H ⊆ G is a third even smaller σ-algebra, then

E[X| H] = E[E[X| G] | H].

(Note that the last two of these are Proposition 4.5 of page 42 of the text.) We should qualify all the
statements of equality above. Looking back at the definition of E[X| G], if G contains some nonempty sets
N ∈ G with P (N) = 0, then the definition does not uniquely determine E[X| G]. We could alter E[X| G] for
those ω ∈ N without disrupting either part of the definition. For that reason statements about conditional
expectations can only be made for almost all ω, meaning they are allowed to fail on a set of probability 0.
We wrote this in in item 2 above, but neglected in in the others. This is another technicality we would need
to be more careful about if this were a rigorous treatment, but which we will ignore for our present purposes.
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2.4 Independence

Conditional expectations give us one way to make precise statements about how the value of one random
variable Z (G = σ(Z)) determines the value of another. If Y is completely determined for us once we know
the value of Z, this means that Y is G-measurable, and so by the properties above

Y = E[Y | G].

Intuitively this says that there is no randomness in Y beyond what is already present in Z, so there is no
randomness for the conditional expectation to smooth out. On the other end of the scale are those random
variables X which are independent of Z. The definition of this is that for all (Borel) sets C,D ⊆ R,

P (X ∈ C and Z ∈ D) = P (X ∈ C)P (Z ∈ D).

The set A = {w ∈ Ω : Z(ω) ∈ D} is a typical set in G, so the above could be rephrased P ({ω : X ∈
C} ∩A) = P ({ω : X ∈ C})P (A) for all A ∈ G. In other words

P (X ∈ C| G)(ω) = P (X ∈ C) for all ω ∈ Ω.

We could say “X is independent of G,” instead of “X is independent of Z.” The idea is that knowing the
value of Z tells us nothing at all about X; the probabilites of different X-outcomes remain unchanged by
knowledge of Z. In terms of expectations this means

E[X| G](ω) = E[X], constant with respect to ω. (2.7)

More generally, for any function h(x), the independence of X from G means

E[h(X)| G](ω) = E[h(X)].

Independence of X and Z has many consequences, among them

E[XZ] = E[X]E[Z], (2.8)
P (X ∈ A and Z ∈ B) = P (X ∈ A) · P (Z ∈ B). (2.9)

These are both consequences of (2.7) and the general definition (page 11) and properties of conditional
expectations above. Another useful consequence of independence is that for a function h(x, y) (assuming
h(X,Y ) is integrable),

E[h(X,Z)] =
∫∫

h(x, z)fX(x)fZ(z) dx dz, (2.10)

provided fX and fZ are densities for the distributions of X and Y respectively: i.e.

P [X ≤ b] =
∫ b

−∞
fX(x) dx, P [Z ≤ b] =

∫ b

−∞
fZ(z) dz.

This simply says that the joint density for (X,Z) is the product of the individual or marginal densities for
X and Z.

2.5 A Separation Result

The features of conditional expectations involving random variables that are measurable with respect to the
conditioning σ-field and random variables that are independent of it can be combined into a separation result
that is often useful. Suppose we are interested in E[Y | G], and we can find a way to express the random
variable Y as some function of some random variables X = (X1, . . . , Xn) which are independent of G and
some other random variables Z = (Z1, . . . , Zm) which are measurable with respect to G:

Y = h(X,Z).
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Then, assuming Y is integrable,
E[Y | G] = g(Z)

where g(z) is the function obtained by replacing the random variable Z by the conventional variable z in
the expectation:

g(z) = E[h(X, z)].

In other words the result of the conditional expectation is essentially to “integrate out” the X dependence,
leaving the Z dependence intact.

2.6 Problems

P.2.A In the example of figure 2.1, compute E[W 2| Z = k] for all possible values of k.

P.2.B Consider the situation where we have a joint density function f(z, w) for a pair Z,W and assume
that we can factor f as described in (2.4). Explain why the right side of (2.5) has the properties required
by the definition (page 11) of the left side.

For the next two problems, please read the opening paragraph of the next chapter for the definition of
Ft (t = 1, 2), the σ-algebra of information avaliable at time t.

P.2.C Consider the tree illustrated in Figure 2.2 below. Note that this is not a binary tree, because the
number of branches from each node is not always 2. Since it is not recombinant we can use the set of final
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Figure 2.2: Tree for Problem G

nodes Ω = {a, b, c, d, . . . , k} as the set of all possible states of the world. Associated with the intermediate
times t = 1 and t = 2 are σ-algebras F1 and F2 of those subsets of Ω which are measurable at time t.
Although there are too many sets in these σ-algebras to give a complete listing2, the “indivisible cells” which
are used to make up sets in Fi can be listed. What are the indivisible cells for F1? What about for F2?

Consider the following two random variables defined on Ω:

X(ω) =


1 if ω ∈ {c, k}
0 if ω ∈ {a, b, h, i, j}
−1 if ω ∈ {d, e, f, g}

Y (ω) =


1 if ω ∈ {a, b}
0 if ω ∈ {h, i, j, k}
−1 if ω ∈ {c, d, e, f, g}

2F2 contains 64 different sets.
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Which of these are F1-measurable? Which are F2-measurable?

P.2.D Consider the tree of Figure 2.4, page 19 of the text. Assume that the probabilities of all the up-
jumps are 3

4 and for the down-jumps, 1
4 . Because the tree is recombinant we can not use the set of final nodes

as Ω. One way to describe a complete set of states of the world would be to let Ω consist of the set of all
triples ω = (i, j, k) where each of i, j, k is ±1, indicating whether the transition was up or down from t = 0,
t = 1 and t = 2 respectively. For example, for the state of the world ω = (+1,−1,−1) would correspond
to the sequence of stock prices S0 = 80, S1 = 120, S2 = 60, S3 = 30. Using this description, define a new
random variable X on Ω according to X(ω) = i + 3j + 5k, if ω = (i, j, k). Using the probabilities specified
above, calculate each of E[X| F1] and E[X| F2] and express them as functions on Ω.
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Chapter 3

Stochastic Processes: Martingales,
Markov Chains and Trees

A stochastic process is essentially a time-dependent random variable Xt. We usually view this as a collection
of random variables, one for each possible time value t. For now we will only consider a finite sequence
of possible time values: t = 0, 1, . . . , n. So we have random variables X0, X1, . . . , Xn whose values are
realized one at a time. We will know what X0 is at the outset, t = 0. (Typically X0 is a constant, with no
randomness at all.) We will learn the value of X1 at t = 1. At t = 2 we will find out what X2 is, and so
forth. These are all defined on the same underlying set Ω of possible states of the world. As time progresses
we learn progressively more about the ultimate state of the world ω ∈ Ω. So there are σ-algebras F0, F1,
. . . , Fn that account for the information we have at the successive times. For smaller values of t, Ft will
be “coarser”, i.e. its cells will be fewer and bigger. As we move from t = k to t = k + 1 we obtain more
information about ω and will be able to make more refined statements about where ω is or is not. A single
cell in Fk might be the union of several smaller cells in Fk+1. So the σ-algebras are nested:

F0 ⊆ F1 ⊆ . . . ⊆ Fn.

A collection of nested σ-algebras such as this is called a filtration. The filtration tells us what information
about the state of the world is available at different times. The random variables whose values will be known
at time t = k are precisely the Fk-measurable random variables, such as Xk in particular. When it is said
that the stochastic process Xt is adapted to the filtration (Ft) this simply means that Xt is Ft-measurable
for each t.

Our various trees are all special cases of a particular type of stochastic process called a Markov chain.
The idea is that there is a set of possible states {1, . . . ,m} (like the individual nodes in the trees of Section
2.2). At each time t = k the process Xt is located at one of the states (Xk = i for instance), and jumps to
another (Xk+1 = j for instance) at the next time with a specified transition probability

Xk = i→ Xk+1 = j with probability pi,j .

We require that 0 ≤ pi,j ≤ 1 and
∑
j pi,j = 1 for each i. These are really conditional probabilities:

P (Xk+1 = j | Xk = i) = pi,j .

To write this as a conditional statement with respect to Fk,

P (Xk+1 = j | Fk) = pXk,j ,

or more generally,
E[f(Xk+1) | Fk] =

∑
j

f(j)pXk,j . (3.1)

Notice that the pi,j here play the same role as the pj|i in (2.3).
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To complete the description of a Markov chain, we also need to know the initial distribution, namely the
probabilities

pi = P (X0 = i).

With these in hand, the probability that the chain proceeds through any specific sequence of values is
computed (from the tower law):

P (X0 = i0, X1 = i1, . . . Xn = in) = pi0pi0i1 · · · pin−1in .

Trees are special in that Xk can never visit the same node twice. This means pi,j > 0 only for those
nodes j immediately to the right of i in the tree. Binary trees have the additional property that pi,j > 0 for
only two nodes j, given i. For a node j in a recombinant tree, like those on pages 20—23 of the text, there
can be more than one node i with pi,j > 0 , but for nonrecombinant trees there is a unique i with pi,j > 0.
As far as choosing a set of states of the world Ω to describe a tree, if the tree is not recombinant, then the
set of final nodes will do fine. This is because for a nonrecombinant tree knowing the final node determines
all the previous nodes it must have passed through to get there. But for a recombinant tree this would not
be adequate. For the tree of Figure 2.5, page 21 we might take Ω to be the set of triples ω = (i, j, k) where
each of i, j, k is ±1 indicating whether the transition is up or down as the process moves to time t = 1, 2, 3
respectively.

3.1 Martingales

One of the most important types of stochastic process for us is a martingale. This refers to a stochastic
process Mk with the property that for each time value k = 0, 1, . . .

E[Mk+1 | Fk] = Mk. (3.2)

(It is assumed that each Mk is integrable.) Because of the tower law for conditional expectations,

E[Mk+2 | Fk] = E[E[Mk+2 | Fk+1] | Fk] = E[Mk+1 | Fk] = Mk.

In general, it follows that for any s < t,
E[Mt | Fs] = Ms.

If there is a largest time, t = T then the values of Mt for t < T are all calculated from MT : Mt = E[MT | Ft].
Also note that (3.2) implies that Mt is Ft measurable, so that being adapted to the filtration (Ft) is implicit
in the definition (3.2).

3.2 Doob’s Inequality

The fact that the values of a martingale Mt are all related to each other through conditional expectations
means that inequalities and formulas are possible which take advantage of that relationship. One particularly
important inequality is Doob’s L2 martingale inequality :

E[( max
1≤k≤m

|Mk|)2] ≤ 4E[M2
m]. (3.3)

(It is assumed that E[M2
m] <∞.) This will be important for us when we construct stochastic integrals with

respect to Brownian motion later on.

3.3 Stopping Times and Optional Stopping

The word “martingale” comes from a French word referring to gambling strategies. Martingales do indeed
arise naturally in the context of gambling. Imagine that a gambler starts with $M0 in cash. Lets say he is
playing a simple game in which he bets on the outcome of some random variable X1. If he places a bet of
size $w1 (which we assume he does not recover - it is the price he pays to play) then his winnings will be
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$w1X1. For this to be a “fair” game, we assume that E[X1] = 1. After any winnings from this wager have
been paid, he has $M1 where M1 = M0 + w1(X1 − 1). If he does this repeatedly, wagering w1, w2, . . . on
games with outcomes X1, X2, . . . then the history of his fortune will be described by Mt, t = 0, 1, . . . where
in general

Mn = Mn−1 + wn(Xn − 1).

