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12.3.1 The Formal Structure of Itô Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

12.4 The Black-Scholes Model and Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
12.4.1 The Black-Scholes Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
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Preface

I have taught various undergraduate courses on Markov chains and stochastic processes at Virginia Tech over
the years. In every instance I used a different published text and was always disappointed in their emphases
and coverage. So I began to write short sections of notes to bring out the ideas and organize the material
the way I thought appropriate. After my retirement in 2016 I decided to put those notes together, fill in
some of the gaps, and try to turn them into a coherent treatment. This document is the current status of
that effort.

So far I have organized the material in an order that makes logical sense to me and developed proofs
based on that organization. Here are some of the ideas that have guided my selection and organization of
the material.

• This is a topic in mathematics. Although Markov chains are used in many applications, and specific
applications help to illustrate the ideas, I want the mathematics of Markov chains to be the focus.
Students should see topics from their previous mathematics courses at work here: linear algebra,
infinite series, elementary real analysis and differential equations.

• There are some ideas that unify the different Markov processes considered here. One is the central role
of the generator. For discrete time chains this is the matrix A = P− I. For a countably infinite state
space this is an infinite matrix (viewed an operator on sequences). For Markov jump processes this is

the operator A of (11.18). And for Brownian motion it is A = 1
2
∂2

∂x2 . One of the common roles it plays
is to identify families of martingales:

Mn = f(Xn)−
n−1∑

0

Af(Xk), or Mt = f(Xt)−
∫ t

0

Af(Xs) ds

as the case may be. Although I won’t try to develop semigroup theory per se, or the full martingale
problem equivalence, I do hope students will recognize that there are some central ideas that are
common to the different types of Markov processes discussed and which hold the whole business
together conceptually.

• Many problems about Markov processes can be reduced to solving a system of equations for functions
of the state variable which involve A or A. Calculation of hitting probabilities, mean hitting times,
determining recurrence vs. transience, and explosion vs. non-explosion, are all considered in this way.

• One of my disappointments with some published texts is the reliance on a merely intuitive understand-
ing of the Markov property and conditional expectations. Although the measure-theoretic foundations
of such things cannot be developed at the undergraduate level, I want students to recognize that there
is some underlying mathematical structure which makes those parts of our reasoning rigorous, even if
we don’t always draw it out fully. So I try to explain in Chapter 3 how the whole conception of prob-
ability theory is founded on the Kolmogorov model of an underlying probability space with random
variables as (measurable) functions. I present in that chapter some important working tools (domi-
nated and monotone convergence theorems, the strong law, . . . ) but with no attempt to prove them.
In the chapters which follow I will use those tools but will sweep some measure-theoretic technicalities
under the rug (such qualifications that functions be measurable or “except on a set of probability 0”).
I readily acknowledge that as a consequence my treatment falls short of the level of rigor expected in

iv



advanced texts. Even so, I have tried to make the treatment mathematically honest in that although
a few deeper results are presented without proof, their statements are correct. With regard to condi-
tional probabilities, instead of introducing sigma-algebras, as a rigorous discussion would require, I use
the idea of functional dependence. Where a rigorous treatment would say that “Y is measurable with
respect to the sigma-algebra Fn generated by X0, . . . Xn”, I say that “Y is X0:n-determined”, meaning
that Y = φ(X0:n) for some function φ(·). This formulation allows the essential features of condition-
als to be presented in a way comprehensible to undergraduates but without all the measure-theoretic
machinery necessary for complete rigor.

• Contemporary software makes it possible to carry out calculations and perform simulations to exhibit
various properties. Using Matlab for instance students can easily perform Markov chain calculations
which are larger than they could attempt by hand. Facility with such calculations should be part of a
contemporary mathematics education, so I want this text to both presume and cultivate those skills.
The m-files referred in the text to are available from a web page accompanying this text.

But now some candid acknowledgment of what this document is not. I hesitate to call it a “book” for
several reasons. There are additional topics which ought to be included, some of which appear as brown-
colored text and some chapters which need to be expanded and supplied with more problems. Many ideas
could use better introduction. The use of Matlab is rather thin in the latter chapters. The difficulty level
is uneven and probably strays beyond what most undergraduates can handle in places. Surely there are
inconsistencies in my notation. There are also certain to be many typos, misspellings, even mathematically
incorrect statements (though I hope not many) which further editing would improve1. Whether I will
eventually improve all these things only time will tell. I hope that what I have written out so far at least
provides an organization and development of the material that others may find useful in some way, even if
it is not quite suitable for a course text (yet).

Prerequisites, in addition to the standard freshman-sophomore calculus and differential equations courses,
would be a real analysis or advanced calculus course which covers the connections between continuity and
sequential convergence, the properties of infinite series and power series, a linear algebra course which includes
the study of diagonalization of matricies and eigenvalues, and (for Chapter 11) a course on differential
equations which includes the matrix exponential. Although not strictly necessary it would also be helpful if
the student has encountered some basic ideas about random variables previously. An appendix provides a
brief synopsis of some supporting mathematical topics that may have escaped students’ backgrounds.

Martin Day; Lynchburg, VA, Dec. 2017

1Please feel free to point out any failings or suggestions by e-mail if you wish.
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Chapter 1

Introduction and Preliminaries

A stochastic process is a mathematical quantity which is both time-dependent and random. We typically
denote it as something like Xt where the time variable t is written as a subscript. We will call the value
of Xt its state at time t. The possible states might be integers, real numbers, vectors, or possibly other
types of quantities. There are different types of stochastic processes, depending on what is assumed about
the relation between Xs and Xt for different times s and t. Our main interest will be in Markov processes.
The essential feature of these is that if we know the current state, Xs, then the probabilistic description of
future states, Xt for t > s, does not involve any additional information about the past: Xu for u < s. In
brief, future behavior depends on the present but not past history. This property allows Markov processes to
be studied in terms of their time evolution and allows a rather rich mathematical analysis. Central to that
analysis is a matrix A (or operator A in Chapters 11 and 12) which shows up over and over in the equations
describing the process. This is called the generator, or infinitesimal generator, or characteristic operator in
different settings. Our presentation is organized to highlight the several roles that A (or A) plays in the
analysis of the Markov processes we consider.

1.1 Overview and Examples

We begin here with a preview of some of the types of Markov processes we will be considering. The simplest
are finite state Markov chains. Time is limited to integer values: t = 0, 1, 2, . . . , n, . . .. There is a finite set
S of possible states. At time t = n the chain is located at one these states Xn = i ∈ S and then jumps
to another state for the next time, say Xn+1 = j. A collection of transition probabilities pi,j describe how
likely each of these Xn = i→ Xn+1 = j transitions is. A simple example is given in Example 2.1 on page 8,
illustrated in the graph below. The verticies are the possible states S = {1, 2, 3, 4} and values for all the
pi,j are given in the matrix P on page 8. Each arrow i → j in the graph indicates a possible transition
(“possible” meaning positive probability: pi,j > 0).

12

34

The chain Xn itself moves from one state to another (according to the prescribed pi,j) as time progresses.

1



Chapter 2 considers finite state Markov chains in general, and how we can determine the probabilities of
various behaviors for them. We will find that these problems reduce to matrix equations all involving the
matrix (generator)

A = P− I,

where P = [pi,j ] is the matrix of transition probabiities.
We can also have Markov chains with an infinite set of states. Although much of what we will learn in

Chapter 2 carries over to the infinite state setting, the analysis becomes more difficult. In preparation for
that Chapter 3 summarizes some fundamental features of probabilities, including conditional probabilities,
that are vital to understanding stochastic processes in all but the simplest settings. Chapter 4 then resumes
our exploration of Markov chains in the case of infinitely many states. For an example consider the symmetric
random walk in one dimension. The states are the integers. At each step the chain moves either up or down
by one Xn+1 = Xn ± 1, each with probability 1

2 . Thus Xn “walks” back and forth through the integers.

⋯ -3 -2 -1 0 1 2 3 ⋯

This seems simple enough. But some questions about it are not so easy to answer. If we assume the chain
starts at X0 = 0 can we determine whether or not it will return to 0 sometime in the future? Is it possible
that the chain can wander away never to return to 0 again? It turns out that this particular example does
eventually return to 0 (see Example 4.6) but the average amount of time it takes to do so is infinite! Issues
of what happens in the long run will be a main concern in that chapter.

Chapters 5–8 consider several other issues associated with Markov chains: estimating transition proba-
bilities from observations, the concept of entropy for a Markov chain and it’s importance in information and
coding theory, and optimization problems associated with Markov chains (such as betting strategies). All of
these are important topics for more complicated types of Markov processes, but they are easier to encounter
for the first time for Markov chains where the technicalities are much tamer.

Chapter 9 introduces another class of stochastic processes called martingales. We will see in Section 9.2
for instance that there is a fundamental connection between Markov processes and martingales involving
the generator A or A. We include them here both because they are important for more advanced study of
stochastic processes and because they are needed for Chapter 10.

Chapter 10 is the one chapter devoted to a particular application: mathematical finance. Since the 1990s
applications of stochastic processes to the analysis of financial markets has enjoyed tremendous growth, both
as an academic discipline as well as a career specialty in the financial industry. It now probably attracts
more student interest in stochastic processes than any other application area. Although most research in this
area involves more complicated continuous time models (we will touch on that in Chapter 12) Chapter 10
will introduce some of the fundamental ideas in the context of Markov chains.

The final two chapters concern Markov processes for which the time variable is allowed to vary contin-
uously over the nonnegative real numbers. We still write Xt but now all 0 ≤ t are considered, rather than
just t = 0, 1, 2, . . .. The simplest type of continuous time Markov processes are jump processes, the topic
of Chapter 11. The most basic example is the Poisson process. Its states are the nonnegative integers.
If Xt = k the process stays at k a random amount of time T and then makes an instantaneous jump to
Xt+T = k + 1. By giving T an exponential distribution,

P (T ≤ s) = 1− e−λs,

this is a Markov process, as we will see. Here is a graph of a typical sample of Xt (using λ = 1).
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It waits then moves up, waits then moves up, moving step by step up through the integers. All the randomness
comes from the waiting times at each state. This can be generalized by allowing the waiting time parameter
λ to depend on the current state, λk, and by letting the state it jumps to be random as well, determined by
some collection qk,j of transition probabilities. The generator takes the form of a difference operator,

Af(k) =
∑
j

λkqk,j [f(j)− f(k)],

and the equations describing probabilities become ordinary differential equations (sometimes infinitely many
such equations). There are many applications of this general type of process. Some will be indicated in
Chapter 11.

There are also Markov processes for which Xt is continuous. These are generally called diffusions. The
premier example is Brownian Motion, the topic of Chapter 12. Here is the graph of a typical sample of
Brownian Motion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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-0.4

-0.2

0

0.2

0.4

0.6
A Sample Brownian Path

It is continuous, but very rough, not smooth at all. Brownian motion has many remarkable properties. The
generator now becomes a differential operator

Af(x) =
1

2
f ′′(x)
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and the equations describing probabilities become partial differential equations. A careful treatment of Brow-
nian Motion requires graduate-level mathematical analysis, which is beyond the level of our treatment here.
Our goal will only be to give an overview of its features, and techniques for working with it. This includes a
heuristic introduction to stochastic calculus, and a brief return to mathematical finance in continuous time.

1.2 About Matlab

We will often use simulations to illustrate or examine the behavior of a particular process. This involves the
use of computer-generated pseudo-random numbers to construct sample behaviors of a particular Markov
process. Section A.3 has some discussion of pseudo-random numbers and their use in Matlab. Some of our
examples and homework problems involve matrix calculations, usually larger than anyone would want to do
by hand. We will freely use Matlab to perform those calculations. You should likewise feel free to rely on
Matlab (or an alternative if your prefer) to carry out matrix calculations required in homework problems.
Appendix A includes a brief list of Matlab commands which are relevant to our use. In general however
it is assumed that students have some facility with Matlab. We will not try to present a self-contained
introduction.

1.3 About Notation

Our notation for standard number systems is as follows.

• N is the natural numbers {1, 2, 3, . . .}.

• Z if the full set of integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

• Z+ is the nonnegative integers {0, 1, 2, 3, . . .}.

• R is the set of all real numbers.

• R+ is the nonnegative real numbers [0,∞).

• Zd is the d-dimensional integer lattice. A typical z ∈ Rd is z = (z1, . . . zd), each zi ∈ Z.

• Rd is the d-dimensional Euclidean space. A typical x ∈ Rd is x = (x1, . . . xd), each xi ∈ R.

For a sequence xi, i = 0, 1, . . . we will use xm:n as a shorthand notation for the finite segment where i
runs from m to n: (xm, . . . xn).

The number of elements in a set A will be denoted #A.
When referring to a function as a whole, rather than one of its values, we will typically write f(·). The

usual f(x) refers to the value of f(·) when evaluated at x. If f(·, ·) is a function of two variables, f(·, y)
refers to the function of one variable obtained by fixing the value y for the second variable.

Matricies will be in boldface, usually uppercase with their entries in lowercase: P = [pi,j ]. The column
vector of all 0s or all 1s will be denoted [0] or [1] respectively, the size as determined from the context. When
possible we will write the vector comprised of the collection of all values by using boldface: f = [f(i)] or
u = [ui]. Row vectors will be indicated with parentheses: (π1, . . . , πm) but again we will sometimes use
boldface to indicate the row vector of all possible values: v = (v1, v2, . . .) = (vi).

We will continue to use matrix notation even when the set S of indicies is a countably infinite set. If
B,C ⊆ S are subsets of the index set then the submatrix consisting of those ai,j with i ∈ B, j ∈ C will be
denoted ABC . For instance if C = S \B then we can think of A in blocks:

A =

[
ABB ABC

ACB ACC .

]
.

When f is a function of the indices of the matrix we will write Pf for the function obtained by matrix
multiplication, with the values of f arranged as a column:

Pf(i) =
∑
j

pi,jf(j).
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Thus Pf(i) is the ith entry of the matrix product, the same thing as (Pf)i. When f(·, ·) is a function of two
variables, Pf will operate on just the first variable:

Pf(i, s) =
∑
k

pi,kf(k, s)

When the set of indicies S is countably infinite then these expressions refer to infinite series. For instance if
the indicies for P range over all integers (S = Z) then

Pf(i) =
∑
j∈Z

ai,jf(j) =

∞∑
j=−∞

ai,jf(j).

Random variables will be denoted with uppercase letters, e.g. X or T , and their possible values by
lowercase: P (X = x) = · · · . This applies to sequences of their values as well: P (X1:100 = x1:100) = · · · .
(But not everything in uppercase is random, for instance sets, matrices, Var[·], P (·), E[·].) Stochastic
processes consist of random variables which depend on time. We will always put the time variable in the
subscript position: Xt.
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Chapter 2

Markov Chains: Finite States and
Discrete Time

We begin with the simplest type of stochastic process: a Markov chain. This is a process which moves around
randomly within a set S of states in accord with some prescribed transition probabilities pi,j (i, j ∈ S). This
chapter introduces the basic features of a Markov chains assuming that the state space S is finite. We
will see how the Markov property allows us to reduce many problems concerning a Markov chain to matrix
equations, which can then be solved with the techniques of linear algebra. In Chapter 4 we will extend these
considerations to an infinite state space.

Board games are good examples. Consider the game of Monopoly for instance. The Monopoly playing
board consists of 40 positions arranged around a square. Let’s label the positions 1 through 40. These
comprise the states; the state space is the set

S = {1, 2, . . . , 40}.

If your token is at position i then on your next move you roll a pair of dice to determine a random number
2 ≤ D ≤ 12 and then move your token from position i to position j = i+D, reduced mod 40 to remain in S
if you “Pass Go”. (We are ignoring all the rules about going to jail, or getting sent different places because
of a “Chance” card you drew, financial transactions, rolling doubles and so forth. We are just rolling the
dice and moving.) Different outcomes of the dice roll occur with different probabilities:

P (D = 2) =
1

36
, P (D = 3) =

2

36
· · · P (D = 7) =

6

36
· · · P (D = 11) =

2

36
, P (D = 12) =

1

36
.

(A concise formula is P (D = k) = 6−|7−k|
36 for k = 2, . . . , 12 and 0 otherwise.) The positions j you can move

to from position i are different for different i; some are not possible and some are more likely than others.
The transition probability pi,j is the probability of moving from i to j.

pi,j = P (D = k) if j = i+ k (mod 40).

For instance,

p3,9 =
5

36
, p7,25 = 0, p32,4 =

1

36
.

All together the pi,j form a 40× 40 matrix P = [pi,j ], which is called the transition matrix.
Your position/state at time n is denoted Xn. The Monopoly Markov chain produces a sequence of

positions: X0, X1, X2, . . . . Knowing that X0 = 1 and what P is allows us to calculate the probability that
the first several moves work out a particular way. For instance

P (X0 = 1, X1 = 5, X2 = 13, X3 = 20) = p1,5p5,13p13,20 =
3

36

5

36

6

36
=

5

2592
= .00192901. (2.1)

We will do some more complicated calculations with this chain in Examples 2.7 and 2.5 below.
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2.1 Definition and Transition Probabilities

In general a Markov chain Xn is like a board game. The set S of states is the set of positions on the board.
If there are m of them we might as well label them with numbers:

S = {1, 2, . . . ,m}.

There is an m×m transition matrix P = [pi,j ] with the properties that pi,j ≥ 0 and

for each i, pi,1 + · · · pi,m = 1; i.e.
∑
j∈S

pi,j = 1.

For Monopoly we always start at X0 = 1 but in general we allow X0 to be chosen randomly from S in accord
with some specified initial distribution µ = (µ1, . . . , µm):

P (X0 = i) = µi.

(We require 0 ≤ µi and
∑m

1 µi = 1.) Given µ and P we generate the Markov chain Xn by starting with a
random choice of X0 in accord with the specified probabilities µ. Then we take the resulting i = X0 and
randomly pick X1 in accord with the probabilities pi,1, . . . , pi,m. Then we take j = X1 and randomly pick X2

in accord with the probabilities pj,1, . . . , pj,m. Continue to choose X3, X4, . . . in the same fashion: if k = Xn

then we pick Xn+1 in accord with the probabilities pk,1, . . . , pk,m. The particular value of Xn determines
which set of probabilities we use to choose Xn+1. Row k of P contains the probabilities for transitions out
of state k.

There are some important points to make before we go further. First, the Xn are random variables,
not values that are fixed or predetermined. If you move your token back to X0 = 1 and roll the dice anew
you will generate a different sequence X0, X1, X2, . . . than before, even though P has not changed. It is
the probabilities associated with the outcomes Xn which we can determine through careful mathematical
analysis, not the actual outcomes Xn.

Second there is a subtlety in the above description of a Markov chain that you may not have noticed.
When we identify k = Xn and then use pk,1, . . . , pk,m to randomly choose Xn+1, the idea is that the earlier
outcomes X0, . . . , Xn−1 have no influence on the probabilities for choosing Xn+1. It is only the immediately
preceding state k = Xn which determines the probabilities of Xn+1. This is the feature that distinguishes a
Markov chain from other non-Markov sequences of random variables. To illustrate suppose that X0 and X1

are the results of two independent (single) dice throws, but for higher n we just repeat X0 (if n is even) or
X1 (if n is odd). We don’t re-roll the dice after n = 1, 2 we just re-use the results of those initial two dice
rolls. For instance if the first dice roll is 3 and the second is 5 then

3 = X0 = X2 = X4 = · · · and 5 = X1 = X3 = X5 = · · · .

This is a stochastic process Xn on the set of states S = {1, 2, 3, 4, 5, 6} but it is not a Markov chain! If it
were then there would be no certainty that X0 = X3. That would only happen only with probability 1/6.

Some notation will help us describe Markov chains more efficiently. We will use s1:n to refer to the finite
sequence of si for i = 1, 2, . . . n:

s1:n = (s1, s2, . . . sn).

If we specify s0 = 0, s1 = 5, s2 = 13 and s3 = 20 then instead of writing

X0 = 0, X1 = 5, X2 = 15, X3 = 19

we can just write
X0:3 = s0:3.

This notation is particularly convenient for talking about long finite sequences. We can describe the prob-
abilities associated with a Markov process with initial distribution µ and transition matrix P using the
formula

P (X0:n = s0:n) = µs0

n∏
i=1

psi−1,si (2.2)
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for all finite sequences s0:n of states.
Equation (2.2) describes how to determine the probably that X0:n follows a specified sequence s0:n of

states. If we want the probability that X0:n does something that can occur in multiple ways then we just
add up P (X0:n = s0:n) for all the appropriate sequences s0:n. For instance suppose we want the probability
that X3 = 5. We want to consider all s0:3 with s3 = 5.

P (X3 = 5) =
∑

s0:3 with s3=5

P (X0:3 = s0:3) =
∑
s0

∑
s1

∑
s2

µs0ps0,s1ps1,s2ps2,5. (2.3)

In this last expression we recognize the occurrence of a matrix product:
∑
s2
ps1,s2ps2,5 is the s1, 5 entry of

the matrix product PP = P2. In fact the expression above is just the 5th entry of the (row) matrix µP3.

P (X3 = 5) = (µP3)5.

Said another way, as a row vector

µP3 = (P (X3 = 1), . . . , P (X3 = 5), . . . , P (X3 = m)).

Starting with µ as the vector of P (X0 = i) probabilities, µP is the vector of P (X1 = i) probabilities, µP2 is
the vector of P (X2 = i) probabilities, µP3 is the vector of P (X3 = i) probabilities, and so on. Multiplication
(on the right) by P converts the (row) vector of P (Xn = i) probabilities into the (row) vector of P (Xn+1 = i)
probabilities. We could say P propagates the distribution of Xn one step forward in time to the distribution
of Xn+1. This connection between the probabilities of Xn and multiplication by the matrix P is what makes
Markov chains amenable to mathematical analysis.

We will use pi,j(n) to denote the i, j entry of Pn, so Pn = [pi,j(n)]. The formula

pi,j(m+ n) =
∑
k∈S

pi,k(m)pk,j(n) (2.4)

is just the definition of matrix product Pm+n = PmPn. In the terminology of Markov processes this is
called the Chapman-Kolmogorov equation.

2.1.1 Simulation and Examples

Example 2.1. As a simple example consider the chain on S = {1, 2, 3, 4} with transition matrix

P =


.2 .4 0 .4
0 0 .6 .4
.3 0 0 .7
0 .5 .5 0

 .
12

34

We have illustrated the chain as a directed graph with arrows for those state transitions which are possible,
i.e. pi,j > 0. For instance there is no 2 → 1 arrow because p2,1 = 0. If we start the chain at X0 = 1 a
typical sample run is

X0:20 = (1, 4, 2, 3, 4, 2, 3, 1, 4, 3, 1, 1, 4, 2, 4, 2, 3, 1, 2, 3, 4).

To find the probabilities P (X100 = i) we can calculate the 100th power of P:

P100 =


0.11605 0.22244 0.30948 0.35203
0.11605 0.22244 0.30948 0.35203
0.11605 0.22244 0.30948 0.35203
0.11605 0.22244 0.30948 0.35203

 .
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Observe that all rows seem to be the same. This particular chain has the property that after many steps the
initial state has little influence:

P (X100 = 1) ≈ 0.11605, P (X100 = 2) ≈ 0.22244, P (X100 = 3) ≈ 0.30948, P (X100 = 3) ≈ 0.35203

regardless of X0. Pn for other large n produces the same result. This is the phenomenon of convergence to
an equilibrium distribution, which we will consider more carefully in Section 2.4 below.

How to Simulate

Here is a simple Matlab m-file to produce sample runs of a Markov chain, as we did in the above example.

mc.m

function x=mc(x0,P,k)

%mc(x0,P,k) simulates the evolution of a Markov chain. x0 is either an

%initial state in {1, ..., n} or an an initial distribution. P is the nxn

%transition matrix. k (optional) specifies the run length: 0 ... k.

if nargin==2

k=1;

end

crs=cumsum(P,2); % Cumulative row sums of P

if length(x0)>1

y=find(rand(1)<cumsum(x0),1); % Generate initial state

x=[y,zeros(1,k)]; % Preallocate x

else

x=[x0,zeros(1,k)];

end

u=rand(1,k); % uniform random values

for i=1:k

x(i+1)=find(u(i)<crs(x(i),:),1); % i to i+1 chain transition

end

% M. Day, August 13, 2014.

Example 2.2. This example is called Feller’s Breeding Problem; see Example XV(2.l) and Section V.6 of
[22]. The idea behind it is this. Most mammals carry two copies of each chromosome, one coming from each
parent. If we focus on a particular gene for which two different versions (alleles) are possible, A and a, the
genotype of an individual can be AA, Aa, or aa. Suppose that a pair of individuals (the parents) reproduce.
There are six different parental genotype pairs:

1:AA&AA, 2:AA&Aa, 3:Aa&Aa, 4:Aa&aa, 5:aa&aa, 6:AA&aa

These will be the states of the Markov chain. A single step of the chain is the result of the following
reproductive mechanism (which we will illustrate starting from state 3: Aa&Aa). First the two copies of the
chromosome in each parent separate. Then one of the two chromosomes from each parent is randomly chosen
and the selected chromosomes from each parent are combined. That produces an offspring of one of the the
three genotypes AA, Aa, or aa with certain probabilities ( 1

4 ,
1
2 ,

1
4 in our example). A large population of such

children are produced from the original parental pair. The relative frequencies of the three genotypes in this
population should be the probabilities just calculated. From this population two individuals are selected at
random to be the next parental pair. The following attempts to illustrate the process.

Aa & Aa
↓

(A or a) & (A or a)
↓

AA ( 1
4 ) or Aa ( 1

2 ) or aa ( 1
4 )
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↓
AA&AA ( 1

4 ·
1
4 ) or AA&Aa (2 · 1

4 ·
1
2 ) or Aa&Aa ( 1

2 ·
1
2 ) or Aa&aa (2 · 1

2 ·
1
4 ) or

aa&aa ( 1
4 ·

1
4 ) or AA&aa (2 · 1

4 ·
1
4 )

For our example of state 3, these are the probabilities p3,i in the third row of the transition matrix. The
other rows are worked out similarly. Here is the result, and a graph indicating the possible transitions among
parental pair states.

P =


1 0 0 0 0 0

1/4 1/2 1/4 0 0 0
1/16 1/4 1/4 1/4 1/16 1/8

0 0 1/4 1/2 1/4 0
0 0 0 0 1 0
0 0 1 0 0 0


1

2 3

4

5

6

Observe that it is not possible to leave states 1 or 5; once there the chain is stuck there forever. We call
these absorbing states. Now look at the 100-step transition probabilities.

P100 =


1. 0. 0. 0. 0. 0.

0.75 0. 0. 0. 0.25 0.
0.5 0. 0. 0. 0.5 0.
0.25 0. 0. 0. 0.75 0.
0. 0. 0. 0. 1. 0.
0.5 0. 0. 0. 0.5 0.


This indicates that in the long run the chain is certain to end up in either state 1: AA&AA or state 5:
aa&aa. The only issue is the probability of landing in one of these as opposed to the other. We can read
that off from the row of P100 corresponding to the initial state.

2.2 Hitting Probabilities and Means

Example 2.2 suggests another category of probabilities, those without a time specification. Suppose C and
D are two disjoint subsets of S. How might we calculate the probabilities that the following occur?

• Xn eventually reaches C.

• Xn never reaches D.

• Xn reaches C before D.

For the first of these we mean the probability that

Xn ∈ C for some n ≥ 0.

We are asking for the probability that the chain is in C at some time but we are not specifying when that
has to happen. Probabilities like these cannot be calculated just by finding a certain power of P. A different
approach is needed. The key is to explore how these probabilities depend on the initial state X0 = i.

10



It will be helpful to indicate the initial state X0 = i in our notation. This is usually done with a subscript
on P (·): writing Pi(·) means that probabilities are computed assuming X0 = i. For instance

P3(X10 = 23) means P (X10 = 23) assuming that X0 = 3.

We can think of Pi(X10 = 23) as a function u(i) of the initial state i ∈ S. For Pi(X10 = 23) we have a
formula for this function

u(i) = pi,23(10).

But for probabilities like the bullets above the answer is not so immediate.
Consider the first bullet and let u(i) be its probability as a function of the initial state i:

u(i) = Pi(Xn ∈ C for some 0 ≤ n <∞).

What can say about this function? For i ∈ C this is trivial.

u(i) = 1 for i ∈ C.

For i /∈ C whether the chain will ever reach C depends on how the chain evolves in the future. Let the chain
move forward one step to X1 = j. If j ∈ C then we have succeeded in reaching C. Starting from X0 = i
this happens with probability

∑
j∈C pi,j . But if X1 = j /∈ C the probability of reaching C at some point in

the future is u(j). Starting from X0 = i the probability that X1 = some j /∈ C but then Xn ∈ C at some
n > 1 is

∑
j /∈C pi,ju(j). So putting these together, for i /∈ C we have

u(i) =
∑
j∈C

pi,j +
∑
j /∈C

pi,ju(j)

=
∑
j∈S

pi,ju(j)

= Pu(i).

(2.5)

This is a system of equations which when solved yields the values of u(i). We have derived it heuristically,
but will give a more formal derivation using conditional expectations in Section 3.7. If we let

A = P− I

then we can express the equations as

Au(i) = 0 for i /∈ C, u(i) = 1 for i ∈ C.

Example 2.3. Consider Example 2.2. Let’s determine the probability that the chain eventually reaches
C = {1, 2}. Note that it is possible for the chain to reach 5 first and be trapped there forever, never reaching
C. We want to determine u(i) = Pi(the chain eventually reaches states 1 or 2). We know u(1) = u(2) = 1.
Here is the system of equations we need to solve; u(i) = Pu(i) for i = 3, 4, 5, 6:


u(3)
u(4)
u(5)
u(6)

 =


1
16

1
4

1
4

1
4

1
16

1
8

0 0 1
4

1
2

1
4 0

0 0 0 0 1 0
0 0 1 0 0 0




1
1

u(3)
u(4)
u(5)
u(6)



=


5
16
0
0
0

+


1
4

1
4

1
16

1
8

1
4

1
2

1
4 0

0 0 1 0
1 0 0 0



u(3)
u(4)
u(5)
u(6)




3
4 − 1

4 − 1
16 − 1

8
− 1

4
1
2 − 1

4 0
0 0 0 0
−1 0 0 1



u(3)
u(4)
u(5)
u(6)

 =


5
16
0
0
0

 .
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The matrix on the left is singular. In particular the value of u(5) can be treated as a free variable. But
because 5 is an absorbing state we know u(5) = 0. Using this leads to the solution

u(1) = 1, u(2) = 1, u(3) =
5

8
, u(4) =

5

16
, u(5) = 0, u(6) =

5

8
.

So in particular P4( the chain eventually reaches states 1 or 2) = 5
16 .

Observe that this approach involves finding all values of u(i) = Pi(Xn ∈ C for some 0 ≤ n < ∞)
simultaneously, not one i at a time. This example also illustrates that the equations for u(i) need not have
a unique solution. (But if we had used u(1) = u(2) = 1 as well as u(5) = 0 from the outset the resulting
system would have had a unique solution.)

Example 2.4. Let the state space be S = {0, . . . , k}. If 0 < Xn < k the chain moves one step to the right
with probability p or one step to the left with probability q = 1 − p. If Xn = 0 or k it just stays where
it is. This is what we would call a random walk on {0, . . . , k} with absorbing endpoints. Let u(i) be the
probability of eventually reaching C = {0}. We know u(0) = 1, u(k) = 0 (because k is absorbing), and for
0 < i < k we have u(i) = Pu(i), which reduces to

u(i) = pu(i+ 1) + qu(i− 1).

We can solve this explicitly if we rearrange it as

[u(i+ 1)− u(i)] =
q

p
[u(i)− u(i− 1)].

From here we see that
u(i+ 1)− u(i) = (q/p)i[u(1)− 1].

If p 6= q we can continue to find that for j ≥ 1

u(j) = u(0) +

j−1∑
i=0

[u(i+ 1)− u(i)] = 1 +

j−1∑
i=0

(q/p)i[u(1)− 1] = 1 +
(q/p)j − 1

(q/p)− 1
[u(1)− 1]. (2.6)

In order for u(k) = 0 we must have

[u(1)− 1] = − (q/p)− 1

(q/p)k − 1
,

which gives us the solution

u(i) =
(q/p)k − (q/p)i

(q/p)k − 1
.

In the case of p = q = 1/2 we need to calculate equation (2.6) differently:

u(j) = 1 + (j − 1)[u(1)− 1].

Now u(k) = 0 implies [u(1)− 1] = −1/(k − 1) and so

u(i) =
k − i
k

.

Matrix Equations and Solvability

In equation (2.5) we know the values of u(i) for i ∈ C. Let B = S \ C. The u(i), i ∈ B are the terms we
need to solve for. We can rearrange equation (2.5) by separating the known and unknown terms into two
(column) vectors:

uB = [u(i)]i∈B , uC = [u(i)]i∈C ,

and break up the i ∈ B rows of P into two submatricies:

PBB = [pi,j ]i∈B,j∈B , PBC = [pi,j ]i∈B,j∈C .

12



With this notation we can express our system of equations (2.5) as

uB = PBBuB + PBCuC . (2.7)

The task is to solve for uB with given values for uC . For this purpose we would like to know when

PBB − I = ABB

is invertible, and if it is not invertible how we can identify which of the many possible solutions is the correct
one. We will answer the first of these questions in Theorem 2.3 below and the second in Theorem 4.1.

In the next example we illustrate how these calculations can be carried out in Matlab.

Example 2.5. Consider again the Monopoly playing board with squares S = {1, . . . , 40}. The transition
probabilities are the result of adding two dice rolls to the current position, with “wrap around”, i.e. reduction
mod 40. The following script generates the transition matrix for a single dice roll.

gP40.m

%Script to generate single dice roll transition matrix on 40x40 game board

%with "wrap around".

P40=spdiags(ones(40,6)/6,1:6,40,46);

P40(:,1:6)=P40(:,1:6)+P40(:,41:46);

P40=full(P40(:,1:40));

So the transition matrix for a double dice roll is given by

P=P40^2;

To illustrate hitting probability calculations let’s find the probability of reaching “Go to Jail” (31) without
first landing on “Chance” (8, 23, 37). (This is an example of the third bullet above, with C = {31}, D =
{8, 23, 37}.) For purposes of our calculation let’s combine the target and “avoid” sets as C = {8, 23, 31, 37}
and take uC defined by u(8) = u(23) = u(37) = 0 and u(31) = 1. We need to solve uB = PBBuB + PBCuC
for uC . Here is how to do the calculations in Matlab.

C=[8,23,31,37]; B=setdiff(1:40,C);

PBB=P(B,B); PBC=P(B,C); uC=[0;0;1;0];

cond(eye(36)-PBB) %To check invertibility

uB=(eye(36)-PBB)\(PBC*uC);

uB(1)

The resulting value u(1) = .2135 is the probability of landing on “Go to Jail” without first landing on
“Chance” starting from X0 = 1. For initial state X0 = 28 we find u(28) =uB(26)= .2343 because state 28
is entry number 26 in B. (Be careful about indicies when looking up specific results!)