Assuming that the Xt are independent with E[Xt] = 1, and that the wagers wi are determined only on the
basis of the information available before the ith game is played, Mt will be a martingale.

Now suppose our gambler has a strategy: he will play until the first time that his fortunes reach some
some level, and then he will quit. For instance suppose he plans to play until the first time Mt ≥ 1000. Let
τ refer to the time t when this first occurs. The value of τ will depend on the sequence of outcomes Xt (and
the sizes of his wagers wt). τ is a time-valued random variable, but it has some special structure, because
its value does not anticipate the future. I.e. we can always decide whether to stop now or not based only on
what has happened up to now. The mathematical way to say this is that for each t,

{ω ∈ Ω : τ ≤ t} ∈ Ft.

(Note that a consequence of this is that {τ = t}, {τ > t} ∈ Ft as well.) A time-valued random variable
with this property is called a stopping time (sometimes a Markov time). If we use a stopping time to stop a
martingale, the result will again be a martingale. For instance the gambler’s fortunes with his stopping rule
in place are

Mτ
t =

{
Mt if t < τ

Mτ if τ ≤ t
= 1{τ>t}Mt +

t∑
k=0

1{τ=k}Mk = Mt∧τ

I.e. once τ = t he places no more wagers so his fortune remains fixed after τ . If Mt is a martingale, and
τ is a stopping time, then Mτ

t will also be a martingale. (This is a simple calculation with conditional
expectations; see Problem P.3.A.) As a consequence, assuming F0 = {∅,Ω}, so that M0 is a constant,

M0 = Mτ
0 = E[Mτ

n ]

for any n. The implication is that there is no betting and stopping strategy that will guarantee a profit
in a fixed amount of time. (If you were allowed to continue betting indefinitely the situation gets more
complicated – there are “doubling strategies” that guarantee that Mt ≥ $1000 eventually does occur, but it
may be a quite a while before that actually happens and in the meantime you would probably be forced to
abandon your strategy by house rules such as limits on the sizes of bets or how much credit (Mt < 0) the
house will give you to keep playing.)

Obviously, buying/selling strategies for stocks have some close connections to this. American options in
particular give the holder the right to exercise the option at a time of his/her choosing, i.e. at a stopping
time. So stopping times will be relevant in the study of more complicated financial products.

3.4 Stochastic Integration in Discrete Time

There is a “calculus of stochastic processes” that is based on using stochastic integrals with respect to a
martingale Mt to find formulas connecting different stochastic processes with each other. The basic idea is
that given a martingale Mk we can build a new martingale by adding its increments

∆Mk = Mk −Mk−1

in new combinations. The martingale property (3.2) says that

E[∆Mk | Fk−1] = 0.

Suppose we have a starting value N0, which is F0 measurable (e.g. a constant), and some other stochastic
process φk. Now build a new stochastic process Nk according to

Nk = N0 + φ1(M1 −M0) + . . .+ φk(Mk −Mk−1) (3.4)

= N0 +
k∑
i=1

φi∆Mi. (3.5)
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If φk is adapted, so that φk is Fk-measurable for each k, then Nk will likewise be Fk-measurable because it
is constructed from other Fk-measurable quantities. Now consider whether Nk might actually be another
martingale. Notice that

Nk+1 = Nk + φk+1∆Mk+1.

Using the rules for conditional expectations

E[Nk+1 | Fk] = E[Nk + φk+1∆Mk+1 | Fk]
= Nk + E[φk+1∆Mk+1 | Fk]
= Nk + φk+1E[∆Mk+1 | Fk], provided φk+1 is Fk-measurable
= Nk,

so that Nk is another martingale. There are some technical conditions that are needed to justify this. For
instance something needs to be said to insure that φk∆Mk is integrable. For us it will be enough to say
they are bounded (which is always true if there are only a finite number of possible states of the world in
Ω). The really critical assumption however is the one we used in the third line above, that instead of being
Fk+1-measurable (which is all adapted asks for), φk+1 should be Fk-measurable. In other words the random
variable φk+1 should determined by the information available one time-step early, at t = k. Such a stochastic
process φk is called a previsible stochastic process. I like to think of φk+1 as associated with the time interval
between t = k and t = k+ 1; previsible means φk+1 should be known at the start of that interval. The basic
point then is that if φk is a previsible stochastic process, and Mk is a martingale, then

Nk = N0 +
k∑
i=1

φi∆Mi

defines a new martingale. This is the discrete version of the stochastic integral construction that we will talk
more about later.

3.5 No-Arbitrage Pricing and Martingales for Binomial Trees

In this section we want to re-express what we know about binomial tree models in the language of martingales,
and rearrange our formulas in ways which anticipate those of the Black-Scholes model to come.

Consider a binomial tree as discussed in Chapter 2 of the text. This consists of a collection of nodes
which we will denote by k. Each node is associated with a particular time. There is one node k = 0 at time
t = 0; two nodes k = 1, 2 at time t = 1 and so forth. (In general there will be t + 1 nodes at time t.) Lets
say the possible times are t = 0, 1, 2, . . . T . From node k at time t there are two possible transitions as we
move to time t+ 1: we can go “up” to a node ku or “down” to a node kd. (Of course ku and kd are among
the possible t + 1 nodes.) These happen with probabilities puk and pdk respectively. (Assume 0 < pu, p

d
k and

puk + pdk = 1.)
Let Xt denote the node we reach at time t. This is an example of a Markov chain as described above.

The initial distribution has p0 = 1 and all other pk = 0. The transition probabilities are

pk,j =


puk if j = ku

pdk if j = kd

0 otherwise.

In general a Markov chain can return to the same node multiple times, but in our binomial tree every node
is associated with a specific time, and the only transitions allowed are those which move to nodes for the
next time. So we can’t return to nodes from an earlier time.

To set this up formally we can take

Ω = {±1} × {±1} × · · · × {±1} (T times),

so that a typical ω ∈ Ω consists of a seqence of T ±1s: ω = (+1,−1, . . . , 1), which identifies a path through
the tree by specifying whether we follow the upward or downward branch at each step. In other words
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knowing ω determinds the specific sequence of nodes X0(ω), X1(ω), . . . , XT (ω) the chain will follow. The
probability of each ω is the product of the associated transition probabilities. For instance, suppose T = 3
and consider ω = (+1,−1,−1). This corresponds to

X0(ω) = 0, X1(ω) = 2, X2(ω) = 4, X3(ω) = 7,

and would have probability
P ({ω}) = p0,2 p2,4 p4,7 = pu0p

d
2p
d
4.

F would consist of all subsets of Ω. The cells in F1 are subsets in which the first term of ω is fixed. The
cells in F2 are the subsets in which the first two terms of ω are fixed, and so forth. F0 = {∅,Ω}

At each node k we have a stock price s(k). In the text we assumed that s(ku) and s(kd) were related to
s(k) by factors u and d:

s(ku) = u s(k), s(kd) = d s(k).

The stock price process St is just s(Xt), i.e. the value of the price associated with the node where the chain
is located at time t.

Our discussion of the absence of arbitrage in a binomial tree involved the existence of “martingale
probabilities” quk , q

d
k for each branch determined by

s(k) =
s(ku)quk + s(kd)qdk

1 +R
. (3.6)

From these qu,dk we determine an alternate set of transition probabilities qk,j for our Markov chain, by again
using qk,j = 0 for the transitions not in our our tree, and the same initial distribution q0 = 1, qk 6=0 = 0. In
these terms, (3.6) can be expressed as

s(k) =
∑
j

s(j)
1 +R

qk,j ,

for all k except the final (t = T ) nodes. Associated with these qk,j is a probability measure Q on Ω, just like
P for the original pk,j . In terms of Q, (3.6) together with (3.1) says that for t < T ,

EQ[St+1/(1 +R)| Ft] = EQ[s(Xt+1)/(1 +R)| Ft]
= s(Xt)
= St.

With Bt = (1 +R)t, so that 1
Bt+1

= 1
Bt

1
1+R , we can write this as

EQ[St+1/Bt+1| Ft] = St/Bt. (3.7)

In other words St/Bt is a Q-martingale.
In our discussion of binomial tree models we observed that, under the hypothesis pu,dk > 0, the absence

of arbitrage condition dk < 1 + R < uk is equivalent to qu,dk > 0. This means that the transitions k → j
for which pk,j > 0 are the same as those for which qk,j > 0. In other words, the sequences of states
X0, X1, . . . , XT which have probability 0 according to P are precisely the same as the ones which have
probability 0 according to Q. This can be stated succinctly as

For all A ∈ F , P (A) = 0 if and only if Q(A) = 0. (3.8)

Two probability measures P and Q on (Ω,F) for which (3.8) holds are called equivalent1. So all our discussion
of binomial trees can be summarized as follows.

1This does not mean they are they same. P (A) and Q(A) do not need to be equal except when they are both 0. To
be equivalent in this sense only means the same events have probability 0 under both measures. This is what we have been
described previously by saying “equivalent positivity properties.” The usual terminology is simply “equivalent.” We will return
to this idea in Section 7.1.
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The binomial tree is free of arbitrage if and only if there is a probability measure
Q which is equivalent to P and such that St/Bt is a martingale with respect to Q.

Next let’s consider self-financing portfolios in terms of martingales. Supposing that d < u we know that
given any “terminal” random variable X = Φ(ST ) we can find a self-financing portfolio ht = (xt, yt) which
replicates X. Recall that ht specifies the holdings over the time interval t − 1 → t. In particular xt and yt
are Ft−1-measurable, i.e. they are previsible processes.

To anticipate the expression we will use in continuous time, lets define zt by xt = ztBt−1. That is, zt is
the number of bonds (or shares of the bond account) held for t− 1→ t. Since Bt = (1 +R)t we can write

V h(t−1)+ = xt + ytSt−1 = ztBt−1 + ytSt−1

V ht− = xt(1 +R) + ytSt = ztBt + ytSt

V ht+ = xt+1 + yt+1St = zt+1Bt + yt+1St.

The self-financing property is that V ht− = V ht+. This can be expressed several ways:

0 = Bt∆zt+1 + St∆yt+1 (t = 0, . . . , T − 1)
0 = Bt−1∆zt + St−1∆yt (t = 1, . . . , T )
0 = ∆zt +Mt−1∆yt (t = 1, . . . , T ),

where Mt = St/Bt is our basic Q-martingale. Notice that a general “product rule” for backward differences
is

∆(ftgt) = ftgt − ft−1gt−1 + [ftgt−1 − ftgt−1] = ft∆gt + gt−1∆ft.

(See problem P.6.A for a more symmetric form.) So in general V ht = ztBt + ytSt has differences

∆V ht = zt∆Bt +Bt−1∆zt + yt∆St + St−1∆yt
= zt∆Bt + yt∆St + [Bt−1∆zt + St−1∆yt].

So another way to express the self-financing property is that V ht = ztBt + ytSt satisfies

∆V ht = zt∆Bt + yt∆St,

for t = 1, . . . , T . This expresses the property that all the changes to V ht result from the changes in Bt and
St, not the changes in zt and yt.

Now consider Nt = V ht /Bt = zt + ytMt. By the same difference product rule,

∆Nt = ∆zt + yt∆Mt +Mt−1∆yt
= yt∆Mt,

by the self-financing identity 0 = ∆zt +Mt−1∆yt. Thus

Nt = N0 +
t∑
i=1

yi∆Mi

is a discrete stochastic integral of our Q-martingale Mt with previsible integrand yt. Consequently Nt =
V ht /Bt is also a Q-martingale. This is not news. The point is that the relationship of V ht /Bt to St/Bt is
a stochastic integral construction. The martingale property Nt = EQ[NT | Ft] and the replicating property
V ht = X translate into the risk-neutral or martingale pricing formula:

π(t,X) = BtE
Q[X/BT | Ft]

π(0, X) = EQ[X/BT ],

the last line because B0 = 1. This formulation makes no reference to h; everything is in terms of Q. (However,
the reasoning for why these formulas must give the market price depends very much on the existence of h.
This is the issue of completeness.)
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3.6 Problems

P.3.A Suppose that Mt, for t = 0, 1, 2, . . . n, is a martingale with respect to a filtration {Ft}, and that
τ : Ω → {0, 1, . . . n} is a stopping time. Recall our definition of Mτ

t . Show that Mτ
t is a martingale by

verifying
E[Mτ

t+1 | Ft] = Mτ
t

for each t = 0, . . . , n− 1. [Hint: write Mτ
t+1 = Mτ

t + 1{τ>t} · (Mt+1 −Mt).] Show that as a consequence

E[Mτ
n ] = E[M0] = E[Mn].

If M0 is just a constant, then all three of these are = M0.
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Chapter 4

Various Results about Limits

There are some important concepts and theorems about limits of random variables that we should mention.
Suppose X1, X2, . . . is a sequence of random variables, all defined on (Ω,F , P ). There are various different
senses in which we can say limn→∞Xn = Y , Y being another random variable. We can say Xn → Y almost
surely, which means that

lim
n→∞

Xn(ω) = Y (ω)

for each ω ∈ Ω, excluding a set N ∈ F of exceptions which has zero probability: P (N) = 0.
A different form of convergence is mean-square or L2 convergence:

E[|Y −Xn|2]→ 0.

This does not imply Xn(ω)→ Y (ω) for any particular ω ∈ Ω (although it does for some subsequence Xnk).
It does however identify the random variable Y uniquely. This will be important for stochastic integrals
below.

Weaker yet is the notion of convergence in distribution, written Xn ⇒ Y . This means only that the
probabilities associated with Xn converge to those associated with Y :

P (Xn ≤ a)→ P (Y ≤ a)

for all a ∈ R with P (Y = a) = 0. This does not imply that Xn(ω) → Y (ω) for any ω at all; see Problem
P.4.A.

Suppose X1, X2, . . . is a sequence of independent, identically distributed random variables. This means
two things. First that they are all independent of each other. The easiest way to define this is to say that
given any sequence c1, c2, . . . , cn of real numbers

P (X1 ≤ c1 and X2 ≤ c2 and . . . and Xn ≤ cn) = P (X1 ≤ c1) · P (X2 ≤ c2) · · ·P (Xn ≤ cn).

To say they are identically distributed simply means that they all have the same distribution:

P (Xk ≤ c) is the same for all k.

The important classical results we want to record concerns the convergence of the partial averages of the Xi:

Sn =
X1 +X2 + · · ·+Xn

n
=

1
n

n∑
1

Xi.

Most people seem to intuitively realize that Sn ought to converge in some sense to the mean m = E[Xk]
(assumed finite). Kolmogorov’s famous Strong Law of Large Numbers says that this convergence is almost
sure: for all ω excepting a set of probability 0,

1
n

n∑
1

Xi(ω)→ m.
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The Lindberg-Lévy Theorem, also known as the Central Limit Theorem involves convergence in distribution:
assuming that both the mean m = E[Xk] and variance σ2 = E[(Xk −m)2] are finite,

1
σ
√
n

n∑
1

(Xi −m)

converges in distribution to a standard normal random variable. In other words, for any pair of real numbers
a ≤ b

P (a ≤ 1
σ
√
n

n∑
1

(Xi −m) ≤ b)→
∫ b

a

1√
2π
e−x

2/2 dx.

Perhaps you can see a hint of things to come here. If we want to move from discrete time values t = 1, 2, . . .
to continuous time 0 ≤ t by trying to cram lots of small independent changes into a fixed time interval, we
will most likely find ourselves dealing with the normal density function. We will see how true this is when
we talk about Brownian motion in the next chapter.

4.1 Problems

P.4.A Let Xn be the random variables of our 10-sided dice example, Section 1.3. Show that Xn ⇒ X1

(convergence in distribution) but that the probability that limn→∞Xn exists is 0.
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Chapter 5

Continuous Time

5.1 Introduction to Continuous-time Processes

Up to this point we have been considering stochastic processes indexed by a discrete time parameter: Xk

where k = 0, 1, 2, . . .. Now we want to use a continuous time parameter t where 0 ≤ t ≤ T . The basic
mathematical structure is the same as before. There should be an underlying set Ω consisting of all possible
states of the world ω ∈ Ω. Each Xt is a function that assigns an outcome Xt(ω) to each ω, Xt : Ω → R.
For each 0 ≤ t ≤ T there should be a σ-algebra Ft which describes the information about the state of the
world available at time t. Intuitively this means that the Ft-measurable random variables are precisely those
values will be known to us at time t. In particular Xs should be Ft-measurable for all s ≤ t. These should
be nested, Fs ⊆ Ft for s ≤ t. As before this is described by saying that the stochastic process Xt is adapted
to the filtration of Ft. Note that the text writes “X(t)” while we use “Xt”. Both are really functions of two
variables: X(t, ω) or Xt(ω), but the reference to ω ∈ Ω is typically omitted.

An alternate point of view is that a stochastic process Xt assigns to each ω a function of t: f(t) = Xt(ω).
So you might think of a continuous-time stochastic process as a function-valued random variable. Naturally
we will want to carry out calculus-like operations on this function of t. Were we had things like

∑k
i=1 φi∆Mi

before we will now want to work with things like
∫ t

0
φs dMs. We will want to describe stochastic processes

with formulas like

Xt = X0 +
∫ t

0

µ(t,Xt) dt+
∫ t

0

σ(t,Xt) dMt.

See (3.6) in the text for instance. We have a fair bit of explaining to do about the second integral above. The
point at the moment is that such operations typically require that Xt and Mt satisfy additional regularity
properties in their dependence on t, such as continuity or differentiability. Previously we were concerned
only with how each Xt(ω) depends on ω, one t at a time. That’s what “adapted” refers to. Now we need
to worry about the nature of the dependence of Xt(ω) on both t and ω together. These joint measurability
issues are intricate and take more sophisticated techniques and ideas to handle adequately. We will have to
simply gloss over most of those technicalities. We will be as accurate as possible in our statements of results,
but remember that this is a user’s guide or overview, not a rigorous treatment.

5.2 Brownian Motion

The single most important stochastic process in continuous time is Brownian motion. First, here is the
definition1. A stochastic process Wt, 0 ≤ t ≤ T , defined on some (Ω,F , P ) is called Brownian motion if the
following are satisfied:

1) W0(ω) = 0 for (almost) all ω ∈ Ω;

2) For each pair 0 ≤ s < t ≤ T , Wt −Ws is independent of all Wu, 0 ≤ u ≤ s;
1This is the same as Definition 4.1 in the text.
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3) For each pair 0 ≤ s < t ≤ T , Wt −Ws has a normal distribution with mean 0 and variance t− s.

4) Wt(ω) is continuous in t for (almost) all ω ∈ Ω.

There are a number of other equivalent characterizations, but this is most natural for us.
Several observations should be made about this definition. First, the definition does not prescribe what

the underlying (Ω,F , P ) is. Just as there can be many standard normal random variables, using different
(Ω,F , P ) or different ways to associate ω ∈ Ω with an outcome Y (ω) having the desired distribution, so
there can be many Brownian motions. To say a stochastic process Wt is a Brownian motion is to prescribe
what the probabilities of various events associated with Wt are, not what the underlying (Ω,F , P ) is.

Next consider part 4). For Wt to be continuous in t means that its value at one s is determined (as a
limit) from its values at other nearby t. But for s < t, Wt and Ws differ by something that is independent
of Ws. This makes part 4) rather amazing – that it is possible to have so many independent normal random
variables fitted together to make a continuous function is remarkable. That is one reason Brownian motion
is such a fascinating stochastic process. On the other hand, Wt is only continuous. You can see from the
picture2 below that a typical Brownian path is very irregular, although it is continuous. We will say more
about this in §5.4.1.
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Brownian motion can be obtained from a limit (n → ∞) of increasingly refined binomial trees. Talking
through this construction may help your appreciation of what Brownian motion is as well as why it might
arise in applications. The idea is to consider a tree in which the time increment δt = 1

n is very small, and
the size δx of the up/down jump between steps is likewise very small (exactly how small will be specified
soon). To cover a time interval 0 ≤ t ≤ T with steps of size δt = 1

n it will take a total of N = nT steps
3. If t = k

n for some integer k ≤ N , W (n)
t will be the state of our tree-process after k steps of size δt each.

After one more time step we will have W (n)
t+δt = W

(n)
t ± δx, each with probability 1

2 . If we fix the value of

t, then W
(n)
t is the result of nt individual up/down jumps each of size δx. Thus as n → ∞ but t remains

fixed, W (n)
t will be the combined effect of a large number of independent random up/down jumps each of

very small size. If we choose δx correctly we will be able to use the limit laws described in Chapter 4 to
obtain the distribution of Wt = limn→∞W

(n)
t .

2An approximate Brownian path as above is simple to generate with Matlab. Simply specify a value for n and then enter
the command plot(0:1/n:1,[0,cumsum(randn(1,n))/sqrt(n)]).

3If nT is not an integer this presents a problem. The same problem occurs in the next paragraph if t is not a multiple of
1/n. However by interpolating between the multiples of 1/n we can work around the difficulty. (5.1) below is the kind of thing
we need to to use. We will not go through all the details. We can just assume T is an integer.
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To make this look more like the the limit laws, let X1, X2, . . . be an infinite sequence of independent
random variables each with P (Xk = +1) = P (Xk = −1) = 1

2 . Xk specifies whether the jump between
t = (k − 1)δt and t = kδt is up (Xk = +1) or down (Xk = −1). Thus we can write

W
(n)
t = W

(n)
kδt = δx

nt∑
i=1

Xi,

provided t is a multiple of δt = 1
n . Now we want to pick δx so that we can apply one of our limit theorems

to find limn→∞W
(n)
t . One natural guess would be to try δx = 1

n . Then the Strong Law of Large Numbers
would apply:

W
(n)
t =

1
n

nt∑
i=1

Xi = t ·

(
1
nt

nt∑
i=1

Xi

)
→ t ·m = 0,

where m = E[Xi] = 0. This is not very useful – we want a stochastic process in the limit, something
with genuine random behavior. For that we need the Central Limit Theorem instead of the Law of Large
Numbers. For this to work we take

δx =
1√
n
.