2.2.1 Hitting Times

Suppose C ⊆ S is a subset of states. As the chain Xn proceeds we can watch for the first time the chain
lands in C or the first positive time this happens. This determines two time-valued random variables.

TC =

{
min{n ≥ 0 : Xn ∈ C} if Xn ∈ C for some n ≥ 0,

∞ otherwise.

T +
C =

{
min{n > 0 : Xn ∈ C} if Xn ∈ C for some n > 0,

∞ otherwise.

These only differ if X0 ∈ C; in that situation TC = 0 but T +
C is the first time Xn returns to C; T +

C ≥ 1. We
will call TC the hitting time of C and T +

C the first return time to C. We will be concerned with TC for the
moment, but T +

C will be important when we talk about recurrence in Section 2.3. (If C = {a} contains a
single state we will write TC = Ta and T +

C = T +
a .)

These definitions allow more concise expressions for the three bullets on page 10:
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• TC <∞

• TD =∞

• TC < TD.

For instance u(i) = Pi(TC <∞) is the u(i) of (2.5).

About P (TC =∞)

The equations for v(i) = Pi(TC =∞) are easily obtained from the u(i) equations (2.5) because

v(i) = Pi(TC =∞) = 1− Pi(TC <∞) = 1− u(i),

or v = [1]− u. Since [1] = P[1] it follows that v = Pv on B = S \ C, or

vB = PBBvB + PBCvC .

This is the same as equation (2.7) except that now vC = 0, because for i ∈ C we have Pi(TC = ∞) = 0.
Thus the equation is simply

vB = PBBvB . (2.8)

Only if ABB = PBB − I is singular can there be a nonzero solution, and in that case there are infinitely
many solutions. We will need to understand which of them actually gives us the correct v(i). Theorem 2.3
will tell us that singularity means there is a closed communication class in B, which means some v(i) = 1.

The Distribution of TC
The distribution of TC is described by the probabilities

w(i, n) = Pi(TC = n).

Clearly

w(i, 0) =

{
1 if i ∈ C
0 if i /∈ C.

For n ≥ 1 we have w(i, n) = 0 if i ∈ C. If i /∈ C then TC = n will require the chain to go from X0 = i to
some X1 = j /∈ C and then n − 2 additional steps staying out of C, and then finally landing in C for the
first time on the last one, Xn. This has probability pi,jw(j, n − 1). Adding this up over the possible j ∈ S
we find that for i /∈ C

w(i, n) =
∑
j∈S

pi,jw(j, n− 1)

= Pw(i, n− 1),

using the notation introduced in Section 1.3. With B = S \ C we can express all this as

wC(0) = [1],

wB(0) = [0],

wC(n) = [0] for n ≥ 1,

wB(1) = PBC [1],

wB(n+ 1) = PBBwB(n) for n > 1.

(2.9)

Iterating the last line makes computation straightforward.
Next, assuming Pi(TC <∞) = 1, consider the mean hitting times

v(i) = Ei[TC ] =

∞∑
n

nPi(TC = n).
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Clearly v(i) = 0 if i ∈ C. For i /∈ C we have to go at least one step to X1 = j and then some number of
additional steps whose mean is v(j). So for i /∈ C

v(i) = 1 +
∑
j∈S

pi,jv(j)

= 1 + Pv(i). (2.10)

Or simply
vB = [1] + PBBvB .

As noted above, for Pi(TC < ∞) = 1 for all i ∈ B it must be that (I−PBB) is nonsingular, in which case
the unique solutions is (I−PBB)−1[1].

Example 2.6. Consider again the absorbing random walk of Example 2.4. We will calculate the mean time
to absorbtion at either of the endpoints, v(i) = Ei[T{0,k}]. We know v(0) = 0 = v(k) and for 0 < i < k

v(i) = 1 + pv(i+ 1) + qv(i− 1).

For p = q = 1/2 the solution is simply v(i) = i(k − i). For p 6= q it works out to be

v(i) =
k

q − p

(
i

k
− (q/p)i − 1

(q/p)k − 1

)
.

Problem 2.10 asks you to confirm these formulas.

Example 2.7. Here is another Matlab calculation based on the Monopoly board. We will compute the mean
number of steps until landing on “Go to Jail” (31). First construct the transition matrix as in Example 2.5.
Then calculate as follows.

C=31;

B=setdiff(1:40,C);

PBB=P(B,B);

det(eye(39)-PBB) %to check invertibility

vB=(eye(39)-PBB)\ones(39,1);

vB(1)

This works out to v(1) = 38.5841.

2.3 State Classification

Next we consider properties of a Markov chain which depend simply on the network of possible transitions,
i.e. features visible in our graphical representation of a chain. We will need some terminology.

Definition. Let P be the transition martix for a Markov chain with state space S.

• For i, j ∈ S if pi,j(n) > 0 for some n ≥ 0 we say j is reachable from i and write i j.

• When both i j and j  i we say i and j communicate and write i! j.

• The chain is irreducible if i! j for every pair i, j ∈ S.

• We say C ⊆ S is closed if i ∈ C and i j implies j ∈ C.

• The greatest common divisor of the set of n > 0 for which pi,i(n) > 0 is called the period of state i.
When the period is 1 we call i an aperiodic state.

Intuitively i  j simply means that starting at X0 = i there is a chance of finding Xn = j at some time
n. Since pi,i(0) = 1 the definition says that i  i and i ! i are always true. Moreover if i  j and
j  k then from (2.4) we see that i  k. In fact ! is an equivilence relation and so partitions S into
equivalence classes. I.e. every state belongs to exactly one communication class. An equivalence class is
called a communication class of states. To say the chain is irreducible means it consists of a single closed
communication class; i.e. i! j for every pair of states.
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Example 2.8. With S = {1, . . . , 6} consider the following Markov chain.

P =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

0.3 0 0.3 0 0.4 0
0 0.5 0 0.5 0 0
0 0.25 0 0.25 0.25 0.25


1 2

3 4 5

6

We can see three communication classes:

• {1, 2, 3} is a closed class of states with period 3.

• {4, 5} is a non-closed class of states with period 2.

• {6} is a non-closed class with period 1.

This only depends on which pi,j are positive and which are 0, not on any other information about their
values. In other words it only depends on what we can see in the graph.

The following lemma provides a useful technical fact about closed sets of states.

Lemma 2.1 (Maximal Lemma). Let P be the transition matrix for a Markov chain. Suppose B ⊆ S,
φ : B → R is bounded above by a constant β (i.e. φ(a) ≤ β for all a ∈ B) and satisfies

φ(i) ≤
∑
j∈B

pi,jφ(j) for all i ∈ B.

If either β > 0 or B = S then
M = {i ∈ B : φ(i) = β}

is a closed set of states.

When S is finite every function φ : B → R is bounded above. The lemma remains true for infinite state
spaces so we have stated it without making S finite a hypothesis. When B = S the lemma says that if
φ ≤ Pφ then the states where φ takes its maximum value form a closed class.

Proof. Suppose that either β > 0 or B = S and consider any i ∈M . We want to show that if pi,j > 0 then
j ∈M . We know

β = φ(i) ≤
∑
k∈B

pi,kφ(k) ≤
∑
k∈B

pi,kβ ≤
∑
j∈S

pi,jβ = β.

(β > 0 or B = S is needed for the last inequality.) Since the outside values are equal, all the inequalities
must in fact be equalities. Equality of the last two summations means that pi,jβ = 0 for any j ∈ S \B. So if
β > 0 then any j with pi,j > 0 must also belong to B. (This is trivial if B = S.) Thus pi,j > 0 implies j ∈ B.
Next observe that equality of the first two summations implies that any k ∈ B with pi,k > 0 must have
φ(k) = β, else we would have a strict inequality pi,kφ(j) < pi,kβ between the first and second summations.
Thus M contains all j ∈ S with pi,j > 0. This proves the lemma.

Closed communication classes are particularly important. For finite chains there is always at least one
closed class.

Lemma 2.2. If B ⊆ S is a finite closed set of states then it contains a closed communication class.
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Proof. For each i ∈ B define
Di = {s ∈ S : i s}.

Clearly Di is closed, and since B is closed Di ⊆ B. Choose i∗ ∈ B for which #Di∗ is as small as possible.
We claim that Di∗ is a communication class. Consider any j ∈ Di∗ . We know i∗  j; we just need to show
that j  i∗. Obviously Dj ⊆ Di∗ . But since the size of Di∗ is minimal it must be that Dj = Di∗ . Since
i∗ ∈ Di∗ it follows that i∗ ∈ Dj . Therefore j  i∗, completing the proof.

We can now answer one of the questions we asked in Section 2.2.

Theorem 2.3. Suppose P is a transition matrix on a state space S and B ⊆ S is a finite subset. The
matrix PBB − I is singular if and only if there is a closed communication class entirely contained in B.

Proof. Suppose D ⊆ B is a closed communication class and let C = Bc. Let v(i) = Pi(TC =∞). We know
from equation (2.8) that this provides a solution of the equation

(PBB − I)v(i) = 0 for all i ∈ B.

But since D ⊆ B is closed TC = ∞ for X0 = i ∈ D. Thus v(i) = 1 for some i ∈ D. Thus there exists a
nontrivial solution to the above equation, proving that PBB − I is singular.

Conversely assume that PBB− I is singular. Then there exists a nontrivial solution to (PBB− I)v(i) = 0
for all i ∈ B. After replacing v with −v if necessary we can assume that some of the v(i) are positive. Let
β = maxk∈B v(k). It follows from the Maximal Lemma 2.1 that {i ∈ B : v(i) = β} is a closed set of states
in B which by Lemma 2.2 contains a closed communication class.

Here are some basic properties related to the period of a state.

Lemma 2.4. Suppose Xn is a Markov chain with state space S.

a) If i ∈ S has period d then pi,i(n) = 0 if n is not a multiple of d.

b) If i has period d there exists K so that pi,i(kd) > 0 for all k ≥ K.

c) If i! j then i and j have the same period.

The lemma is true even for infinite state spaces. However the following corollary depends on S being finite.
Note that by c) of the lemma all states in a communication class C have the same period. That is why in
the corollary we can just say that “C is aperiodic”.

Corollary 2.5. Suppose Xn is a Markov chain with finite state space S. If C is a closed aperiodic class
there exists N and a positive constant α > 0 so that pi,j(n) ≥ α for all i, j ∈ C and all n ≥ N .

Proof of the Lemma. By definition the period d of a state i is the greatest common divisor of W = {n > 0 :
pi,i(n) > 0}. In particular if pi,i(n) > 0 then d divides n. This proves a) of the lemma. It is a basic property
of greatest common divisors that all multiples kd beyond some Kd can be expressed as a finite sum

kd =
∑̀

1

ni.

for some integers ni ∈ W . (See Lemma A.9 in the Appendix and note that αini = ni + ni + · · ·+ ni using
αi repeated terms.) Based on that we can say that

pi,i(kd) ≥ pi,i(n1) · · · pi,i(n`) > 0.

This proves b).
For c), by hypothesis there exist k and ` for which pi,j(k) > 0 and pj,i(`) > 0. Suppose i has period d

and j has period g. It follows that pj,j(k + `) > 0 and therefore g divides k + `. If pi,i(n) > 0 then

pj,j(`+ n+ k) ≥ pj,i(`)pi,i(n)pi,j(k) > 0

and so g divides k+ n+ `, and therefore must divide n itself. We conclude that g is a common divisor of W
and so divides d. The same argument with i and j reversed shows that d divides g. Therefore d = g.
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Proof of the Corollary. Suppose i, j ∈ C. Since i j there exists m with pi,j(m) > 0. By b) of the lemma
(with period d = 1) there exists K with pj,j(n) > 0 for all n ≥ K. It follows that

pi,j(m+ n) ≥ pi,j(m)pj,j(n) > 0

for all m+ n ≥ m+K. Thus for every pair i, j ∈ C there exists Ni,j such that pi,j(n) > 0 for all n ≥ Ni,j .
Now just take N to be the maximum of Ni,j over all pairs in C. Let α = mini,j∈C pi,j(N). Then for any
n > N and i, j ∈ C write n = N +m. We have (since pi,k(m) = 0 for k /∈ C)

pi,j(n) =
∑
k∈C

pi,k(m)pk,j(N) ≥
∑
k∈C

pi,k(m)α = α.

Definition. A state i is called recurrent if

Pi(Xn = i for some n ≥ 1) = 1.

If this probability is < 1 state i is called transient.

Recurrence means that starting from X0 = i the chain is certain to return to i eventually. The definition of
can be expressed as

Pi(T +
i <∞) = 1.

It is important to use T +
i rather than Ti here because Pi(Ti <∞) = 1 is always true. In fact

Pi(T +
i <∞) =

∑
j

pi,jPj(Ti <∞). (2.11)

Part a) of the next theorem gives a simple characterization of the recurrent states. In Chapter 4 we will
see that both parts of this theorem can fail for infinite state spaces!

Theorem 2.6. Suppose S is finite.

a) A state i is recurrent if and only if it belongs to a closed communication class.

b) If i is a recurrent state, then Ei[T +
i ] <∞.

Proof. Suppose i is recurrent and let
u(j) = Pj(Ti <∞).

For j 6= i we know from (2.5) that u(j) = Pu(j). By recurrence and (2.11) we know that this holds for i as
well:

u(i) = 1 = Pi(Xn = i for some n ≥ 1) =
∑
j

pi,ju(j).

The Maximal Lemma 2.1 tells us that {j ∈ S : u(j) = 1} is a closed set of states. Since this set contains i it
follows that i j implies u(j) = 1. But u(j) = 1 implies that j  i so j is in the same communication class
as i. Thus the communication class of i consists of all j with i j, and is therefore closed. This proves the
“only if” part of a).

Now let C be the communication class of i and assume it is closed. Let B = C \ {i}. Every j ∈ B has
j  i since C is the communication class of i. So C contains no closed classes. By Theorem 2.3 this means
PBB − I is invertible. So there is a unique solution to

(PBB − I)u = PBBc [1],

which by (2.5) must be u(j) = Pj(TBc <∞). Because C is closed no states outside C can be reached from
j ∈ B so this is the same as u(j) = Pj(T{i} < ∞). Now observe that u = [1] also satisfies this equation.
Therefore by uniqueness of the solution we see that

Pj(T{i} <∞) = 1 for all j ∈ B.
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By (2.11) it follows that Pi(T +
{i} <∞) = 1, completing the proof of a).

For b), assume i is a recurrent state. Observe that the mean of T +
i can be written

Ei[T +
i ] =

∞∑
k=1

kPi(T +
i = k)

=

∞∑
k=1

k∑
n=1

1 · Pi(T +
i = k)

=

∞∑
n=1

∞∑
k=n

Pi(T +
i = k)

=

∞∑
n=1

Pi(T +
i ≥ n)

=

∞∑
n=0

Pi(T +
i > n).

We can produce a concise matrix expression for Pi(T +
i > n). Of course

Pi(T +
i > 0) = 1.

Let C be the communication class if i, which by a) must be closed, and let B = C \ {i}. Then Pi(T +
i > 1)

is just Pi(X1 ∈ B). Let PBB be our usual submatrix of the pj,k for j, k ∈ B. Then

Pi(X1 ∈ B) = (PBB [1])i ,

the i-entry of PBB [1]. In general

Pi(T +
i > n) = Pi(Xk ∈ B for each k = 1, . . . n)

= (Pn
BB [1])i .

Therefore

Ei[T +
i ] = 1 +

∞∑
n=1

(Pn
BB [1])i .

Next we will show that this series is convergent, more specifically that Pn
BB [1] → [0] geometrically. First,

PBB [1] ≤ [1] and so Pn
BB [1] is monotone decreasing. Therefore L = lim Pn

BB [1] exists. Now L = PBBL so
(I−PBB)L = [0]. Since I−PBB is invertible (B contains no closed classes) we deduce that L = [0]. So
there must exist N with PN

BB [1] ≤ 1
2 [1]. It follows that Pn

BB [1] ≤ 2( 1
2 )

n
N [1]. Finally,

Ei[Ti] = 1 +

∞∑
1

pi,BPn
BB [1] ≤ 1 + 2(#B)

∞∑
1

1

2
n
N
<∞.

2.4 Equilibrium

Examples 2.1 and 2.2 made observations about the distribution of Xn for large n. The behavior of Xn in
the long run, as n → ∞, is the subject of this section. Except in trivial cases, Xn keeps moving from one
state to another. So we can’t expect Xn to actually converge as n → ∞. It can’t have an equilibrium in
the same sense as a differential equation ẋ(t) = F (x(t)). In that setting an equilibrium is a point x∗ so that
if x(0) = x∗ then x(t) = x∗ for all t ≥ 0, i.e. a rest point for x(t). But a Markov chain can converge to
an equilibrium in a different sense, namely that P (Xn = i) → πi as n → ∞. Such a π = (π1, . . . , πn) is
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a statistical equilibrium or equilibrium distribution. If the initial distribution is µ then we should find π as
limn→∞ µPn. If such a limiting distribution does exist then it follows that

π = limµPn = limµPn+1 = (limµPn) P = πP.

In other words if we start the chain with π as its initial distribution then P (Xn = i) = πi for all n ≥ 0.
Thus π is a rest point for the distribution of Xn, although Xn itself never comes to rest. An equlibrium
distribution is often called a stationary or invariant distribution.

Finding an equilibrium distribution means solving the matrix equation

π = πP. (2.12)

You might recognize this as saying that π is a (left) eigenvector of P with eigenvalue λ = 1. But not just any
left eigenvector will be an equilibrium distribution; it has also to be a legitimate probability distribution:
πi ≥ 0 and

∑
i πi = 1. Not every eigenvector has that property.

Given a (finite state) Markov chain, the questions we want to address are the following.

• Do equilibrium distributions exist? Can there be more than one?

• Given a non-equilibrium initial distribution µ what can we say about limn→∞ µPn? Does this neces-
sarily converge?

• What about the long run average state of the chain, 1
n

∑n
1 Xi? Does this converge as n→∞?

Example 2.9. Let’s consider again Example 2.1. Taking the transpose of (2.12) to get (I−P)TπT = [0] and
solving we find a one-parameter family of solutions

cµ where µ = [30/91, 115/182, 80/91, 1]T .

choosing c = 1/
∑
µi = 182/517 we find that the only equilibrium distribution is

π = (60/517, 115/517, 160/517, 182/517) ≈ (0.116054, 0.222437, 0.309478, 0.352031).

This is what the rows of Pn converged to in Example 2.1.

Example 2.10. Consider again Example 2.2. To find equilibrium distributions we again solve (I−P)TπT =
[0] to find a 2-parameter family of solutions:

π = (β, 0, 0, 0, α, 0).

Not all of these are probability distributions. To be a probability distribution we need α ≥ 0, β ≥ 0 and
α+ β = 1. So the equilibrium distributions are

π = (1− α, 0, 0, 0, α, 0) for 0 ≤ α ≤ 1.

In Example 2.2 we exhibited P100. Observe that every row was of this form for some α.

Example 2.11. Consider Example 2.8 again. The solutions of (I−P)TπT = [0] are π = (c, c, c, 0, 0, 0) for
any constant c. There is only one equlibrium distribution:

π = (
1

3
,

1

3
,

1

3
, 0, 0, 0).

If you explore Pn however you will find that it does not converge as n→∞; see Problem 2.2.
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2.4.1 Existence and Uniqueness of Equilibrium Distributions

We first want to prove that equilibrium distributions always exist (assuming a finite state space). This follows
from a simple real analysis argument. Let K be the set of all probability distributions on S = {1, . . . ,m}:

K = {µ = (µi) ∈ Rm : µi ≥ 0 and

m∑
1

µi = 1}.

It should be clear that K is closed and bounded and therefore a compact subset of Rm. Start with any
µ ∈ K. Define a sequence in K by

π(k) =
1

k

k∑
n=1

µPn.

You can check that each π(k) is again in K: π(k)[1] = [1] and π(k) ≥ 0. Since K is compact there must be a
convergent subsequence:

π(k′) → π ∈ K.

Now observe that after cancellation of common terms we have

π(k) − π(k)P =
1

k
(µP− µPk+1).

All terms of the right are bounded by 1
k . Therefore π(k) − π(k)P→ [0] as k →∞. It follows that

π = limπ(k′) = limπ(k′)P = πP,

proving that π is an equilibrium distribution. This proves the first part of our next theorem.

Theorem 2.7. Suppose P is the transition matrix for a Markov chain on a finite state space S. There
exists an equilibrium distribution π. Every equilibrium distribution vanishes on all non-closed communication
classes. The equilibrium distribution is unique if and only if there is only one closed communication class.

In preparation for the rest of the proof we establish a couple lemmas. We separate the states into two
disjoint subsets: S = R ∪ T where

R = {i ∈ S : the communication class of i is closed}
T = {i ∈ S : the communication class of i is not closed}.

R is the set of recurrent states and T is the set of transient states. An important observation is that

pi,j(n) = 0 for all n ≥ 0, i ∈ R, j ∈ T. (2.13)

This is because if i j and the class of i is closed then j would be in the same class as i. But the class of j
is not closed since j ∈ T .

Lemma 2.8. Suppose Xn is a Markov chain on a finite state space S. For all i, j ∈ T

pi,j(n)→ 0 as n→∞.

Proof. We will show that Pi(Xn ∈ T )→ 0. This will imply the lemma since pi,j(n) ≤ Pi(Xn ∈ T ) for every
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j ∈ T . The first step is to observe that Pi(Xn ∈ T ) is decreasing in n.

Pi(Xn+m ∈ T ) =
∑
j∈T

pi,j(n+m)

=
∑
j∈T

∑
k∈S

pi,k(n)pk,j(m)

=
∑
j∈T

∑
k∈T

pi,k(n)pk,j(m), by (2.13)

=
∑
k∈T

pi,k(n)
∑
j∈T

pk,j(m)

≤
∑
k∈T

pi,k(n)

= Pi(Xn ∈ T ).

Next, if i ∈ T there must be j ∈ R for which i  j. This is because {j : i  j} is a closed set of states,
and so by Lemma 2.2 must contain a closed communication class, which must be contained in R. For this
j ∈ R there exists ni with pi,j(ni) > 0 and so Pi(Xni ∈ T ) < 1. By the monotonicity we just proved we
know Pi(Xn ∈ T ) ≤ Pi(Xni ∈ T ) < 1 for all n ≥ ni. Doing this for each i ∈ T and taking m = maxi∈T (ni)
we see that there is ε > 0 so that ∑

j∈T
pi,j(m) < 1− ε for all i ∈ T.

Therefore
Pi(Xn+m ∈ T ) =

∑
j∈T

pi,j(n)Pj(Xm ∈ T ) ≤ (1− ε)Pi(Xn ∈ T ).

We can now conclude that limn Pi(Xn ∈ T ) = 0 as desired.

The next lemma is the key to proving uniqueness in Theroem 2.7.

Lemma 2.9. Suppose P is the transition matrix for an irreducible Markov chain and ν ∈ Rn is nonzero
with ν = νP. Then either νi > 0 for all i or νi < 0 for all i.

Proof. Let
A = {i : νi > 0} and B = {j : νj < 0}.

We suppose that both A and B are nonempty, and will see that that leads to a contradiction. Let f(i) = 1
if i ∈ A and f(j) = 0 otherwise. Since ν = νPm for any m we have νf = νPmf . Pick m so that for some
j ∈ B, k ∈ A we have pj,k(m) > 0. This is possible since P is irreducible.

For i ∈ A we have ∑
k

pi,k(m)f(k) ≤
∑
k

pi,k(m)1 = 1 = f(i).

For j ∈ B we have ∑
k

pj,k(m)f(k) ≥ 0,
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and by our choice of m this is strictly positive for at least one such j. Using these inequalities we have∑
i∈A

νi = νf

= νPmf

=
∑
i∈A

νi

[∑
k

p
(m)
i,k f(k)

]
+
∑
j∈B

νj

[∑
k

p
(m)
j,k f(k)

]

≤
∑
i∈A

νi +
∑
j∈B

νj

[∑
k

p
(m)
j,k f(k)

]
<
∑
i∈A

νi,

this last inequality because all the terms in the j ∈ B sum are nonpositive and at least one of them is strictly
negative. This contradiction proves that either A or B is empty.

Assume A is nonempty, with some i′ ∈ A. By the above B is empty, so νj ≥ 0 for all k. Consider any k.

Because P is irreducible there is an m with p
(m)
i′,k > 0. So

νk =
∑
i

νip
(m)
i,k ≥ νi′p

(m)
i′,k > 0.

Thus all k belong to A. The case of B nonempty is analogous.

Proof of Theorem 2.7. We have already proven that an equilibrium distribution exists. Suppose π is any
equilibrium distribution. Since π = πPn we have

πj =
∑
i∈S

πipi,j(n).

As before, let T be the set of transient states, i.e. those whose communication classes are not closed. If j ∈ T
we can limit the sum to i ∈ T because pi,j(n) = 0 for i ∈ R. Therefore for j ∈ T

πj =
∑
i∈T

πipi,j(n).

By Lemma 2.8 pi,j(n)→ 0 for i, j ∈ T . Therefore πj = 0 for all j ∈ T .
We turn now to the uniqueness assertion. Suppose C is a closed communication class. For i ∈ C we

know that pi,j = 0 for all j /∈ C. This means we can consider Xn as a Markov chain on C, i.e. with C as the
entire state space. So there exists an equilibrium distribution πC consisting of πCi for i ∈ C. Extend this to
a distribution on the full state space by

πj =

{
πCj if j ∈ C
0 if j /∈ C.

We claim that this is a stationary distribution on the full S. For j ∈ C∑
i∈S

πipi,j =
∑
i∈C

πCi pi,j = πCj = πj .

For j /∈ C we know so that ∑
i∈S

πipi,j =
∑
i∈C

πCi pi,j = 0 = πj ,

because pi,j = 0 if i ∈ C and j /∈ C. This shows that π is indeed an equilibrium distribution which is

nonzero only for the states in C. If there is a second (disjoint) closed communication class C̃ then there is
another equilibrium distribution π̃ that arises in the same way but using C̃. Clearly π 6= π̃ since one vanishes
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on C and the other does not. So if there is more than one closed communication class then equilibrium
distributions are not unique.

Finally suppose C is the only closed communication class and that both π and π̃ are equilibrium dis-
tributions. Then as shown above they both vanish outside C; they both can be considered as equilibrium
distributions for the Markov chain on the reduced state space C. On C the chain is irreducible so Lemma 2.9
applies. Let ν = π − π̃. Since νP = ν we conclude that either πi ≤ π̃i for all i ∈ C or π̃i ≤ πi for all i ∈ C.
But since

∑
i∈C πi = 1 =

∑
i∈C π̃i it follows that π = π̃, proving uniqueness.

2.4.2 Convergence of Pn

We showed on page 19 that if µPn → π then π is an equilibrium distribution. Now we want to consider
whether or not µPn really does converge. Problem 2.2 is one example in which it can fail to converge
(depending on µ). If there are multiple closed communication classes Theorem 2.7 implies that this limit
can have different values depending on µ. We will assume that the chain is irreducible, eliminating that
complication. The feature that can prevent convergence is periodicity. We are going to show that for
irreducible aperiodic chains, µPn → π, no matter what µ is.

Theorem 2.10. Suppose P is the transition matrix for an irreducible, aperiodic Markov chain on a finite
state space S. For any initial distribution µ, µPn → π as n → ∞, where π is the unique equilibrium
distribution for P. In particular

Pn → Π =

· · ·π · · ·...
· · ·π · · ·

 ,
the matrix Π which has π as each of its rows.

This theorem is why we can get a good approximation to π by computing Pn for a large n, like we did in
Example 2.1.

Proof. Let π be the equilibrium distribution (which exists by Theorem 2.7) and µ any initial distribution.
Let µ(n) = µPn. We know

µ
(n+1)
j − πj =

∑
i

(µ
(n)
i − πi)pi,j

and therefore

|µ(n+1)
j − πj | ≤

∑
i

|µ(n)
i − πi|pi,j∑

j

|µ(n+1)
j − πj | ≤

∑
j

∑
i

|µ(n)
i − πi|pi,j

=
∑
i

∑
j

|µ(n)
i − πi|pi,j

=
∑
i

|µ(n)
i − πi|.

This shows that
∑
i |µ

(n)
i − πi| is monotone nonincreasing as n → ∞ and therefore has a nonnegative limit

L = limn

∑
i |µ

(n)
i − πi|.

The above applies for any Markov chain and any equilibrium distribution π. We want to show that for
an irreducible aperiodic chain the limit L is actually L = 0. From Corollary 2.5 we know that for such a
chain there is a positive α > 0 and integer N so that

pi,j(N) ≥ α for all i, j.
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This implies 0 ≤
∑
j [pi,j(N)− α] = 1−mα < 1, were m = #S. Observe that

µ
(n+N)
j − πj =

∑
i

(µ
(n)
i − πi)pi,j(N)

=
∑
i

(µ
(n)
i − πi)[pi,j(N)− α+ α]

=
∑
i

(µ
(n)
i − πi)[pi,j(N)− α],

because α
∑
i(µ

(n)
i − πi) = 0. Now proceed as before.

|µ(n+N)
j − πj | ≤

∑
i

|µ(n)
i − πi|[pi,j(N)− α]∑

j

|µ(n+N)
j − πj | ≤

∑
j

∑
i

|µ(n)
i − πi|[pi,j(N)− α]

∑
j

|µ(n+N)
j − πj | ≤

∑
j

∑
i

|µ(n)
i − πi|[pi,j(N)− α]

=
∑
i

∑
j

|µ(n)
i − πi|[pi,j(N)− α]

= (1−mα)
∑
i

|µ(n)
i − πi|.

It follows from this that L ≤ (1−mα)L and therefore L = 0. This in turn implies that µ
(n)
i → πi for each

i.

2.4.3 Eigenvalues of P

This section examines the eigenvectors of P in more detail. It is elementary that λ = 1 is an eigenvalue
because we can exhibit a (right) eigenvector:

P[1] = 1[1].

We call [1] a right eigenvector because we are multiplying it on the right side of P, as is customary in
discussions of eigenvectors. An equlibirium distribution is a left eigenvector for the eigenvalue λ = 1 because
we multiply it on the left of P:

πP = 1π.

This is the same as saying π is a right eigenvector of PT : PTπT = 1πT . The eigenvalues and characteristic
polynomial are the same for P and PT but the eigenvectors are not.

If λ is any eigenvalue (possibly complex) and v 6= [0] is a corresponding (right) eigenvector then for any
positive power n we have

Pnv = λnv.

All entries of Pn are between 0 and 1 so the left side of this is bounded. So the right side is also bounded.
That means |λ| ≤ 1 since otherwise |λn| → ∞ as n → ∞ and the right side would be unbounded. Thus all
eigenvalues are bounded (in complex modulus) by 1:

|λ| ≤ 1.

What about the multiplicity of the eigenvalue λ = 1? By that we mean the power m to which (λ − 1)
appears in the factorization of the characteristic polynomial:

p(λ)
.
= det(λI−P) = (λ− 1)m · · · .

First let’s consider the irreducible case. If v is an eigenvector with eigenvalue 1 then v = Pv. Let β = max vi.
It follows from Lemma 2.1 that {i : vi = β} is a closed set of states. If the chain is irreducible this must be
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all of S since S is itself the only closed set. Therefore v = β[1]. In other words there is only one linearly
independent eigenvector for λ = 1. Could it be that m > 1 even though there is only one independent
eigenvector? For matricies in general yes, that is possible. But if so then it turns out that there must be
a second generalized vector u 6= [0] for which (I−P)u = v. (This is part of the Jordan basis for P. For
a discussion look for a treatment of the Jordan canonical form in an intermediate level linear algebra text
such as Lang [38].) Rearranging, Pu = u− v. Iterating this we find that

Pnu = u− nv.

But this is not possible for a transition matrix because the left side is bounded in n but the right side is
not. This shows that (in the irreducible case) the multiplicity can not be m > 1. I.e. the factorization of
the characteristic polynomial p(λ) has only a single factor of (λ− 1).

In the general (not irreducible) case if there are m closed communication classes then there will be exactly
m factors of (λ−1) in p(λ), and m linearly independent eigenvectors. We saw this emerging in the uniqueness
part of the proof of Theorem 2.7, where there was a different equilibrium distribution πC for each closed
class C. It turns out that those form a basis for the vector space of all solutions to ν(P− I) = (0), although
we will skip the details of a complete argument.

Example 2.12. Consider again Example 2.10. The characteristic polynomial has exactly two factors of (λ−1):

p(λ) = λ6 − 13λ5

4
+

15λ4

4
− 13λ3

8
− λ2

32
+

3λ

16
− 1

32

= (λ− 1)2q(λ)

where

q(λ) = λ4 − 5λ3

4
+
λ2

4
+
λ

8
− 1

32
.

(Since q(1) = 3/32 there are no additional factors of (λ − 1).) This is consistent with our observations of
this section since there are two closed communication classes, and a two-dimensional eigenspace.

What about other eigenvalues (complex) with |λ| = 1? This depends on the existence of periodic closed
classes. For simplicity assume the chain is irreducible, so that there is only one closed class to consider. If
the chain is aperiodic then we know from Theorem 2.10 that Pn → Π. Suppose |λ| = 1 and v is a (right)
eigenvector. Then

λnv = Pnv→ Πv = c[1]

where c =
∑
i πivi. Then λn itself must be convergent, which is only possible if λ = 1. If however the chain

has positive period k > 1 then the kth roots of unity will be eigenvectors. This holds in the general case,
closed class by closed class, but we again omit the details and just look at an example.

Example 2.13. Consider Example 2.8 above. This has one closed class of period 3. The characteristic
polynomial works out to be

p(λ) = λ6 − 0.25λ5 − 0.2λ4 − 0.95λ3 + 0.25λ2 + 0.2λ− 0.05

= (λ3 − 1)q(λ)

= (λ− 1)

(
λ− i

√
3

2
+

1

2

)(
λ+

i
√

3

2
+

1

2

)
q(λ),

where
q(λ) = λ3 − 0.25λ2 − 0.2λ+ 0.05.

We see that the three cube roots of unity, 1, 1±i
√

3
2 are the eigenvalues with |λ| = 1.

2.5 An Example: Google Page Rank

Many details of how Google’s search engine works are closely guarded company secrets. However the founders,
S. Brin and L. Page, have published a general description (see the citations in [39]) so the basic method
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is known. When you do a search Google uses the extensive catalog of web pages produced by its crawlers
to produce a list of web pages relevant to your search criteria. Then it sorts that list using an importance
score that it has calculated for each web page. That importance score is called its PageRank. The PageRank
scores of web pages have nothing to do with your particular search. They are pre-computed (and updated
regularly) so that they are available when needed for a search. We want to talk about how PageRank works
because it has a natural interpretation in terms of Markov chains.

Think of the internet as a huge directed graph. Each node in the graph is a web page and each edge
i→ j represents a link from page i to page j. PageRank tries to use just this link information and nothing
more to assign an importance score r(i) to each web page i. The basic idea is that the ranking r(m) of a
web page m should be determined by

• the ranking r(i) of those sites which link to m: i→ m

• but the contribution of r(i) to the ranking of m is diluted if i also links to lots of other sites j.

A quantitative expression of this is

r(m) =
∑
i:i→m

r(i)

O(i)

where O(i) = #{j : i→ j} is the number of out-links from i. Observe that the above is an expression of the
form

r(m) =
∑
i

r(i)pi,m where pi,m =

{
1
O(i) if i→ m

0 if i9 m.

Also note that 0 ≤ pi,m and
∑
m pi,m = 1 (unless there are no outlinks from i). Thus P = [pi,m] is the

transition matrix of a Markov chain (provided each page has at least one out-link) and the rankings r(·) are
a (left) einvector. They would form an equilibrium distribution if normalized so that

∑
m r(m) = 1. We will

call P the raw Google matrix. A Markov chain with transition matrix P moves from web page Xn = i by
randomly picking one of the outgoing links i→ j (all being equally likely) and following it to Xn+1 = j.

For several reasons a modified transition matrix P̃ is used in place of P for calculating the PageRank
stationary distribution r = rP̃. The size of P̃ is massive (over 8 billion × 8 billion in 2005) so the calculation
of r is a significant challenge. The basic algorithm is to use an iteration: r(k+1) = r(k)P̃. Getting this
to converge quickly is of paramount importance, as are methods to parallelize or otherwise speed up the
calculation. This is one purpose for modifying P.

Another issue is that some pages have no out-links: O(i) = 0. For such i we have pi,m = 0 for all m so
P is not a proper transition matrix. To fix that we can simply use 1

n (1, . . . , 1) for row i in a preliminary
modification P̄, n being the size of P.

p̄i,m =


1
O(i) if i→ m

0 if i9 m and O(i) > 0
1
n if O(i) = 0.

This P̄ is well-defined and a valid transition matrix. But there is still a problem because it may not produce
an irreducible chain. There can be many closed communication classes. As a consequence,

• P̄ does not have a unique equilibrium distribution,

• the limit of r(0)P̄k depends on r(0),

• any equilibrium distribution r will have r(i) = 0 for i not in closed classes, so these web pages would
get a ranking of 0.

Google’s solution to this is to use a personalization vector v:

0 < vi,
∑
i

vi = 1.
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Form the matrix V which uses v for each of its rows, and then take

P̃ = αP̄ + (1− α)V,

using a parameter 0 < α < 1. This P̃ is still a valid transition matrix, called the Google matrix. Using the
Google matrix instead of P̄ has several advantages.

• p̃i,j > 0 for all i, j so the matrix is irreducible, aperiodic, so there is a unique equilibrium distribution

r (but it depends on v and α). Moreover r(0)P̃k is theoretically guaranteed to converge as k →∞ by
Theorem 2.10.

• The associated Markov chain, if at state i, makes a P̄ transition with probability 1−α but a transition
using the probabilities from v with probability α. This is going to increase the ranking of those
pages with larger vi values and decrese those with smaller vi values, giving Google a way to modify
the rankings in accord with “commercial considerations” (i.e. paid advertising). The strength of this
modification is controlled by the value of α.

• The effect of α on the eigenvalues of P̃ is predictable. If the eigenvalues of P̄ are 1 ≥ λ2 ≥ · · · ≥ λn then
the eigenvalues of P̃ will be 1 > αλ2 ≥ · · · ≥ αλn. This is significant because the rate of convergence
of r(0)P̃k depends on the second largest eigenvalue αλ2. The smaller this is the faster the iteration
will converge. So there is a tradeoff in determining the value to use for α. Smaller α will allow the
stationary distribution r to be calculated faster, but will also make r more influenced by v and less by
the actual structure of the internet. (It is reported that at least initially Google used something like
α = .85.)

• The matrix P̃ does not actually need to be stored in computer memory. The P̃ iteration can be done
in terms of P̄.

r(k+1) = r(k)P̃

= r(k)(αP̄ + (1− α)V )

= αr(k)P̄ + (1− α)v,

because
∑
i r

(k)(i) = 1 implies that r(k)V = v.

Problems

Problem 2.1
Let Xn be the Markov Chain on S = {1, 2, 3} with

P =

 1
2

1
3

1
6

0 1
3

2
3

1
2 0 1

2

 .
Let the initial distribution be

P (X0 = 1) =
1

4
, P (X0 = 2) =

1

2
, P (X0 = 2) =

1

4
.

a) Calculate P (X3 = 2).

b) Calculate P (Xn 6= 3 for all n ≤ 5), i.e. the probability that Xn avoids 3 from n = 0 to n = 5.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Avoid

Problem 2.2
Using the transition matrix from Example 2.8 and µ = ( 1

3 ,
1
6 ,

1
6 , 0,

1
3 , 0) calculate µPn for several successive
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large values of n. (On the order of a hundred is large enough.) Does it appear that µPn converges as n→∞?
If so what does it converge to? If not is there any discernable pattern as n→∞? Is there a different initial
distribution µ for which µPn does converge?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3class

Problem 2.3
In Example 2.1 calculate mean time to reach state 2 for each initial state.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MeanHit2

Problem 2.4
In Feller’s Breeding Problem, Example 2.2, calculate the mean number of steps Ei[T{1,5}] to reach one of
the two absorbing states for each initial state i.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FellerT

Problem 2.5
A gambler is betting on the outcomes of succesive (fair) coin tosses. He starts with $2 and wants to reach
$10. On each coin toss he wagers the smaller of what he currently has and the amount he needs to reach $10.
He cannot wager more than he currently has, but also does not wager more than necessary to reach $10.
(For instance if he has $2 he wagers $2 but if he has $6 he wagers $4.) If he wins the coin toss he receives
back his wager plus an equal amount but if he looses the toss he looses his wager. This can be considered
as a Markov Chain on S = {0, 2, 4, 6, 8, 10}. Work out the transition probabilities and then answer these
questions. What is the probability that the gambler will reach his goal of $10 before going broke? What is
the mean number of coin tosses until he either succeeds or goes broke? (Taken from Norris [45].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gamble

Problem 2.6
Let Xn be the symmetric random walk on {0, . . .m} with absorption at 0 and m. Show that for any initial
position 0 < X0 < m the probability that Xn is eventually absorbed at either 0 or m is 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NoAbsorb

Problem 2.7
You are playing a simple board game with N spaces arranged in a circle: 1→ 2→ · · · → N → 1. You start
at space 1, roll a (single) dice and move ahead that many spaces. For N = 10 calculate the mean number of
rolls until you return to 1 for the first time.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loop10

Problem 2.8
Derive equation (2.10) from v(i) =

∑
n nw(i, n) and the equations for w(i, n).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MeanHit

Problem 2.9
Equations (2.9) tell us how to calculate w(i, n) = Pi(TC = n). In this problem we want to consider the
distribution of T +

C :
w+(j, n) = Pi(T +

C = n).

For X0 = i ∈ B we know that TC = T +
C , so w(i, n) = w+(i, n). Suppose j ∈ C. Explain why w+(j, 0) = 0,

w+(j, 1) =
∑
k∈C

pi,k, and

w+(j, n+ 1) =
∑
i∈B

pj,iw(i, n) for n ≥ 1.
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In other words, w+
C(1) = PCC [1] and w+

C(n+ 1) = PCBwB(n) for n ≥ 1. Also explain why

Ej [T +
C ] = 1 +

∑
i∈S

pj,iv(i),

where v(i) = Ei[TC ].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MeanRetPlus

Problem 2.10
Confirm that the expressions for v(i) given in Example 2.6 really do satisfy the equations as claimed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RWmeanA

Problem 2.11
Chutes & Ladders is a well-known children’s board game1. At each turn you roll a dice (actually the game
comes with a 6-position spinner, not a dice) which determines how many spaces you move. If you land at
the bottom of a ladder you immediately move your position to the ladder’s top, and if you land at the top of
a chute you immediately move your piece to the chute’s bottom. Your first task is to produce (in Matlab)
the transition matrix for this as a Markov chain. The file gp6.m is a script which will generate the 100x100
transition matrix if there were no chutes or ladders. You need to decide how to modify that to get the correct
transition matrix. (Some columns will be all 0s.)

Use that to compute the average number of turns it takes to reach the finish position at #100. What is
the mean time to finish? Calculate the probability of reaching the Finish position (for the first time) on the
nth play for enough values of n to determine which time n is the most likely time to finish. Compute the
probability of finishing without ever using the big chute (87 to 24).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CL

Problem 2.12
Consider the Markov chain on S = {1, 2, 3, 4} with transition matrix

P =


1
3

2
3 0 0

1
2

1
2 0 0

1
4 0 1

4
1
2

0 0 0 1

 .
a) Find the transient and recurrent states and identify the irreducible classes.

b) For each i ∈ S determine the value of limn→∞ pi1(n), and explain.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P2

Problem 2.13
Let Xn be an irreducible aperiodic Markov Chain on {1, 2, . . .m} with transition probabilities pi,j and
stationary distribution π. Let D = {(i, j) : pi,j > 0} and let Yn = (Xn−1, Xn) (n = 1, 2, . . .). In other words
Yn records the most recent transition of Xn.

a) Explain why Yn is also a Markov chain and determine its transition probabilities p(i,j),(k,`).

b) Show that Yn is also irreducible and aperiodic.

c) If πi are the equilibrium probabilities for Xn, what are the equilibrium probabilities π(i,j) for Yn?
Verify that your formula for π(i,j) satisfies the equilibrium equation

π(k,`) =
∑
(i,j)

π(i,j)p(i,j),(k,`).

1You can see a picture of the playing board at

http://myprettypennies.com/wp-content/uploads/2011/06/chutesladders.gif
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Problem 2.14
Consider the “toy” internet consisting of five web pages with links as illustrated.

1

2

3

4

5

a) Before you do any calculation, just based on your visual inspection speculate which pages you think
should have the highest and lowest rankings. (There is no right answer here.)

b) With no modification by means of a personalization vector (α = 1) find the page ranks of each of the
pages.

c) The owners of page #1 are not happy that page #2 has a higher ranking. They negotiate to have
the page rankings recalculated using a personalization vector v = (1/3, 1/6, 1/6, 1/6, 1/6). How small
would α need to be in order for page #1 to have a higher ranking than page #2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HW6A

For Further Study

There are many books on the material of this chapter. Feller [22] is a classic and Karlin [33] is also a
well-known standard. Some written at an introductory level are Norris [45], Ross [52], Hoel, Port, & Stone
[28], and Lawler [40]. Most books treat the finite and infinite state cases at the same time and so also cover
the material of our Chapter 4. One text that is exclusively about the finite state case is Kemeny & Snell
[34]. The properties of the eigenvalues of P are part of the Perron-Frobenius theory of positive matricies,
which you can find in Berman and Plemmons [4] and the appendix to Karlin [33].

Section 2.5 is based on the 2005 paper by A.Langville an C. Meyer [39], which would be a good place to
start if you want to lean more about that.
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Chapter 3

Basics of Probability Theory

The problems of the previous chapter all boiled down to calculations with matricies and systems of linear
equations. In Chapter 4 will consider Markov chains with (countably) infinite state spaces. Sums over all
possible states with now be infinite series. In some cases we will need to work with limits of probabilities and
random variables. We will need to have a clearer idea of what random variables actually are and how to work
with their expected values. This chapter provides an introduction to the systematic mathematical framework
used to study probability theory and the properties we will need as we continue. We will describe the idea of
independence and some of the most important theorems about sequences of independent random variables.
We will introduce conditional probabilities and conditional expectations, essential tools for working with
stochastic processes. Many of these are more difficult mathematical issues than you might expect. A full
treatment of these things requires a graduate level course in measure theory. (See “For Further Study” at
the end of the chapter for a couple references.) Our discussion here is only intended to give us the working
knowledge that we will need in the rest of this book, not a fully justified rigorous development. There are
a few technical details which we will simply overlook because they do not affect our use of these things and
would only be an encumbrance to our discussion.

3.1 Infinite Sequences and the Kolmogorov Model

Our basic description of a Markov chain in Section 2.1 prescribed how the transition matrix P and initial
distribution µ determine the probability that over a prescribed time period (t = 0, 1, . . . , n) the Markov
chain X0:n produces one particular finite sequence of states s0:n; see (2.2). For the probability of something
that can happen in multiple ways we added up the individual probabilities of all the specific ways it can be
achieved. That is how we determined P (Xn = a) for a given state a ∈ S and time n; see (2.3). This is based
on a presumption that one probability can be obtained as a certain sum of other probabilities. In Section 2.2
we considered probabilities such as P (Xn = a for some n) which are even more complex because the event
in question may happen at many different times n, not just a single n. We did develop a way to calculate
some probabilities like this by solving an certain matrix equation. But how does all this relate back to (2.2)?
We presumed some properties which we didn’t really think about then, but will now.

The full outcome of a Markov chain is an infinite sequence of states: s0 = X0, s1 = X1, . . . , sk = Xk, . . .
with each sk ∈ S. Let Ω be the set of all infinite sequences ω = (s0, s1, . . .) of states sk ∈ S. Thus each ω ∈ Ω
is a particular sequence, ω = (s0, s1, . . .), or ω = s0:∞ for short. When we contemplate the probability that
X0 = 0, X1 = 5, X2 = 15, X3 = 19 we are considering the set C ⊆ Ω of those sequences with the prescribed
values in the first four positions:

C = {ω ∈ Ω : ω = (0, 5, 15, 19, · · · ), the terms coming after 19 allowed to be anything}.

When we say P (X0 = 0, X1 = 5, X2 = 15, X3 = 19) = .000771605 as we did in (2.1) we are associating the
numerical value .000771605 with this particular subset C ⊆ Ω. To say X0 = 0, X1 = 5, X2 = 15, X3 = 19 is
the same as saying X0:∞ ∈ C. We will write P (C) in place of P (X0:∞ ∈ C) to emphasize this view that we
are assigning a probability to a set C ⊆ Ω.
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Every probability we consider consists of identifying a particular subset of sequences in Ω and assigning
a numerical value to that subset. For sets of the same general type as C above (2.2) prescribes the values
that we want to associate with them. In the case of (2.3) the probability that X3 = 5 corresponds to the set
B ⊆ Ω described by

B = {ω = s0:∞ : s3 = 5}.

Strictly speaking this is not a set of the type C as above, but it is a union of such.

B = ∪Cs0,s1,s2 where Cs0,s1,s2 = {ω ∈ Ω : ω = (s0, s1, s2, 5, . . .)}.

(The union is over all s0, s1, s2 ∈ S.) Each Cs0,s1,s2 is of the type associated with (2.2). What (2.3) presumes
is that the numerical value P (B) assigned to B is the sum of the numerical values assigned to the (disjoint)
pieces of the union:

P (B) = P (∪Cs0,s1,s2) =
∑

P (Cs0,s1,s2).

Assuming that S is finite, this sum has finitely many terms.
Next consider the probability that Xn = 2 for some n. This is the same as saying X0:∞ ∈ A where

A ⊆ Ω is
A = {ω = s0:∞ : there exists n for which sn = 2}. (3.1)

Again, this is not a set for which (2.2) prescribes a value. But again we can break it down into a union:

A = ∪∞n=0Bn

where
Bn = {ω = s0:∞ ∈ Ω : sk 6= a for k < n and sn = a}.

Each Bn in turn can be written as a finite union of sets like C. So by means of unions of subsets of Ω we can
connect P (Xn = a for some n) back to sets for which (2.2) applies. But now we are dealing with an infinite
series, not a finite sum.

By viewing every probability as a numerical value P (A) assigned to a subset A ⊆ Ω we can see how
different probabilities are related to each other in terms of writing one subset as a union of others. The
prescription (2.2) does not cover all the subsets of Ω whose probabilities we are interested in, but our natural
presumption that the probabiilty of a union of disjoint pieces is the sum of the probabilities of the individual
pieces allows us to determine the other probabilities we were interested in. It is this presumed additive
property of probabilities that allows us to connect basic sets like (2.2) to more complicated sets like (3.1).

3.1.1 The Fundamental Properties of Probability

Here are the basic properties of probabilities assigned to subsets of Ω which we naturally presume, essentially
the axioms of probability. The second and third bullets are the additive properties which we presumed in
the previous chapter. Suppose A, B, An, Bn are subsets of Ω.

• P (∅) = 0, P (Ω) = 1, and 0 ≤ P (A) ≤ 1 for any A ⊆ Ω.

• If A and B are disjoint (meaning A ∩B = ∅) then P (A ∪B) = P (A) + P (B).

• The preceding extends to countable unions: if A = ∪∞1 Bk and every pair Bi, Bj (i 6= j) is disjoint,
then

P (A) =

∞∑
1

P (Bk).

• We always have
P (Ac) = 1− P (A).

• If A1 ⊆ A2 ⊆ · · · and A = ∪∞1 An, then P (A) = limn P (An). The same is true if A1 ⊇ A2 ⊇ · · · and
A = ∩∞1 An. In other words we can pass to the limit when taking the probabilities of an increasing or
decreasing sequence of sets.
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These properties describe a sort of additive consistency among the P (A) for various A ⊆ Ω (with one caveat
to be explained below). In brief, probabilities work like areas of geometric figures: you can calculate the
probability of something by decomposing it into disjoint pieces (sets) and adding up the probabilities of the
pieces. The last bullet says that you can also get probabilities through limit operations in terms of monotone
sequences of sets. (Actually these properties are redundant. The second, fourth and fifth can be proven from
the first and third.)

There is a general theorem (the Kolmogorov Consistency Theorem) which says that starting with (2.2)
as the prescription of P (C) for those specific types of C ⊆ Ω the values of P (A) for more complicated subsets
of Ω are uniquely determined by the above consistency rules. There is one technical caveat however: it turns
out that it is not possible to assign probabilities to all subsets A ⊆ Ω in a way consistent with the above
rules. There are certain “bad” sets A (called non-measurable sets) for which no P (A) can be assigned. These
A can’t be written down explicitly but are proven to exist by abstract arguments. However they never occur
in probabilistic calculations of the type we are considering, so we will simply ignore their possibility and
proceed as if all A ⊂ Ω have a P (A) associated with them consistent with (2.2) and the above rules.

It would be discouraging if all our probability calculations had to work with this cumbersome description
of subsets of the set Ω of all sequences and the consistency rules. Take heart, because we almost never
work directly with Ω and it subsets. We work mostly with the intuitively natural properties of probabilities,
like the additivity properties we presumed in Chapter 1, and some others regarding expected values which
we will come to soon. What we have been describing above is the underlying mathematical formulation of
probability theory from which the properties we actually work with are derived. It’s similar to calculus: we
use things like the product rule for derivatives or the method of substitution of integrals on a regular basis,
but not the definitions of derivative and integral in terms limit sfrom which those working properties are
derived.

3.1.2 Random Variables

If we are interested in P (X3 = 7) then we use C = {ω = s0:∞ : s3 = 7}. To build the random variable X3

itself into the formulation above we take the view that X3 is actually a function, X3 : Ω → S, defined by
X3(ω) = s3, where ω = s0:∞. I.e. X3 is the third-term-reader function of a sequence ω. Then C = {ω :
X3(ω) = 7}.

For mathematical purposes every random variable Y is viewed this way. It is a function Y (ω) with
domain Ω. A random variable is an ω-reader which only reveals some aspect of ω to us. Then something
like P (Y < 12) is taken to mean P (C) where C = {ω ∈ Ω : Y (ω) < 12}. Every random variable is some
particular ω-reader and all probabilities involving Y are P (C) for the appropriate set of C determined by
testing ω using the ω-reader Y . (We are sweeping some technicalities under the rug again here. What if C
were one of those bad sets for which no value P (C) is assigned? The full definition of a random variable
includes a requirement that Y (·) is a well-enough-behaved function of ω ∈ Ω that this never happens. But
enough; put that back under the rug and don’t worry about it.) We think of the whole scheme this way:
the inscrutable random influences of the universe choose one full outcome sequence ω = s0:∞ and then what
we see when we look at the random variables of interest are their values X3(ω), Y (ω) and any others all
evaluated at the same selected ω.

If there are two random variables X and Y and we want the probability that X and Y obey some relation,
say X ≤ Y , then we determine the corresponding set

B = {ω ∈ Ω : X(ω) ≤ Y (ω)},

and then calculate P (X ≤ Y ) by finding P (B). In this way every outcome that we can describe in terms of
the random variables corresponds to some particular subset of Ω, to which a probability is assigned. This is
true for things like (3.1) as well. The set A is

A = {ω : Xn(ω) = a for some n}

and then P (A) gives the value of P (Xn = a for some n).

What we have described here is called the Kolmogorov model of probability theory. It consists of a set Ω
called the sample space. Its subsets A ⊆ Ω are called events and have probabilities P (A) assigned to them
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in way that satisfies the properties of Section 3.1.1. Random variables are functions defined on Ω. We have
considered Ω to be specifically the set of all infinite sequences of states but theoretical probabilists don’t
usually worry about what Ω actually consists of. We just assume that Ω and the assignment of probabilities
to its subsets exist somewhere in the unseen background. We typically work only with events that can be
described directly in terms of the random variables, without any direct reference to Ω. For that reason we
usually leave out the “ω” and just write A = {X = 2} or B = {X ≤ Y }. However this use of set notation
for events is a reminder of this underlying mathematical structure.

W X Y Z

W

Ω

(invisible)

A

visible

The simplest type of random variable is one which takes only the values 0 or 1. This is sometimes called
a Bernoulli random variable. Suppose A ⊆ Ω. Using A we can define the random variable

1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A.

This is a Bernoulli random variable. Its probabilities are

P (1A = 1) = P (A)

P (1A = 0) = P (Ac) = 1− P (A).

Every Bernoulli random variable X is of this form for some choice of A: X = 1A where A = {ω : X(ω) = 1}.

3.2 Expectations

Now that we have said precisely what a random variable X is we want to discuss its expectation E[X]. This
is intended to be the average of the possible values of X with the different values, each weighted according
to its probability. For instance if X only takes integer values (i.e. X(ω) ∈ Z for all ω) then

E[X] =
∑
k∈Z

kP (X = k), (3.2)

provided the series is absolutely convergent. A random variable whose possible values are limited to a
countable set is called a discrete random variable. Most of the random variables associated with Markov
chains are discrete, taking only integer or positive integer values. Here is an example.

Example 3.1. A Poisson random variable with parameter λ > 0 has probabilities

P (X = n) =
λn

n!
e−λ, n = 0, 1, . . . .
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Its expected value is

E[X] =

∞∑
n=0

n
λn

n!
e−λ

=

∞∑
n=1

λ
λn−1

(n− 1)!
e−λ

= λ

A random variable X is called continuous if its probabilities are described by a density function (f(x) ≥ 0
with

∫∞
−∞ f(x) dx = 1 ) by means of the formula

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx.

In that case we calculate its expectation with an integral:

E[X] =

∫ ∞
−∞

xf(x) dx. (3.3)

Here are two examples.

Example 3.2. A uniform random variable on [a, b] has density

f(x) =


0 if x < a

1
b−a if a ≤ x ≤ b
0 if b < x.

Its expected value is

E[X] =

∫ ∞
−∞

xf(x) dx =

∫ b

a

x

b− a
dx =

1

b− a
(
1

2
b2 − 1

2
a2) =

a+ b

2
.

Example 3.3. A normal random variable with with parameters (µ, σ2) has density f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 .

Its expected value is

E[X] =

∫ ∞
−∞

x
1√

2πσ2
e−

(x−µ)2

2σ2 dx

= µ

∫ ∞
−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx+

∫ ∞
−∞

1√
2πσ2

(x− µ)e−
(x−µ)2

2σ2 dx

= µ+ 0 = µ.

The first integral is because
∫
f = 1. The second is = 0 by symmetry about µ.

Some other common types of discrete and continuous random variables are identified in Example 3.5 and
the Appendix.

If φ : R → R is a function then φ(X) is another random variable, so we can talk about its expectation,
E[φ(X)]. For instance we can consider things like E[X2], E[eX ], E[|X|]. If X is discrete then to calculate
E[φ(X)] as we described it above would require working out all the probabilities P (φ(X) = y) in order to
determine

E[φ(X)] =
∑
y

yP (φ(X) = y).
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But by breaking each P (φ(X) = y) up into a sum of pieces according to the values X = k for which φ(k) = y
and rearranging we find that

E[φ(X)] =
∑
y

yP (φ(X) = y)

=
∑
y

y
∑

k:φ(k)=y

P (X = k)

=
∑
y

∑
k:φ(k)=y

φ(k)P (X = k)

=
∑
k

φ(k)P (X = k). (3.4)

The first line is a sum over values of φ; the last line is a sum over values of X. For a continuous random
variable to follow (3.3) strictly would require determining the density of φ(X), but similar to our calculation
above it turns out that

E[φ(X)] =

∫ ∞
−∞

φ(x)f(x) dx (3.5)

produces the same result. We can take these two formulas (3.4) and (3.5), as our working definitions of
E[φ(X)] in the discrete and continuous cases.

Integrability

There is one technical issue we need to be aware of when talking about expectations. This is the possibility
that an ambiguous ∞−∞ somehow arises in the calculation of E[X].

Example 3.4. Suppose that X takes only integer values (both positive and negative), with probabilities
P (X = 0) = 0 and P (X = n) = 3

π2n2 for n 6= 0. (The 3
π2 is so that

∑∞
−∞ P (X = n) = 1. Recall that∑∞

1
1
n2 = π2

6 .) If we try to calculate E[X] we are faced with

−∞∑
n=−1

−3

π2n
+

∞∑
n=1

+3

π2n
,

which is of the form −∞+∞ since both series are divergent.

We can deal with just a +∞ or just a −∞ in an expectation. In particular we can always talk about
E[ |X| ] if we allow +∞ as a possible value. In the example we do have E[ |X| ] = ∞. But in cases like
the example where the positive and negative contributions to E[X] are both infinitely large there is no
satisfactory way to resolve the cancellation in ∞−∞; we have to consider E[X] undefined in such cases.

Definition. We say that a random variable X is integrable or has finite mean when

E[ |X| ] <∞.

To say that X is integrable is to say that both the positive and negative contributions to E[X] are finite, so
∞−∞ does not occur and E[X] will have a finite value. Look back at equation (3.2) and notice that we
said the series should converge absolutely. That is what integrability requires for discrete random variables.
For a continuous random variable to be integrable means that the improper integrals∫ 0

−∞
xf(x) dx and

∫ ∞
0

xf(x) dx are both convergent.

This agrees with the usual convention in integral calculus for
∫∞
−∞ xf(x) dx to be considered convergent.

Integrabiity will be a technical hypothesis for many of the results we describe below.
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Properties

We have given formulas for the expected values of random variables that are either discrete or continuous.
There do exist random variables which are neither discrete nor continuous. They won’t arise in any of our
considerations, but the fact that they exist means that a full account of expectations requires a more general
definition for E[X] which accommodates all types of random variables. That general definition takes the
Kolmogorov model point of view that a random variable X is a function defined on an underlying set Ω and
forms a type of integral, sometimes denoted

E[X] =

∫
Ω

X(ω)P (dω). (3.6)

Although we won’t attempt to explain how that works, just thinking of E[X] as an integral of X as a function
helps several of the properties of expectations listed in the proposition below seem natural.

One more thing before we list properties of expectations. Sometimes we want to consider just the part of
an expectation corresponding to a particular subset A ⊆ Ω. We use the notation E[X;A] for this. The “;A”

in E[X;A] is like the interval of integration [a, b] in
∫ b
a
g(x) dx; it specifies how much of the expectation or

integral we want. In fact using an integral notation of (3.6) we could write

E[X;A] =

∫
A

X(ω)P (dω).

The full expected value is E[X] = E[X; Ω]. A formula for it is

E[X;A] = E[X · 1A]. (3.7)

The effect of multiplying by 1A is to create a new random variable X · 1A which agrees with X for ω ∈ A
but is just 0 otherwise:

X · 1A(ω) =

{
X if ω ∈ A
0 if ω ∈ Ac.

Here then are some of the most elementary properties of expectations. These hold for all types of random
variables (discrete, continuous or otherwise).

Proposition 3.1. If X,Y are both integrable random variables and A,B ⊂ Ω are events, then

a) E[1A] = P (A).

b) E[aX + bY ] = aE[X] + bE[Y ] for any constants a, b.

c) X(ω) ≤ Y (ω) for all ω implies E[X] ≤ E[Y ].

d) |E[X]| ≤ E[ |X| ].

e) E[X] = E[X;A] + E[X;Ac].

f) E[X;A ∪B] = E[X;A] + E[X;B], provided A ∩B = ∅.

Without a full definition of (3.6) we can’t write actual proofs of all of these. But we can offer convincing
arguments for several of them.

Part a) is elementary from (3.2): since 1A only takes two possible values we calculate

E[1A] = 1P (1A = 1) + 0P (1A = 0) = P (A).

If we remember that E[X] is really a type of integral many of these properties are familiar by analogy with

the integral
∫ b
a
f(x) dx of calculus. For instance when written this way b) says∫

[aX(ω) + bY (ω)] P (dω) = a

∫
X(ω)P (dω) + b

∫
Y (ω)P (dω).
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Part f) is says ∫
A∪B

X(ω) dP =

∫
A

X(ω) dP +

∫
B

X(ω) dP,

which is a lot like the familiar
∫ c
a

=
∫ b
a

+
∫ c
b

.
The variance of a random variable is

Var[X] = E[(X −m)2], where m = E[X].

We can use the properties above to derive a common formula for it.

Var[X] = E[(X −m)2]

= E[X2 − 2mX +m2]

= E[X2]− 2mE[X] +m2E[1], using b)

= E[X2]− 2m2 +m2, since E[X] = m

= E[X2]−m2

= E[X2]− E[X]2.

For a nonnegative integer valued random variable X ∈ Z+ there is a useful alternate formula for the
expected value:

E[X] =

∞∑
n=0

P (X > n). (3.8)

This can be derived by interchanging orders in a double summation:

E[X] =

∞∑
n=1

nP (X = n)

=

∞∑
n=1

n∑
m=1

P (X = n)

=

∞∑
m=1

∞∑
n=m

P (X = n)

=

∞∑
m=1

P (X ≥ m)

=

∞∑
n=0

P (X > n).

(In fact we have used this already, in the proof of Theorem 2.6.) There is a version of this for continuous
random variables too; see Problem 3.4. Here is an application of formula (3.8) to the calculation of an
expected value.

Example 3.5. A geometric random variable with parameter 0 < p < 1 has probabilities

P (X = n) = p(1− p)n, n = 0, 1, . . . .

Its expected value is

E[X] =

∞∑
n=0

np(1− p)n.

This can be worked out directly (by differentiating a power series). However it is easier to work it out using
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(3.8). First observe that

P (X > n) =
∑
k>n

P (X = k)

=
∑
k>n

p(1− p)k

= p(1− p)n+1
∞∑
`=0

(1− p)`

= p(1− p)n+1 1

1− (1− p)
= (1− p)n+1.

Therefore by (3.8) we have

E[X] =

∞∑
n=0

(1− p)n+1

= (1− p)
∞∑
n=0

(1− p)n

= (1− p)1

p

=
1− p
p

.

3.2.1 Limits in Expectations

We are going to encounter situations in which we need the expectation of a limit. To be more explicit, if we
have an infinite sequence X1, X2, . . . of random variables we will sometimes want to say that

lim
n→∞

E[Xn] = E[lim
n
Xn],

assuming that both limits exist. This is often correct but not always. If the limit inside the righthand
expectation does exist it defines a new random variable

lim
n→∞

Xn(ω) = Y (ω) (3.9)

for all ω ∈ Ω. This is called “pointwise convergence” of Xn to Y . Sometimes the closest we can get to (3.9)
is that it holds with probability 1, not that it holds for every single ω. So for practical purposes we want to
allow (3.9) to fail for some ω, provided that set of ω for which it fails has probability 0. This is called almost
sure convergence. The Strong Law of Large Numbers below will give one nontrivial situation in which this
kind of convergence holds.

Definition. Let Xn be a sequence of random variables. We say that Xn converges to a random variable Y
almost surely, written “Xn → Y a.s.”, if

P ( lim
n→∞

Xn = Y ) = 1;

Example 3.6. Suppose Xn takes only two possible values, 0 or 2n, with probabilities

P (Xn = 0) = 1− 2−n, P (Xn = 2n) = 2−n.
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We claim that Xn → 0 almost surely. This is because

P (Xn > 0 for some n ≥ m) =

∞∑
k=m

P (Xi = 0 for all m ≤ i < k and Xk > 0)

≤
∞∑
k=m

P (Xk > 0)

=

∞∑
k=m

2−k

= 21−m.

Let
Am = {Xn > 0 for some n ≥ m}.

These are a decreasing sequence of sets, A1 ⊇ A2 ⊇ · · · and their intersection is

∩∞m=1Am = {Xn > 0 for infinitely many n}.

Therefore the last bullet on page 33 implies that

P (Xn > 0 for infinitely many n) = limP (Am) = lim 21−m = 0.

So with probability 1, Xn > 0 happens only a finite number of times. This implies that Xn → 0 with
probability 1.

Observe that this proof of P (Xn → 0) = 1 used features of the Kolmorogov model but did not depend
on knowing what the underlying Ω actually is or how the Xn(ω) are defined as functions of ω ∈ Ω. This
illustrates our comments at the end of Section 3.1.2 about not needing to work directly with Ω.

This example also shows that it is possible for

limE[Xn] 6= E[limXn].

It is easy to check that E[Xn] = 1 for all n so that 1 = limE[Xn] while E[limXn] = E[0] = 0. Limits and
expectations do not always commute!

We now state three important results describing when it is correct to say E[limXn] = limE[Xn].

Theorem 3.2 (Monotone Convergence). Suppose that Xn → Y almost surely and that

0 ≤ X1 ≤ X2 ≤ · · · ≤ Xn ≤ · · ·

Then E[Y ] = limE[Xn], provided the limit on the right exists.

Theorem 3.3 (Dominated Convergence). Suppose Xn → Y almost surely and that there exists an integrable
random variable W so that |Xn| ≤W (with probability 1) for all n. Then E[Y ] = limE[Xn].

Theorem 3.4 (Fatou’s Lemma). Suppose Xn → Y almost surely and that Xn ≥ 0 for each n. Then
E[Y ] ≤ limE[Xn], provided the limit on the right exists.

These are general properties which hold for most notions of integration, including (3.6) as well as the Riemann

integral
∫ b
a

of calculus, subject to some technical limitations on the integrands. Although we will not prove
them in general they are powerful tools which we will use as needed in various places below. When Ω is
countable they reduce to the results on infinite series proven in the Appendix as Theorems A.7 and A.8.
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3.3 Independence and Dependence

Suppose I roll two conventional dice and denote their outcomes as D1 and D2. These are two random
variables, each taking one of the values 1, . . . , 6 with equal probability. If I tell you that D1 = 4 and then
ask you if that information influences the probabilities for D2 you would say “no.” This is what we mean
by saying that D1 and D2 are independent random variables.

Suppose that instead of telling you D1 and D2 directly I first tell you wheter or not their sum is less than
5. I.e. I tell you the value of the random variable

X =

{
1 if D1 +D2 < 5

0 if D1 +D2 ≥ 5.

To be specific, suppose I tell you that X = 1. That would influence the probabilities of D2. It would be
impossible for D2 to be 5, or 6. Moreover knowing that X = 1 would mean that D1 = 1 and D1 = 2 are not
equally likely! Here we have two random variables, X and D2, which are not independent. There is some
sort of partial dependence between them, but not enough for you to be able to deduce the specific value of
D2 from knowledge of X.