Then we get

W
(n)
t =

1√
n

nt∑
i=1

Xi =
√
t ·

(
1√
nt

nt∑
i=1

Xi

)
⇒
√
t Y,

where Y is a standard normal random variable. So Wt = limn→∞W
(n)
t should be a normal random variable

with mean 0 and variance t:

P (a ≤Wt ≤ b) = lim
n→∞

P (a ≤W (n)
t ≤ b)

= P (a ≤
√
t Y ≤ b)

= P (
a√
t
≤ Y ≤ b√

t
)

=
∫ b/

√
t

a/
√
t

1√
2π
e−

y2

2 dy

=
∫ b

a

1√
2πt

e−
x2
2t dx.

Strictly speaking, W (n)
t is only defined if t = k

n = kδt for some k. As n changes the t-values for which
W

(n)
t is defined also change. This is awkward, but we can remedy it by using linear interpolation to define

W
(n)
t for t between multiples of δt. In other words we “connect the dots” to get the graph of W (n)

t . This
makes W (n)

t defined for all 0 ≤ t ≤ T , and a continuous function of t, anticipating Part 4) of the definition. If
t is not a multiple of δt, its difference from W (n) at the nearest multiple will be small: if (m−1)δt ≤ t ≤ mδt
then

|W (n)
t −W (n)

(m−1)δt| ≤ δx (5.1)

|W (n)
t −W (n)

mδt| ≤ δx.

We won’t go through the details, but the upshot is that in the limit as n→∞ we can proceed as if all t were
multiples of δt; the discrepancy is negligible as n→∞. (We have presumed this already by overlooking the
possibility of t not a multiple of δk above.)

The Wt resulting from the above construction is Brownian motion, if the limit is understood in the
appropriate sense. There are a number of technical issues about the construction that a rigorous treatment
would need to address. We will mention some of them in the next subsection. But for now lets compare the
Wt of our construction to the requirements of the definition of Brownian motion. Part 1) of the definition
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is natural from our construction; W (n)
0 = 0 in our binary tree, so it is obvious that Wt = 0 in the limit. For

part 2), consider s = mδt < t = kδt. Then W (n)
t −W (n)

s depends on Xm+1, . . . , Xk, while all W (n)
u for u ≤ s

depend only on X1, . . . , Xm. Since the Xi are all independent of each other, this makes it clear that W (n)
u

for u ≤ s is independent of W (n)
t −W (n)

s . The independence passes through to the limit as n→∞. Part 3)
is a modest generalization of our earlier calculation:

W
(n)
t −W (n)

s = δx

nt∑
i=ns+1

Xi

=
√
t− s

 1√
n(t− s)

n(t−s)∑
i=1

Xns+i


⇒
√
t− s Y,

where, by the Central Limit Theorem, Y is a standard normal random variable. So Wt −Ws =
√
t− s Y is

normal with mean 0 and variance t− s, as stated.

5.3 Theoretical Foundations

If you think carefully about our construction above, you will realize that we never constructed a stochastic
process Wt at all! We only described what the probabilities associated with limn→∞W

(n)
t would be if the

limit exists. There remains a fundamental question of whether there really does exist a stochastic process
with all the properties of our definition. Such a process was first contemplated in the context of financial
applications in the Ph.D. thesis of Bachelier [Ba] more than 100 years ago. The proof that it actually exists
was first achieved by N. Wiener in 1923. As we have pointed out, the definition of Brownian motion does
not determine the underlying Ω. However the most natural choice is simply the collection Ω = C([0, T ]) of
all continuous functions ω : [0, T ]→ R. Then Wt(ω) = ω(t). (In this context, the P that Wiener proved to
exist is called Wiener measure.) Should you want to pursue the issue issue of existence, or any of the many
other results stated below, there are many possible references you could consult, such as [GS, Fr, Mc, RW].

We haven’t yet said anything about the filtration Ft. Of course Wt needs to be Ft-measurable. The other
essential feature is that the forward increments Wt−Ws need to be independent of all Fs-measurable random
variables. Given a Brownian motion Wt defined on some (Ω, P ), one way to obtain a suitable filtration is
to take Ft to be the smallest σ-algebra with respect to which Ws is measurable for all s ≤ t. Intuitively
this consists of those subsets of Ω which can be described in terms of Ws(ω), s ≤ t. (This is what the text
is trying to describe as FWt in Definition 4.2 on page 39.) If you take Ω as the set of continuous paths
C([0, T ]) itself, then a set A ∈ Ft would consist of a union of “t-cells”, where each t-cell consists of a bundle
of continuous functions all having a common first part on [0, t] followed by all possible continuous extensions
on [t, T ]. We have tried to illustrate such a cell in the following picture.
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A Cell for t=1

Another theoretical issue is whether the construction Wt = limn→∞W
(n)
t that we described above is

really valid in some sense. The answer to this is provided by what is called Donsker’s Invariance Principle.
The answer is “yes” in a certain sense of convergence in distribution for continuous function-valued random
variables. It says that any “continuous operation” applied to the paths of W (n)

t will converge (in distribution)
to the same operation applied to the paths of Wt. For instance∫ T

0

W
(n)
t dt⇒

∫ T

0

Wt dt.

To make this precise we would need to explain what we mean by a “continuous operation” — again something
that would take us too far afield.

5.4 Properties

Brownian motion has many remarkable and important properties. We summarize just a few of them below.

5.4.1 Irregularity

The definition of Brownian motion Wt says that the sample paths, t 7→Wt are continuous, for all (or at least
almost all) ω ∈ Ω. However, as the picture on page 27 suggests, they are rather ragged functions. For one
thing, they are never differentiable in t:

P ({ω :
d

dt
Wt(ω) exits for some t}) = 0.

So we can never talk about W ′t in the usual sense of ′ = d
dt . It is important to remember this when we

encounter “dWt” in expressions below; it will not mean W ′t dt as you might expect from change of variable
calculations in calculus.

Another aspect of the “raggedness” of Brownian paths concerns the set of crossing times of a specified
level a:

Ta(ω) = {t ≥ 0 : Wt(ω) = a}.

Although this is a random set, depending on ω, it does have certain properties with probability 1. Given
any ta ∈ Ta and any ε > 0, Ta will contain infinitely many t in (ta, ta + ε). In words, Wt oscillates so
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frantically in the vertical direction that once it hits a level a it will hit it again infinitely many times in the
next split-second. It is also true (with probability one) that Ta is unbounded. No matter where Wt is, it
will always return to a again sometime after t.

Given the level a, we can define the first time that Wt = a as

τa = inf{t > 0 : Wt = a}.

This is a time-valued random variable, and is a stopping time as defined in Section 3.3: {ω : τa ≤ t} ∈ Ft
for each t. Intuitively this is because whether τa ≤ t or not is something we can answer by knowing just
the values of Ws for s ≤ t. (But beware random times defined in terms of the last time something happens.
These will generally not be stopping times, because they are statements about the future rather than the
past!)

5.4.2 Scaling

It is sometimes said that “Brownian motion looks the same on any scale.” This is only true when interpreted
correctly. If we take a nice, differentiable function f(t) (lets say f(0) = 0 for simplicity) and look at its
graph under a magnifying glass, we will see the graph of y = 1

cf(cs) where 1
c is the magnification factor. We

are rescaling time and space by the same factor; a point (s, y) on the graph of y = 1
cf(cs) corresponds to a

point (t, x) = (cs, cy) on the graph of x = f(t). For a differentiable function f with f(0) = 0, under high
magnification (c close to 0) we will see essentially the graph of the tangent line at 0: y = f ′(0)s.

Brownian motion will “look the same” only if we rescale time and space differently, namely if points (t, x)
from the graph of x = Wt are sent to points (s, y) on the rescaled graph so that (t, x) = (cs,

√
cy). This

corresponds to looking at the graph of y = 1√
c
Wcs. The basic fact is that, for any constant c > 0, if Wt

is a Brownian motion, then W̃s = 1√
c
Wcs is also a Brownian motion, with s as the time variable. One can

check the parts of the definition of Brownian motion directly to confirm this. As a consequence, if we look
at the graph of Brownian motion under a magnifying class, what we see will not look like another Brownian
motion, but 1√

c
times Brownian motion. I.e. the vertical axis will be enlarged and the ragged nature of the

graph will seem more pronounced.
There are other transformations of Brownian motion that result in new Brownian motions:

• −Wt,

• Wt+t0 −Wt0 , for any t0 ≥ 0;

• tW1/t.

The last one is particularly interesting because it reverses the direction of the time axis (but nonlinearly)!

5.4.3 Calculating Expected Values

If Wt, 0 ≤ t ≤ T is a Brownian motion defined on (Ω,F , P ) and A ∈ FT is a set that truly depends on
Wt for infinitely many t-values, it can be quite challenging to determine the probability P (A). However
for probabilities determined only by the values of Wt1 ,Wt2 , . . . ,Wtn , for a pre-determined set of times
t1, t2, . . . , tn, there is a formula. This will be all we need for simple conditional expectation calculations.

The basic pattern emerges if we calculate E[φ(Ws,Wt)] where φ is some function of two variables and
0 ≤ s < t. The key is to write Wt = Ws + ∆W , where ∆W = Wt − Ws. We know Ws and ∆W are
independent normal random variables, both with mean 0 and variances, s and t−s respectively. The density
of Ws is 1√

2πs
e−u

2/2s and that of ∆W is 1√
2π(t−s)

e−v
2/2(t−s). So we can proceed using (2.10) as follows:

E[φ(Ws,Wt)] = E[φ(Ws,Ws + ∆W )]

=
∫ ∫

φ(u, u+ v)
1√
2πs

e−u
2/2s 1√

2π(t− s)
e−v

2/2(t−s) dv du.

31



Now make the change of variable to w = v + u in the inside (dv) integral. This produces

E[φ(Ws,Wt)] =
∫ ∫

φ(u,w)
1√
2πs

e−u
2/2s 1√

2π(t− s)
e−(w−u)2/2(t−s) dw du.

The function multiplying φ(u,w) inside the integral is the joint density of (Ws,Wt). To make this a little
less cumbersome to write, lets introduce the transition density for Brownian motion:

p(s, x; t, y) =
1√

2π(t− s)
e−(y−x)2/2(t−s).

Then our formula above is simply

E[φ(Ws,Wt)] =
∫ ∫

φ(u,w) p(0, 0; s, u)p(s, u; t, w) dw du.

The same idea, worked out for more than two Wti , 0 < t1 < t2 < . . . < tn, leads to the formula

E[φ(Wt1 ,Wt2 , . . . ,Wtn)] =
∫
· · ·
∫
φ(x1, x2, . . . , xn)

n∏
i=1

p(ti−1, xi−1; ti, xi) dxn . . . dx1, (5.2)

with t0 = 0 and x0 = 0. Thus
∏n
i=1 p(ti−1, xi−1; ti, xi) is the joint density of (Wt1 , . . . ,Wtn).