As another possibility consider
Y = 2D13D2 .

If you are told that Y = 72 then you can deduce that D2 = 2 (from the prime factorization 72 = 2332).
Here D2 is completely dependent on Y . We will say that D2 is Y -determined.

These simple examples illustrate that there is a range of degrees of dependency between a pair of random
variables. Independence (as for D1 and D2) and complete dependence (as for Y and D2) are at opposite
ends of the scale. The partial dependence (as for X and D2) is somewhere in the middle. To describe partial
dependence more carefully involves joint distributions and conditional probabilities, which we will come to
in Section 3.5 below.

Complete dependence means that there is a functional relation between the random variables, D2 = f(Y )
in our example above, where f(k) is the function which gives the power of 3 in the prime factorization of k.
In general we will say that X is Y1:m-determined if there is a function f(y1, . . . ym) so that

X = f(Y1, . . . Ym)

always holds.
Here is the definition of independence.

Definition. Two random variables X and Y are called independent when for any two sets A and B

P (X ∈ A and Y ∈ B) = P (X ∈ A)P (Y ∈ B).

When we have several random variables X1, X2, . . . , Xn they are independent when

P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) = P (X1 ∈ A1)P (X2 ∈ A2) · · ·P (Xn ∈ An).

for every choice of sets A1, . . . An. An infinite sequence X1, X2, . . . is independent when every finite subse-
quence X1, . . . , Xn is.

Technically the sets A, B, Ai should be assumed to be measurable, but that is getting into the finer
mathemaitcal details which we are choosing to ignore. Assuming that the random variables are real-valued
it is sufficient to just use intervals Ai = (−∞, ai]:

P (X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an) = P (X1 ≤ a1)P (X2 ≤ a2) · · ·P (Xn ≤ an).

for any choice of a1, . . . an. For integer-valued random variables it is enough to just check individual values:

P (X = i and Y = j) = P (X = i)P (Y = j)

for all i, j.
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It is important to note that for X, Y and Z to be independent requires more than just X and Y
independent, Y and Z independent, and X and Z independent: pairwise independence is not the same as
independence of the whole collection! See Problem 3.6 below.

One consequence of independence is that the expected value of the product is the product of expected
values:

E[XY ] = E[X]E[Y ], (3.10)

assuming X and Y are independent and both integrable. The verification of this for integer-valued random
variables is as follows.

E[XY ] =
∑
i

∑
j

ijP (X = i and Y = j)

=
∑
i

∑
j

ijP (X = i)P (Y = j), using independence

=

(∑
i

iP (X = i)

)∑
j

jP (Y = j)


= E[X]E[Y ].

(The middle step requires both series to be absolutely convergent, which is equivalent to integrability of X
and Y .) It is easy to see that (3.10) generalizes to the formula

E[g(X)h(Y )] = E[g(X)]E[h(Y )],

for any two functions g(x), h(y), provided that g(X) and h(Y ) are integrable. This can be checked directly,
as above. Alternately, first recognize that if U = g(X) is X-dependent and V = h(Y ) is Y -dependent, then
independence of U and V is a consequence of independence of X and Y . So provided U and V are integrable
we find that E[UV ] = E[U ]E[V ] as an application of (3.10).

Example 3.7. Suppose we take a fair dice and roll it repeatedly, generating a sequence of independent dice-
roll random variables D1, D2, D3 . . . Use the outcomes define a new random variable N to be the number of
rolls we made before the first instance of a 1 or 2. In other words N is how many times in a row we got a 3
or larger. We can calculate the distribution of N using the independence of the Di.

P (N = k) = P (D1 ≥ 3, D2 ≥ 3, . . . , Dk ≥ 3, Dk+1 ≤ 2)

= P (D1 ≥ 3)P (D2 ≥ 3)P (Dk ≥ 3) · · ·P (Dk ≥ 3)P (Dk+1 ≤ 2)

= (4/6)k2/6 = (2/3)k1/3.

This is a geometric distribution with parameter 1/3, as defined in Example 3.5. To demonstrate with
Matlab here is a function m-file to produce one sample of N .

Nb.m

function n=Nb()

%Nb produces a single simulation of the random variable N

%

n=0; %Initialize

d=randi(6,[1,1]);

while not(d==1 || d==2) %Repeatedly sample until finding a 1 or 2

n=n+1; %n is #rolls when 1 or 2 was found

d=randi(6,[1,1]);

end

The following code with generate 10000 samples of N and then look at the frequencies at which the different
values appeared, and then compare those to the theoretical probabilities above.
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data=zeros(1,10000);

for i=1:10000

data(i)=Nb;

end

m=max(data)

hist(data,0:m)

counts=histc(data,0:m)

counts/10000

(1/3)*(2/3).^(0:m)

3.3.1 Sums of Independent Random Variables

Suppose X and Y are independent random variables and we define their sum to be the random variable

S = X + Y.

It is always possible, in principle, to work out the distribution of S from the joint distribution of (X,Y ).
But when X and Y are independent the distribution of S has a nice relationship to the distributions of X
and Y .

Suppose X and Y are independent, both discrete taking integer values: P (X = i) = pi and P (Y = j) =
qj . There are several ways that S = k can occur; any combination of X = i and Y = j with i + j = k will
do it. So we find

{S = k} = ∪i{X = i and Y = k − i}

P (S = k) =
∑
i

P (X = i and Y = k − i)

=
∑
i

piqk−i, using independence.

We can limit the sum to those i with pi > 0. If we know that 0 ≤ X and 0 ≤ Y then

P (S = k) =

k∑
i=0

piqk−i = p0qk + p1qk−1 + · · ·+ pkq0. (3.11)

Example 3.8. Suppose D1 and D2 are independent, discrete random variables, uniform on {1, 2, . . . 6}. In
other words they are a conventional pair of fair dice. Let X = D1 +D2. The distribution of X works out to
be.

P (X = k) =

{
k−1
36 for k = 2, . . . , 7

13−k
36 for k = 8, . . . 12.

For instance, since pi = qi = 1
6 for i = 1, . . . 6, we have

P (X = 6) = p1q5 + p2q4 + p3q3 + p4q2 + p5q1

= 5(1/6)2 =
5

36
.

Example 3.9. Suppose (Z1, Z2, . . .) is a sequence of independent Bernoulli random variables with the same
distribution: p = P (Zi = 1) for all i. Consider

X =

n∑
i=1

Zi.

If we specify some sequence di of 0s and 1s, and k =
∑n

1 di, then by independence

P (Z1 = d1, Z2 = d2, . . . and Zn = dn) = pk(1− p)n−k.
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If we want P (X = k) then we have to count how many different ways we can choose (d1, . . . , dn) with
k =

∑n
1 di. This is given by the binomial coefficient(

n

k

)
=

n!

k!(n− k)!
.

So we find that

P (X = k) =

(
n

k

)
pk(1− p)n−k.

In other words X is binomial with parameters (n, p). We could calculate the mean of X by working out the
sum

∑n
j=0 j

(
n
j

)
pj(1− p)n−j but it is far easier to use the independence:

E[X] = E

[
n∑
i=1

Zi

]
=

n∑
i=1

E[Zi] = np.

For the second moment we have

E[X2] = E

( n∑
i=1

Zi

)2
 = E

 n∑
1

Z2
i +

∑
i 6=j

ZiZj

 =

n∑
1

E[Z2
i ] +

∑
i 6=j

E[ZiZj ] = np+ n(n− 1)p2.

So the variance is

Var(X) = E[X2]− E[X]2 = np+ n(n− 1)p2 − (np)2 = np(1− p).

Suppose Y is a second binomial random variable, independent of X and with parameters (m, p). We can
produce such a Y by using more of the Zi:

Y =

n+m∑
i=n+1

Zi,

and therefore

X + Y =

n+m∑
i=1

Zi

must also be binomial, but with parameters (n+m, p). This fact could be worked out as the convolution of
the two binomial distributions of X and Y directly, but that is a more tedious calculation.

3.4 Famous Theorems for I.I.D. Sequences

Suppose that X1, X2, . . . is a sequence of independent random variables and they all have the same distribu-
tion, i.e. P (Xn ≤ t) is the same for all n. We call this an independent identically distributed (i.i.d.) sequence.
An infinite sequence of coin flips or an infinite sequence of dice rolls would be an example.

SupposeX1, X2, . . . is an i.i.d. sequence. We present below three famous theorems concerning the sequence
Sn of partial sums,

Sn =

n∑
i=1

Xi.

These results are centerpieces of probability theory. We will use them in various ways below. At the end of
the chapter we will cite references where proofs can be found. We will focus our efforts on understanding
and illustrating these theorems.

Theorem 3.5 (The Renewal Theorem). Let Xi be an i.i.d. sequence of random variables with finite mean
m = E[Xi], which take only positive integer values, and such that P (Xi is divisible by k) < 1 for every
integer k > 1. Let Sn =

∑n
i=1Xi and gk = P (Sn = k for some n). Then

lim
k→∞

gk =
1

m
.
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The hypothesis that P (Xi is divisible by k) < 1 for every integer k > 1 means that X is not concentrated
on the multiples of any positive integer k > 1; this is usually described by saying that X is non-arithmetic
or aperiodic.

Example 3.10. Suppose we are playing a game in which we start at 0 and at each turn roll a pair of dice to
determine how many steps we move to our next position. Our successive positions are

S0 = 0, S1 = X1, S2 = X1 +X2, . . .

where the Xi are i.i.d. with the dice pair distribution; see Problem 3.5. (We move on a straight line, not
on a game board that wraps around.) If you pick a position k, the value gk defined in the theorem is the
probability that you will land at position k at some time. The probability of skipping over k would be 1−gk.
The average gap between the positions we land at is E[X] = 7. The Renewal Theorem says that for large k

gk ≈ 1/E[X] = 1/7 = .1428571.

In other words the probability that k does not fall in a gap is ≈ 1
mean gap size for large k. Thinking about it

that way makes the theorem seem reasonable.
We can compute the sequence {gk} numerically to see if this appears to be true or not. First notice that

g0 = 1 because we start with S0 = 0. Now consider k > 0; we are interested in the event

B = {k =

n∑
i=1

Xi for some n}.

We can break this up as a disjoint union based on the value j = X1: B = ∪k1Bj where

Bj = {X1 = j} ∩B

= {X1 = j} ∩ {k − j =

n∑
i=1

Xi+1 for some n}

Because the Xi are independent we can write

P (Bj) = P (X1 = j)P (k − j =

n∑
i=1

Xi+1 for some n).

The first term is just pj = P (X1 = j). The second term is in fact gk−j , because the Xi are identically
distributed. So P (Bj) = pjgk−j for j = 0, . . . , k. Therefore

gk =

k∑
j=0

P (Bj) =

k∑
j=0

pjgk−j .

For our dice pair distribution, p0 = 0, so the right side only involves k − j = 0, · · · , k − 1. Thus we can
calculate the gk recursively from this, starting with g0 = 1.

g1 = p1g0

g2 = p1g1 + p2g0

...

gk = p1gk−1 + · · ·+ pkg0

...

Of course pj = 0 for j > 12. Here is a graph of the resulting values.
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Notice that g1 = 0 because p1 = 0. It is amusing to observe that the largest value is g7 = 0.182227 (“lucky
7”) and the smallest value after that is g13 = 0.124704 (“unlucky 13”). Looking at the calculated values we
see that gk does indeed seem to converge to a value ≈ .143, as Theorem 3.5 said it would.

Theorem 3.6 (Strong Law of Large Numbers). Suppose X1, X2, . . . is a sequence of independent identicaly
distributed random variables with finite mean m = E[Xn]. Then

lim
n→∞

1

n

n∑
i=1

Xi = m

with probability 1. If Xi ≥ 0 and E[Xi] =∞ then 1
n

∑n
i=1Xi →∞ as n→∞ with probability 1.

This is what people sometimes refer to as the “law of averages”. In terms of the Kolmogorov model,
what it says is that the event

C =

{
ω ∈ Ω

∣∣∣∣∣ limn 1

n

n∑
i=1

Xi = m

}
has P (C) = 1. We will illustrate this using a Matlab experiment in Example 3.12 below.

Theorem 3.6 sys that for large n the random variable 1
nSn −m is nearly 0 with very high probability.

But it is not exactly 0; it still has some randomness. The next famous result says that when rescaled
appropriately, √

n

σ

(
1

n
Sn −m

)
=
Sn − nm√

nσ

where σ2 = Var(Xi), the distribution of 1
nSn −m converges to a particular shape.
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Theorem 3.7 (The Central Limit Theorem). Suppose Xi is an i.i.d. sequence of random variables with
finite mean m and finite variance σ2. Then

lim
n→∞

P

(
a <

Sn − nm√
nσ

< b

)
=

∫ b

a

1√
2π
e−

y2

2 dy.

In other words the distribution of Sn−nm√
nσ

is very nearly that of a standard normal random variable. We

might say it this way:
Sn ≈ nm+

√
nσY,

where Y is a standard normal random variable.
The Central Limit Theorem is one reason the normal distribution is so ubiquitous; it arises naturally when

the randomness is the cumulative effects of many small independent random influences. We can illustrate
with some computer calculations.

Example 3.11. Suppose the Xi are i.i.d. uniform random variables on [0, 1]. That means they have density

f(x) =

{
1 for 0 ≤ x ≤ 1

0 otherwise.

The mean and variance of Xi are

m =

∫ 1

0

x · 1 dx = 1/2, σ2 =

∫ 1

0

(x− 1/2)2 dx = 1/12.

For small values of n we can work out the density fn(s) of Sn =
∑n
i=1Xi explicitly. For instance the density

of S2 is

f2(s) =

∫ ∞
−∞

f(t)f(s− t) dt

=


s for 0 ≤ s ≤ 1

2− s for 1 < s ≤ 2

0 otherwise.

The densities of S3 are calculated recursively from the convolution formula

fn+1(s) =

∫ ∞
−∞

fn(t)f(s− t) dt.

These calculations get increasingly tedious as n gets larger due to the large number of pieces in the formula.
But computer algebra software can do the work (for modest values of n). We would like to compare the
standard normal density to the density of

Sn − nm√
nσ2

,

which is
fn(nm+

√
nσ2y)

√
nσ2.

Here are the comparative plots for n = 2 and n = 10. (The orange curve is the standard normal density.)
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You can see how close the two densities are for n = 10. This is essentially what Theorem 3.7 predicted.

Example 3.12. We can examine Theorem 3.6 with a simple Matlab experiment.

X=rand(1,10000); % Uniform-[0,1] r.v.s; mean=.5, var=1/12

S=cumsum(X);

N=1:10000;

L=S./N;

plot(L) % We can see the SLLN convergence to the mean = .5

A subtle but important point is that Theorem 3.7 does not say that the random variables Sn−nm√
nσ

converge

as n→∞, only that the probabilities associated with these random variables converge, i.e. their distributions
converge.

% Continuing with the same data generated above ...

C=(S-.5*N).*sqrt(12./N);

plot(C) % There is apparently no convergence!

In fact it can be proven that limn
Sn−nm√

nσ
diverges as n → ∞ with probability 1. Convergence of random

variables and convergence of their distributions are not the same thing! This brings out an important
distinction between the Renewal Theorem and the Central Limit Theorem on one hand, which are theorems
about limits of probabilities, as opposed to the Strong Law of Large Numbers on the other hand, which is
about the limit of actual values of the random variables 1

nSn.

3.5 Elementary Conditional Probabilities

The full description of the dependency between two or more random variables is described by their joint
distribution. For a pair X and Y that means describing the probabilities that the pair (X,Y ) falls in different
subsets of the plane. A Markov chain consists of a sequence of random variables, one for each moment of
time: X0, X1, X2, . . . . Because the random variables are associated with successive moments in time, it
is natural to try to describe their joint distribution in terms of their successive dependence on each other.
We want to describe how X1 depends on X0, and how X2 depends on (X0, X1), and so forth. From that
we hope to work out ways to calculate the probabilities of the complicated events of interest. Conditional
probabilities and expectations are what we use to describe how one random variable depends on another.
These are the topics of this section. Let’s start with an example.

Example 3.13. Let D1 and D2 be an independent pair of fair dice. Both dice are rolled by someone who
only tells us the sum X = D1 + D2, not what D1 and D2 are separately. Suppose we are told that X = 5.
Now, without knowing any more about the outcomes of the individual dice rolls, we are asked what we
think the probability of D2 = 3 is in light of our our knowledge that X = 5. We know P (D2 = 3) = 1

6 ,
but that does not take into account the extra information we have in knowing that X = 5. The possible
dice pair outcomes that consistent with X = 5 are (D1, D2) = (1, 4), (2, 3), (3, 2), (4, 1), each of which has
probability 1

36 . Although these account for only 1
9 of the overall probability, we know that one of these four

did happen, because we were told that X = 5. So based on our knowledge that X = 5 we know that these
four possibilities account for all the possible outcomes consistent with X = 5. They are all equally likely,
but only one of them has D2 = 3. So we would say the that probability of D2 = 3 given that X = 5 is 1

4 ,
the fraction of P (X = 5) which corresponds to D2 = 3:

P (X = 5 and D2 = 3)

P (X = 5)
=

1/36

1/9
=

1

4
.

This is what we mean by the conditional probability P (D2 = 3 |X = 5) = 1
4 .

In general the conditional probability of an event B given an event A is defined to be the fraction of
P (A) which corresponds to B:

P (B |A) =
P (A ∩B)

P (A)
.

But notice that we need P (A) > 0 for this is to be defined.
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Definition. For events A and B, the conditional probability of B given A is a value P (B |A) which satisfies

P (A ∩B) = P (B |A)P (A).

Stating it this way avoids the problem of dividing by P (A) = 0. If P (A) > 0 then P (B |A) has to be the
value we gave above, but if P (A) = 0 then any value will work for P (B |A).

Suppose that X and Y are discrete random variables with joint distribution P (X = i and Y = j) = pij .
We work out P (Y = m |X = n) by taking A = {X = n} and B = {Y = m}:

P (Y = m |X = n) =
P (X = n and Y = m)

P (X = n)
=

pnm∑
j pnj

.

This is what we did in the dice example above. The distribution of X is

pn =
∑
j

pnj .

Let’s use the notation
pm|n =

pnm
pn

. (3.12)

(If pn = 0 it won’t matter what we take pm|n to be. The essential relationship is pnm = pm|npn, which
holds in any case.) The collection of these pm|n values describe the conditional distribution of Y given X.
Observe that

∑
m pm|n = 1 for each individual n; this describes a distribution with respect to the index m

which depends on n as a parameter.
If we are given the distribution of X (i.e. the values of pn = P (X = n)) and the conditional distribution

of Y given X (i.e. the values of pm|n = P (Y = m |X = n)) then we can reconstruct the joint distribution:

P (X = n and Y = m) = pnm = pm|npn = P (Y = m |X = n)P (X = n).

Now suppose there is a third random variable Z. We can form the conditional distribution of Z given
X and Y in the same way as above. Writing “X = n and Y = m” as “(X,Y ) = (n,m)” will shorten the
notation a bit.

P (Z = k |X = n and Y = m) =
P ((X,Y, Z) = (n,m, k))

P ((X,Y ) = (n,m))
,

The the conditional distribution of Z given both X and Y is just the collection of these values for all possible
n,m, k. (We won’t try to give it a “p...” notation.) If these are known along with the distribution of X and
the conditional distribution of Y give X, then we can build the “triple” joint distribution

P (X = n, Y = m,Z = k) = P (Z = k |X = n and Y = m)P (X = n and Y = m)

= P (Z = k |X = n and Y = m)P (Y = m |X = n)P (X = n).

This is what we meant by saying that we can describe the joint distribution in a step-by-step way.

3.5.1 Basic Properties

Here are some basic properties of conditional probabilities which help us work with them. (All of these are
subsumed by Propostion 3.8 below.)

a) P (A) = P (A|B)P (B) + P (A|Bc)P (Bc)

b) If Bi is a partition (a collection of disjoint events with P (∪Bi) = 1) then

P (A) =
∑
i

P (A|Bi)P (Bi).
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c) Bayes Formula (reversal of conditioning order): assuming P (A) > 0,

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
.

More generally, if Bi is a partition as in b),

P (Bj |A) =
P (A|Bj)P (Bj)∑
i P (A|Bi)P (Bi)

.

Observe that a) is just b) with B1 = B, B2 = Bc.

3.5.2 Examples

Here are some examples illustrating the use of conditional probabilities.

Example 3.14. The Monte Hall Problem. You are the contestant on a game show. There are three closed
doors #1, #2, and #3. The host tells you that there is a new car behind one of them, but there is a goat
behind each of the other two. You will get to pick a door and then keep whatever is found behind it. You
make an initial choice of one of the doors; lets say you pick #1. But before opening your selected door #1
the host opens a different door, let’s say #2, and you see that there is a goat behind it. Now the host asks
if you would like to change your choice to the other unopened door, #3, or if you want to stay with your
original pick of door #1. What should you do? (We presume you prefer a new car to a new goat.)

This problem became notorious when a reader wrote to Marilyn vos Savant’s “Ask Marilyn” column in
Parade magazine in 1990 asking her what the answer was. In her column vos Savant said that it was best to
switch to the other door. Thousands of people wrote in to disagree with her, claiming that switching made no
difference to your chances of winning the car. These dissenters included several with math Ph.D.s disagreed.
Even the famous Paul Erdős was convinced vos Savant was wrong, until a computer simulation changed his
mind; see [29]. The analysis of this problem is a great example of the use of conditional probabilities

Let C be a random variable which indicates which door hides the new car. We will assume that P (C =
1) = P (C = 2) = P (C = 3) = 1

3 . Those who said switching made no difference reasoned that by showing us
the goat behind door #2 the host has told us that C 6= 2. Therefore

P (C = 1 |C 6= 2) =
P (C = 1 and C 6= 2)

P (C 6= 2)
=

P (C = 1)

P (C = 2) + P (C = 3)
=

1/3

2/3
=

1

2
,

and similarly, P (C = 3 |C 6= 2) = 1
2 . Thus conditional on C 6= 2 the other two possibilities, C = 1 or 3, are

equally likely so there is no benefit in switching.
But now think about another way. If you were given the choice of door #1 or the better of doors #2 or

3, certainly you would choose the latter, because

P (C ∈ {2, 3}) =
2

3
> P (C = 1) =

1

3
.

By opening door #2 to reveal the goat the host has shown you which of doors #2 and 3 actually is the better
one. So by switching to door #3 after being shown the goat behind door #2 you are actually choosing the
better of doors #2 and 3, and thus will get the car with probability 2

3 . This reasoning says you double your
chances of winning the car by switching to door #3.

Is one of these arguments wrong? How can we explain their different conclusions? The resolution depends
on clarifying exactly what we learned when the host opened door #2. Do we learn something from the fact
that it was door #2 that he opened and not door #3? To make this explicit, lets introduce another random
variable H which is the number of the door the host opens before giving us the chance to switch. Everything
depends on what we believe about H. Is H always 2? In other words would the host have opened door #2
even if it held the car? Is H chosen from {2, 3} independently of C; might the host might flip a coin to
decide whether to open door #2 or #3 and then open that door regardless of its contents? Or is H selected
to insure that H 6= C?
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The show’s producers would probably be unhappy if the host opened the door with the car, because then
we would know that neither of the unopened doors has the car and there would be no interest left in the
game. So lets assume P (H = C) = 0 and P (H = 1) = 0. Then H must be 3 if C = 2, and H must be 2 if
C = 3. Only when C = 1 does the host have any choice of door to open. We don’t know how he will decide
in that case, but lets assume his selection is governed by some conditional probabilities

P (H = 2 |C = 1) = γ, P (H = 3 |C = 1) = 1− γ,

and P (H = 1 |C = 1) = 0. Knowing these we can calculate the distribution of H:

P (H = 2) =

3∑
1

P (H = 2 |C = i)P (C = i) =
1

3
(γ + 0 + 1) =

γ + 1

3
,

P (H = 3) = 1− P (H = 2) =
2− γ

3
.

We want P (C = 3 |H = 2), which we can calclulate using Bayes formula c) above.

P (C = 3 |H = 2) =
P (H = 2 |C = 3)P (C = 3)∑3
i=1 P (H = 2 |C = i)P (C = i)

=
P (H = 2 |C = 3)

P (H = 2 |C = 1) + P (H = 2 |C = 2) + P (H = 2 |C = 3)

=
1

γ + 0 + 1
=

1

γ + 1
.

A similar calculation yields

P (C = 2 |H = 3) =
1

1− γ + 1 + 0
=

1

2− γ
.

Let S be the remaining door other than #1 and H, the door we will have the option to switch to after
learning what H is. What we are interested in is the following.

P (C = S) = P (C = 3 |H = 2)P (H = 2) + P (C = 2 |H = 3)P (H = 3)

=
1

γ + 1

γ + 1

3
+

1

2− γ
2− γ

3
=

2

3
, and

P (C = 1) = 1− P (C = S) =
1

3
.

This justifies the conclusion that (always) switching doors doubles your probability of winning the car, under
the hypothesis that H 6= 1 and H 6= C. By “always” we mean regardless of whether H = 2 or H = 3. The
conditional probabilities P (C = S |H = j) are different for j = 2 and j = 3, but it turns out that in both
cases P (C = S |H = j) > P (C = 1 |H = j) as long as 0 < γ < 1. So you can’t improve the overall strategy
by deciding whether or not to switch based on the value of H.

If you rework these calculations assuming that H = 2 always, or that H is either 2 or 3 chosen indepen-
dently of C, then it turns out that the first line of reasoning is correct (see Problem 3.24):

P (C = 1 |H 6= C) = P (C = S |H 6= C) =
1

2
.

So we see that different assumptions about H lead to different conclusions. But you will probably agree
that allowing H = C or H = 1 is unreasonable for the game show. On this basis we find that vos Savant
was right; you are twice as likely to win the car if you switch doors, and a careful conditional probability
discussion explains why1.

1This affair embarrassed the many math Ph.D.s who had written vos Savant to disagree and in some cases scold her. Are
you wondering how many apologies she got? Read this:

http://query.nytimes.com/gst/fullpage.html?res=9D0CEFDD1E3FF932A15754C0A967958260.
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Example 3.15. Suppose we have a coin that produces heads with probability p and tails with probability
q = 1− p. We flip the coin (independently) n times and let X be the number of heads and Y the number of
tails. Since Y is X-determined (Y = n−X) we don’t expect X and Y to be independent. But suppose we
“randomize” n; to be specific, suppose that N is a Poisson random variable with parameter λ: P (N = n) =
λn

n! e
−λ for n ≥ 0. We observe N first and then flip our coin N times to determine X and Y . The remarkable

fact is that this results in X and Y which are independent!
The essential fact is that

P (X = k |N = n) =

(
n

k

)
pkqn−k, where q = 1− p.

Therefore we have

P (X = k and Y = `) = P (X = k and N = k + `)

= P (X = k |N = k + `)P (N = k + `)

=

(
k + `

k

)
pkq` · λk+`

(k + `)!
e−λ

=
pk

k!

q`

`!
λk+`e−λ.

On the other hand,

P (X = k) =

∞∑
n=0

P (X = k |N = n)P (N = n)

=

∞∑
n=k

(
n

k

)
pkqn−k

λn

n!
e−λ

=

∞∑
n=k

pk

k!
λk

qn−k

(n− k)!
λn−ke−λ

=
pk

k!
λk

( ∞∑
n=k

qn−k

(n− k)!
λn−k

)
e−λ

=
pk

k!
λkeλqe−λ

=
pk

k!
λke−pλ

This is a Poisson distribution with parameter pλ. With a similar calculation we find that

P (Y = `) =
q`

`!
λ`e−qλ.

So

P (X = k)P (Y = `) =
pk

k!
λke−pλ

q`

`!
λ`e−qλ =

pk

k!
λk
q`

`!
λ`e−λ.

3.5.3 Elementary Conditional Expectation

Suppose X is a discrete random variable and A is an event with P (A) > 0. We can calculate the conditional
expectation E[X |A] just as we would E[X] but using the conditional distribution of X given A in place of
the distribution of X:

E[X|A] =
∑
x

xP (X = x |A). (3.13)

Notice that this can be written using a restricted expectation:

E[X|A] =
∑
x

xP (X = x and A)/P (A) =
E[X;A]

P (A)
.
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As for conditional probabilities we rearrange this into a definition which makes sense even if P (A) = 0.

Definition. For an integrable random variable and an event A the conditional expectation of X given A is
E[X|A] defined by

E[X|A]P (A) = E[X;A].

If P (A) = 0 then any value qualifies as E[X|A].

Example 3.16. Consider again the random variables of Example 3.13.

P (D2 = 1|X = 5) = 1/4

P (D2 = 2|X = 5) = 1/4

P (D2 = 3|X = 5) = 1/4

P (D2 = 4|X = 5) = 1/4

P (D2 = 5|X = 5) = 0

P (D2 = 6|X = 5) = 0.

Therefore
E[D2|X = 5] = (1 + 2 + 3 + 4)/4 = 2.5.

Here are some basic properties of conditional expectations. X and Y are assumed to have finite mean
and P (A) > 0.

a) E[1B |A] = P (B|A).

b) E[aX + bY |A] = aE[X|A] + bE[Y |A] for any constants a, b.

c) X(ω) ≤ Y (ω) for all ω implies E[X|A] ≤ E[Y |A].

d) |E[X|A]| ≤ E[ |X| |A].

e) If Bi is a partition of Ω then

E[X] =
∑
i

E[X|Bi]P (Bi).

3.6 Generalized Conditional Expectation: E[Y |X]

Consider Example 3.16 once again. We have been thinking of E[D2|X = n] one value of n at a time. The
value of E[D2|X = n] will be different for different choices of n. In Example 3.16 we conditioned on X = 5.
If we condition on X = 4 instead then

P (D2 = 1|X = 4) = 1/3

P (D2 = 2|X = 4) = 1/3

P (D2 = 3|X = 4) = 1/3

P (D2 = 4|X = 4) = 0

P (D2 = 5|X = 4) = 0

P (D2 = 6|X = 4) = 0

and so
E[D2|X = 4] = (1 + 2 + 3)/3 = 2.
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Working out the rest of the cases we find

E[D2|X = n] =



1 n = 2

1.5 n = 3

2 n = 4
...

5.5 n = 11

6 n = 12

= n/2.

We now want to introduce the idea of the generalized conditional E[D2|X]. Notice that no value n for
X = n is specified in this notation. This is not a typo; we are trying to indicate a way of combining all
the different values of E[D2|X = n] into a single more comprehensive object: E[D2|X]. The connection
between the two is that E[D2|X] is the value that results from using the actual value of X in place of n in
E[D2|X = n]. For instance let’s say that X = 5 then the value of E[D2|X] is E[D2|X = 5] = 2.5. But if
X = 4 then the value of E[D2|X] is E[D2|X = 4] = 2. The value of E[D2|X] depends on the value that X
actually takes, not some specific n which we might select in advance. In our particular example this works
out to be

E[D2|X] = X/2.

The upshot is that E[D2|X] is not a mere number but a new random variable, an X-determined random
variable.

Provided X is a discrete random variable and Y is integrable we can describe the generalized conditional
expectation of Y given X this way:

E[Y |X] = Φ(X) where Φ(·) is the function Φ(x) = E[Y |X = x]. (3.14)

The difference in notation is subtle. When you see the “= x” in “E[Y |X = x]” that tells you that we mean
the elementary conditional expectation (3.13) using the particular value x for the outcome of X. (This is
a number, not a random variable.) When you see “E[Y |X]” with no “= x” we mean the random variable
E[Y |X] which has different values depending on what X is. (Our notation here is not standard. What we
denote by “E[Y |X]” is usually denoted “E[Y |σ(X)]” or “E[Y |FX ]” in more advanced treatments. We use
a simplified notation in order to avoid discussion of σ-algebras, which would take us into measure theory.)

There is a formula which characterizes the generalized conditional expectation. Suppose C is a set of
possible X values and consider the expected value of Y restricted to the event X ∈ C.

E[Y ;X ∈ C] =
∑
y

∑
x∈C

yP (Y = y and X = x)

=
∑
y

∑
x∈C

yP (Y = y|X = x)P (X = x)

=
∑
x∈C

[∑
y

yP (Y = y|X = x)

]
P (X = x)

=
∑
x∈C

E[Y |X = x]P (X = x)

= E[E[Y |X] ;X ∈ C]. (3.15)

This formula leads to the second part of the following definition of the generalized conditional expectation.

Definition. If X and Y are random variables and Y is integrable then E[Y |X] is an integrable random
variable with the following properties.

1. E[Y |X] is X-determined, i.e. E[Y |X] = Φ(X) for some function Φ(·).
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2. For any set C of possible values for X,

E[Y ;X ∈ C] = E[E[Y |X];X ∈ C].

The generalized conditional probability P (B|X) is just the special case of Y = 1B:

P (B|X) = E[1B |X].

Although this definition may seem perplexing in comparison to the simplicity of (3.13) it is actually quite
important. The working properties of conditional expectations are expressed in terms of generalized condi-
tionals; see Proposition 3.8 below. Moreover all the properties of elementary conditionals (Section 3.5.1 and
equation (3.13)) follow from it.

To condition on a particular event A use the generalized conditional on X = 1A. Since E[Y |X] is X-
determined we must have E[Y |X] = Φ(X) where Φ(·) has only two values, Φ(0) and Φ(1). Using part 2 of
the definition,

E[Y ;A] = E[Y |X = 1] = E[Φ(X);X = 1] = Φ(1)P (A), (3.16)

so Φ(1) = E[Y ;A]
P (A) = E[Y |A]. Repeating this for Ac leads to Φ(0) = E[Y |Ac]. In other words we have deduced

(3.14) from the definition in the case that X is a Bernouli random variable. In particular,

E[Y |1A] = Φ(1A) = E[Y |A]1A + E[Y |Ac]1Ac .

If X is a discrete random variable, with

{X = i} = Bi, P (Bi) > 0,

the same argument implies that Φ(i) = E[Y |Bi], so that

E[Y |X] =
∑
i

E[Y |Bi]1Bi .

The point is that (3.14) follows from the definition, and Φ(x) = E[Y |X = x] is the only function Φ(x) which
works in part 2 of the definition.

Now let’s think about the case of continuous random variables. Suppose X and Y have a joint density

P (Y ≤ b and X ≤ a) =

∫ a

−∞

∫ b

−∞
f(x, y) dy dx.

In this situation we have trouble defining the elementary conditional E[Y |X = c] as in (3.13) because
P (X = c) = 0. We can guess our way to the correct formula as follows. Let fX(x) be the marginal density
of X and assume fX > 0. Then we can define the conditional density f(y|x) by optimistically just following
the pattern of our basic definition but with densities in place of probabilities:

f(y|x) =
f(x, y)

fX(x)
. (3.17)

This conditional density has properties similar to pm|n in (3.12). For instance it is a density in y for each
value of x individually, ∫ ∞

−∞
f(y|x) dy = 1 for each x.

We speculate that conditional expectations with respect to X should computed by

E[Y | X = x] =

∫
yf(y|x) dy. (3.18)

This seems reasonable just by analogy with the discrete case. But the true reason for (3.18) is that this
formula satisfies our definition of the generalized conditional defined above. Take the right side of (3.18) as
the definition of a function

Φ(x) =

∫
yf(y|x) dy.
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Our claim is that this works in the definition of E[Y |X] = Φ(X) above. Let’s check, using an interval
C = [a, b].

E[Y ;X ∈ C] =

∫ b

a

∫
yf(x, y) dy dx

=

∫ b

a

[∫
yf(y|x)fX(x) dy

]
dx

=

∫ b

a

Φ(x)fX(x) dx

= E[Φ(X);X ∈ C].

This confirms that (3.18) does indeed satisfy property 2 of the definition. That is why (3.18) is correct!

Example 3.17. Consider the following joint density.

f(x, y) =

{
x+ 3

2y
2 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

0 otherwise.

(You can check that
∫∫

f(x, y) = 1.) The marginal density of X is

fX(x) =

∫
f(x, y) dy =

{
x+ 1

2 if 0 ≤ x ≤ 1

0 otherwise.

So for 0 ≤ x, y ≤ 1 we have

f(y|x) =
x+ 3

2y
2

x+ 1
2

=
2x+ 3y2

2x+ 1
.

Therefore for 0 ≤ x ≤ 1 we have

Φ(x) =

∫
yf(y|x) dy =

∫ 1

0

y
2x+ 3y2

2x+ 1
dy =

4x+ 3

8x+ 4
.

(It doesn’t matter what Φ(x) is for other values of x since those never occur as values of X.) So we find

E[Y |X] =
4X + 3

8X + 4
.

Our calculations for discrete and jointly continuous random variables show how to find E[Y |X] in those
particular cases. In fact E[Y |X] always exists, provided Y is integrable. The conditioning random variable
X can be a vector of several different random variables: for instance X = (Z,W,Θ, . . .), in which case our
existence claim is that there does exist a function Φ(z, w, θ, . . .) for which Φ(Z,W,Θ, . . .) has property 2 of
the definition, and so can rightfully be called E[Y |(Z,W,Θ, . . .)]. The proof of this grand existence claim
is part of the general theory of the Kolmogorov model and beyond our purposes here. We will take it for
granted.

The really important properties for working with conditionals are expressed most concisely in the gener-
alized conditional point of view. The following proposition collects several such properties. When we write
“X ≡ c” we mean that X is the random variable that always takes the value c, P (X = c) = 1. We can call
this a constant random variable.

Proposition 3.8. Suppose X,Y, Z are random variables, with Y , Z (and Y Z for 10) integrable.

1. If Y ≡ c is a constant random variable then E[Y |X] ≡ c.

2. For any two constants α, β,

E[αY + βZ|X] = αE[Y |X] + βE[Z|X]
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3. If Z ≤ Y , then E[Z|X] ≤ E[Y |X].

4. |E[Y |X]| ≤ E[|Y ||X].

5. If X ≡ c is a constant random variable then E[Y |X] ≡ E[Y ] (a constant random variable).

6. Independence of X and Y implies E[Y |X] ≡ E[Y ].

7. For any X-determined event A,
E[Y ;A] = E[E[Y |X] ;A].

When P (A) = 1 this says that E[Y ] = E [E[Y |X]]. For conditional probabilities this says that P (B ∩
A) = E[P (B|X);A] and P (B) = E[P (B|X)].

8. E[Y |X] = E[E[Y |(X,Z)]|X].

9. If X is Z-determined, then E[Y |(X,Z)] = E[Y |Z].

10. If Y is X-determined, then
E[Y |X] = Y

and more generally
E[Y Z|X] = Y E[Z|X].

We will explain some of these and leave others as problems.
Consider item 3 for discrete random variables. E[Z|X] = Ψ(X) and E[Y |X] = Φ(X), where

Ψ(x) = E[Z;X = x]/P (X = x), Φ(x) = E[Y ;X = x]/P (X = x).

Since Z ≤ Y implies E[Z;X = x] ≤ E[Y ;X = x], we have Ψ(x) ≤ Φ(x). This implies E[Z|X] ≤ E[Y |X] as
claimed. A similar argument can be given in the jointly continuous case.

For item 6 we will show that the constant random variable Γ ≡ E[Y ] satisfies the definition of E[Y |X].
As a constant Γ is X-dependent. For any set C the random variable 1C(X) is independent of Y , since X is.
Using that independence in (3.10) we have

E[Y ;X ∈ C] = E[Y 1C(X)] = E[Y ]E[1C(X)] = E[Y ]P (X ∈ C) = E[Γ;X ∈ C].

This implies item 6. Item 5 is a special case because the constant random variable Y ≡ c is independent of
X.

Item 7 is just a restatement of part 2 of the definition, since an X-determined event must be of the form
A = {X ∈ C} for some set of values C. We get conditional probabilities by taking Y = 1B :

P (B|X) = E[1B |X].

In particular

P (B ∩A) = E[1B ;A]

= E[E[1B |X];A]

= E[P (B|X);A].

Item 8 is called the Tower Law. It says we can find generalized conditionals in stages by condi-
tioning on more “informative” random variables first and less informative ones after. To verify it, let
Γ = E[E[Y |(X,Z)]|X]. We want to see that Γ satisfies the defininiton of E[Y |X]. Γ is X-determined
because it is E[·|X] of something. For the second part, if C is a set of X values, then

E[Y ;X ∈ C] = E[Y ; (X,Z) ∈ C × R]

= E[E[Y |(X,Z)]; (X,Z) ∈ C × R]

= E[Γ; (X,Z) ∈ C × R]

= E[Γ;X ∈ C].
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Item 9 is because if X is Z-determined, then being (X,Z)-determined is equivalent to being Z-determined.
Therefore the definitions of E[Y |(X,Z)] and E[Y |Z] coincide.

To explain item 10 let’s start with a Bernoulli random variable for Y : Y = 1B where B is an X-determined
event. The claim is that E[1BZ|X] = 1BE[Z|X]. We check this by verifying that the right side satisfies the
definition of the left side. The right side is X-determined because both factors are. We know

E[|1BE[Z|X]|] ≤ E[|E[Z|X]] <∞

since E[Z|X] must be integrable by its own definition. Next consider any set C of possible X values.

E[1BE[Z|X];X ∈ C] = E[E[Z|X];X ∈ C ∩B]

= E[Z;X ∈ C ∩B], because C ∩B is X-determined

= E[1BZ;X ∈ C].

This completes the verification that E[1BZ|X] = 1BE[Z|X], which is what we wanted to show in the special
case of Y = 1B . Now suppose Y is a discrete X-determined random variable taking values yi. The events

Bi = {Y = yi}

are all X-determined, and we can write

Y =
∑
i

yi1Bi .

Using what we just showed for each of the 1Bi together with part 1) of the proposition, we have

E[Y Z|X] = E

[∑
i

yi1BiZ

∣∣∣∣X
]

=
∑
i

yiE[1BiZ|X] =
∑
i

yi1BiE[Z|X] = Y E[Z|X].

If the set of yi is infinite these are infinite series and more technical justification is needed. The details of
the continuous case are more involved as well. But this calculation gives you the general idea.

Here are a couple examples which use properties of the generalized conditional.

Example 3.18. Consider again Example 3.15 above, in which we first observe a Poisson random variable N
(parameter λ) and then toss a coin with P (heads) = p the number of times given by N and let X be the
number of heads observed. One way to describe the joint distribution is to say that N is Poisson, and that
the conditional distribution of X given N is binomial with parameters (N, p). I.e.

P (X = k|N = n) = pk(1− p)n−k
(
n

k

)
10≤k≤n.

We can use 7) of the proposition above to calculate E[X]. First, using the mean of binomial distributions,

E[X|N = n] = pn,

or as a generalized conditional,
E[X|N ] = pN.

Therefore
E[X] = E[E[X|N ]] = E[pN ] = pE[N ] = pλ.

Don’t make the mistake of thinking that X is a binomial random variable. It’s not; we worked out its
distribution in Example 3.15.

Example 3.19. (From [52]) You are lost in a system of underground tunnels. You find yourself in a chamber
with three tunnels leading out of it. Let’s name them #1, #2, #3 but the chamber is pitch black so you
can’t tell one from another. If you take tunnel #1 you will reach safety in 2 minutes. If you take tunnel
#2 in 3 minutes you find yourself back in the same chamber. If you take tunnel #3 you again find yourself
back in the same chamber but after 5 minutes. Each time you reach this chamber you grope around until
randomly finding one of the tunnels to try (equal probabilities of finding each). The problem is to determine
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the expected time until you reach safety, starting from the chamber. Let Y indicate the first tunnel you
choose to follow and X your total time to reach safety; we want E[X]. Here is what we know.

P (Y = i) = 1/3 for each of i = 1, 2, 3

and

E[X|Y = 1] = 2

E[X|Y = 2] = 3 + E[X]

E[X|Y = 3] = 5 + E[X].

Using these, we can calculate

E[X] = E[E[X|Y ]] =
1

3
· 2 +

1

3
· (3 + E[X]) +

1

3
· (5 + E[X]) =

1

3
· (10 + 2E[X]).

This is an equation that E[X] must satisfy; solving we find that

E[X] = 10.

3.7 The Markov Property

We now turn our attention back to Markov chains to see how they are related to some of the things we have
discussed in this chapter, especially conditional expectations.

The first thing to note is that transition probabilities are really conditional probabilities. Equation (2.2)
says that

P (X0:k+1 = s0:k+1) = µs0

k+1∏
i=1

psi−1,si

=

[
µs0

k∏
i=1

psi−1,si

]
psk,sk+1

= P (X0:k = s0:k)psk,sk+1
.

In other words
P (Xk+1 = sk+1|X0:k = s0:k) = psk,sk+1

. (3.19)

Forming a sum over sk+1 leads to

E[f(Xk+1)|X0:k = s0:k] =
∑

sk+1∈S
psk,sk+1

f(sk+1)

= Pf(sk).

As a generalized conditional expectation,

E[f(Xk+1)|X0:k] = Pf(Xk). (3.20)

In general a conditional on X0:k would be an X0:k-determined random variable, something of the form
Φ(X0:k). But in (3.20) the right side depends only on Xk itself, not the earlier values X0, . . . , Xk−1. This is
the Markov property and equation (3.20) is its most succinct expression.

There are some other expressions of the Markov property. For instance applying the Tower Law gives us
the conditional properties of multiple steps.

E[f(Xk+2)|X0:k] = E[E[f(Xk+2)|X0:k+1]|X0:k] = E[Pf(Xk+1)|X0:k] = PPf(Xk) = P2f(Xk).
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Of course this pattern continues to Xk+m with Pm. In fact let’s redo the calculation leading to (3.20) by
going m steps beyond k rather than just one. And to make it easier to follow lets use si for the states up to
k and aj for those after k: Xk+j = aj .

P (X0:k = s0:k and Xk+1:k+m = a1:m) =

[
µs0

k∏
i=1

psi−1,si

]psk,a1

m∏
j=2

paj−1,aj


= P (X0:k = s0:k)Psk(X1:m = a1:m).

Notice the second factor on the right especially. What was Xk+j = aj on the left has become Xj = aj on
the right. Consequently

P (Xk+1:k+m = a1:m|X0:k = s0:k) = Psk(X1:m = a1:m). (3.21)

For a function f of m variables this becomes

E[f(Xk+1,m+k+1)|X0:k = s0:k] = Esk [f(X1:m)].

A further extension to functions Φ(a1:∞) of infinite sequences of states says that

E[Φ(Xk+1:∞)|X0:k = s0:k] = Esk [Φ(X1:∞)],

or
E[Φ(Xk+1:∞)|X0:k = s0:k] = w(Xk) where w(x) = Ex[Φ(X1:∞)]. (3.22)

This is the same as (3.20) except that we are taking the conditional expectation of a function of the entire
future of the chain, not just the next state. (The proof of this extension from functions of m variables to
infinite sequences requires the more advanced techniques of measure theory, which we are deliberately not
pursuing.)

3.7.1 Hitting Probability Equations

The equations for hitting probabilities that we considered in Section 2.2 were obtained simply from heuristic
considerations. In fact they follow from the expression (3.22) of the Markov property. Consider the first
contact time TC of some set of states C ⊆ S. We will focus on the event TC <∞, i.e. that the state of the
chain is in C either initially or at some time in the future. The indicator random variable for this event is a
function of the full outcome of the chain:

1TC<∞ = Φ(X0:∞)

where

Φ(s0:∞) =

{
1 if sn ∈ C for some n ≥ 0

0 if no sn belongs to C.

We are interested in
u(i) = Pi(TC <∞) = Ei[Φ(X0:∞)].

For initial states i ∈ C we know that u(i) = Pi(TC <∞) = 1, since if X0 = i ∈ C then TC = 0.
Now consider initial states X0 = i /∈ C. Then TC is determined by X1:∞; to be precise, Φ(X0:∞) =

Φ(X1:∞). The Markov property in the form (3.22) says that

Ei[Φ(X1:∞)|X1] = u(X1).

Combining these things with the Tower Law we find that

u(i) = Ei[Φ(X0:∞)]

= Ei[Φ(X1:∞)]

= Ei[Ei[Φ(X1:∞)|X1]]

= Ei[u(X1)]

=
∑
j∈S

pi,ju(j).

This is equation (2.5). For a similar derivation of the mean hitting time equations (2.10) see Problem 3.26.

61



3.7.2 Stopping Times and the Strong Markov Property

There is yet another generalization of the Markov Property which allows the k in (3.21) to be replaced by
a time-valued random variable K of a special type called a stopping time. A stopping time is a time-valued
random variable K with the special property that at any moment of time the question “has K happend yet?”
can be be answered based on the history of the chain up to that moment. In our present context to be
time-valued means the possible values of K are 0, 1, 2, . . . and possibly ∞. Here is the formal definition.

Definition. A random variable K taking values in {0, 1, 2, . . . ,∞} with the property that for each n

{K ≤ n} is X0:n-determined (3.23)

is called a stopping time.

The time-valued random variables TC and T +
a are examples of stopping times. For instance whether or

not TC ≤ 5 is true can be determined by examining X0, . . . X5 to see if any of those states are in C or not.
An example of a time-valued random variable with is not a stopping time is the last time Xn ∈ C (or ∞ if
there is no last time).

LC = max{n : Xn ∈ C};

To know that LC ≤ 5 requires examining all the future states X6, X7, . . . to be sure that none of them belong
to C; it can’t be determined just from X1:5. That’s why LC is not a stopping time.

The strong Markov property says that the k in the Markov property (3.21) can be replaced by a stopping
time K. However (3.21) does not make much sense if K = ∞ because there would be nothing that comes
after K. So we will phrase it this way, limiting the statement to the event K <∞:

P (K <∞ and XK+1:K+m = a1:m|X0:K) = PXK(X1:m = a1:m)1K<∞. (3.24)

(A strong Markov version of (3.22) involving the conditional expectation of a function Φ(XK+1,∞) of the
entire future after K is also true. But the above version will be enough for our purposes.)

We want to justify the strong Markov property. Let G refer to the event

G = {K <∞ and XK+1:K+m = a1:m}.

(It is important to keep in mind that the states of a1:m are part of the specification of G. The ai are not to
be viewed as variables in the following but as fixed values.) To justify (3.24) we need to show that the right
side of (3.24) has the two properties required by the definition of the left side. The first property is that
P (G|X0:K) is X0:K-determined. In other words the proposed expression for P (G|X0:K) should be something
that can be evaluated knowing s0:k = X0:K but nothing more about the trajectory of the chain; it should
be obtained by plugging s0:k = X0:K into some kind of function Γ(s0:k) of a finite/infinite sequence s0:k of
states. Now suppose we are told what s0:k = X0:K is. Then we can determine the exact value of the right
side of (3.24). If s0:k is an infinite sequence then K = ∞ so the right side is 0. If s0:k is a finite sequence
then the number of terms tells us the value of k = K and the last term tells us the sstate XK = Xk = sk.
The right side of (3.24) becomes

PXK(X1:m = a1:m)1K<∞ = Psk(X1:m = a1:m) = psk,a1
pa1,a2

· · · pam−1,am .

So the function Γ(·) of finite/infinite sequences defined by

Γ(s0:k) =

{
psk,a1pa1,a2 · · · pam−1,am if k <∞
0 if k =∞

allows us to express the right side of (3.24) as Γ(X0:K), as desired.
The second part of the definition of P (G|X0:K) is that

P (G and X0:K ∈ C) = E[Γ(X0:K);X0:K ∈ C]
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should be correct for any set C of finite/infinite sequences of states. Suppose we can verify that for any
particular string of states s0:k the formula

P (G and X0:K = s0:k) = P (X0:K = s0:k)Γ(s0:k) (3.25)

is correct. By adding this up for the different choices of s0:k ∈ C the second part of the definition will follow.
So to check (3.25) we need to carefully work out both sides to confirm that they agree. Notice that if k =∞
then both sides are 0, so we can assume k is finite. Consider any finite sequence of states s0:k.

P (G and X0:K = s0:k) = P (X0:k = s0:k, Xk+1,k+m = a1:m, and K = k).

Now because K is a stopping time whether or not K = k is determined by the specific states X0:k = s0:k. So
if s0:k is a finite sequence of states for which K = k then the “K = k” in the above probability is redundant;
it is simply

P (G and X0:K = s0:k) = P (X0:k = s0:k, Xk+1,k+m = a1:m)

= P (X0:k = s0:k)P (Xk+1,k+m = a1:m|X0:k = s0:k)

= P (X0:k = s0:k)Psk(X1,m = a1:m)

= P (X0:K = s0:k)Γ(s0:k).

And if s0:k is a finite sequence of states for which K 6= k then X0:K 6= s0:k so both sides of (3.25) are 0.
Either way, (3.25) is correct, completing our verification of (3.24).

3.7.3 Long Run Results for Chains

To finish this chapter we will put the strong Markov property to work. Suppose a ∈ S is a recurrent state
a. (See Theorems 2.6 b) and 4.2.) We want to consider the sequence of times that the chain is at state a.

Starting from X0 = a let T (1)
a = T +

a , the first return time as defined on page 13. Then recursively define
the subsequent return times by

T (k+1)
a = min{n > T (k)

a : Xn = a}, or +∞ if this set is empty.

Each T (k)
a is a stopping time, because the event {T (k)

a ≤ n} is something we can determine by examining the

states X0:n to see if the state a occurs at least k times. In brief, {T (k)
a ≤ n} is X0:n-determined. Our first

task is to show that, assuming a is recurrent, all T (k)
a are finite (with probability 1) and that the waiting

times between them
Wk = T (k)

a − T (k−1)
a

are independent, identically distributed random variables. (Take T (0)
a = 0, so that W1 = T (1)

a − 0 = T +
a is

well-defined.) Once we prove the lemma we will know that all the Wk have the same distribution as T +
a .

Lemma 3.9. Suppose a is a recurrent state for a Markov chain. Then Pa(T (k)
a < ∞) = 1 for every k ≥ 1

and the Wk form an i.i.d. sequence.

Proof. By the recurrence hypothesis, T (1)
a = T +

a is finite with probability 1. We proceed by induction:

assume T (k)
a is finite with probability 1. Let Φ be the function of infinite sequences s1:∞ which identifies the

first m for which sm = a. In other words
T +
a = Φ(X1:∞).

Then

Wk+1 = Φ(XT (k)
a +1:∞)

T (k+1)
a = T (k)

a + Φ(XT (k)
a +1:∞).
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The strong Markov property tells us that

Pa(Wk+1 = `|X
0:T (k)

a
) = Pa(Φ(XT (k)

a +1:∞) = `|X
0:T (k)

a
)

= PX
T (k)
a

(Φ(X1:∞) = `)

= Pa(T +
a = `). (3.26)

Summing over ` we see that Pa(T +
a <∞) = 1 implies that

Pa(Wk+1 <∞|X0:T (k)
a

) = 1

and therefore
Pa(Wk+1 <∞) = Ea[Pa(Wk+1 <∞|X0:T (k)

a
)] = 1.

By induction this implies the finiteness assertion for T (k+1)
a = T (k)

a +Wk+1. Moreover because the right
side of (3.26) does not depend on X

0:T (k)
a

this means that Wk+1 is independent of X
0:T (k)

a
and has the same

distribution as T +
a . Since all of W1, . . . ,Wk are X

0:T (k)
a

-determined it follows that Wk+1 is independent of
W1, . . . ,Wk.

A consequence of this lemma is that the T (k)
a are the partial sums of an i.i.d. sequence:

T (k)
a =

k∑
i=1

Wi.

The following theorem now harvests the application of the Strong Law (Theorem 3.6) and Renewal Theorem
(Theorem 3.5) to this observation.

Theorem 3.10. Suppose Xn is a Markov chain with X0 = a where a is a recurrent state. Then

1

n

n∑
k=1

1a(Xk)→ 1/ra as n→∞ with probability 1,

where ra = Ea[T +
a ] (the case of ra =∞ included). If in addition a has period 1 then

pa,a(n)→ 1/ra as n→∞.

We will see later that this generalizes considerably.

Proof. We can apply the standard Law of Large Numbers for i.i.d. random variables as follows. Let T (1)
a <

T (2)
a < · · · < T (k)

a < · · · be the sequence of return times to a and Wk = T (k)
a − T (k−1)

a the waiting times
between visits, as defined above. The mean of the Wk is

Ea[Wk] = Ea[T +
a ] = ra.

By the Strong Law (Theorem 3.6),

1

`

∑̀
j=1

Wj → ra almost surely as `→∞.

Now
∑`
j=1Wj = T (`)

a . So the above says that

T (`)
a

`
→ ra.

Taking reciprocals,
`

T (`)
a

→ 1

ra
almost surely as `→∞.
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Each n ≥ 0 falls between two successive T k: T ` ≤ n < T `+1. With n and ` related this way ` → ∞ as
n→∞ because all T ` are finite. Also notice that

∑n
k=1 1a(Xk) = `. Therefore

`

T `
≥ `

n
=

∑n
k=1 1a(Xk)

n
>

`

T `+1
=

`

`+ 1

`+ 1

T `+1
.

Both sides of this converge to 1/ra as `→∞. This shows that∑n
k=1 1a(Xk)

n
→ 1

ra
almost surely as n→∞.

The second part of the theorem follows by applying the Renewal Theorem to the Wk. We have that

pa,a(n) = Pa(Xn = a) = P (T (k)
a = n for some k). Since T (k)

a =
∑k
i=1Wi Theorem 3.5 says that

lim
n→∞

pa,a(n) =
1

E[Wi]
=

1

ra
.

Problems

Problem 3.1
Suppose X is geometric random variable with parameter p = 2/3. Find P (X is an odd number). Suppose
Y is a Poisson random variable with parameter λ = 2. What is P (Y > 4)? (See Examples 3.1, 3.5 and
page 234 for the definitions of these distributions.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SimpleCalc

Problem 3.2
Calculate the mean and variance of a Poisson random variable with parameter λ. (This will be similar to
the calculation for binomial random variables, except that we use the Taylor series ex =

∑∞
n=0

1
n!x

n instead
of the binomial formula.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poisson

Problem 3.3
A Cauchy random variable has density

f(x) =
1

π

1

1 + x2
.

Explain why a Cauchy random variable is not integrable.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cauchy

Problem 3.4
Suppose X is a continuous random variable with P (X ≥ 0) = 1. (That means f(x) = 0 for all x < 0.)
Assume also that E[X] < ∞. Let F (x) be the distribution function F (x) = P (X ≤ x). (There is a little
more on this in Section A.2.) Derive the formula

E[X] =

∫ ∞
0

1− F (x) dx.

by starting with the formula we gave to the define E[X], writing x =
∫ x

0
1 dy, and then changing the order

of integration in the double integral. This is the analogue of (3.8) for continuous random variables.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DistnMean

Problem 3.5
Suppose D1 and D2 are the results of two independent dice rolls. Use the independence of D1 and D2 to
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work out the probabilities P (D1 +D2 = k). Your results should agree with the formula given on page 6. If
there are three independent dice, D1, D2 and D3 what is P (D1 +D2 +D3 = 7)?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dice

Problem 3.6
Suppose D1 and D2 are the results of two independent dice rolls. Let Z be the sum of D1 and D2 reduced
modulo 6:

Z =

{
D1 +D2 if D1 +D2 ≤ 6

D1 +D2 − 6 if D1 +D2 > 6.

Show that D1 and Z are independent, that D2 and Z are independent, but that D1, D2 and Z taken together
are not independent!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Dep

Problem 3.7
In Example 3.11 we calculated the density of S = X + Y , where X and Y are independent uniform random
variables on [0, 1]. Illustrate this with a simulation. Produce two lists X and Y of uniform samples, add them
to get a list of samples of S, and produce a histogram to view the results. In your simulation, what fraction
of the samples fell in the interval [.5, 1.5]? Compare that to the theoretical value of P (.5 ≤ Z ≤ 1.5).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SumU

Problem 3.8
If X and Y are independent standard normal random variables, show that X2 + Y 2 is exponential with
λ = 1/2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NormRad

Problem 3.9
Suppose X and Y are independent, both with finite variance. Show that

Var(X + Y ) = Var(X) + Var(Y ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VarSum

Problem 3.10
Work out E[X2] and Var(X) whereX is as in Example 3.15. You can do this in the same way as Example 3.18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xvar

Problem 3.11
Suppose X and Y are independent Poisson random variables with parameters λX and λY . Show that X+Y
is also a Poisson random variable and determine it’s parameter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PP

Problem 3.12
Explain why the hypotheses of Theorems 3.2 and 3.3 fail in Example 3.6. What about Theorem 3.4 – is it
applicable to the example? Is what it claims consistent with what we found in the example?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NConv

Problem 3.13
Suppose we toss a (fair) coin independently and repeatedly. Explain why the probability of eventually seeing
a head must be 1. What properties of the Kolmogorov model does your reasoning depend on?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AllHeads
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Problem 3.14
Let Xi be an i.i.d. sequence of exponential random variables with parameter 1, and Sn = X1 + · · ·Xn the
partial sums.

a) Show that Sn has density

fn(x) =
xn−1

(n− 1)!
e−x for x > 0,

and fn(x) = 0 for x ≤ 0.

b) Explain why {Sn+1 ≤ t} ⊆ {Sn ≤ t} and therefore

P (Sn ≤ t < Sn+1) = P (Sn ≤ t)− P (Sn+1 ≤ t).

c) Calculate the value of P (Sn ≤ t < Sn+1) (Hint:
∫ t

0
fn(x)− fn+1(x) dx = ?)

d) Define the random variable N to be the largest n ≥ 0 for which Sn ≤ λ. (Take S0 = 0.) What kind of
random variable is N?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SumExpon

Problem 3.15
Suppose that Di is an i.i.d. sequence of random variables with the uniform distribution on {0, . . . , 9}. Show
that

U =

∞∑
i=1

Di10−i

is a uniform random variable on [0, 1].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DigUnif

Problem 3.16
The file P1S.mat contains 10000 sampled values (each) of two random variables, X and Y . By examining
the data (as we have illustrated with several examples in class) decide what you think the distributions of
these random variables are, including the values of any parameters. Download the file and then read the
data into Matlab with the command load P1S . The file will need to be in your default directory for Matlab
to find it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data

Problem 3.17
If U is uniform on [0, 1] and 0 < p < 1 then

Z =

{
1 if U < p

0 otherwise

is a Bernouli random variable with parameter p. Explain why this is so. In Matlab this could be im-
plemented by Z=rand()<p. Using this and the observation of Example 3.9 write an m-file for a command
binomsample(n,p,size) to produce a pseudo-random number from the binomial distribution with param-
eters (n, p).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BinomSim

Problem 3.18
Write an m-file for a command randgeo(p,size) to produce random values from a geometric distribution
with parameter p, using the F ∗ method. (See Section A.3.2.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RandGeo
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Problem 3.19
Suppose X is a nonnegative random variable with the property that

P (X > t+ 1 |X > t) < 1− ε

for some 0 < ε < 1 and all t ≥ 0. Show that

P (X > n) ≤ (1− ε)n for all integers n ≥ 1.

Use formula of Problem 3.4 to prove that

E[X] ≤ 1

ε
.

(Note that there is no assumption here that X is a discrete random variable. You may want to bound
P (X > t) above by P (X > n) for some integer n related to t in some way. )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLbound

Problem 3.20
(Taken from [25].) There are five coins, indistinguishable by touch. Two are conventional, with a head on
one side and a tail on the other. Two of them have a head on both sides. One has a tail on both sides. You
choose one of the coins without looking as you do (so each of them is equally likely). Then still without
looking at the coin you flip it and finally look to find that the side facing up has a head on it. What is the
probability that the side facing down is also a head?

You can set this up by letting C be a random variable giving the number of heads on the coin you
draw (C = 0, 1, or 2). Let U = 1 if the flipped coin lands with a head facing up (and U = 0 if a tail is
up), and similarly let D = 1 or 0 for the side facing down. If you start by writing down P (C = k) and
P (U = i, D = j |C = k) you should be able to work out everything you need.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HT5

Problem 3.21
Suppose the lifetime of a machine is a random variable T with p.m.f. P (T = k) = 1

N+1 for k = 0, 1, . . . , N .
Find the conditional mean of T given that T > n: E[T |T > n].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMT

Problem 3.22
Suppose Xi are independent (fair) dice rolls, what is P (limn→∞Xn exists ) =? Justify your answer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLim

Problem 3.23
Suppose Xi is an i.i.d. sequence with P (Xi = j) = pj ; j = 0, 1, . . . , n. Let Y be the value of Xi for the
smallest i with Xi 6= 0. What is the distribution of Y ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xnot0

Problem 3.24
In the Monte Hall problem, Example 3.14, assume that H is independent of C with

P (H = 2) = p, P (H = 3) = 1− p,

where 0 < p ≤ 1. Verify that P (C = 1 |H 6= C) = P (C = S |H 6= C) = 1
2 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MHall

Problem 3.25
The Two Envelope Problem. You are given two sealed envelopes. One of them contains $X and the
other contains $2X, but you don’t know which is which. You get to pick one and keep its contents. We will
assume X is a nonnegative discrete random variable, with finite mean.
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The problem is often presented as a paradox, based on the following reasoning. Suppose you pick one of
the two envelopes; denote its contents by Y . The other envelope must contain either 2Y or Y/2. Presumably,
since you have no information to help you know which envelope contains the larger amount, the probabilities
for the two possibilities for the other envelope are both 1/2. So the expected value of the contents of the
other envelope is

1

2
(2Y ) +

1

2
(Y/2) =

5

4
Y > Y. (3.27)

Thus it seems that you will increase your expected reward by always picking one envelope and then switching
to the other before opening it. But this is ludicrous; you could repeat the argument after switching to the
other envelope and argue that it is better to switch back, and then continue switching back and forth ad
infinitum. Something is obviously wrong with this reasoning. In this problem you will analyze this more
carefully.

In addition to the notation above we will denote the p.m.f. of X by

p(x) = P (X = x).

We consider this to be defined for all x > 0, even though it is positive only for the countable number of
values that X can actually take. Our basic assumption is that

P (Y = X |X) =
1

2
.

Let Ỹ be the contents of the envelope that you did not pick.

a) Find q(y) = P (Y = y) and q̃(y) = P (Ỹ = y) in terms of p(·). Use this to show E[Y ] = E[Ỹ ].
(I.e. switching envelopes does not effect the mean.)

b) Find E[Y |X] and then use item 7) from Proposition 3.8 to find the relation between E[Y ] and E[X].

c) A second way to come to the same conclusion as a) is to observe that

Ỹ = 2
X2

Y
.

Explain why this is true, and use it to find E[Ỹ |X] and then E[Ỹ ].

d) Define
s(y) = P (Y = X |Y = y)

and work out a formula for it in terms of p(·).

e) Equation (3.27) seems to say that E[Ỹ |Y ] = 5
4Y . Find a correct formula for E[Ỹ |Y ] in terms of s(Y ).

f) What would have to be true about s(·) for (3.27) to be true? Show that there are no discrete random
variables X ≥ 0 for which (3.27) holds.

g) Suppose we change the rules so that you are allowed to look at the contents Y of the envelope you
picked and then decide whether you want to keep it or switch to the other envelope Ỹ (but without
peeking at Ỹ ). What strategy should you follow to maximize the expected value of the envelope you
keep? (You can base your decision on the observed value of Y .)

h) An example which has appeared in the literature on this problem is X = 2N where N is a geometric
random variable with p = 2

3 . Calculate s(y) for this example, and observe that s(Y ) > 1
3 with

probability 1. What does this mean in light of your answer to g)? Doesn’t this contradict a)?

i) Again under the revised rules of g), what strategy should you follow to maximize the probability that
you end up with the larger of the two envelopes? (Your answer here will be different than in g)!)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TwoEnvelopes

Problem 3.26
Write out the derivation of equation (2.10) in a way similar to what we did on page 61 for equation (2.5).
To do this write TC = Ψ(X0:∞) and note that for s0 = i /∈ C we have

Ψ(s0:∞) = 1 + Ψ(s1:∞).

If we write T +
C = Ψ+(X0:∞) then observe that in all cases

Ψ+(s0:∞) = 1 + Ψ(s1:∞),

which leads to
E[T +

C ] = 1 + E[v(X1)],

where v(s) is still Es[TC ].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MHeqn

Problem 3.27
Consider again the pairs chain of Problem 2.13 Suppose f(i, j) is a function of two variables. Using Theo-
rem 3.10 what can we say about

lim
n→∞

1

n

n∑
a=1

f(Xn−1, Xn)?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ErgPairs

For Further Study

An expanded introduction to the Kolmogorov model is the book by Pfiffer [47]. The first chapter of Grimmett
& Stirzaker [25] also provides an introduction to much of this chapter’s material.

We acknowledged in Section 3.1.1 that some important aspects of the Kolmogorov model have been
ignored in our discussion. Specifically when Ω is an uncountable it is generally impossible to assign a
probability P (A) to every subset A ⊆ Ω. The resolution is to only define P (A) for certain subsets of Ω, but
not others. The mathematics of all the technicalities involved is the subject of measure theory, a graduate
level topic. A good reference for that written from a probabilistic perspective is Billingsley [6]. Volume 1 of
Rogers and Williams [51] also covers this material in the first two chapters.

Proofs of the Strong Law and Central Limit Theorem (Theorems 3.6 and 3.7) as well as the convergence
theorems of Section 3.2.1 can be found in Billingsley [6]. A proof of The Renewal Theorem 3.5 can be found
in Feller [22]; see his Theorem 3, Chapter XIII. Grimett & Stirzaker [25] §6.4 also offers a proof. There is a
short proof due to S. Port [48] which relies on T1 from Spitzer [60], page 276. In fact our Renewal Theorem
is a special case of Spitzer’s P2, page 278. It’s also proven in Norris [45] §1.8 using a coupling argument.
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Chapter 4

Infinite State Markov Chains

This chapter considers Markov chains for which the state space S is countably infinite, such as N, Z or Zd.
Many of the results from Chapter 2 remain true in this setting. But there are new phenomena which are
only possible for an infinite state space: transience and null recurrence.

4.1 Introduction

The transition matrix P is now an infinite matrix: there are entries pi,j for all i, j ∈ S. (Mathematicians
would call it a linear operator rather than a matrix in this setting.) We can still write matrix-vector products
as before, provided we remember that these are now infinite series. For instance consider

Pu(i) =
∑
j∈S

pi,ju(j).