The basic conditional expectation formula that we will need is

E[g(Wt) | Fs] = h(Ws), s < t,

where h(x) is the function determined from g(y) by

h(x) =
∫
g(y)p(s, x; t, y) dy. (5.3)

You should view this as a version of (2.5) above: p(s, x; t, y) plays the role of f(x|z), and the role of f̄(z) is
taken by

∏n−1
i=1 p(ti−1, xi−1; ti, xi). (Think of z as the vector (x1, . . . , xn−1).) The formula (2.6) generalizes

likewise: E[g(Ws,Wt) | Fs] = h(Ws) where

h(x) =
∫
g(x, y)p(x, s; y, t) dy. (5.4)

There is another approach to identifying probabilities and expectations associated with Brownian motion.
We will say more about it when we talk about Chapter 4 of the text, but we can give a hint of it here. If
you check, you will find that for all t < T and y ∈ R

∂

∂t
p(t, x;T, y) +

1
2
∂2

∂x2
p(t, x;T, y) = 0.

From here it should be no surprize that for a bounded continuous function φ(·),

u(t, x) =
∫
p(t, x;T, y)φ(y) dy

is the solution of the partial differential equation

ut(t, x) +
1
2
uxx(t, x) = 0 for 0 ≤ t < T with u(T, x) = φ(x).

From what we said above,
E[φ(WT )| Ft] = u(t,Wt).

In brief, the conditional probability given Ft is given by a function u of t,Wt which is the solution of a partial
differential equation involving ut + 1

2uxx. This connection between conditional expectations and PDEs runs
quite deep. We have only scratched the surface. It comes out again in the Black-Scholes formula: what is
defined as a conditional expectation is determined by solving a PDE.
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5.4.4 Martingale

Brownian motion Wt is a martingale. This is simple to check using the conditional expectation formula (5.4)
above. Suppose 0 ≤ s < t ≤ T . Then

E[Wt | Fs] =
∫
y p(s,Ws; t, y) dy

= Ws.

Essentially this is another way of saying that Wt −Ws has mean 0 and is independent of Fs.

5.5 Problems

In the following you may find it helpful to take advantage of the facts about normal random variables from
Problem P.1.B. Another vital fact about normal random variables is that if you take two of them, Z1 and
Z2, which are independent, both normally distributed (but with possibly different means and variances),
then a linear combination of them, Z = c1Z1 + c2Z2 for any constants ci, is also a normal random variable.
(This property makes the normal distribution what what called a stable distribution. Most probability
distributions do not have this property.)

P.5.A In this problem you will carry out computational experiments to demonstrate some of the assertions
we have made about the sequence X1, X2, . . . of independent random variables with common distribution

P (Xi = ±1) =
1
2

as used in the construction of Brownian motion. You can do the required calculations with Matlab, Math-
ematica, Excel, or with any other software tool that you choose, but you won’t want to attempt them by
hand.

Start by using a random number generator to produce a realization X1, . . . , X1000 of the first 1000 terms
of such a sequence.4 Please don’t turn in the list of all 1000 values, but you should document how you
generated it.

1. To consider the convergence of 1
n

∑n
i=1Xi as n → ∞, plot a graph of the values of 1

n

∑n
i=1Xi for

n = 1, . . . 1000. Repeat for a second realization of the Xi. Discuss what your graphs illustrate about
this convergence, and whether/how this agrees with what we said in class and in the Primer.

2. To consider the convergence of 1√
n

∑n
i=1Xi, plot a graph of the values of 1√

n

∑n
i=1Xi for n = 1, . . . 1000.

Repeat for a second realization of the Xi. Discuss what your graphs illustrate about this convergence,
and whether/how this agrees with what we said in class and in the Primer.

3. In this part you will consider the convergence of the distribution of 1√
n

∑n
i=1Xi as n→∞. Here we are

not computing and plotting a particular realization of 1√
n

∑n
i=1Xi, but the values of the probabilities

associated with it. Consider Zi = 1
2 (1+Xi) - these are independent random variables taking the values

0 or 1 with probability 1
2 each. First explain why

n∑
i=1

Xi = k is equivalent to
n∑
i=1

Zi = m

4In Matlab, y=rand(1,1000); will produce an array y = [Y1, . . . , Y1000] of random values, each uniformly distributed on
[0, 1], which means that 0 ≤ Yi ≤ 1 and for 0 ≤ a < b ≤ 1, P (a ≤ Yi ≤ b) = b − a. (An equivalent in Mathematica is
y=Table[Random[], i, 1000]. In Excel you can accomplish the same thing by copying =RAND() into 1000 cells.) If you round
Yi off to the nearest integer (round(...) in Matlab, Round[...] in Mathematica, =ROUND(...,0) in Excel) the result will be
random variables taking only the values 0 and 1, each with probability 1

2
. Now So Xi = 2 round(Yi) − 1 will produce the

random values we want.
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where k = 2m− n, and why the probability of this is given by

pm =
n!

m!(n−m)!2n
.

Thus the possible values of 1√
n

∑n
i=1Xi are x = 2m−n√

n
for m = 0, . . . n, occurring with respective

probabilities pm. Now we want express the distribution of 1√
n

∑n
i=1Xi with an approximate density

gn(x) so that

P (
1√
n

n∑
i=1

Xi ≤ c) =
∫ c

−∞
gn(x) dx.

This is not true for all c, because 1√
n

∑n
i=1Xi actually only takes a finite number of possible values.

But we can find a gn(x) so that this works for all c of the particular form c = 2m−n√
n

– take the value of
pm associated with x = 2m−n√

n
and spread it out over the interval down to the next lowest such value

of x, namely 2(m−1)−n√
n

, by giving gn(·) the value pm/ 2√
n

on that interval, so that

∫ 2m−n√
n

2(m−1)−n√
n

gn(s) ds = pm.

According to the Central Limit Theorem, what would you expect
∫ b
a
gn(s) ds to do as n→∞, at least

if a, b can be assumed to have the same form as c? If we plot the values of gn(x) = pm
√
n/2 with

respect to x = 2m−n√
n

for m = 0 . . . n, for a large value of n, what might you expect to see?

Take n = 50 and try it. Plot the values5 of gn(x) = pm
√
n/2 with respect to the values of x = 2m−n√

n

for m = 0 . . . n and compare what you get to a graph of what you speculated that it would converge
to. (I don’t recommend trying a value of n much larger than n = 50 unless you are careful about how
you compute pm, to avoid numerical overflow problems.)

4. For n = 1000 plot W (n)
t = 1√

n

∑nt
i=1Xi with respect to t = 1

n ,
2
n , . . . ,

n
n . Repeat for a second realization

of the Xi. Explain how this plot is different from what you did in part 2 above.

P.5.B Show, for any 0 < s < t, tW1/t − sW1/s is a normally distributed random variable with mean 0 and
variance t− s.

P.5.C Show that Nt = W 2
t − t and (for any θ ∈ R) Mt = eθWt− 1

2 θ
2t are both martingales.

5In Matlab, nchoosek(n,m) will give the value of the binomial coefficient n!
m!(n−m)!

. In Mathematica, use Binomial[n,m].

In Excel, =BINOMDIST(m,n,.5,FALSE) will give the value of pm, including the power of 2.
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Chapter 6

Stochastic Integration

We will encounter many expressions of the form∫ t

0

ψs ds+
∫ t

0

φs dWs,

where φs and ψs are stochastic processes, adapted to Ft. The
∫
ψs ds is a conventional Riemann integral (as

in calculus).
∫
φs dWs is the stochastic integral of Itô, which we want to define.

6.1 About Integration in General

All integrals are defined in terms of limits. For instance the standard Riemann integral is defined by forming
partitions 0 = s0 < s1 < s2 < . . . < sn = t of [0, t], with si = i∆s, ∆s = t/n. For each partition pick some
sample points si ≤ s̄i−1 ≤ si and then take the limit of the Riemann sums:∫ t

0

f(s) ds = lim
n→∞

n∑
i=1

f(s̄i)∆s.

If f(s) is nice, continuous for instance, then the limit is guaranteed to exist. As a function of the upper limit

g(t) =
∫ t

0

f(s) ds

is continuous. If ψt(ω) is a continuous, adapted stochastic process then Xt(ω) =
∫ t

0
ψs(ω) ds will also be a

continuous stochastic process, adapted to Ft. Nothing but conventional integration is involved here.
If h(s) is another function we can generalize this definition to define

∫ t
0
f(s) dh(s) by replacing ∆s with

∆h(si) = h(si) − h(si−1). I.e. h is used to assign a ‘’size” to the intervals [si−1, si]. This leads to the
definition of the Riemann-Stieltjes integral. If h is continuously differentiable,

∫ t
0
f(s) dh(s) works out the

be the same as
∫ t

0
f(s)h′(s) ds. But the definition still works for discontinuous h provided h has bounded

variation:
n∑
i=1

|h(si)− h(si−1)| ≤ B <∞

regardless of the partition of [0, t].
We would like to define

∫ t
0
φs dWs as a limit of Riemann sums. Since Wt is a martingale our construction

(3.5) provides a nice precedent. But there is a big difficulty: Brownian paths have infinite (not finite)
variation!

n∑
i=1

|Wsi −Wsi−1 | → ∞ as n→∞.

This is a consequence of the following important result.
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Lemma (Quadratic Variation). For n = 2m, let t(m)
k = k T

2m . With probability 1,

lim
m→∞

2m∑
i=1

(W
t
(m)
i
−W

t
(m)
i−1

)2 → T.

This lemma is quite believable if you check that the sum
∑

(∆Wti)
2 in the limit has mean = T and

variance = 2T T
2m → 0. Also, notice that this implies our assertion about infinite variation, because

2m∑
i=1

(W
t
(m)
i
−W

t
(m)
i−1

)2 ≤
(

max |W
t
(m)
i
−W

t
(m)
i−1
|
) 2m∑
i=1

|W
t
(m)
i
−W

t
(m)
i−1
|.

The term with the maximum → 0 since Ws is continuous. So the last term on the right must →∞.
The Quadratic Variation Lemma reveals another difficulty with attempting to define

∫ T
0
φt dWt in the

conventional way. Suppose we tried to define
∫ T

0
Wt dWt as a limit of Riemann sums

lim
n→∞

∑
Wt̄i(Wti −Wti−1),

where as usual any choice of ti−1 ≤ t̄i ≤ ti is to be allowed. If we compare the left sum (t̄i = ti−1) to the
right sum (t̄i = ti), we find that

right sum − left sum =
∑

(Wti −Wti−1)2 → T.

Thus the left and right sums lead to different limits! This shows again that any definition of
∫ T

0
φt dWt must

be rather different than that of the Riemann integral
∫ T

0
φt dt.

What will rescue all this is that the martingale property of Wt will provide an alternative to bounded
variation. This comes out in (6.3) below, which comes from Doob’s inequality, which is a martingale property.
But we are getting ahead of ourselves.

6.2 Stochastic Integrals of Simple Integrands

The definition of stochastic integrals begins by considering a type of integrand φt for which we can see clearly
what we want

∫ T
0
φt dWt to be. We will call a stochastic process φt simple if it is piecewise constant, adapted

and square-integrable. This means that there exist some 0 = t0 < t1 < . . . < tn = T and random variables
X1, . . . , Xn so that

• φt = Xi for t in (ti−1, ti],

• each Xi is Fti−1-measurable,

• each E[X2
i ] <∞.