If S = N we would write
∑
j∈S as

∑∞
j=1. If S = Z it would be

∑∞
j=−∞. Since

∑
j∈S pi,j = 1 the series

above will converge if u(·) is bounded. If u(·) ≥ 0 the series might diverge, in which case Pu(i) =∞. More
generally if

∑
j∈S pi,j |u(j)| <∞ then the above series will converge to a finite value. (See the Appendix for

more on these issues.) An initial distribution µ = [µi] now has infinitely many entries (0 ≤ µi,
∑
i∈S µi = 1).

The calculation of µP and Pn all involve (convergent) infinite series. The distribution of Xn is as before
given by

Pµ(Xn = s) = (µPn)s.

Theoretically this is fine, but for purposes of calculation we can’t usually work out Pn explicitly in examples.
We took advantage of the properties of finite matricies in Chapter 2, but now that our matricies are

infinite we can’t presume that all the usual properties of matricies carry over to the infinite setting. We
need to be careful about which results for the finite state space case do or do not carry over to infinite state
spaces. For this reason we were careful to include “for finite state space” in the statements of those results
in Chapter 2 which only hold for finite state spaces. The definitions of reachable, communicate, irreducible,
closed, period are all as on page 15, and Lemma 2.4 still holds. Most of our attention in this chapter will
be on recurrence and its alternatives in the more complicated infinite state space setting. We will give new
definitions of recurrent and transient below but they will be equivalent to those we gave on page 18. However
the simple characterization of Theorem 2.6 is not correct for infinite state spaces.

We have selected and organized the results to try to present a reasonably organized collection of ideas.
Although we don’t want the technical details to become overwhelming, it is inevitable that the level of
difficulty is higher in this chapter than previously. It may be wise to focus on the results themselves and
their use in examples first, and save careful reading of their proofs for later. Also, to keep the complexity
from getting out of hand we will assume throughout this chapter that the chain is irreducible.

Some Simulations

To begin our discussion let’s look at an example.
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Example 4.1. The symmetric random walk is the Markov chain on S = Z for which Xn+1 = Xn ± 1 each
with probability 1/2. In other words

pi,j =
1

2
if j = i± 1 and 0 otherwise.

The following Matlab code will simulate and plot a 10000-step sample, starting from X0 = 0.

Y=2*randi([0,1],[10000,1])-1;

X=cumsum(Y);

D1=sqrt(sum(X.*X,2));

plot(D1,’.’)

We should observe that Xn does seem to always return to 0 if we wait long enough. Since this is a 2-periodic
chain p0,0(n) = 0 if n is odd. If n is even (n = 2k) then for X0 = Xn requires exactly half of the transitions
to be to the right and half to the left. This implies that

p0,0(2k) =

(
2k

k

)
1

22k
=

(2k)!

(k!)222k
.

It is not obvious from this formula, but it turns out that limn p0,0(n) = 0. (In fact on page 89 we will see
that p0,0(2k) ∼ 1√

πk
.) This seems to be contrary to Corollary 2.5. Although Xn is not aperiodic, observed

at just the even times Yk = X2k is aperiodic, and irreducible if we take the even integers as the state space.
So this really is contrary to how finite state chains behave.

Example 4.2. The symmetric random walk in 3 dimensions is a Markov chain on S = Z3. At each stage
one of the 6 possible increments (±1, 0, 0), (0,±1, 0), (0, 0,±1) is choosen (with equal probabilities of 1/6)
and added to the current state Xn to get the next state Xn+1. This is easy to simulate starting from
X0 = (0, 0, 0), but a plot similar to that of the previous example the result would take a 4-dimensional
graph. Instead we can plot |Xn| to look for returns to 0 = |(0, 0, 0)|. The following code will do it.

J=2*randi([0,1],[10000,1])-1;

C=randi([1,3],[10000,1]);

Y=zeros([10000,3]);

for i=1:10000

Y(i,C(i))=J(i);

end

X=cumsum(Y);

D3=sqrt(sum(X.*X,2));

plot(D3,’.’)

We should observe that Xn does not always return to (0, 0, 0). Instead it appears to eventually wander away
and never come back. Finite irreducible chains do not do that.

4.2 Hitting Time Equations

The different types of infinite sate chains are characterized in terms of the values of u(i) = Pi(T +
i < ∞)

and v(i) = Ei[T +
i ]. In order to study these let’s look again at the equations for u(i) = Pi(TC < ∞) and

v(i) = Ei[TC ] and update what we said about these previously (Section 2.2) to infinite state spaces. The
new feature of the following theorem is that it explains the relation of u(·) and v(·) to other solutions of the
same systems of equations.

Theorem 4.1. Consider an irreducible Markov chain. Let C ( S and B = S \ C. The hitting probabilities
u(i) = Pi(TC <∞) solve the following:

u(i) =

{
1 for i ∈ C∑
j∈S pi,ju(j) for i ∈ B.
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If φ(·) is a nonnegative function satisfying

φ(i) ≥

{
1 for i ∈ C∑
j∈S pi,jφ(j) for i ∈ B

then u(i) ≤ φ(i) for all i ∈ S.
The mean hitting times v(i) = Ei[TC ] satisfy

v(i) =

{
0 for i ∈ C
1 +

∑
j∈B pi,jv(j) for i ∈ B.

(This holds even if some v(i) = ∞.) If ψ(j), j ∈ S is a nonnegative (finite-valued) function satisfying
ψ(i) ≥ 1 +

∑
j∈B pi,jψ(j) for i ∈ B then v(i) ≤ ψ(i).

Proof. The equations for u(i) and v(i) are the same as in Chapter 2, and were derived in the preceding
chapter using the strong Markov property. For our purposes here we will rederive them using an iterative
approach.

Let’s start with u(i), breaking it down further by defining

u(i, n) = Pi(TC ≤ n).

We know that
u(i, n) = 1 for all n if i ∈ C

and
u(i, 0) = 0 if i ∈ B.

For i ∈ B the key observation is that

TC(X0:∞) = 1 + TC(X1:∞).

Therefore using properties of conditional expectations and the Markov property we can say

u(i, n+ 1) = Pi(TC(X0:∞) ≤ n+ 1)

= Pi(1 + TC(X1:∞) ≤ n+ 1)

= Pi(TC(X1:∞) ≤ n)

= Ei[Pi(TC(X1:∞) ≤ n|X1)]

= Ei[PX1(TC(X0:∞) ≤ n)]

= Ei[u(X1, n)]

=
∑
j∈S

pi,ju(j, n).

In matrix form this looks like

uC(n) = [1]

uB(0) = [0]

uB(n+ 1) = PBBuB(n) + PBC [1].

The definition of u(·, ·) implies that u(i, n) ≤ u(i, n+ 1). Using the last bullet on page 33 we can say

u(i) = Pi(TC <∞) = lim
n
Pi(TC ≤ n) = lim

n
u(i, n).

Next we can use the Monotone Convergence Theorem for infinite series, Theorem A.8, to let n → ∞ and
conclude that

uC = [1]

uB = PBBuB + PBC [1],
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which are the equations for u(i).
Next, suppose there exists a function φ ≥ 0 as described:

φC ≥ [1]

φB ≥ PBBφB + PBC [1],

Then φ(·) ≥ u(·, 0) and by induction uB(n) ≤ φB :

uB(n+ 1) = PBBuB(n) + PBC [1] ≤ PBBφB + PBC [1] ≤ φB .

Therefore
uB = lim

n
uB(n) ≤ φB ,

and
uC = [1] ≤ φC .

This proves all the theorem’s claims about u(i).
The argument for v(i) is similar. Define

v(i, n) = Ei[min(n, TC)].

We know that
v(i, n) = 0 for all n if i ∈ C

and
v(i, 0) = 0 if i ∈ B.

For i ∈ B conditional calculation gives

v(i, n+ 1) = Ei[min(n+ 1, TC(X0:∞)]

= Ei[min(n+ 1, 1 + TC(X1:∞)]

= Ei[1 + min(n, TC(X1:∞)]

= 1 + Ei[min(n, TC(X1:∞)]]

= 1 + Ei[Ei[min(n, TC(X1:∞))|X1]]

= 1 + Ei[EX1 [min(n, TC(X0:∞))]]

= 1 + Ei[v(X1, n)]

= 1 +
∑
j∈B

pi,jv(j, n),

since v(j, n) = 0 for j /∈ B. In matrix form

vC(n) = [0]

vB(0) = [0]

vB(n+ 1) = [1] + PBBvB(n).

Again v(i, n) ≤ v(i, n+ 1) and

v(i) = Ei[TC ] = lim
n
Ei[min(n, TC)] = lim

n
v(i, n).

It follows as above that

vC = [0]

vB = [1] + PBBvB .
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Suppose there exists a function ψ ≥ 0 as described:

ψC ≥ [0]

ψB ≥ [1] + PBBψB .

Then ψ(·) ≥ v(·, 0) and by induction vB(n) ≤ ψB . Therefore

vB = lim
n

vB(n) ≤ ψB ,

and
vC = [0] ≤ ψC .

One-Dimensional Reflecting Random Walk

We want to illustrate the solution of the equations above using a random walk. To simplify things we will
make it a reflecting random walk on Z+ so that all states s are nonnegative: s ≥ 0. When Xn > 0 it moves
one step to the right with probability p and one step to the left with probability q = 1 − p. But if Xn = 0
then Xn+1 = 1 with probability 1. (This is what makes it reflecting.) This chain is irreducible, but like the
unreflected random walk on Z has period 2. We will consider the hitting time T0 of C = {0}. Following our
usual notation let

u(i) = Pi(T0 <∞) and v(i) = Ei[T0].

We know u(0) = 1 and v(0) = 0. For i > 0

u(i) = pu(i+ 1) + qu(i− 1) and v(i) = 1 + pv(i+ 1) + qv(i− 1).

If we write ∆u(i) = u(i)− u(i− 1) we can rearrange the u(i)-equation as

∆u(i+ 1) =
p

q
∆u(i) for i ≥ 1.

The Symmetric Case: p = q = 1
2 .

The equation simplifies to ∆u(i+ 1) = ∆u(i) so for all i ≥ 1 we have ∆u(i) = ∆u(1), and consequently for
i > 0 we have

u(i) = u(0) +

i∑
k=1

∆u(i) = 1 + iα

where α = ∆u(1). This is the general solution of the u-equations, involving a single undetermined parameter
α. There are many nonnegative solutions: any α ≥ 0 will produce one. According to the result above we
need the smallest nonnegative solution, which is clearly for α = 0. Thus

u(i) = Pi(T0 <∞) = 1 for all i.

Since
P0(T +

0 <∞) = p0,1P1(T0 <∞) = 1

we see that 0 is a recurrent state. As we will see below that means that all states are recurrent.
But let’s also consider the mean return time,

v(i) = Ei[T0].

We have v(0) = 0 and for i > 0

v(i) = 1 +
1

2
v(i+ 1) +

1

2
v(i− 1),

which we can rearrange as
∆v(i+ 1) = −2 + ∆v(i) for i > 0.
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(Notice that if v(1), . . . v(i) are all finite then v(i + 1) would have to be finite too. So there cannot be a
solution which is finite for some i > 0 but infinite for others. Either v(i) < ∞ for all i > 0 or v(i) = ∞ for
all i > 0.) Considering the possibility of a finite solution we find for i > 0 that

v(i) = −2(i− 1) + β

where β = ∆v(1). Using this we have

v(i) = v(0) +

i∑
k=1

∆v(k)

= 0 +

i∑
k=1

∆v(k)

= −2

i∑
k=1

(k − 1) + (i− 1)∆v(1)

= −i(i− 1) + (i− 1)β

→ −∞ as i→∞,

regardless of the value of β. So there is no finite nonnegative solution: Ei[T0] =∞ for all i > 0, even though
Pi(T0 <∞) = 1. Since E0[T +

0 ] = p0,1E1[T0] =∞.

The Asymmetric Case p > q.

Now we find that for i ≥ 1
∆u(i+ 1) = (q/p)i∆u(1).

Using this in u(i) = u(0) +
∑i
k=1 ∆u(k) leads to

u(i) = 1 +
(q/p)i − 1

q/p− 1
α, (4.1)

where α = ∆u(1). Because p > q we have q/p < 1 and (q/p)i−1
q/p−1 > 0. If α ≥ 0 then the resulting u(i) are

all nonnegative. But in fact some negative values of α lead to nonnegatvie soutions as well: any α ≥ q
p − 1.

Using the smallest of these gives the correct solution:

u(i) = 1 +
(q/p)i − 1

q/p− 1

(
q

p
− 1

)
= (q/p)i for i > 0.

Observe that Pi(T0 <∞) = (q/p)i < 1. Thus there is a positive probability of never returning to 0. In fact
for large i the probability of ever reaching 0 is very small. This is a consequence of the chain’s preference to
move to the right.

Since there is positive probability that T0 = ∞ there is no point in calculating Ei[T0]; we know it is
infinite.

The Asymmetric Case p < q.

If p < q, so that the chain wants to move to the left, the situation is different. The calculations leading to

(4.1) are still applicable, but now (q/p)i−1
q/p−1 → +∞ as i→∞. We get a nonnegative solution only for α ≥ 0.

Taking the smallest possibility, α = 0, we find that

u(i) = 1 for all i ≥ 1.

Hence return to 0 is certain. Solving the equations for v(i) leads to

v(i) =
i

q − p
+ β

(q/p)i − 1

q/p− 1
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for an arbitrary constant β. The smallest nonnegative solution occurs for β = 0. So we find that

Ei[T0] =
i

q − p
<∞ for i > 0.

This formula makes intuitive sense; the chain must make i steps down to reach 0 and each step takes an
average of 1

q−p transitions. In particular the mean return times are finite. Starting from X0 = 0 we have

E0[T +
0 ] = 1 + p0,1E1[T0] = 1 + 1 · 1

q − p
=

2q

q − p
.

(See Problem 3.26.)

Observe that even though B = {1, 2, 3, . . .} contained no closed communication classes the equations to
be solved did not have unique solutions, unlike the finite case of Theorem 2.3.

4.3 Transience and Recurrence

An irreducible chain on a finite state space has the property that all states are visited infinitely many times
with probability 1; see Theorem 2.6 and Lemma 3.9. But the examples above show that this need not be so
for infinite state spaces. It is possible for Pi(T +

i < ∞) to be < 1 or = 1, and if this probability is = 1 it is
possible for Ei[T +

i ] to be either <∞ or =∞. This leads to a three-way classification of the recurrence type
of a state.

Definition. Let Xn be a Markov chain. A state a ∈ S is called transient if

Pa(T +
a <∞) < 1.

and recurrent if
Pa(T +

a <∞) = 1.

A recurrent state a is called positive recurrent if

Ea[T +
a ] <∞

and null recurrent if
Ea[T +

a ] =∞.

To be a transient state means that Pa(T +
a =∞) > 0, i.e. there is positive probability of never returning to

a.
Our next goal is to understand the implications of these different recurrence types. We will see that for

an irreducible chain the recurrence type is common to all states. We will also look at some necessary and
sufficient conditions for a chain to be one of the particular types. The two theorems of the present section
gather a number of equivalent characterizations. The first concerns recurrence vs. transience. Bear in mind
that if a state is not recurrent then it is transient, so the failure of any part of this theorem is equivalent to
transience.

Theorem 4.2. Suppose Xn is an irreducible Markov chain on state space S and a ∈ S. The following are
equivalent.

1. a is recurrent.

2. Pb(T +
a <∞) = 1 for all b ∈ S.

3. All b ∈ S are recurrent.

4.
∑∞

0 pa,a(n) =∞.

5. Pa(Xn = a for infinitely many n) = 1.
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Because of part 3, instead of refering to an individual state as recurrent we will call the entire chain recurrent
if its states are.

Corollary 4.3. Suppose Xn is a transient irreducible Markov chain on S. Then

∞∑
0

pi,j(n) <∞ for all i, j ∈ S.

Proof of the Corollary. Since j  i there exists k so that pj,i(k) > 0. We know that

pi,i(n+ k) ≥ pi,j(n)pj,i(k).

By hypothesis i is transient and so by part 4 of the theorem
∑∞
n=0 pi,i(n) <∞. Therefore

pj,i(k)

( ∞∑
n=0

pi,j(n)

)
≤
∞∑
n=0

pi,i(k + n) ≤
∞∑
m=0

pi,i(m) <∞.

Since pj,i(k) > 0 it follows that
∑∞
n=0 pi,j(n) <∞.

We turn to the proof of the theorem itself. We will use the following notation for the distribution of T +
a

assuming X0 = i:

fi,a(n) = Pi(Xk 6= a for all 0 < k < n and Xn = a) = Pi(T +
a = n).

In particular fi,a(0) = 0 for all i ∈ S. This is consistent with our definition of T +
a because T +

a 6= 0. For a
to be recurrent [transient] means that

∑∞
1 fa,a(n) = 1 [< 1]. The proof of the Theorem 4.2 depends on the

following equations. (See Problem 4.5 for verification.)

fi,a(0) = 0

pi,a(0) =

{
1 if i = a

0 if i 6= a

pi,a(n) =

n∑
k=1

fi,a(k)pa,a(n− k) for n ≥ 1.

(4.2)

Proof of Theorem 4.2. It is elementary to see that 1 follows from any of 2, 3, or 5. That 1⇒ 5 was proven
as Lemma 3.9. So our proof needs to show that 1⇒ 2, that 1⇔ 4 and that 4⇒ 3.

1 ⇒ 2: Suppose 1. By hypothesis 2 is true for b = a, so suppose b 6= a. Since the chain is irreducible
there exists a sequence s0:m of states with s0 = a and sm = b for which Pa(X0:m = s0:m) > 0. By chosing
the shortest such sequence we can assume s1, . . . , sm−1 are all distinct from a. But then by the Markov
property

Pa(T +
a =∞|X0:m = s0:m) = Pb(T +

a =∞).

So we have

Pa(T +
a =∞) ≥ Pa(X0:m = s0:m and T +

a =∞)

= Pa(X0:m = s0:m)Pb(T +
a =∞).

Since the left side of this inequality is 0 and Pa(X0:m = s0:m) > 0 it must be that Pb(T +
a =∞) = 0.

1 ⇔ 4: Let Fi,i =
∑∞
n=1 fi,i(n) and Mi,i =

∑∞
n=0 pi,i(n). Summing both sides of the third formula in

(4.2) we find

∞∑
n=0

pi,i(n) = 1 +

∞∑
n=0

n∑
k=1

fi,i(k)pi,i(n− k)

= 1 +

∞∑
m=0

∞∑
k=1

fi,i(k)pi,i(m)

Mi,i = 1 + Fi,iMi,i.
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If Fi,i = 1 this is only possible if Mi,i = ∞. Suppose that Fi,i < 1. Summing the recurrence relation up to
n = m and then including extra terms on the right we find that

m∑
n=0

pa,a(n) = 1 +

m∑
n=0

n∑
k=1

fa,a(k)pa,a(n− k)

≤ 1 +

m∑
`=0

m∑
k=1

fa,a(k)pa,a(`)

≤ 1 + Fa,a

m∑
n=0

pa,a(n)

and therefore
m∑
n=0

pa,a(n) ≤ 1

1− Fa,a
.

Letting m→∞ we find that

Ma,a ≤
1

1− Fa,a
<∞.

Thus Fa,a < 1 iff Ma,a <∞. Since the definition of recurrence for a is that Fa,a = 1 this proves 1⇔ 4. Note
that this equivalence 1⇔ 4 does not depend on the hypothesis of irreducibility.

4⇒ 3: Suppose 4 holds and consider any i ∈ S. Since the chain is irreducible there exist k and ` so that
pa,i(k) > 0 and pi,a(`) > 0. It follows that

pi,i(`+ n+ k) ≥ pi,a(`)pa,a(n)pa,i(k).

Therefore

∞∑
m=0

pi,i(m) ≥
∞∑
n=0

pi,i(`+ n+ k)

≥ pi,a(`)

( ∞∑
n=0

pa,a(n)

)
pa,i(k)

=∞.

This establishes 4 with i in place of a and so by 4⇒ 1 it follows that i is recurrent. Thus 4⇒ 3 holds.

The next theorem concerns positive recurrence. A recurrent chain that fails any of the equivalent condi-
tions must be null recurrent.

Theorem 4.4. Suppose Xn is a recurrent irreducible Markov chain on state space S. Suppose a ∈ S and
C ( S is a nonempty, finite set. The following are equivalent.

1. a is positive recurrent.

2. Eb[T +
a ] <∞ for all b ∈ S.

3. All b ∈ S are positive recurrent.

4. Eb[T +
C ] <∞ for all b ∈ S.

Positive recurrence of one state implies positive recurrence of all states. So just as for recurrence, we will say
that the chain itself is positive recurrent rather than a specific state is. Also observe that since C is arbitrary
(proper, finite, nonempty) the theorem implies that if 4 holds for one such C then it holds for every such C.

In preparation for the proof we establish the following result. Although the number of steps to reach a
specific state a may have infinite mean, the number of visits to a particular state b before reaching a always
has finite mean.
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Lemma 4.5. Suppose Xn is an irreducible Markov chain. Given a, b ∈ S let Nb¬a be the number of visits
to b prior to the first return to a:

Nb¬a =

T +
a −1∑
n=0

1{b}(Xn).

Then Ei[Nb¬a] <∞ for all i ∈ S. Moreover w(i) = Ei[Nb¬a] satisfies

w(b) = 1 +
∑
j 6=a

pb,jw(j)

w(i) =
∑
j 6=a

pi,jw(j) for i 6= b.

We will solve these equations in an example after the proof.
Notice that Nb¬a counts X0 but not XT +

a
. Let’s consider what would be different if instead we used

N+
b¬a =

T +
a∑

n=1

1{b}(Xn).

If b = a then Nb¬a = N+
b¬a = 1{b}(X0). If b 6= a and X0 6= b then again Nb¬a = N+

b¬a. Only when X0 = b 6= a

are they different. In that case Nb¬a = 1 +N+
b¬a.

Proof. First notice that if b = a then Nb¬a = 1{b}(X0) and w(i) = 1{b}(i), which does satisfy the equations.
So we can assume b 6= a for the rest of the proof.

In order for Nb¬a > 0 the chain has to reach b before returning to a: Tb < T +
a . Using this with the strong

Markov property

Ei[Nb¬a] = Ei[Nb¬a; Tb < T +
a ] = Pi(Tb < T +

a )Eb[Nb¬a] ≤ Eb[Nb¬a].

So it is enough to prove that Eb[Nb¬a] <∞. This we can do with a simple calculation. Let p = Pb(T +
b < T +

a ).
From irreducibility it follows that p < 1. Now observe that

Pb(Nb¬a ≥ 1) = 1

Pb(Nb¬a ≥ 2) = p

Pb(Nb¬a ≥ 3) = p2

...

Pb(Nb¬a ≥ k) = pk−1

Subtracting successive lines above we find that for k ≥ 1

Pb(Nb¬a = k) = Pb(Nb¬a ≥ k)− Pb(Nb¬a ≥ k + 1) = pk−1 − pk = (1− p)pk−1.

In other words for X0 = b the random variable Nb¬a has a geometric distribution with parameter 1 − p.
Therefore

Eb[Nb¬a] =

∞∑
k=1

k(1− p)pk−1 =
1− p

(1− p)2
=

1

1− p
<∞.

As for the equations for w(i), observe that

Nb¬a(X0:∞) = 1b(X0) + 1{a}c(X1)Nb¬a(X1:∞).

Using this with the Markov property

E[Nb¬a(X0:∞)|X1] = 1b(X0) + 1{a}c(X1)E[Nb¬a(X1:∞)|X1]

= 1b(X0) + 1{a}c(X1)EX1
[Nb¬a(X0:∞)]

= 1b(X0) + 1{a}c(X1)w(X1).
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Therefore

w(i) = Ei[Nb¬a(X0:∞)]

= Ei[E[Nb¬a(X0:∞)|X1]]

= 1b(i) + Ei[1{a}c(X1)w(X1)]

= 1b(i) +
∑
j 6=a

pi,jw(j),

which are the desired equations.

The equations for w(·) can be organized as follows. Let

C = S \ {a}

and d = [1b(·)] the vector of all 0s except for a 1 in the bth position. The equations for i 6= a (i.e. i ∈ C) can
be expressed using our submatrix notation as

wC = dC + PCCwC .

(Theorem 2.3 guarantees a unique solution.) Finally

w(a) = 1b(a) + PaCwC .

Example 4.3. Consider Example 2.1 again. Let’s take a = 2 and b = 4. The equations for i 6= 2 arew(1)
w(3)
w(4)

 =

0
0
1

+

0.2 0 0.4
0.3 0 0.7
0 0.5 0

w(1)
w(3)
w(4)


Solving these we find [w(1), w(3), w(4)]T = (0.869565, 1.47826, 1.73913). Then

w(2) = 0 + 0 ∗ w(1) + .6 ∗ w(3) + .4 ∗ w(4) = 1.58261.

In particular,
E2[N4¬2] = w(4) = 1.73913.

The next lemma is 4⇒ 3 of the theorem. We are presenting it separately because it is the most difficult
part of the theorem, and once we establish it the rest of the proof of the theorem will be relatively simple.

Lemma 4.6. Suppose Xn is an irreducible recurrent Markov chain and B ⊆ S is a nonempty finite proper
subset with the property that Ei[T +

B ] <∞ for all i ∈ S. Every a ∈ S is positive recurrent.

Recall that T +
B is the first time after n = 0 that Xn ∈ B. For X0 /∈ B we know T +

B = TB . But for X0 ∈ B
we have TB = 0 < T +

B . In particular for all i ∈ S

Ei[T +
B ] = 1 +

∑
j∈S

pi,jEj [TB ]. (4.3)

(See Problem 3.26.)

Proof. Consider any a ∈ S. Our task is to show that Ea[T +
a ] <∞. Let v(i) = Ei[TB ]. By hypothesis this is

finite. We have v(b) = 0 for b ∈ B and for i /∈ B

v(i) = 1 +
∑
j

pi,jv(j) ≥ 1 +
∑
j 6=a

pi,jv(j).

Let
w(i) =

∑
b∈B

Ei[Nb¬a].
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This is the mean number of times Xn ∈ B prior to its first return to a. By summing the equations from
Lemma 4.5 over b ∈ B (a finite sum) it follows that w(i) <∞,

w(b) = 1 +
∑
j 6=a

pb,jw(j) for b ∈ B

w(i) =
∑
j 6=a

pi,jw(j) for i /∈ B.

Consider
ψ(i) = v(i) +Kw(i).

We will see that for a careful choice of constant K ≥ 0 this will work as the ψ as in the second part of
Theorem 4.1 with C = {a}. Clearly ψ ≥ 0. Let’s check the inequality we need for ψ. Consider i ∈ B.

ψ(i) = v(i) +Kw(i)

= 0 +K(1 +
∑
j 6=a

pi,jw(j))

= K +
∑
j 6=a

pi,jψ(j)−
∑
j 6=a

pi,jv(j)

≥ K + 1− Ei[T +
B ] +

∑
j 6=a

pa,jψ(j).

If we choose K = maxi∈B Ei[T +
B ] then we have the desired inequality:

ψ(i) ≥ 1 +
∑
j 6=a

pi,jψ(j),

It now follows from Lemma 4.5 that Ei[Ta] ≤ ψ(i) for all i 6= a.
Finally, from (4.3) we have

Ea[T +
a ] = 1 +

∑
j

pa,jEj [Ta]

≤ 1 +
∑
j 6=a

pa,jψ(j)

= 1 +
∑
j 6=a

pa,jv(j) +K
∑
j 6=a

pa,jw(j)

≤ Ea[T +
B ] +K

∑
b∈B

Eb[Nb¬a] <∞,

using the bound on w from the proof of Lemma 4.5.

We can now prove the theorem.

Proof of Theorem 4.4. Assume 1, namely that Ea[T +
a ] < ∞. Let v(i) = Ei[Ta]. Then Ea[T +

a ] = 1 +∑
i pa,iv(i), which is finite by hypothesis. Therefore v(i) < ∞ whenever pa,i > 0. For any i 6= a with

v(i) < ∞ since v(i) =
∑
j pi,jv(j) it follows that v(j) < ∞ whenever pi,j > 0, and consequently for all j

with a j. Since the chain is irreducible we must have v(i) = Ei[Ta] <∞ for all i ∈ S. Thus 1⇒ 2.
Now observe that 2 means that Lemma 4.6 applies with C = {a}. Consequently 2⇒ 3.
Next suppose 3 and consider any finite, nonempty subset C ⊆ S. Consider any c ∈ C. By hypothesis c is

positive recurrent, so because 1 ⇒ 2 we know that Eb[T +
c ] < ∞ for every b ∈ S. Since T +

C ≤ T +
c it follows

that for every b ∈ S
Eb[T +

C ] ≤ Eb[T +
c ] <∞.

This shows that 3⇒ 4.
Lemma 4.6 says that 4⇒ 3. Clearly 3⇒ 1. This completes the proof.

82



4.3.1 Generating Functions

The method of generating functions is an elegant approach to some of the issues of this chapter. This section
introduces their use. Given a sequence a(0), a(1), . . . its generating function is

â(s) =

∞∑
0

a(n)sn,

in other words it’s just the power series using the sequence as coefficients. The domain of this function is the
interval of convergence of the infinite series. It always includes s = 0. If the a(n) are bounded it includes all
|s| < 1 and is differentiable for those s. If the a(n) ≥ 0, as they will be for us, â(s) is an increasing function,
and

∞∑
0

a(n) = â(1−)

(
= lim
s→1−

â(s)

)
,

even in the case
∑
a(n) =∞.

Generating functions are particularly useful with convolutions. If a(n) and b(n) are two sequences, their
convolution is the sequence c(n) given by

c(n) =

n∑
i=0

a(i)b(n− i).

This is often written
c = a ∗ b.

The generating function of the convolution is

ĉ(s) =

∞∑
n=0

sn
n∑
i=0

a(i)b(n− i)

=

∞∑
n=0

n∑
i=0

sia(i) sn−ib(n− i)

=

∞∑
i=0

∞∑
n=i

sia(i) sn−ib(n− i) after interchanging order of summation,

=

∞∑
i=0

∞∑
j=0

sia(i) sjb(j) after changing to j = n− i,

=

( ∞∑
i=0

sia(i)

) ∞∑
j=0

sjb(j)


= â(s)b̂(s),

the product of the generating functions, provided both are defined. This comes up many places in probability.
Suppose X is a nonnegative integer valued random variable and pX(n) = P (X = n) is its distribution.

The moment generating function of X is generating function of the sequence pX(n):

p̂X(s) =

∞∑
0

snpX(n) = E[sX ].

Observe that

E[X] =

∞∑
0

npX(n) =

[ ∞∑
1

nsn−1pX(n)

]
s=1

= p̂′X(1−).

This can be a convenient way to calculate moments. Suppose we have two nonnegative integer-valued random
variables, X and Y , which are independent. Their sum Z = X + Y has moment generating function

p̂Z(s) = E[sX+Y ] = E[sXsY ] = E[sX ]E[sY ] = p̂X(s)p̂Y (s).
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This is a manifestation of the generating function of a convolution since

pZ(n) =

n∑
i=0

pX(i)pY (n− i) i.e. pZ = pX ∗ pY .

Example 4.4. If X is λ-Poisson,

p̂X(s) = E[sX ] =

∞∑
0

sn
λn

n!
e−λ = eλ(s−1),

converging for all s. The mean of X is given by

p′X(1) = λeλ(1−1) = λ.

Suppose X and Y are independent, both Poisson but with parameters λ and µ, then Z = X + Y has
generating function

p̂Z(s) = p̂X(s)p̂Y (s) = eλ(s−1)eµ(s−1) = e(λ+µ)(s−1)

which implies that Z is itself Poisson but with parameter (λ+ µ).

Observe that the formulas (4.2) can be expressed as convolutions:

pa,a = (1, 0, 0, . . .) + fa,a ∗ pa,a
pi,a = fi,a ∗ pa,a for i 6= a.

So the generating functions are related by

p̂a,a(s) = 1 + f̂a,a(s)p̂a,a(s)

p̂i,a(s) = f̂i,a(s)p̂a,a(s) for i 6= a.

This means that if we can determine p̂a,a(s) then we can easily obtain f̂a,a(s) by simple algebraic manipu-
lation:

1− f̂a,a(s) =
1

p̂a,a(s)
. (4.4)

Recurrence means that

1 =

∞∑
0

fa,a(n) = f̂a,a(1−).

But from (4.4) we see that this is true if and only iff p̂a,a(1−) = ∞. Since p̂a,a(1−) =
∑∞

0 pa,a(n) we have
rediscovered part 4 of Theorem 4.2. Moreover postive recurrence is equivalent to

f̂ ′a,a(1−) =

∞∑
1

nfa,a(n) <∞.

This is something we can calculate if we know f̂a,a(s) explicitly.

There is more. If we assemble the p̂i,j(s) into a matrix P̂(s) = [p̂i,j(s)] we can write

P̂(s) =

∞∑
n=0

Pnsn

= I +

∞∑
n=1

Pnsn

= I + sP

( ∞∑
n=0

Pnsn

)
= I + sPP̂(s),
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and therefore
(I− sP)P̂(s) = I.

In the finite state space case (where we understand matrix inverses) we can take this one more step to obtain
the formula

P̂(s) = (I− sP)−1. (4.5)

This provides a symbolic/algebraic approach to determining recurrence, transience, mean return times for
finite state chains.

Example 4.5. Let’s apply equation (4.5) to Example 2.1. Calculating (I− sP)−1 we obtain

P̂(s) =


− 5
s−5 −

10s(s2−s−2)
3s4−8s3−35s2−10s+50

2s2(5s+11)

3s4−8s3−35s2−10s+50

4s(3s2+2s+5)
3s4−8s3−35s2−10s+50

0
5(s2−2)

3s3+7s2−10
− 2s(s+3)

3s3+7s2−10
− 2s(3s+2)

3s3+7s2−10

0 5s2

−3s3−7s2+10

2(s2−5)
3s3+7s2−10

10s
−3s3−7s2+10

0 5s
−3s3−7s2+10

− s(3s+5)

3s3+7s2−10
10

−3s3−7s2+10

 .

(That’s a not a calculation we would want to do by hand; it’s a job for a symbolic software package.)
Extracting the diagonals p̂a,a(s) and using them in formula (4.4) above we find

f̂1,1(s) =
s

5

f̂2,2(s) = −s
2(3s+ 2)

5 (s2 − 2)

f̂3,3(s) = −s
2(3s+ 5)

2 (s2 − 5)

f̂4,4(s) =
1

10
s2(3s+ 7)

We see that f̂1,1(1) < 1 so state 1 is transient, but f̂2,2(1) = 1 so state 2 is recurrent. Likewise states 3 and
4 are recurrent either by similar calculations or because they communicate with 2. We can calculate E2[T +

2 ]
from

E2[T +
2 ] = f̂ ′2,2(1−)

=
s
(
−3s3 + 18s+ 8

)
5 (s2 − 2)

2

∣∣∣∣∣
s=1

= 23/5.