For such a φt we define ∫ T

0

φt dWt =
n∑
i=1

Xi(Wti −Wti−1).

Notice that if φt is simple on [0, T ] then its restriction to any [0, t] with t ≤ T is also simple. So
∫ t

0
φs dWs

is defined for all 0 ≤ t ≤ T . The properties of

Mt =
∫ t

0

φs dWs

as a stochastic process in its own right are very important:

1. M0 = 0;
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2. Mt is adapted and continuous in t;

3. Mt is a martingale;

4. M2
t −

∫ t
0
φ2
u du is a martingale.

Suppose that t falls in the interval tk < t ≤ tk+1. Then we can write

Mt =
k−1∑
i=1

Xi(Wti −Wti−1) + Xk(Wt −Wtk).

From this you should be able to convince yourself that Mt is indeed continuous in t, because Wt is. What
about the martingale property? Considered at just at the discrete set of times ti, we see that Ni = Mti

is a martingale, because it is just an instance of discrete stochastic integration as in (3.4). To check that
Ms = E[Mt| Fs] when s and t are not among the ti, observe that we can just insert them into the list of the
ti by adding some duplicate copies of some of the Xi, thereby re-expressing φt as a simple process with an
enlarged set of ti that now does include both s and t.

Now lets look at the fourth assertion above. (This is the most important part!) If 0 ≤ s < t ≤ T , we
want to show that

E[M2
t −

∫ t

0

φ2
u du | Fs] = M2

s −
∫ s

0

φ2
u du

Since Ms and
∫ s

0
φ2
u du are Fs-measurable,

M2
s −

∫ s

0

φ2
u du = E[M2

s −
∫ s

0

φ2
u du | Fs]

So what we need to show is that

E[M2
t −M2

s | Fs] = E[
∫ t

s

φ2
u du | Fs]. (6.1)

As above, we can always add a few extra partition points to the ti without altering the definition of Mt, so
lets include s and t. Suppose then that

s = tk−1 < · · · < tm = t.

With our usual increment notation we can write

M2
t −M2

s =
m∑
i=k

∆(M2
ti). (6.2)

Now observe several facts. First is the “discrete product rule” (Problem P.6.A):

∆(M2
ti) = 2Mti−1∆Mti + (∆Mti)

2.

Next, calculate E[ · | Fs] of each term on the right in (6.2) using the tower rule: E[ · | Fs] = E[E[ · | Fti−1 ] | Fs].
Since E[∆Mti | Fti−1 ] = 0 (because Mt is a martingale), we find that

E[2Mti−1∆Mti | Fti−1 ] = 2Mti−1E[∆Mti | Fti−1 ] = 0.

Therefore
E[2Mti−1∆Mti | Fs] = 0.

Since (∆Mti)
2 = X2

i (∆Wti)
2, and Xi is Fti−1-measurable,

E[(∆Mti)
2 | Fti−1 ] = X2

i E[(∆Wti)
2 | Fti−1 ] = X2

i ∆ti.

Therefore
E[∆(M2

ti) | Fs] = E[X2
i ∆ti | Fs].
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Now we can put these pieces together:

E[M2
t −M2

s | Fs] = E[
m∑
i=k

X2
i ∆ti | Fs].

But now just notice that since φt is simple,

m∑
i=k

X2
i ∆ti =

∫ t

s

φ2
u du.

Writing this in above, we are done!
A consequence of what we just showed is that for a simple process φt

E

(∫ T

0

φt dWt

)2
 = E

[∫ T

0

φ2
t dt

]
.

If we combine this with Doob’s L2 martingale inequality (3.3), we find that

E

[
max

0≤t≤T

∣∣∣∣∫ t

0

φu dWu

∣∣∣∣2
]
≤ 4E

[∫ t

0

φ2
t dt

]
. (6.3)

This is significant for our goal of defining stochastic integrals for more general φt. What we hope to do is
define

∫ T
0
φt dWt for a non-simple φt by writing it as a limit, φt = limn→∞ φ

(n)
t where each φ

(n)
t is simple,

and then take ∫ T

0

φt dWt = lim
n→∞

∫ T

0

φ
(n)
t dWt

as the definition. The inequality (6.3) suggests the sense in which we would want the φ(n)
t to converge to φt:

if

E[
∫ T

0

(φt − φ(n)
t )2 dt]→ 0. (6.4)

then we would have that
∫ t

0
φ

(n)
u dWu converges uniformly in t for (almost) all ω ∈ Ω along a subsequence,

which is gratifying because it tells us that the limit will be continuous in t.

6.3 An Example

As an example of the above strategy for defining stochastic integrals of non-simple φt, we will work out the
case of φt = Wt: ∫ t

0

Ws dWs.

First we need a sequence φ(n)
t of simple processes approximating Wt in the sense of (6.4). For that we just

make a piecewise-constant approximation by freezing Wt at the start of each time interval of length 1
n :

φ(n)
s = W k

n
for

k

n
< s ≤ k + 1

n
.
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The notation “bnsc/n” is sometimes used to refer to the value k
n for which k

n ≤ s < k+1
n . Using it we can

write φ(n)
s = Wbnsc/n. Each φ(n)

s is a simple process. Next we need to check that E[
∫ t

0
(Ws − φ(n)

s )2 ds]→ 0.

E[
∫ t

0

(Ws − φ(n)
s )2 ds] =

∫ t

0

E[(Ws − φ(n)
s )2] ds

=
∫ t

0

E[(Ws −Wbnsc/n)2] ds

=
∫ t

0

s− bnsc/n ds

≤
∫ t

0

1
n
ds =

t

n
→ 0.

Therefore our strategy leads to∫ t

0

Ws dWs = lim
n→∞

∫ t

0

φ(n)
s dWs

= lim
n→∞

(
N∑
1

W k−1
n

∆W k
n

+WN
n

(Wt −WN
n

)

)
,

where ∆W k
n

= W k
n
−W k−1

n
and N is the integer for which N

n ≤ t < N+1
n . Now, to evaluate the sum, the

discrete product rule says that

W k−1
n

∆W k
n

=
1
2

[∆(W 2
k
n

)− (∆W k
n

)2].

Writing ∆Wt = Wt −WN
n

to abbreviate the last term, we have

∫ t

0

φ(n)
s dWs =

1
2

{
N∑
1

[∆(W 2
k
n

)− (∆W k
n

)2] + ∆(W 2
t )− (∆Wt)2

}

=
1
2

{
W 2
t −W 2

0 −

(
N∑
1

(∆W k
n

)2 + (∆Wt)2

)}
.

The quadratic variation lemma now tells us the result of taking n → ∞ on both sides (at least along a
subsequence): ∫ t

0

Ws dWs =
1
2

(W 2
t − t). (6.5)

Contrast this with the conventional integral
∫ t

0
s ds = 1

2 t
2.

6.4 The General Definition and Properties

The approach to defining
∫ t

0
φu dWu in general is to find a sequence of simple φ(n)

t which converge to the
desired φt in the sense of (6.4), and then define (in L2)∫ t

0

φt dWt = lim
n→∞

∫ t

0

φ
(n)
t dWt, in L2. (6.6)

There are a number of technical issues associated with this definition. First, for what φt does a simple
approximating sequence of φ(n)

t exist? It is necessary that

E

[∫ T

0

φ2
u du

]
<∞, (6.7)
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but there is also a more subtle measurability requirement. Just being adapted is not enough. φt needs to
satisfy a more stringent requirement of being progressively measurable. (Björk passes over this technicality.)
We won’t try to explain what that is, except to say that if φt is adapted and continuous in t, then it is
progressively measurable. Then one needs to be precise about the sense of convergence in (6.6), and show
that the limit is the same no matter what simple approximating sequence of φ(n)

t is used. Having resolved
those issues, one would proceed to prove that the resulting Mt =

∫ t
0
φu dWu has the same properties 1 — 4

that we listed above in the case of a simple φt.

1. M0 = 0;

2. Mt is adapted and continuous in t;

3. Mt is a martingale;

4. M2
t −

∫ t
0
φ2
u du is a martingale.

This includes the assertions of Proposition 4.4, page 41 of the text. In addition we should point out that if
φt and ψt both satisfy (6.7), and c1, c2 are any constants then∫ t

0

c1φu + c2ψu dWu = c1

∫ t

0

φu dWu + c2

∫ t

0

ψu dWu,

as you would expect from any integral.
There is usually a second extension of the definition of stochastic integrals, in which the requirement

(6.7) is relaxed to ask only that ∫ T

0

φ2
u du <∞ (6.8)

for (almost) all ω ∈ Ω; see (4.15) in the text. Then Mt =
∫ t

0
φu dWu is still defined and continuous, but the

two martingale properties 2 and 3 (i.e. (4.12) and (4.13) in the text) may fail. Mt becomes what is called
a local martingale. This makes

∫ t
0
φu dWu defined whenever φt is adapted and continuous in t for instance,

but if we need to use the martingale properties 3 or 4 of Mt, we usually need to find a way to verify (6.7).

6.5 Itô’s Formula

Although the Riemann integral of calculus is defined by a limiting procedure, we rarely use the definition
itself for calculations. Instead most calculations are based on the Chain Rule: if x′(t) = φ(t) and f(x) is a
continuously differentiable function, then

d

dt
f(x(t)) = f ′(x(t))φ(t)

so that

f(x(b)) = f(x(a)) +
∫ b

a

f ′(x(t))φ(t) dt.

For stochastic integrals likewise: most calculations are not based on the definition described above, but on
Itô’s formula, which plays the role of the Chain Rule for stochastic integrals. There are several versions of
this important formula; see Propositions 4.11 and 4.16 in the text. We will not attempt to prove it, but will
try to motivate it with some special cases.

The stochastic processes we want to work with are all ones that can be written as sums of Riemann and
stochastic integrals, i.e. Xt for which

Xt = X0 +
∫ t

0

µs ds+
∫ t

0

σs dWs,

for some progressively measurable stochastic processes µt and σt. This is what is meant when we write

dXt = µt dt+ σt dWt.
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In this notation, the conventional Chain Rule says that if dXt = µt dt and f(x) is a continuously differentiable
function, then df(Xt) = f ′(Xt)µt dt. Itô’s formula will provide the same kind of result for cases in which
dXt includes a dWt term as well.

To see a simple instance of Itô’s formula, consider two stochastic processes defined by

Xt = µXt+ σXWt, Yt = µY t+ σYWt,

where µX , µY , σX , σY are constants. In other words

dXt = µX dt+ σX dWt, dYt = µY dt+ σY dWt. (6.9)

Now consider the new stochastic process obtained by simply multiplying these together:

XtYt = σXσY W
2
t + (σXµY + σY µX) tWt + µXµY t

2.

By our example (6.5) above we know that

dW 2
t = dt+ 2Wt dWt.

You also know from Problem P.6.C that

d(tWt) = Wt dt+ t dWt.

The Chain Rule itself says that d(t2) = 2t dt. Putting these together, it follows that

d(XtYt) = σXσY [dt+ 2Wt dWt] + (σXµY + σY µX)[Wt dt+ t dWt] + µXµY 2tdt
= (µXt+ σXWt)(µY dt+ σY dWt) + (µY t+ σYWt)(µX dt+ σX dWt) + σXσY dt

= Xt dYt + Yt dXt + σXσY dt.

The first two terms in the last line resemble the usual product rule, but the extra dt term on the end is
perhaps not what we might have guessed. However the above does follow from a stochastic product rule:

d(XtYt) = Xt dYt + Yt dXt + dXtdYt, (6.10)

where we compute dXtdYt using (6.9) and the basic differential product formulas

(dt)2 = 0, dt · dWt = 0, (dWt)2 = dt. (6.11)

We have verified (6.10) assuming µX , µY , σX , σY are constants in (6.9). It turns out that (6.10) remains
true if we replace these constants by stochastic processes1 µXt , µ

Y
t , σ

X
t , σ

Y
t .

Notice that both our formulas dW 2
t = dt+ 2Wt dWt and d(tWt) = Wt dt+ t dWt are examples of (6.10).

Applying (6.10), we can build up many more stochastic integration/differential formulas. For instance,

dW 3
t = d(WtW

2
t )

= Wt d(W 2
t ) +W 2

t dWt + d(W 2
t ) · dWt

= Wt[dt+ 2Wt dWt] +W 2
t dWt + [dt+ 2Wt dWt] · dWt

= 3Wt dt+ 3W 2
t dWt.

In general you can show by induction that if Xt has a stochastic differential, dXt = µt dt+ σt dWt, then for
any positive integer n,

dXn
t = nXn−1

t dXt +
n(n− 1)

2
Xn−2
t (dXt)2. (6.12)

The left side is df(Xt) where f(x) = xn. The two functions of Xt appearing on the right side are f ′(x) =
nx(n−1) and 1

2f
′′(x) = n(n−1)

2 x(n−2). This is an instance of Itô’s formula for functions of a single variable:

df(Xt) = f ′(Xt) dXt +
1
2
f ′′(Xt) (dXt)2, (6.13)

1This is provided the processes are progressively measurable and
R T
0 (σXt )2 dt, and

R T
0 (σYt )2 dt are finite.
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provided f ′′(x) is continuous. (We have essentially derived it for polynomials. The general case can be
proved by finding a sequence of polynomials that converge to f(x) in an appropriate sense.) You can check
that for f(x) = x2, (6.13) reproduces our formula for d(W 2

t ).
Suppose f(x1, . . . , xn) is a function of several variables, with all its second order partial derivatives

continuous, and we have several stochastic processes X(i)
t each with stochastic differentials. For brevity, lets

write f(X(·)
t ) for f(X(1)

t , . . . , X
(n)
t ). Itô’s formula for functions of several variables says that

df(X(·)
t ) =

n∑
i=1

∂f

∂xi
(X(·)

t ) dX(i)
t +

1
2

n∑
i,j=1

∂2f

∂xi∂xj
(X(·)

t ) (dX(i)
t dX

(i)
t ). (6.14)

If you use our power rule (6.12) with the stochastic product rule (6.10), you can check that (6.14) holds for
the particular case of f(x, y) = xnym. Several comments are needed here:

• If you compare (6.14) with Proposition 3.18 in the text, you will notice that we don’t have a ∂f
∂t term.

However if we just add an extra component X(0)
t = t in (6.14), we recover the text’s version.

• The double sum
∑n
i,j=1 is a sum of a sum:

n∑
i,j=1

. . . =
n∑
i=1

 n∑
j=1

. . .

 .
This means that the “mixed” second order partial derivatives (i 6= j) will each occur twice. For instance
∂2f

∂x1∂x2
occurs once for i = 1, j = 2 and again for i = 2, j = 1. The “diagonal” terms (i = j) only occur

once.

• The stochastic integrals involved in Itô’s formula for df(X(·)
t ) are only promised to be in the sense of

(6.8). This means that if we want to use the martingale property for any of the
∫ t

0
. . . dWt that arise,

then we will need to find a way to verify (6.7) directly, which will depend on knowing something about
the ∂f

∂xi
in particular.

As an example, consider
St = e(α− 1

2σ
2)t+σWt .

Then St = f(Xt) where f(x) = ex and dXt = (α− 1
2σ

2) dt+ σ dWt. Itô’s formula tells us that

dSt = eXtdXt +
1
2
eXt (dXt)2

= St

[
(α− 1

2
σ2) dt+ σ dWt

]
+

1
2
σ2St dt

= αSt dt+ σSt dWt.

(This will describe the stock price in the basic Black-Scholes model.) We would like to know that the
stochastic integral

∫ t
0
σSu dWu is a martingale. For that we would like to verify that the following is finite:

E

[∫ T

0

(σSt)2 dt

]
= σ2

∫ T

0

E[e2(α− 1
2σ

2)t+2σWt ] dt

= σ2

∫ T

0

e2(α− 1
2σ

2)tE[e2σWt ] dt

= σ2

∫ T

0

e2(α− 1
2σ

2)te
1
2 (2σ)2t dt <∞.

(To obtain the last line we have used (1.7) with θ = 2σ.) We have been thinking of α and σ as constants
through this calculation. But what we have said generalizes if αt and σt are progressively measurable
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processes, with some additional hypotheses to help us through the E[
∫ T

0
(. . .)2 dt] <∞ calculation above. If

αt and σt are bounded for instance, then everything works out fine.
Notice that if we take σ = θ and α = 0 in St, then St reduces to Nt = eθWt− 1

2 θ
2t, our familiar exponential

martingale. Also, dNt = θNt dWt, which explains why we should expect it to be a martingale. For this case
the Novikov Condition in Section 7.2 below provides an alternative to the second moment calculation above.

As a second example, we will compute the stochastic differential for

Yt = sin(W 2
t )Wt.

The simplest approach would be to apply Itô’s formula for functions of a single variable to f(x) = x sin(x2).
However we want to illustrate (6.14). With

f(x1, x2) = sin(x1)x2,

and

X
(1)
t = W 2

t , dX
(1)
t = 2Wt dWt + dt;

X
(2)
t = Wt, dX

(2)
t = dWt,

we have
Yt = f(X(1)

t , X
(2)
t ),

to which we apply Itô’s formula. We will use fxi and fxi,xj to denote the various partial derivatives. These
will always be assumed to be evaluated at X(1)

t , X
(2)
t in the dYt calculation below. Itô’s formula says that

dYt = fx1 dX
(1)
t + fx2 dX

(2)
t +

1
2

[
fx1,x1(dX(1)

t )2 + 2fx1,x2dX
(1)
t dX

(2)
t + fx2,x2(dX(2)

t )2
]
.

Here are the various pieces:

fx1 = cos(x1)x2

fx2 = sin(x1)
fx1x1 = − sin(x1)x2

fx1x2 = cos(x1)
fx2x2 = 0

(dX(1)
t )2 = 4W 2

t dt

dX
(1)
t dX

(2)
t = 2Wt dt

Now assemble the pieces and make the substitutions for X(1)
t and X

(2)
t to obtain

dYt = cos(W 2
t )Wt (2Wt dWt + dt) + sin(W 2

t ) dWt +
1
2
[
− sin(W 2

t )Wt 4W 2
t + 2 cos(W 2

t )2Wt

]
dt

=
[
cos(W 2

t )2W 2
t + sin(W 2

t )
]
dWt +

[
3 cos(W 2

t )Wt − 2 sin(W 2
t )W 3

t

]
dt.

6.6 Martingale Representation Theorem

There are two additional results about stochastic integration that we need to mention. First is what we
might call the uniqueness of stochastic differentials. If∫ t

0

αt dt+
∫ t

0

σt dWt =
∫ t

0

ᾱt dt+
∫ t

0

σ̄t dWt,

or, said another way if αt dt+σt dWt = ᾱt dt+ σ̄t dWt, can we be sure that αt = ᾱt and σt = σ̄t? The answer
is as we would hope, essentially “yes.” The only possible differences between αt, ᾱt and between σt, σ̄t are
ones that do not affect their integrals. So for all practical purposes, stochastic differentials are unique.
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The second question is exactly what random variables Y can be written as stochastic integrals

Y =
∫ T

0

φt dWt

for some φt satisfying (6.7)? We already know that it is necessary that E[Y 2] < ∞ and E[Y ] = 0. The
converse is true if, in addition, we assume that Y (ω) depends only on the values of Wt(ω), 0 ≤ t ≤ T .
The precise way to say this is that Y is measurable with respect to the σ-algebra FWT of Definition 3.1;
see also §5.3 above. The thing that must be ruled out is that Y might depend on ω in some way that is
not discernible in the values of Wt(ω). As long as E[Y 2] < ∞, E[Y ] = 0, and Y is measurable in terms of
the Wt, 0 ≤ t ≤ T alone then there will be a φt with Y =

∫ T
0
φt dWt. This is often called the Martingale

Representation Theorem for Brownian motion, because if Y = MT −M0 where Mt is a martingale (with
respect to FWt ), then MT =

∫ T
0
φu dWu + M0 which implies that Mt =

∫ t
0
φu dWu + M0 for all 0 ≤ t ≤ T .

In terms of stochastic differentials,
dMt = 0 dt+ φt dWt.

This is very useful, because it makes recognizing martingales quite easy in terms of their stochastic
differentials. Any process Xt, 0 ≤ t ≤ T , with a stochastic differential

dXt = αt dt+ σt dWt

is a martingale only if αt = 0. Conversely if αt = 0 then Xt will be a martingale if we can somehow verify
integrability: E[|XT |] < ∞. A sufficient condition is that E[

∫ T
0
σ2
s ds] < ∞. Indeed that implies square

integrability because E[X2
T ] = E[

∫ T
0
σ2
s ds] <∞.

6.7 Problems

P.6.A If x0, x1, . . . is a sequence of real numbers, let ∆xi = xi−xi−1 denote the usual backward difference
(i ≥ 1). If xi, yi are two such sequences, verify the “discrete product rule”:

∆(xiyi) = xi−1∆yi + yi−1∆xi + (∆xi)(∆yi).

P.6.B Check the mean and variance calculations mentioned in the first sentence after the Quadratic Vari-
ation Lemma.

P.6.C Compute the stochastic integral
∫ T

0
t dWt. (For each n describe a partition t

(n)
i of [0, T ]. Let

φ
(n)
t = t

(n)
k−1 on (t(n)

k−1, t
(n)
k ]. Explain why E[

∫ T
0

(φ(n)
t − t)2 dt]→ 0. Use Problem P.6.A to rewrite

∫ T
0
φ

(n)
t dWt

and take the limit to determine
∫ T

0
t dWt.)

P.6.D Use Itô’s formula to verify that e
1
2 θ

2t sin(θWt) is a martingale for any θ ∈ R.

P.6.E

a) Verify the following formula, for each integer n ≥ 1:∫ t

0

sn dWs = tnWt −
∫ t

0

nsn−1Ws ds

b) Find a similar formula for
∫ t

0
Wn
s dWs.

P.6.F Write out the induction argument to verify (6.12). Verify the statement following (6.14) for f(x, y) =
xnym.
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P.6.G For ordinary integration the n-fold iterated integrals of f(t) = 1 are the familiar monomials from
Taylor series: ∫ t

0

∫ sn

0

∫ sn−1

0

· · ·
∫ s2

0

1 ds1 · · · dsn−1 dsn = tn/n! .