Since we found a finite value the closed class {2, 3, 4} is positive recurrent. Of course we already knew that
since the state space is finite, but the point here is how we reached that conclusion from generating function
calculations.

Example 4.6. We can apply the generating function approach to the one-dimensional random walk on Z:
pi,i+1 = p, pi,i=1 = q where p+q = 1. It is possible to write down p0,0(n) and p̂0,0(s) explicitly, and therefore

f̂0,0(s) as well. First, p0,0(n) = 0 if n is odd. I.e. this chain has period 2. For n = 2k we have

p0,0(2k) =

(
2k

k

)
pkqk.

That’s because there must be exactly k up-transitions and k down-transitions. So the generating function is

p̂0,0(s) =

∞∑
k=0

(
2k

k

)
pkqks2k =

1√
1− 4pqs2

.
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(It takes some effort to work out this series. One way is to start from the Taylor or generalized binomial
series

1√
1− x

=

∞∑
k=0

1

22k

(
2k

k

)
xk for |x| < 1

and then substitute x = 4pqs2.)
Now use formula (4.4) to obtain

f̂0,0(s) = 1−
√

1− 4pqs2.

It follows (after simplification) that

P0(T0 <∞) = f̂0,0(1) = 1− |p− q|.

So for p 6= q the random walk is transient because f̂0,0(1) < 1. For p = q = 1/2 it is recurrent, and using

f̂0,0(s) = 1−
√

1− s2 we find that

E0[T +
0 ] = f̂ ′0,0(1−) =∞

so the symmetric random walk in one dimension is null recurrent.

In general a recurrent state is null-recurrent if and only if pi,i(n)→ 0. That will follow from Theorems 4.13
and 4.14 below. We can almost prove it using generating functions. Rearrange equation (4.4) as

1− f̂a,a(s)

1− s
=

1

(1− s)p̂a,a(s)
.

By L’Hopital’s Rule

lim
s→1−

1− f̂a,a(s)

1− s
= lim
s→1−

f̂ ′a,a(s) = Ea[T +
a ].

If limn→∞ pa,a(n) = L exists then it is not hard to show that lims→1−(1− s)p̂a,a(s) = L. So if L > 0 then
Ea[T +

a ] <∞ and a is positive recurrent, but if L = 0 then Ea[T +
a ] =∞ and a is null recurrent. This is not

a proof however because it presumes that limn→∞ pa,a(n) exists. Section 4.4 we will see that at least in the
aperiodic case limn→∞ pa,a(n) = L does always exist, but when the period is > 1 it need not.

4.3.2 Sufficient Conditions for Transience/Recurrence

Suppose we have an irreducible Markov chain Xn with transition matrix P. How can we tell if it is transient,
null or positive recurrent? If we can somehow work out the generating p̂a,a(s) then the above tells us how
to answer our question. But it is rare that an explicit formula for p̂a,a(s) is possible. Theorem 4.1 identifies
Pi(T +

a ) and Ei[T +
a ] in terms of systems of equations involving A = I−P, but again only in special cases

can we solve those explicitly.
There are a variety of results which imply transience, null or positive recurrence. We want to present a

trio of results which allow us to conclude transience, recurrence, or positive recurrence based on the existence
of solutions to Aφ ≤ 0 or Aψ ≤ −1 with various other properties. These can be convenient because we only
have to solve inequalities, for which we can sometimes guess solutions, and in addition the results below allow
the inequalities to fail for a finite set of states which again makes guessing a bit easier. (Direct application
of Theorem 4.1 with B = {b} allows failure at only one state b.) We will state the results first then turn
to their proofs. This will be followed by application to branching processes and random walks in higher
dimensions. Readers may prefer to look at those applications before reading the proofs.

Theorem 4.7. Suppose a function φ : S → R exists for which φ(s) → 0 as |s| → ∞, Aφ(s) ≤ 0 for all s
except those in a finite set B, and φ(b) > 0 for b ∈ B. Then the Markov chain is transient.

Theorem 4.8. Suppose a function φ : S → R exists satisfying φ(s) → +∞ as |s| → ∞ and Aφ(s) ≤ 0 for
all but finitely many s. Then the Markov chain is recurrent.

Both these theorems seem to presume that |s| is defined for s ∈ S in order for lim|s|→∞ φ(s) to make sense.

If you like you can just assume just assume that S ⊆ Zd. But actually all that is needed is the appropriate
definition of lim|s|→∞ h(s) = `: for any ε > 0 there are at most finitely many s ∈ S for which |h(s)− `| < ε
fails.
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Theorem 4.9. Suppose a function ψ : S → R exists which is bounded below and Aψ(s) ≤ −1 for all but
finitely many s. Then the Markov chain is positive recurrent.

Note that Aψ(s) < 0 is not sufficient for positive recurrence; see Problem 4.18.

4.3.3 The Proofs

In preparation for the proofs of the theorems we need to establish some lemmas. We will need something
like Lemma 4.6 for transience and recurrence.

Lemma 4.10. Suppose Xn is an irreducible Markov chain and C ⊆ S is a nonempty subset and there exists
a ∈ S \ C for which Pa(T +

C <∞) < 1. Then the chain is transient.

Proof. Consider any c ∈ C. Clearly T +
C ≤ T +

c . According Theorem 4.2, if the chain was recurrent then
Pa(T +

c < ∞) = 1 which would imply that Pa(T +
C < ∞) = 1. Since this is contrary to the hypothesis the

chain must be transient.

Lemma 4.11. Suppose Xn is an irreducible Markov chain and there is a finite proper subset B ( S for
which Pi(TB <∞) = 1 for all i ∈ S. Then the chain is recurrent.

Proof. Let u(i) = Pi(TB < ∞). Pick any a ∈ B and let v(i) = Pi(Ta < ∞). We know that v(a) = 1 and
v(j) =

∑
pj,kv(k) for j 6= a. By irreducibility we know that v(i) > 0 for every i.

We claim that the smallest value of v occurs in B. Let α = minB v. Consider φ = v(·)/α. Then φ ≥ 1
on B and Aφ ≤ 0 on Bc. By Theorem 4.1 it follows that u ≤ φ on Bc. But since u ≡ 1 this means that
1 ≤ φ and therefore α ≤ v on Bc. As a consequence α ≤ v(i) for all i.

We claim that α = 1. Since B is finite there exists i ∈ B with v(i) = α. If i = a then α = v(a) = 1
by definition of v. Suppose i 6= a. Then α = v(i) =

∑
j pi,jv(j) and v(j) ≥ α implies that v(j) = α for

any j with pi,j > 0. It follows that v(j) = α for all i  j. That incudes j = a. Having shown that α = 1
it follows that all v(j) ≥ 1. But v(j) ≤ 1 since by definition v(j) is a probability. Therefore all v(j) = 1.
I.e. Pj(Ta <∞) = 1 for all j. This establishes recurrence of the chain, by Theorem 4.2.

In the theory of partial differential equations there is a standard result called called the maximum
principle. We have named the following lemma “The Maximum Principle” because its analogue for Brownian

Motion (with A replaced by A = 1
2
∂2

∂x2 ) is the standard PDE version.

Lemma 4.12 (Maximum Principle). Suppose Xn is an irreducible Markov chain and B ( S is a finite
proper subset of the state space. If φ : S → R is bounded above, Aφ(i) ≥ 0 for all i ∈ B, and φ(j) ≤ M for
all j /∈ B then

φ(i) ≤M for all i ∈ B.

Proof. Let L = maxB φ. We will show that if L > M then the chain is not irreducible. Let i ∈ B with
φ(i) = L. We know from Aφ(i) ≥ 0 that

φ(i) ≤
∑
j

pi,jφ(j).

If L > M then all φ(j) ≤ L. It follows that any j with pi,j > 0 must have φ(j) = L, which means j ∈ B.
Continuing in this way we find that {i ∈ B : φ(i) = L} is a closed set of states contained in B. But since
the chain is irreducible and there exists a state outside B this is not possible. Thus we must have L ≤ M ,
which proves the lemma.

We are now ready to prove our three theorems.

Proof of Theorem 4.7. We want to apply the first part of Theorem 4.1, but that requires φ ≥ 0 and φ ≥ 1
on B. So we need to modify φ first. We are going to use φ̃ = (1 − α) + βφ for carefully choosen constants
α, β > 0.
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Since φ(s) → 0 as |s| → ∞ it must be that φ is bounded: |φ| ≤ c for some c > 0. Since φ > 0 on the
finite set B there is 0 < ε < 1 with φ(b) ≥ ε for b ∈ B. First choose β > 0 with cβ < 1/2 and then choose
α > 0 with α < min(1/2, βε). Now consider φ̃ = (1− α) + βφ. For b ∈ B we have

φ̃(b) = (1− α) + βφ(b) ≥ (1− α) + βε > 1,

since α < βε. Outside of B since β ≥ 0 it follows that Aφ̃ ≤ 0, and

φ̃(i) = (1− α) + βφ(i) ≥ (1− α)− βc > 0,

since α + βc < 1
2 + 1

2 = 1. We are now justified in applying the first part of Theorem 4.1 to φ̃ to conclude
that

Pi(TB <∞) ≤ φ̃(i) for i /∈ B.

Since φ → 0 we have φ̃(i) → 1 − α as |i| → ∞. So there exists i /∈ B with φ̃(i) < 1. By Lemma 4.10 the
chain must be transient.

Proof of Theorem 4.8. Let B be a nonempty finite set containing the exceptions to Aφ ≤ 0. We want to
show that Pi(TB = ∞) = 0 for all i /∈ B. This is equivalent to Pi(TB < ∞) = 1 which implies recurrence
by Lemma 4.11. By adding a constant to φ we can assume that φ ≥ 0. Let v(i) = Pi(TB = ∞). We
know that v(b) = 0 for b ∈ B and Av(i) = 0 for i /∈ B. Consider any ε > 0 and let u = v − εφ. We
know u(b) = 0 − εφ(b) ≤ 0 for b ∈ B. As |i| → ∞ we know that u(i) → −∞. That means that the set
F = {i ∈ S : u(i) > 0} is finite. Now if i ∈ F then i /∈ B because u < 0 on B. So for all i ∈ F we have

Au(i) = Av(i)− εAφ(i) ≥ 0.

This means the maximum principle of Lemma 4.12 applies. Since u(j) ≤ 0 for all j /∈ F we conclude that
u(i) ≤ 0 for all i ∈ F as well. Therefore for every i ∈ S we have

v(i) ≤ εφ(i).

Since this is true for every ε > 0 we can let ε ↓ 0 and conclude that v(i) = 0, which is what we wanted to
show.

Proof of Theorem 4.9. By adding a constant we can assume ψ ≥ 0. Let B be the finite set where Aψ ≤ −1
fails. It follows from the second part of Theorem 4.1 that Ei[TB ] ≤ ψ(i) < ∞ for i /∈ B. Now Theorem 4.4
implies positive recurrence.

4.3.4 Branching Processes

A branching process Zn is a nonnegative integer-valued Markov process which evolves as follows. If Zn = m
then we take m independent random variables Yi with a prescribed common distribution and let

Zn+1 = Y1 + · · ·Ym.

The Yi should be nonnegative integer-valued. Think of Zn as the size of a population of some organism.
Each individual lives one unit of time and then dies while giving birth to a random number of offspring,
distributed as the Yi. We will assume Z0 = 1. If P (Yi = 0) = 0 then Zn+1 ≥ Zn. But if Yi = 0 is possible,
then it is possible for the population to reach Zn = 0 at some time n. Then Zn+k = 0 for all k ≥ 0. I.e. the
population dies out and become extinct: 0 is an absorbing state for the chain Zn.

We want to focus on whether or not extinction is certain: P1(T0 <∞) = 1 or < 1. We can address this
using our results about recurrence or transience. Note however that Zn is not an irreducible chain, because
of the absorbing state at 0. But we are only concerned with what happens up to the first visit to 0. If we
modify what the chain does from 0 we can make it irreducible without changing the probability of reaching
0: just let p0,1 = 1. In other words when the population becomes extinct then one individual is miraculously
born at the next time. We might call this a branching process with spontaneous regeneration. Provided
only that P (Yi = 0) and P (Yi > 1) are both positive this makes the chain irreducible, so the results of this
chapter all apply. We will proceed with this regenerating version of the branching process.
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Our question is whether this chain is recurrent or transient. If it is recurrent then it is certain to eventually
reach 0, i.e. go extinct, but if it is transient then there is a positive probability of surviving forever. The
answer depends simply on the mean number of offspring for a single parent,

µ = E[Yi].

It is natural to speculate that larger µ means higher probability of avoiding extinction, so we expect the
chain to be transient for larger µ and recurrent for smaller µ. Consider φ(i) = i as a candidate for our
Therorems 4.8 or 4.7. ∑

j

pk,jφ(j) = E

[
k∑
1

Yi

]
= kµ.

So we can apply one of our theorems if kµ ≤ k, i.e. if µ ≤ 1. Since φ(i) = i → ∞ as i → ∞ we can apply
Therorem 4.8 if µ ≤ 1. Note that our calculation of

∑
j pk,jφ(j) above is actually incorrect if k = 0, because

of our modification of the process. But the theorem allows a finite number of exceptions to Pφ(k) ≤ φ(k) so
this is not an obstacle. We conclude that the chain is recurrent if µ ≤ 1, meaning that the original branching
process is certain to eventually go extinct.

If µ > 1 it certainly seems reasonable to expect Zn → ∞ which would mean the chain is transient. We
can establish this using Therorem 4.7 but it takes a little more care to find an appropriate φ. To use the
theorem we need φ(i)→ 0 as i→∞. We will see that φ(i) = γi will work if we choose 0 < γ < 1 carefully.
Using independence of the Yi, ∑

j

pk,jφ(j) = E[γ
∑k

1 Yi ] = E[γYi ]k.

We need to choose γ so that E[γYi ]k ≤ γk, i.e. so that

E[γYi ] ≤ γ

Now E[sYi ] = ĝ(s) is the generating function for Yi. So we are hoping to find 0 < γ < 1 for which ĝ(γ) ≤ γ.
The two sides of this inequality are equal for γ = 1. Now ĝ′(1) = E[Yi] = µ, so that under our assumption
that µ > 1 we have ĝ(γ) < γ for γ close to but sightly less that 1. So a γ as desired does indeed exist if µ > 1.
Since φ(i) = γi → 0 as i→∞ Therorem 4.7 does apply. (Again, that our calculation for Pφ(k) ≤ φ(k) may
be wrong for k = 0 makes no difference because the theorem allows a finite number of exceptions.) Thus the
chain is transient if µ > 1, meaning that the original branching process has positive probability of surviving
forever.

A more precise question is what the actual probability of extinction actually is: η = P1(T0 <∞) =? This
has a very nice answer in terms of the generating function ĝ(s) for Y . It turns out that η is the smallest
nonnegative fixed point of ĝ: η = ĝ(η). Perhaps this is not too surprizing given that ĝ(γ) ≤ γ already
emerged in our discussion above. See Section 5.4 of [25] for a discussion of this description of η.

4.3.5 Random Walks in Higher Dimensions

Example 4.6 considered the random walk in one dimension, both the symmetric and asymmetric cases.
Consider now the symmetric random walk in Zd. This moves up or down one coordinate at a time with
equal probabilities of 1

2d , but no diagonal moves. Our goal is to determine its transience or recurrence.
There are a couple ways to resolve this, but they all involve some careful calculation. One way is to

determine the convergence or divergence of
∑∞
n=0 p0,0(n) in some explicit or approximatecalculation. This

is possible using Stirling’s asymptotic formula for n!. For d = 1 we are concerned with the convergence of

∞∑
n=0

p0,0(n) =

∞∑
k=0

(
2k

k

)
1

22k
.

Stirling’s asymptotic formula for n! says that

n! ∼
√

2πn(n/e)n as n→∞.
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Using this (
2k

k

)
1

22k
=

(2k)!

(k!)2

1

22k

∼
√

2π
√

2k(2k/e)2k

2πk(k/e)2k

1

22k

=
1√
π

1√
k
.

Since
∑

1/
√
k is divergent it follows that

∑
p0,0(n) is divergent, implying recurrence of the symmetric

random walk in one dimension. We already knew this from Example 4.6. The point here is to indicate how
this can be done with an accurate enough analysis of p0,0(n).

In d = 2 dimensions the chain again has period 2, so p0,0(odd) = 0. The explicit formula for the even
transitions is

p0,0(2k) =

[(
2k

k

)
1

22k

]2

.

This deceptively simple result is tricky to justify; see Norris [45]. But given this formula the above tells us
that

p0,0(2k) ∼
[

1√
π

1√
k

]2

=
1

πk
.

Since
∑

1/k diverges so does
∑
p0,0(n). Thus the 2-dimensional symmetric random walk is also recurrent,

in fact null recurrent by the remarks at the top of page 86 since p0,0(n)→ 0.
In d = 3 the calculations are harder yet. After a more intricate analysis (which we omit) it turns out

that
p0,0(2k) ≤ Ck−3/2 for some constant C.

This is enough to say that
∑
p0,0(n) is convergent so the 3-dimensional symmetric random walk is transient!

In dimensions higher than 3 the random walk is also transient.
Varadhan [63] observes out that these conclusions can also be reached using our Theorems 4.7 and 4.8.

For the symmetric random walk in d = 2 dimensions it turns out that

v(x) = log(|x|)− 1/|x|

has Pv(x) ≤ v(x) for |x| > 1 and v(x) → ∞ as |x| → ∞, so that recurrence follows from Theorem 4.8. It
takes a two-dimensional walk at least as long as a one-dimensional walk to return to 0 so null recurrence for
d = 2 follows from null recurrence for d = 1.

For d ≥ 3 the function
v(x) = 1/

√
|x|

satisfies Pv(x) ≤ v(x) if |x| > 1 and has v(x) → 0 as |x| → ∞ so Theorem 4.7 implies transience in all
dimensions d ≥ 3. Problem 4.19 asks you to supply more of the details.

4.4 Equilibrium Distributions and Ergodicity

This final section is concerned with the existence of equlibrium distributions and convergence of Pn for
infinite state spaces. In Section 2.4.1 we proved that on a finite state space a equilibrium distribution always
exists. In this chapter we have limited ourselves to irreducible chains. An irreducible chain on a finite state
space is always positive recurrent, and we will see that on infinite state spaces positive recurrent chains again
always have equilibrium distributions. But we will also see that equilibrium distributions do not exist for
null recurrent or transient chains.

Example 4.7. Let Xn be the reflecting random walk on {0, 1, 2, . . .} as discussed on page 75. We know from
those calculations that the chain is positive recurrent if and only if p < q. If you consider solutions of π = πP
you will find that there is a nonnegative solution with

∑
πn = 1 when p/q < 1, but not when p/q ≥ 1; see

Problem 4.14. Based on the results we are about to prove this gives another demonstration that the chain
is positive recurrent if and only if p < q.
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4.4.1 The Transient and Null-Recurrent Cases

Theorem 2.6 tells us that an irreducible chain on a finite state space is always positive recurrent. Only for
infinite state spaces can an irreducible chain be either transient or null-recurrent. The following theorem
says that in those cases there are no equilibrium distributions and that Pn → [0].

Theorem 4.13. For an irreducible Markov chain which is either transient or null-recurrent the following
hold.

a) Pn → [0] (entry-wise).

b) No equilibrium distribution exists.

c) For each a ∈ S and any initial distribution we have 1
N

∑N
1 δa(Xn)→ 0 with probability 1.

Proof. In the transient case Corollary 4.3 tells us that pi,j(n)→ 0. In the null-recurrent case we know from
Theorem 3.10 that pi,i(n)→ 0 for each i ∈ S. To extend this to pi,j(n) recall from (4.2) that

pi,j(n) =

n∑
k=0

fi,j(k)pj,j(n− k).

Because
∑∞
k=0 fi,j(k) ≤ 1 we can use the Dominated Convergence Theorem to take limn

∑
k =

∑
k limn of

the right side, to obtain

lim
n→∞

pi,j(n) =

∞∑
k=0

fi,j(k) lim
n→∞

pj,j(n− k) =

∞∑
k=0

fi,j(k)0 = 0.

Therefore Pn → [0] entry-wise, which is what a) claimed.
To prove b) suppose there existed a equilibrium distribution µ. Then for any a ∈ S and every n ≥ 1 we

have
µa =

∑
j∈S

µjpj,a(n).

Every term of the series → 0 and since
∑
µj = 1 the Dominated Convergence Theorem applies and we

conclude that
µa =

∑
j∈S

lim
n
µjpj,a(n) = 0.

This is not possible since
∑
µa = 1, so no equilibrium distribution can exist.

Now we turn to c). In the transient case Xn visits a only a finite number of times. (See Problem 4.4.)
Therefore

1

N

N∑
1

δa(Xn)→ 0.

In the null-recurrent case we know from Theorem 3.10 that c) holds if X0 = a. (This is the case of ra =∞ in
that theorem.) For an arbitrary initial distribution we know from Theorem 4.4 that Ta <∞ with probability
1 and therefore N

N+Ta → 1. It follows that

lim
N

1

N

N∑
1

δa(Xn) = lim
N

1

N

Ta+N∑
Ta+1

δa(Xn).
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Therefore, using the strong Markov Property and the fact that XTa = a,

P

(
lim
N

1

N

N∑
1

δa(Xn) = 0

)
= P

(
lim
N

1

N

Ta+N∑
Ta+1

δa(Xn) = 0

)

= E

[
P

(
lim
N

1

N

Ta+N∑
Ta+1

δa(Xn) = 0

∣∣∣∣∣X0:Ta

)]

= E

[
Pa

(
lim
N

1

N

N∑
1

δa(Xn) = 0

)]
= E[1] = 1.

4.4.2 The Positive Recurrent Case

This is the infinite state space case most like Chapter 2. We will prove that there does exist an invariant
distribution. The argument we gave on page 21 does not work in an infinite state space. (Although a
convergent subsequence π(m′) → π does exist the limit need not be a probability distribution: without
additional hypotheses we cannot justify πP = limm′(π

(m′)P) = 1 because this is now an interchange of limit
with infinite series.) Our proof will present a different construction based on positive recurrence.

Theorem 4.14. Suppose Xn is an irreducible, positive recurrent Markov chain.

a) There is a unique equilibrium distribution given by

πa = 1/Ea[T +
a ] for each a ∈ S.

b) If the chain is aperiodic then limn pi,a(n) = πj for each i, a ∈ S.

c) For each a ∈ S and any initial distribution we have 1
N

∑N
n=1 1a(Xn)→ πa with probability 1.

Proof. Pick any state initial s ∈ S and let T +
s be our usual first return time. Let ms = Es[T +

s ] which is
finite by hypothesis. The idea is to start the chain at X0 = s and follow it from X1 to XT +

s
counting how

many times it visits each state i prior to its first return to s:

Ni¬s =

T +
s −1∑
n=0

1i(Xn),

using the notation of Lemma 4.5. Let πi be the mean of these, normalized:

πi = Es [Ni¬s] /Es[T +
s ]. (4.6)

These are a probability distribution, because

∑
i

Es

T +
s −1∑
n=0

1i(Xn)

 = Es

T +
s −1∑
n=0

∑
i

1i(Xn)

 = Es
[
T +
s

]
.

We claim that the πi in fact comprise an equilibrium distribution for the chain: πP = π. To see this consider
any state k. Observe that if X0 = s then 1k(X0) = 1k(XT +

s
) = 1k(s). This justifies the first line of the
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following.

Es

T +
s −1∑
n=0

1k(Xn)

 = Es

T +
s −1∑
n=0

1k(Xn+1)


= Es

[ ∞∑
n=0

1k(Xn+1)1T +
s >n

]

=

∞∑
n=0

Es

[
1k(Xn+1)1T +

s >n

]
.

Now lets work on an individual term from this summation.

Es

[
1k(Xn+1)1T +

s >n

]
= Es

[
Es

[
1k(Xn+1)1T +

s >n
|X0:n

]]
= Es

[
Es [1k(Xn+1)|X0:n] 1T +

s >n

]
= Es

[
pXn,k1T +

s >n

]
= Es

∑
j

1j(Xn)pj,k1T +
s >n


=
∑
j

Es

[
1j(Xn)1T +

s >n

]
pj,k

Taking
∑∞
n=0 of this we find that

Es

 T +
s∑

n=1

1k(Xn)

 =

∞∑
n=0

∑
j

Es

[
1j(Xn)1T +

s >n

]
pj,k

=
∑
j

Es

[ ∞∑
n=0

1j(Xn)1T +
s >n

]
pj,k

=
∑
j

Es

T +
s −1∑
n=0

1j(Xn)1T +
s >n

 pj,k
Dividing both sides by Es[T +

s ] this becomes

πk =
∑
j

πjpj,k,

proving that π is a equilibrium distribution. Observe that πs = 1/rs for the particular state s used in the
construction. But this construction of πi appears to depend on the choice of s. And we have not established
the uniqueness of π yet. Once we do establish uniqueness then we will be able to say that πi = 1/ri for all
i ∈ S.

Consider any i, j ∈ S. We know

pi,j(n) =

n∑
k=0

fi,j(k)pj,j(n− k).

By Theorem 3.10 we know that pj,j(n−k)→ 1/rj . By Theorem 4.2 part 5) we know that
∑∞
k=0 fi,j(k) = 1.

The Dominated Convergence Theorem allows us to let n→∞ in the above to obtain

lim
n
pi,j(n) =

∞∑
k=0

lim
n

[fi,j(k)pj,j(n− k)] =

∞∑
k=0

fi,j(k)1/rj = 1/rj .
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Now consider any invariant distribution π. Again applying the Dominated Convergence Theorem we find

πk = lim
n

∑
j

πjpj,k(n) =
∑
j

πj lim
n
pj,k(n) =

∑
j

πj1/rk = 1/rk.

This shows that π is unique, completing the proof of a) and b).
Part c) is proven in the same way as for Theorem 4.13: apply Theorem 3.10, this time with ra <∞.

Example 4.8. Let’s come back to Example 2.1 once again. We have encountered the equilibrium distribution
several times above. In Example 2.1 we looked at Pn for large n and saw that all rows seemed to converge
to

π ≈ (0.11605, 0.22244, 0.30947, 0.35203),

which we later realized (page 19) had to be the equilibrium distribution. Part b) of the theorem above said
this had to happen. Later we calculated π exactly as a (left) eigenvector in Example 2.9:

π = (60/517, 115/517, 160/517, 182/517).

Now let’s consider it again from the perspective of Theorem 4.14. Let’s pick a state, say s = 2, and calculate
π using the formula (4.6) of the proof. For that we will need to find the mean

E2

T +
2 −1∑
n=0

1i(Xn)


for each state i. Find these by solving the equations of Lemma 4.5. For i = 4 we did the calculation in
Example 4.3. We know that for i = 2 the result is 1 (the case of a = b in Lemma 4.5). We have to repeat
that calculation for i = 1 and i = 3. The results (from Problem 4.6) are

E2

T +
2 −1∑
n=0

11(Xn)

 = 0.521739

E2

T +
2 −1∑
n=0

12(Xn)

 = 1

E2

T +
2 −1∑
n=0

13(Xn)

 = .3913

E2

T +
2 −1∑
n=0

14(Xn)

 = 1.58261.

The sum of these gives

E2[T +
2 ] =

∑
i

E2

T +
2 −1∑
n=0

1i(Xn)

 = 4.49565.

So from equation (4.6) we find the equlibrium distribution to be

π = (0.116054, 0.222437, 0.309478, 0.352031),

agreeing with what we calculated previously.
Finally we can examine part c) of the theorem with a simulation. If we produce a sample run of 10, 000

steps (using the code on page 9 for instance) and count how many visits the chain makes to each state we
obtain (1129, 2175, 3125, 3571). Dividing by N = 10, 000 we obtain the following approximation to π:

(0.1129, 0.2175, 0.3125, 0.3571)
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Problems

Problem 4.1
Suppose we roll a conventional fair dice repeatedly. At each time n let Yn be the number of rolls since we
last observed a 6. Explain why Yn is a Markov chain and find its transition probabilities.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sixes

Problem 4.2
Suppose Xn and Yn are independent Markov chains both with transition matrix

P =


0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2
1/2 1/2 0 0


Let J denote the first time that the two chains are in the same state. In other words J is the first n for
which Xn = Yn. Do a calculation using the 16-state Markov chain (Xn, Yn) to compute E[J ] assuming
X0 = 1 and Y0 = 3. (Turn in your Matlab code as well as the results.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FE2

Problem 4.3
Let Xn be a (generalized) random walk on Zd. We can express it as

Xn = X0 +

n∑
i=1

Yi,

where the Yi are an i.i.d. Zd-valued random variables. Let µ = E[Yi] (this is a vector). Use the Strong Law
of Large Numbers to show that if µ 6= [0] then the chain is transient.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RWT

Problem 4.4
Theorem 4.2 says that

∑∞
n=0 pi,i(n) = ∞ is equivalent to

∑∞
n=0 fi,i(n) = 1. (The notation fi,j(n) was

introduced on page 78.) One way to understand the connection is to recognize that
∑∞
n=0 pi,i(n) gives the

mean number of returns to i, which should be infinite if i is recurrent. To be precise let Ni be the total
number of visits Xn makes to i:

Ni =

∞∑
n=0

1{i}(Xn).

Prove that Ei[Ni] =
∑∞
n=0 pi,j(n).

Thus Ei[Ni] is infinite or finite when i is recurrent or transient respectively. Observe that this would be
infinite if Pi(Ni =∞) > 0. So if i is transient then starting from i the chain is certain to visit i only a finite
number of times. This gives another argument for part 2 of Theorem 4.2, but explain why it also shows that
Pi(Ni =∞) can only be = 0 or = 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MeanRet

Problem 4.5
Prove the equations (4.2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f-convl

Problem 4.6
Repeat the calculation of Example 4.3 using b = 1 and b = 3 (keeping a = 2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MSH
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Problem 4.7
We know from Theorem 2.6 that an irreducible Markov chain on a finite state space is positive recurrent.
For another proof observe that

T +
a =

∑
b 6=a

Nb¬a.

Now use Lemma 4.5 to prove Ea[T +
a ] <∞ if S is finite.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FinRecur

Problem 4.8
Suppose Xn is an irreducible chain and there exists b 6= a for which

Pb(T +
a <∞) = 1.

It is not necessarily true that a is recurrent. (We really need the “for all b” in Theorem 4.2 part 2.) Find
one of the examples we have discussed which illustrates this.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NoRec

Problem 4.9
Referring to (4.5), prove that for a finite state space the matrix I − sP is invertible for |s| < 1. (Hint:
Suppose (I− sP)u = [0]. Show that (I− s2P2)u = [0] and in fact (I− snPn)u = [0] for all positive integers
n. Conclude that u = [0].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IsPinv

Problem 4.10
Find a stochastic Lyapunov function (φ as in Theorem 4.8) which implies that the symmetric random walk
on Z is recurrent. (Drawing a graph and guessing should work.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lya1

Problem 4.11
Consider the reflecting random walk on Z+: i → i ± 1 with probabilities p, 1 − p respectively when i ≥ 1;
and 0→ 0, 1 with probabilities p, 1− p. Consider φ(i) = γi where p = 1

γ+1 <
1
2 and explain why recurrence

follows from Theorem 4.8.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RRWphi

Problem 4.12
The formula for the equilibrium distribution of Theorem 4.14 part a) can be confirmed another way. Assume
that pi,i(n) → πi. You may take for granted that this implies that (1 − s)p̂i,i(s) → πi as s → 1−. Now

Ei[T +
i ] = f̂i,i(1−). Use the generating function relationship (4.4) to establish the relation between Ei[T +

i ]
and πi.

Secondly we would like see that πi = 1/Ei[T +
i ] is a probability distribution:

∑
i πi = 1. To prove this

directly explain why

p̂i,a(s) =
f̂i,a(s)

1− f̂a,a(s)
,
∑
a

p̂i,a(s) =
1

1− s
, f̂i,a(1−) = 1

and then put these pieces together to show that
∑
a 1/Ea[T +

a ] = 1. (You will probably encounter an
interchange of limit and summation. You do not need to provide the technical justification for that.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EqFor

Problem 4.13
For the asymmetirc random walk with p < q (page 76) find a formula for the stationary distribution πi and
verify that it satisfies the equation π = πP.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exit
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Problem 4.14
Let Xn be the reflecting random walk on {0, 1, 2, . . .} as discussed on page 75 and let ρ = p/q. Verify the
assertion of Example 4.7 that there is a nonnegative solution of π = πP with

∑
πn = 1 when ρ < 1, but not

when ρ ≥ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RfRW

Problem 4.15
In this problem you are to simulate the ”reflecting random walk” of Problem 4.13, using p = 1/3. Starting
at X0 = 0 produce a sample path up to n = 10000. Compare the frequency of visits to 0, 1, 2, 3, 4, 5 to
their theoretical limits as calculated in Problem 4.13.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SimExit

Problem 4.16
Let Xn be the chain on Z+ which jumps i → i + 1 with probability qi and i → 0 with probability 1 − qi.
(Assume 0 < qi < 1.) Under what conditions on qi is the chain transient? Work out and attempt to solve the
equations that an equlibrium distribution πi must satisfy. Under what conditions on qi is the null-recurrent,
and under what conditions is it positive recurrent? In the positive recurrent case find πi.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J0

Problem 4.17
Consider the Markov chain X on S = {0, 1, 2, 3, . . .} with transition probabilities

p01 = 1, for i ≥ 1 pij =

{
1
i+1 if j = 2i
i
i+1 if j = i− 1,

and 0 for all other cases.

a) Explain why this chain is irreducible.

b) Show that E[Xn+1 |Xn = i] = i for all i ≥ 1.

c) Show that the chain is recurrent. [Hint: Part b) should tell you something to use for Aφ ≤ 0.]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LyapEx

Problem 4.18
This problem explains the comment following Theorem 4.9. First, suppose there exists a function ψ : S → R
exists which is bounded below and Aψ(s) ≤ −c for all but finitely many s, where c > 0 is some positive
constant. Then observe that the theorem applies to ψ/c. In other words if there is a negative upperbound
for Aψ(s), allowing a finite number of exceptions, the chain is positive recurrent. The comment following
the theorem says that Aψ(s) < 0 for all but finitely many s is not enough however. As an example consider
the symmetric case of the reflecting random walk of page 75. Our calculations there showed that this is
null-recurrent. But show that ψ(i) =

√
i does have Aψ(s) < 0 for all but finitely many s. Why is there no

c > 0 so that Aψ(s) ≤ −c for all but finitely many s?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NotPosRec

Problem 4.19
In this problem your are to confirm the applicability of Theorems 4.7 and 4.8 for random walks using

φ(x) = log(|x|)− 1/|x| for d = 2

φ(x) = 1/
√
|x| for d = 3

as claimed on page 90. First notice that these are undefined at x = 0 so simply take v(0) = 0 to complete the
definitions. If you are unable to verify Aφ(s) ≤ 0 by working with the formulas then see if you can produce
good experimental evidence: write a program to compute Aφ(s) for all |s| ≤ N for some large N and look
for instances of Aφ(s) > 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VarLyaVer
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For Further Study

In addition to the books already cited at the end of Chapter 2 some more advanced treatments are those of
Grimmett and Stirzaker [25], Bremaud [10], Stroock [57], and Chung [15].
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Chapter 5

Hidden Markov Chains and
Elementary Filtering

For Further Study

Until such time as I write this chapter [54] provides an introduction and some references.
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Chapter 6

Statistics of Markov Chains

Suppose we can observe a sequence X0, X1, . . . of random variables which we believe or assume come from
a Markov chain, but we don’t know the transition probabilities P = [pi,j ]. How can we estimate the pi,j
from our observations? The natural thing to do is to observe X0:N for some large N and count how many
transitions of each type occurred:

ci,j =

N∑
n=1

1(Xn−1,Xn)=(i,j).