The analogous formula for stochastic integrals is different. Verify that the following formulas are correct and
that each is square integrable. ∫ t

0

∫ s2

0

1 dWs1dWs2 =
1
2

(W 2
t − t)∫ t

0

∫ s3

0

∫ s2

0

1 dWs1dWs2dWs3 =
1
6

(W 3
t − 3tWt)∫ t

0

∫ s4

0

∫ s3

0

∫ s2

0

1 dWs1dWs2dWs3dWs4 =
1
24

(W 4
t − 6tW 2

t + 3t2)

P.6.H Use the last formula of P.6.G to compute E[W 4
t ]. You should get the same result as Example 4.12,

page 51, of the text.
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Chapter 7

Change of Measure and the
Black-Scholes Model

In our binomial tree calculations we saw that our approach to pricing a financial option could be thought of
as changing the original probability measure P to a new probability measure Q which made the discounted
stock price, St/Bt a martingale. This approach works out nicely in the continuous time setting too, but it
takes some more effort to explain.

7.1 Motivation and Simple Example

To set the stage, lets first consider making a change of probability measure in a simple setting: Ω = R and
X(ω) = ω. Suppose P and Q are probability themeasures on Ω which assign probabilities

P ([a, b]) =
∫ b

a

1√
2πσ2

e−
x2

2σ2 dx and

Q([a, b]) =
∫ b

a

1√
2πσ2

e−
(x−µ)2

2σ2 dx

to each interval [a, b]. With respect to P , X is a normal random variable with mean 0 and variance σ2. But
if considered with respect to Q, then X has mean µ. (The variance is still σ2 with respect to Q, but we
could have made it something different had we wanted to.) The point is that by changing from P to Q we
change the probabilities associated with X, so that its distribution changes, even though X : Ω→ R has not
changed at all. We can describe this change of measure in terms of a special random variable ζ:

ζ = e(X2−(X−µ)2)/2σ2
= e(2µX−µ2)/2σ2

. (7.1)

Every Q-expectation can be written as a P -expectation with an extra factor of ζ thrown in:

EQ[φ(X)] = EP [φ(X) ζ].

(If you write out both sides as integrals you will see that they are the same.) In particular, for any (mea-
surable) set A ⊆ Ω,

Q[A] = EQ[1;A] = EP [ζ;A].

In general, if we start with a probability measure P on some (Ω,F) and a random variable ζ ≥ 0
with EP [ζ] = 1, then we can construct a new probability measure Q on the same (Ω,F) by the formula
Q[A] = EP [ζ;A]. When two probability measures are related to each other in this way we say that Q
is absolutely continuous with respect to P (usually written Q � P ), and ζ is called the Radon-Nikodym
derivative of Q with respect to P :

ζ =
dQ

dP
.
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(This notation makes the connection between P and Q look natural in terms of the notation one would use
in real analysis:

∫
A
dQ =

∫
A
dQ
dP dP .) Note that if P (A) = 0 then we must also have Q(A) = EP [ζ;A] = 0.

The Radon-Nikodym Theorem says that the converse of this is true: if Q(A) = 0 whenever P (A) = 0, then
Q � P . When both Q � P and P � Q are true then we say the P and Q are equivalent. (But this does
not mean that they are the same in any sense.)

Next, suppose Wt is a Brownian motion defined on (Ω,Ft, P ). We want to do something like the above
in this context – change from P to a new probability measure Q with respect to which Wt changes from
Brownian motion to something else. If we want to put Wt in the role of X above, then we should take σ2 = t.
Then if we take µ = γt (γ some constant) then we get something familiar from (7.1):

ζt = eγWt− 1
2γ

2t,

our basic exponential martingale. If dQ
dP = ζt then with respect to Q, Wt would have mean γt and variance

t, i.e. it would be as if Wt = γt + W̃t where W̃t is a Brownian motion with respect to Q. Now you might
object because ζt is different for each t value, so it seems we are using a different Q for each t. But the fact
that ζt is a martingale (with respect to P ) resolves that: for any t ≤ T we have

EP [φ(Wt)ζt] = EP [φ(Wt)EP [ζT | Ft]]
= EP [EP [φ(Wt)ζT | Ft]]
= EP [φ(Wt)ζT ].

So we can use Q with dQ
dP = ζT for all t ≤ T . Wt will be normal with mean γt and variance t, so that

Wt − γt = W̃t has mean 0 and variance t.
Certainly W̃t is continuous in t. So W̃t will truly be a Brownian motion with respect to Q if we can show

that W̃t − W̃s is independent of all W̃u for u ≤ s, when considered with respect to Q. To this end, suppose
Y is some random variable that is a function of W̃u for u ≤ s, i.e. Y is Fs measurable, and consider

EQ[Y f(W̃t − W̃s)] = EP [Y f(W̃t − W̃s)ζt].

Write ζt = ζse
γ(Wt−Ws)− 1

2γ
2(t−s) so that

Y f(W̃t − W̃s)ζt = Y ζs ·
[
f(Wt −Ws − γ(t− s))eγ(Wt−Ws)− 1

2γ
2(t−s)

]
The factors outside the brackets are functions of Wu, u ≤ s and the quantity in the brackets is a function
only of Wt −Ws. So since Wt is a Brownian motion with respect to P the expectation splits:

EP [Y f(W̃t − W̃s)ζt] = EP [Y ζs]EP [f(Wt −Ws − γ(t− s))eγ(Wt−Ws)− 1
2γ

2(t−s)].

For the first of these, EP [Y ζs] = EQ[Y ]. For the second, notice that simply applying the above with Y = 1
tells us that

EQ[f(W̃t − W̃s)] = EP [f(Wt −Ws − γ(t− s))eγ(Wt−Ws)− 1
2γ

2(t−s)].

So we have shown that
EQ[Y f(W̃t − W̃s)] = EQ[Y ]EQ[f(W̃t − W̃s)].

This establishes the independence of W̃t − W̃s from W̃u, all u ≤ s under Q and confirms that (with respect
to Q) W̃t is indeed a Brownian motion, as we have been anticipating!

7.2 The Girsanov Formula and the Novikov condition

What we have just worked out is an example of the Cameron-Martin-Girsanov change of measure formula
for Brownian motion.
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Theorem (Girsanov Formula). Suppose that Wt, 0 ≤ t ≤ T is a Brownian motion with respect to (Ω, P )
and that θt is a progressively measurable stochastic process for which

ζt = exp
(∫ t

0

θs dWs −
1
2

∫ t

0

θ2
s ds

)
is a martingale. Let Q be the probability measure defined by Q(A) = EP [ζT ; A] for A ∈ FT . Then Q is
equivalent to P and

W̃t = Wt −
∫ t

0

θs ds

is a Brownian motion with respect to Q, for 0 ≤ t ≤ T .

The case we worked through in the preceding section is θs = γ (constant). We knew that ζt was indeed
a martingale from our earlier Itô formula calculations. In the generality of the theorem it can be difficult to
verify that ζt is indeed a martingale. You can use Itô’s formula as before to calculate that

dζt = θtζt dWt,

but then we would need a way to verify something like E[
∫
θ2
sζ

2
s ds] < ∞, which is hard in general. The

following provides a sufficient condition which is frequently checkable.

Theorem (Novikov Condition). Under the hypotheses of the Girsanov formula, ζt will be a martingale if

EP [e
1
2

R T
0 θ2s ds] <∞.

When working with the change of measure described by Girsanov’s formula it is important to remember
that what was a stochastic integral with respect to P becomes the sum of stochastic and Riemann integrals
with respect to Q, because dWt = θt dt+ dW̃t:∫ t

0

φt dWt =
∫ t

0

φtθt dt+
∫ t

0

φt dW̃t.

The left side is the natural expression to use with respect to P ; the right is the naural form with respect to
Q. What was a martingale with respect to P is now a martingale +

∫ t
0
φtθt dt with respect to Q.

7.3 The Black-Scholes Formula

We now have all the ingredients to work out the risk-neutral or martingale measure Q for the standard
Black-Scholes model. Assume that with respect to P , W̄t is a Brownian motion1 and the stock and bond
prices are given respectively by

St = S0e
(α− 1

2σ
2)t+σW̄t , Bt = B0e

rt.

We want to change to a new probability measure Q that makes Mt = St/Bt a martingale. After writing
Mt = M0 exp((α− r − 1

2σ
2)t+ σW̄t) we see that

dMt = σMt dW̄t +Mt(α− r) dt

= σMt[dW̄t +
1
σ

(α− r) dt]

= σMt[dW̄t − θ dt],

where −θ = 1
σ (α−r). So if we define Q by dQ

dP = ζt where ζt = exp(θW̄t− 1
2θ

2t) with the θ we just identified,
then with respect to Q we will have a new Brownian motion Wt = W̄t − θt and for Mt we can write

dMt = σMtdWt.

1We are following the text’s notation from §6.5 here. W̄t is the original Brownian motion with respect to P , so that the
new Q-Brownian motion can have the cleaner notation Wt, since it is the one we really want to work with.
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It follows that Mt is the Q-martingale exp(σWt − 1
2σ

2t). (This can be double-checked by substituting
W̄t = Wt + θt in the expression for Mt above.) Q is the desired risk-neutral probability measure.

Next consider how St appears with respect to Q. We can work directly from St = S0 exp[(α− 1
2σ

2)t+σW̄t].
With respect to Q we know that Wt = W̄t − θt is a Brownian motion, with θ = −1

σ (α− r). Therefore

(α− 1
2
σ2)t+ σW̄t = ((α− 1

2
σ2) + σθ)t+ σWt = (r − 1

2
σ2)t+ σWt.

So with respect to the Q-Brownian motion Wt we have

St = S0e
(α− 1

2σ
2)t+σW̄t

= S0e
(r− 1

2σ
2)t+σWt

This was the Xt we used in our calculation (in class) to solve the Black-Scholes PDE:

dXt = rXt dt+ σXt dWt.

When we did our calculation in class, Xt was a new stochastic process considered under the original P . Here
we see that Xt = St considered under Q. An alternate derivation is to manipulate the stochastic differentials.

dSt = αSt dt+ σSt dW̄t

= αSt dt+ σSt (dWt + θ dt)
= (α+ σθ)St dt+ σSt dWt

= rSt dt+ σSt dWt.

Our former calculation
F (t,Xt) = e−r(T−t)EP [Φ(Xt)| Ft]

is the same as
F (t, St) = e−r(T−t)EQ [Φ(St)| Ft] ,

or
F (t, St)
Bt

= EQ
[

Φ(St)
BT

| Ft
]
.

We see that the same Q that makes St/Bt a martingale also makes F (t,St)
Bt

a martingale.
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Itô’s formula, 41
martingale, 18
martingale representation theorem, 44
mean, 5
measurable (function or random variable), 2
moments, 5
moment generating function, 5
normal random variables (N [µ, σ] distribution), 5
Novikov condition, 48
probability space, 2
probability measure, 2
quadratic variation lemma, 35
random variable, 2
σ-algebra, 2
stochastic integration

for discrete martingale, 20
for Brownian motion, 39

stochastic differentials (uniqueness), 43
stopping time, 19
strong law of large numbers, 24
tower law, 13
variance, 5

51