Then the number of transitions out of state i is

Ci =
∑
j

ci,j .

A natural estimate of the transition probabilities is

p̂i,j =
ci,j
Ci

.

This p̂i,j is what we call a statistical estimator, a function of X0:N which we expect or hope will give a good
approximation to the true value of the transition probability:

p̂i,j ≈ pi,j .

We want to discuss how p̂i,j arises as the maximum likelihood estimator for pi,j and then apply the idea to
the English language considered as a Markov chain.

6.1 The Maximum Likelihood Estimate of Transition Probabilities

Let’s first talk about the basic problem of identifying the distribution of a random variable Y based on
observing a value of its outcome, y = Y . Suppose that there is a family of possible distributions for Y
determined by a parameter θ. For each θ there is a probability Pθ(Y = y) that the outcome of Y was
the observed value y. We want to decide which value of θ is the the most likely based on our observation.
Since we did observe Y = y it seems reasonable to believe that the values of θ which give larger values for
Pθ(Y = y) are the better guesses for the true value. The maximum likelihood estimator of θ is

θ̂(y) = the value of θ which maximizes Pθ(Y = y).

This is a general strategy for finding a statistical estimator in any situation which fits the above description.
In many situations a formula for θ̂(y) can be worked out and then studied in detail to determine its properties.

We want to apply this general maximum likelihood strategy to our problem of estimating the transition
probabilities of a Markov chain. Let s0:N be the sequence of states that we see in our observation of X0:N .
By examining s0:N we see what states comprise S. (Maybe there are some rare states that did not actually
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occur in our observation, so that S should be a bit bigger. But there is no way we can know that from this
observation alone. Hopefully we observed a long enough run of the chain so that every state did actually
occur at least once in our observation.) Having identified S we know the number m of states and the size
m×m that the transition matrix needs to be. To make the connection with the general maximum likelihood
idea X0:N is playing the role of Y ; s0:N is playing the role of y and θ is the transition matrix P. The
chain also has an initial distribution µ but we only have one observation of a random variable under that
distribution: s0 = X0. We can’t hope to estimate µ based on a single observation,so we won’t even try. We
have

Pθ(Y = y) = Pµ(X0:n = s0:N )

= µs0ps0,s1ps1:s2 · · · psn−1,sn)

= µs0
∏
(i,j)

p
ci,j
i,j , (6.1)

where ci,j are the observed transition counts as above. We view the right side as a function of θ = P = [pi,j ].
Our task is the find the m×m transition matrix P which maximizes (6.1). Now P = [pi,j ] consists of m2

scalar values, each between 0 and 1. But they are constrained by the requirement that each row must sum
to 1:

∑
j pi,j = 1 for each j. So there are m constraints. Thus we are faced with a constrained optimization

problem. To maximize (6.1) is equivalent to maximizing its logarithm. So we want to maximize

f(P) = log

µs0 ∏
(i,j)

p
ci,j
i,j


= log(µs0) +

∑
(i,j)

ci,j log(pi,j)

over 0 ≤ pi,j subject to the constraints gi(P) = 0 for each i = 1, . . . ,m where

gi(P) = −1 +
∑
j

pi,j .

Lagrange multipliers is a standard technique for locating candidates for the maximizing P̂. (See [41] for
a discussion of the method.) To carry this out we introduce a multiplier λi for each constraint and seek

values for them and P̂ = [p̂i,j ] so that

∇f(P̂) =
∑
i

λi∇gi(P̂).

We have
∂

∂pi,j
f(P) =

ci,j
pi,j

,
∂

∂pi,j
gi(P) = 1, and

∂

∂pi,j
gk(P) = 0 if i 6= k.

So we seek values for which
ci,j
p̂i,j

= λi and therefore

p̂i,j =
ci,j
λi
.

To satisfy the constraints we need 1 =
∑
j p̂i,j which implies

λi =
∑
j

ci,j = Ci.

In this way we are led to the formula

p̂i,j(X0:N ) =
ci,j
Ci

as the maximum likelihood estimator. If some Ci = 0 then ci,j = 0 for all j. In that case we can choose
the ith row of P arbitrarily, subject to

∑
j pi,j = 1. The choice will not affect the value of f(P) since those
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terms all have coefficient 0 in f . In general the method of Lagrange multipliers only constitutes necessary
conditions for a maximizer, so we should ask for some kind of argument to guarantee that our P̂ does truly
maximize the constrained optimization problem. See Problem 6.1 for that.

Theorem 4.14 allows us to prove that (for irreducible recurrent chains) our estimator is consistent ; this
means that it converges to the true value in the limit.

lim
N→∞

p̂i,j(X0:N ) = pi,j

Bear in mind that p̂i,j(X0:N ) is a random variable; if we recalculate it with a new observation of X0:N we
will get a slightly different value. Hopefully its value is very close to pi,j . The above limit says that this is
true in the same probabilistic sense as the law of large numbers. If π is the stationary distribution of the
chain, part c) of Theorem 4.14 says that

1

N
Ci =

1

N

N∑
1

1{i}(Xn)→ πi with probability 1.

Problem 2.13 says that the chain of pairs Yn = (Xn−1, Xn) is also recurrent (on the state space D) with
stationary distribution π(i,j) = πipi,j . Applying Theorem 4.14 to the chain of pairs we see that with
probabiity 1 we also have

1

N
ci,j =

1

N

N∑
1

1{(i,j)}(Xn−1, Xn)→ π(i,j) = πipi,j .

(See Problem 3.27.) Putting these together we find that with probability 1, as N →∞ we have

p̂i,j(X0:N ) =
ci,j
Ci

=
1
N ci,j
1
NCi

→ πipi,j
πi

= pi,j .

6.2 English Language as a Markov Chain

The statistical properties of the English language are important for many purposes. Although it is a rather
crude approximation, we will consider modeling English as a Markov chain. To keep this relatively simple
we will consider English text as a Markov chain with state space

E = {A,B,C, . . . , X,Y,Z, }.

Thus we will make no distinction between upper and lower cases letters, ignore all punctuation, numerals and
non-alphabetic characters, but we do include the space character . To estimate the transition probabilities
we want to take a large sample of English text and count the frequencies of the 272 different transitions,
then estimate the transition probabilities as described above.

This requires a relatively large sample of English text. One well-known collection of English texts,
assembled for this kind of purpose, is the Brown Corpus [24]. This is a collection of excerpts from a wide
range of published sources, selected by a conference of linguists and language scholars. It contains about
a million words in total. After eliminating things like hyphenated words, abbreviations, words involving
numbers (e.g. “I.B.M.”, “24-HOUR”) the Brown Corpus data leads to the estimated transition probabilities
in the file trprob.dat. You will explore some simple implications of this in Problem 6.2. The equilibrium
distribution of this transition matrix gives the approximate frequencies of the characters in E in English text.
Here are the results, sorted from most to least likely.

E T A O I N S R
.17613 .10344 .07651 .06656 .06270 .06021 .05832 .05329 .05048

H L D C U M F P G
.04516 .03371 .03242 .02549 .02234 .02087 .01920 .01666 .01602

W Y B V K X J Q Z
.01550 .01410 .01266 .00818 .00534 .00161 .00130 .00088 .00077
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Given the inclusion of the space character it is probably no surprise that it occurs more frequently than any
of the letters. It is common knowledge that E is the most frequent letter (by a significant margin). The
most likely letter to start a word is the state i which maximizes

P (Xn+1 = i|Xn = 27) = p27,i.

We find that i = 20 (T).

Problem 6.1
In this problem you will confirm that the Lagrange mulitplier calculation of Section 6.1 did in fact produce
the true maximizer for the constrained optimization problem. First observe that for any x̂ > 0

log(x) ≤ log(x̂) +
1

x̂
(x− x̂).

Therefore

f(P) ≤ f(P̂) +
∑
(i,j)

ci,j
1

p̂i,j
(pi,j − p̂i,j)

= f(P̂) +
∑
(i,j)

Ci(pi,j − p̂i,j)

Explain why the latter inequality is true even if some ci,j = 0. Finally, use this to show that f(P) ≤ f(P̂)

if P̂ satisfies the constraints.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JustMax

Problem 6.2
Using the estimated transition probabilities in the file trprob.mat, what letter is most likely to appear at
the beginning of a word? What letter is most likely to appear as the second letter of a word? What is the
most likely two-letter combination? Can you calculate the mean word length?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . English

Problem 6.3
Using the estimated transition probabilities in the file trprob.mat, produce two sample sentences of 30
characters, each generated by simulating the Markov chain (starting with the stationary distribution). Do
any actual English words appear in your sample sentences?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EngSim

Problem 6.4
For an irreducible positive recurrent Markov chain, assuming X0 has the invariant distribution π, find a
formula (in terms of π and P) for

P [Xn = j|Xn+1 = i].

Using your answer to the above and the English language transition probabilities in the file trprob.mat,
what letter is most likely to be the last in a word?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HW6B

For Further Study

If you want to explore the data from the Brown corpus on your own, you can obtain it at
http://ota.ahds.ac.uk/desc/0668 . The Brown corpus is not the only option; for some others see
http://clu.uni.no/icame/manuals/. Google has been generating massive amounts of data of this type in
conjunction with its Google Books project; see https://books.google.com/ngrams/ – you can download
their data from the link near the bottom of that page. Our equilibrium distribution provides first order
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statistics for the English language, and the transition probabilities provide second order statistics. Some
third order statistics are available at http://www.data-compression.com/english.shtml. There is also
some interesting information at http://norvig.com/ngrams/.
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Chapter 7

Entropy and Information

The variance of a random variable X is an indicator of how spread out the distribution of X is. A small
variance means X is concentrated near its mean with high probability. A large variance means that the
likely values of X are spread over a large range. So we might say that the variance measures how random
X is, in some sense.

This chapter introduces the concept of entropy, which provides a different way to measure the “amount
of randomness” in X, one that has no regard for the actual values of X. Suppose for instance that X is
either 0 or 1, each with probability 1/2 (i.e. a Bernoulli random variable). The variances of X and 10X
are different (1/4 and 25). But in the sense we consider here they have the same amount of randomness,
because they each have two equally likely outcomes. Think of X as revealing to us some information about
the the underlying state of the world, those otherwise unseen things which determine the value of X. Before
we observe X we are uncertain about what its outcome will be. When we observe X that uncertainty is
resolved and we know a little more about the state of the world.

For another example, suppose X is the sum of an independent pair of fair dice, a random variable with
possible values in {2, 3, . . . , 12}. Let Y be a random variable which takes each of the values in {1, 2, . . . , 10}
with equal probability. X has more possible outcomes than Y but some are more likely than others. Which
of these two random variables conveys more information when observed? In other words which of them has
greater entropy? After we define entropy in the next section we will be able to answer this question with a
simple calculation.

After proving the basic theoretical properties of entropy the rest of the chapter develops some simple
versions of results from information theory to illustrate how entropy plays an important role in the analysis
of coding and transmission of textual information.

7.1 Definition and Properties of Entropy

Definition. If X is a random variable with only a finite number of different possible outcomes, pi = P (X =
xi) > 0 for i = 1, . . . n, we define its entropy to be

H(X) =

n∑
i=1

−pi log2(pi). (7.1)

By “different possible outcomes” we mean that the xi are distinct. Notice that (unlike Var[X]) this definition
does not care what the values xi of X actually are, only how many different outcomes are possible and what
the set of probabilities pi is. Thus X and 10X will always have the same entropy. Since limx→0 x log2(x) = 0,
we will consider 0 to be the value of x log2(x) at 0. This makes x log2(x) a continuous function on [0,∞)
and allows us to include P (X = xi) = pi = 0 in the sum without changing its value.

The change of base formula connects the logarithm base b to the natural logarithm: logb(x) = ln(x)/ln(b).
Changing the base of the logarithm in the definition would simply multiply the entropy by a constant,
i.e. making a different choice of units. The choice of base 2 means that a Bernoulli random variable X taking
the values 0 or 1 with equal probability has H(X) = 1. Think of X as a revealing a single binary digit or

105



“bit” of information. Thus our choice of base 2 means that X has entropy 1 (in bits). A constant random
variable Y , with P (Y = c) = 1 for some c, has H(Y ) = 0. Since there is nothing to be learned by observing
Y (we know its value without looking) H(Y ) = 0 is consistent with the interpretation that Y conveys no
information.

Now we can compare the entropies of the X and Y that we contemplated above: X is the sum of an
independent pair of (fair) dice and Y takes the values {1, . . . , 10} with equal probability. It is a simple
calculation to find that

H(X) = 3.2744, H(Y ) = 3.3219.

Thus Y is (slightly) more random than X, in the sense of entropy.
The usefulness of entropy as a measure of randomness depends on its mathematical properties, which are

established in the following theorem.

Theorem 7.1. Suppose X and Y are both random variables, each taking only a finite number of different
values.

a) 0 ≤ H(X) with equality if and only if X is constant.

b) If X takes n distinct values, H(X) ≤ log2(n) with equality if and only if the possible values of X are
equally likely: P (X = xi) = 1/n for all n distinct values xi.

c) H((X,Y )) ≤ H(X) +H(Y ), with equality if and only if X and Y are independent.

d) H((X,Y )) = H(X) +H(Y ‖X), where

H(Y ‖X) =
∑
i

pi
∑
j

−pj|i log2(pj|i).

(Here pi = P (X = xi), pj|i = P (Y = yj |X = xi).)

e) H(Y ‖X) ≤ H(Y ), with equality if and only if X and Y are independent.

Part b) says that the highest entropy occurs when the possible outcomes are equally likely. It also suggests
that if X has infinitely many outcomes the entropy (if we extend the idea using infinite series) could be
infinite. In d) and c) (X,Y ) refers to the random pair. Part c) says that if X and Y are independent then
the entropy associated with observing both of them is just the sum of their individual entropies. That makes
sense because observing X first gives us no help in knowing what Y will be. But if they are not independent,
then observing X does tell us something about Y so that we learn less from observing Y after X than we
would by observing Y by itself first. The quantity H(Y ‖X) in d) and e) is called the conditional entropy
of Y given X. (The usual notation is “H(Y |X)”. But we are using the double vertical bar instead to
avoid confusion with conditional expectation.) It measures the amount of additional information conveyed
by observing Y after observing X first, averaged over the possible X values.

Proof. The fact that −x log2(x) ≥ 0 for 0 ≤ x ≤ 1 explains why 0 ≤ H(X). Suppose H(X) = 0 then
−pi log2(pi) = 0 for all i. But this only happens if each pi is either 0 or 1. Since

∑
pi = 1 it must be that

exactly one pi = 1 and all the others are 0. That means there is one value x for which P (X = x) = 1. This
proves a).

For b), observe that φ(x) = x log2(x) is strictly convex, because d2

dx2φ(x) = (x ln(2))−1 > 0 for x > 0. We
can apply Jensen’s Inequality (see A.1 in the Appendix) as follows

n∑
1

1

n
[pi log2(pi)] =

n∑
1

1

n
φ(pi) ≥ φ(

n∑
1

1

n
pi) = (

n∑
1

1

n
pi) log2(

n∑
1

1

n
pi) =

1

n
log2(

1

n
).

This is equivalent to H(X) ≤ log2(n). Since φ(x) is strictly convex we can only have equality if all pi are
equal, which means that pi = 1/n for each i.

Part c) follows from d) and e).
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For d), P ((X,Y ) = (xi, yj)) = pipj|i. So

H((X,Y )) =
∑
i

∑
j

−pipj|i log2(pipj|i)

=
∑
i

∑
j

−pipj|i log2(pi) +
∑
i

∑
j

−pipj|i log2(pj|i)

=
∑
i

−pi log2(pi) +
∑
i

pi
∑
j

−pj|i log2(pj|i)

= H(X) +H(Y ‖X).

Part e) is Jensen’s Inequality for φ(x) = x log2(x) again: for each j we have

(
∑
i

pipj|i) log2(
∑
i

pipj|i) = φ(
∑
i

pipj|i) ≤
∑

piφ(pj|i) =
∑
i

pi[pj|i log2(pj|i)].

Using
∑
i pipj|i = qj = P (Y = yj) and summing the above over j we get∑

j

qj log2(qj) ≤
∑
i

pi
∑
j

pj|i log2(pj|i),

which is equivalent to H(Y ‖X) ≤ H(Y ). The two sides are equal if and only if we have equality in each
application of Jensen’s Inequality, which means that for each j, pj|i is the same for all values of i: cj = pj|i
for some set of values cj . But multiplying by pi and summing over i we see this is only possible for cj = qj .
Thus equality holds in e) if and only if for all i, j we have

P (X = xi, Y = yj) = pipj|i = piqj ,

which means that X and Y are independent.

There is a converse to this theorem, which says that our definition (7.1) is the only way to define H with
these properties, and so that H(X) = 1 for a Bernoulli random variable. See Khinchin [35] for the proof.

7.2 Entropy of a Markov Source

Information theory studies systems which transmit information from one person or place to another. Suppose
that someone provides a source text, which is a sequence of letters or symbols from a source alphabet A. (For
English we will take the source alphabet to be our E={A, . . . , Z, }.) Then by means of some translation and
transmission mechanism that source text is sent to someone else. How we do the translation and transmission
should probably depend on properties of the source texts we expect to encounter, particularly if we hope
to do it efficiently. To explore the significance of entropy we will assume that the source text is produced
by a stationary Markov chain Xn with a state space denoted A (for “alphabet”). This is a rather crude
description of a natural language, as we saw in Chapter 6. (See Problem 6.3.) The advanced mathematical
study of information theory considers more general types of stochastic processes as the source. But a Markov
source will give us enough mathematical structure to develop the ideas that we want to exhibit. (Note that
independent and identically distributed Xn is a special case of a Markov chain.)

Notation

Some terminology and notation will help us talk about sequences and parts of sequences using symbols from
an alphabet A.

• An individual element of an alphabet a ∈ A will be called a character.

• The set of all infinite sequences in A is denoted AN, and we will denote such a sequence by a1:∞. We
will try to reserve the term “sequence” for infinite sequences.
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• We will use segment to refer to a finite sequence. So An is the set of all segments with exactly n
characters, i.e. n-segments (often called “n-grams” in the literature). We will denote n-segments by
a1:n or sometimes by single Greek letters α, β, . . .

• The collection of all segments (any finite length) will be denoted A∗. So

A∗ = ∪∞n=1An.

Such a segment will be denoted a1:∗, which means that it is an a1:n for some n. By writing a1:∗ we are
leaving the length unspecified.

• Sequences or segments can be formed by concatenating shorter segments. For instance if α = (A,B,C),
β = (D,E, F ), γ = (G,H, I) are each 3-segments then by αβγ we simply mean the 9-segment

αβγ = (A,B,C,D,E, F,G,H, I).

We view the Markov chain as our source text generator. In our notation, each realization of the Markov
chain produces one sequence a1:∞ = X1:∞. As each successive character is produced by the chain we learn
a little more about the text as a whole. We can’t calculate the entropy of the full random sequence X1:∞
because there are infinitely many possible outcomes. But we can calculate the entropy of the initial n-
segment X1:n. The increase in entropy as we go from n-segments to (n + 1)-segments will be given by a
conditional entropy. It follows from Theorem 7.1 and the Markov property that

H(X1:n) = H(X1:n−1) +H(Xn ‖Xn−1)

...

= H(X1) + (n− 1)H(Xn ‖Xn−1),

since H(Xn ‖Xn−1) is the same for all values of n. (That’s because we are assuming the chain is stationary.)
In fact it gives the entropy per term of the chain:

H∆ = lim
n→∞

1

n
H(X1:n) = H(X1 ‖X0) =

∑
i

πi
∑
j

−pi,j log2(pi,j). (7.2)

We interpret H∆ as the (average) amount of information per term produced by the chain. We will see in the
next section that this plays an essential role in characterizing the performance requirements of transmission
mechanisms.

Shannon-Breiman-McMillan Theorem

The entropy per term of a Markov chain arises in another somewhat unexpected (but important) way. Let
X0:n−1 be the initial n-segment produced by the chain. If a0:n−1 is the initial n-segment of a sequence a0:∞,
then the probability that X0:n−1 = a0:n−1 is

p(n)(a0:∞) = πa0pa0,a1pa1,a2 · · · pan−2,an−1 .

We will consider this as a function p(n) : AN → [0, 1]. In other words p(n)(a0:∞) gives the probability that
Xi = ai for i = 0, . . . n − 1., i.e. the probability that the chain matches a0:∞ through the first n outcomes
starting with X0.

Theorem 7.2 (Shannon-Breiman-McMillan). Under the assumptions described above,

1

n
log2 p

(n)(X0:∞)→ −H∆ almost surely.

For any infinite sequence a0:∞ we expect p(n)(a0:∞) → 0 as n → ∞. What the above says is that the
sequences a0:∞ = X0:∞ that are actually produced by the Markov chain are virtually certain to be ones for
which (in a rough sense)

p(n)(X0:∞) ∼ 2−nH∆ for large n.
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Think of p(n)(X0:∞) this way: first we observe X0:n−1 and then we ask “what was the probability of seeing
what we just saw?” The theorem says that for asymptotically large n the answer is approximately 2−nH∆ ,
with vanishing relative error. The proof below shows that this is in fact a consequence of the strong law for
the Markov chain.

Proof. We can write

p(n)(X0:∞) = πX0

∏
(i,j)

p
N(i,j)(n−1)

(i,j) ,

where N(i,j)(n− 1) counts the number of i→ j transitions that the chain has made by time n− 1. Let

F(i,j)(n− 1) =
1

n− 1
N(i,j)(n− 1),

what we would call the empirical frequency of (i, j) transitions. Then we have

1

n
log2(p(n)(X0:∞)) =

1

n
log2(πX0

) +
n− 1

n

∑
(i,j)

F(i,j)(n− 1) log2(p(i,j)).

Problem 2.13 showed that as a consequence of the strong law F(i,j)(n−1)→ πipi,j almost surely, as n→∞.
So almost surely we have

1

n
log2(p(n)(X0:∞))→

∑
(i,j)

πipi,j log2(p(i,j)) = −H∆.

Theorem 7.2 only considers random text produced by a stationary Markov chain. In general the entropy
of a stochastic source (not necessarily Markov) is defined as

H∆ = lim
n→∞

1

n
H(X0:n−1).

Our theorem establishes the existence of this limit for stationary Markov chains, but it can be shown to
exist much more generally. (For English language estimates indicate that H∆ ≤ 1.75, which is significantly
lower than the 3.36477 which results from our Markov chain model; see Problem 7.3.) The proof of the
Shannon-Breimann-McMillan Theorem in that greater generality was a major achievement back in 1953; see
[35].

7.3 Coding

Suppose that our source text is written in conventional English prose. English is often predictable enough
that we don’t need to transmit much to communicate efficiently. For instance if I sent my wife the text
“i lv u” I think she would get the message, and I would have sent only 6 characters instead of 10 as the
correct spelling would require. The same possibility arises for our Markov source Xn using a source alphabet
with #A = A characters. The largest possible entropy per term H∆ is log2A. But for all but the simplest
chains H∆ < log2A. The fact that H∆ < log2A means that there is typically less information in a source
segment than a segment of the same length in A∗ can convey. We ought be able to express the source
text in some more efficient form than its original sequence in A, so that we don’t waste resources when we
transmit it. That’s what we do naturally when we resort to abbreviations like “i lv u”. It may also be that
the transmission mechanism sends signals of a very different form than our source text: modulated radio
frequency waves, or perhaps just a binary sequence. So our source text must be translated or “coded” into
the form that can be physically transmitted, but in a way that allows it to be decoded after reception.

In this section we want to see how entropy provides a theoretical limit on how efficiently we can abbreviate
or code the source text so that it can be decoded after transmission. We will assume that the transmission
mechanism works by sending a sequence of symbols taken from a code alphabet B which may be different
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from the source alphabet A. For instance B = {0, 1} is a natural choice for digital communication. Our task
is to translate the source text (ai) into a sequence (bj) in the code alphabet for transmission, and to do so
in an efficient way. Throughout we will use A = #A and B = #B for the numbers of characters in each of
these alphabets.

7.3.1 Examples

First we consider two examples for coding the English alphabet A = E into the binary alphabet B = {0, 1}.

A Fixed Length Code for E

Suppose we number the characters in E from 1 for A to 27 for , and convert the number of each character
to binary form using 5 binary digits.

χ(A) = 00001, χ(B) = 00010, χ(C) = 00011, χ(D) = 00100, χ(E) = 00101, . . . , χ( ) = 11011.

This is what we will call a (1, 5) code; every individual English letter gets converted to 5 binary digits. For
example the source text “YES SIR” would get coded as the binary segment

11001 00101 10011 11011 10011 01001 10010

(We have typed this with spaces to help you see the 5-bit blocks, but the spaces are not part of the coded
text.)

Morse Code for E

Morse code was developed starting in the 1840s as a system for communicating text through a medium that
can be switched back and forth between just two states, “on” or “off”. Think of a single telegraph wire
that can be connected or disconnected from a electrical voltage, or a signal light that can be either on or
off. By turning the medium on and off according to prescribed patterns, messages can be sent “through
the wire”. Each letter is represented using some combination of “dots” ( · ) and “dashes” ( – ); see the table
below. (There are also codes for numerals, various punctuation marks and other symbols, but we will limit
our discussion to the uppercase letters and the space-between-words character of our alphabet E .) A dot
is transmitted as “on” for one unit of time; a dash is transmitted as “on” for three units of time. The dots
and dashes comprising a single letter are separated by “off” for one of time. The letters of the same word
are separated by “off” for three units of time. The space-between-words is “off” for seven units of time. We
can view this as sending a sequence of 0’s and 1’s, 0 being “off” and 1 being“on”, each for a single unit of
time. For instance our sample message “YES SIR” would be translated to

– · – – | · | · · · · · · | · · | · – ·

where | is the space-between-letters and is the space between words. This is not quite a code in the binary
alphabet B = {0, 1}, but there is a natural way to view it in that from. Let each dot becomes 1 followed by a
0 (within-the-letter-space); each dash becomes 111 followed by a 0 (within-the-letter-space). By always using
the within-the-letter-space after 1 or 111, then the space-between-letters | becomes only 00. And likewise
with the last letter of a word including 000 (within-the-letter-space and between-the-letter-space) the space-
between-words becomes only 0000. Following this scheme Y=1110101110111000, E=1000, S=10101000,
=0000, and so forth. So our “YES SIR” becomes

1110101110111000 1000 10101000 0000 10101000 101000 1011101000.

(Again we have printed it with some spaces to help you see the breaks between individual character codes.)
In this form the same message results in a longer code segment than using the preceeding code. But

bear in mind that Morse code was designed to be used with human beings as coders/decoders; there were
no digital electronic systems then. An actual telegraph operator transmits 111 ( – ) by just holding the key
down for 3 time units, and 1 ( · ) by holding the key down for one time unit. Strings of 0s are just leaving
the key up for various amounts of time. A trained telegraph operator does not think in terms of 0s and 1s.
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He has learned to recognize the audible patterns for each letter without needing to think about it1. But by
writing it this way each 0 and 1 uses exactly the same amount of time, and is convenient for our analysis
below. Each letter requires a certain number of units of time to transmit. For instance Y requires 16 time
units; S requires 8. These time requirements are included in the table below.

A B C D E F G H I
· – – · · · – · – · – · · · · · – · – – · · · · · · ·
8 12 14 10 4 12 12 10 6

J K L M N O P Q R
· – – – – · – · – · · – – – · – – – · – – · – – · – · – ·

16 12 12 10 8 14 14 16 10

S T U V W X Y Z
· · · – · · – · · · – · – – – · · – – · – – – – · ·
8 6 10 12 12 14 16 14 4

This is what we call a variable length code, specifically a (1, ∗) code. Each individual English letter is
converted to some segment of 0s and 1s, but some letters get longer code segments than others. In fact if
you compare the code lengths (rows 3, 6, 9 of the table) to the probabilities from Chapter 6 you will see
that the order of the letters from shortest to longest Morse codes is quite close to the order from highest to
lowest probability. The mean codeword length for Morse code is ¯̀= 8.16735.

In the above examples each source character a ∈ A is coded as a segment (b1, . . . b`) ∈ B∗. For the fixed
length example ` = 5 for all letters but for Morse code the length of the segment depends on the source
letter: ` = `(a). More generally, instead of coding each source character separately we can break our source
into blocks or source segments of some length n (n-segments) and code each such block into a specific code
segment. If we code blocks of length n into code segments of a fixed length m we will say we have a (n,m)
code. If the code segments are of variable length we will say we have a (n, ∗) code. So Morse code is a (1, ∗)
code and the 5-bit example is a (1, 5) code. (One could also consider using source blocks of variable size,
or even more complicated schemes that don’t decompose into segments that are coded separately at all, but
we won’t pursue those possibilities.)

We will use χ refer to a code. Ulitmately the code is a function χ : AN → BN, but it works by mapping
An → Bm for an (n,m) code, or An → B∗ for a (n, ∗) code, and concatenating the results:

χ(a1, a2, . . .) = χ(a1···n)χ(an+1···2n) · · · .

It may be that certain source segments a1:n never actually occur, so that no code χ(a1:n) needs to be
assigned to them. So in general we will view our code as χ : S → B∗ for some S ⊆ An, as long as S includes
all source n-segments which occur with positive probability.

7.3.2 Theoretical Bounds

We now want to look at simple versions of Shannon’s coding theorems, which are centerpieces of information
theory. These results give some theoretical bounds which relate the entropy H∆ of our Markov source to
features of any code χ which can be successfully decoded to recover the original source text.

For a fixed length (n,m) to be decodable simply means that χ maps each n-segment in S to a distinct
code segment in Bm. I.e. χ : S → Bm should be one-to-one. This requires Bm ≥ #S. If all source n-segments
are possible (S = An), then we must have Bm ≥ An, which we can write as m

n log2B ≥ log2A. We also
know from Theorem 7.1 that log2A ≥ H∆. So we have

m

n
log2B ≥ H∆. (7.3)

This inequality depends on the assumptions that all n-segments in An are coded (i.e. are in S), and that χ
is 1-to-1.

1Listen to it at http://morsecode.scphillips.com/translator.html.
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Variable length codes achieve efficiency by using shorter code segments for more likely source segments.
But it is not enough for χ to be one-to-one on S if we want to be able to decode messages that consist of
more than one S-segment put together. The following example illustrates.

Example 7.1. Suppose we number the characters in E from 1 for A to 27 for , and convert the number of
each character to binary form without leading 0s.

χ(A) = 1, χ(B) = 10, χ(C) = 11, χ(D) = 100, χ(E) = 101, . . . , χ( ) = 11011.

This is one-to-one on individual letters. But observe that all of the segments BC, EA, BAA code to 1011.
So it is not one-to-one on segments. The problem is that in the coded text we can’t tell where the code for
one S-segment ends and the next one begins.

Let S ⊆ An. We will say that an (n, ∗) code χ : S → B∗ is decodable if P (X1:n ∈ S) = 1 and χ is 1-to-1
on S∗ = ∪∞k=1Sk, the collection of all finite messaages we can make up from multiple S-segments. This
means that if two segments (of possibly different lengths but both formed from S) have χ(a∗) = χ(b∗), then
a∗ = b∗. Theorem 7.5 is going to give us a generalization of (7.3) for decodable variable length codes. In
preparation for it we need a couple lemmas.

Lemma 7.3. Suppose a code χ : S → B∗ maps each α ∈ S into a code segment of length `(α). If χ is
decodable then ∑

α∈S
B−`(α) ≤ 1.

Note that there are no probabilities involved here.

Proof. Let L be the largest value of `(α). Start by observing that(∑
α∈S

B−`(α)

)k
=

Lk∑
j=1

cjB
−j ,

where cj counts the number of nk-segments in Sk with coded length = j. The decodable property requires
that cj ≤ Bj , and therefore (∑

α∈S
B−`(α)

)k
≤ Lk.

Taking the kth root, ∑
α∈S

B−`(α) ≤ (Lk)1/k.

Taking the limit as k →∞ we find that (Lk)1/k → 1, and therefore∑
α∈S

B−`(α) ≤ 1.

The inequality of this lemma is called the Kraft inequality in the literature. The lemma has a converse.

Lemma 7.4. If ` : S → N with
∑
α∈S B

−`(α) ≤ 1 then there exists a decodable code χ : S → B∗ with code
segment lengths `(α) for α ∈ S.

Proof. We are given code lengths `(α) satisfying the Kraft inequality and need to show how a decodable
code χ can be built with the prescribed code lengths.

Let cj be the number of σ ∈ S with `(σ) = j. We have to have at least c1 distinct characters in B to
accommodate the assignment of those σ with `(σ) = 1. So we need to have

c1 ≤ B.
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If that is true then we take a subset F1 ⊆ B with exactly c1 elements and assign one of them as χ(α) for
each α with `(α) = 1.

That leaves B − c1 characters in B which will be used as the first character of χ(α) when `(α) ≥ 2. In
particular there are (B− c1)B = B2− c1B length 2 codes available for the c2 segments of S requiring length
2 codes. We can make c2 such assignments provided

c2 ≤ B2 − c1B.

Making these assignments determines a set F2 ⊆ B2 of 2-character codes

F2 = {χ(α) : α ∈ S and `(α) = 2},

none of which use a first character from F1.
That leaves B2−c1B−c2 unassigned length 2 codes with first character not in F1 and first two characters

not in F2. These we can use as the first two characters for codes of length 3 or more. There are a total of
(B2− c1B− c2)B = B3− c1B2− c2B length 3 codes of this type which are available to use as χ(α) for those
α with `(α) = 3. We need assign c3 of these so we require

c3 ≤ B3 − c1B2 − c2B.

Making these assignments determines a set F3 ⊆ B3 of 3-character codes

F3 = {χ(α) : α ∈ S and `(α) = 3},

none of which use a first character from F1 or an initial pair from F2.
Provided that is satisfied we assign a set F3 of exactly c3 of these available length 3 codes as the codes

χ(α) for those α with `(α) = 3.
Continuing in this way we see that we can make all the desired assignments provided we can show that

the equalities
c1 ≤ B
c2 ≤ B2 − c1B

...

cL ≤ BL − c1BL−1 − · · · − cL−1B,

all hold. These all follow from the Kraft inequality
∑
α∈S B

−`(α) ≤ 1.
The resulting code χ is decodable using the following algorithm. Given a coded a coded segment b1b2b3 . . .

first check whether b1 ∈ F1. If so the first segment of the source text is α with χ(α) = b1. But if not then
check whether b1b2 ∈ F2. If so the first segment of the source text is α with χ(α) = b1b2. But if not then
check whether b1b2b3 ∈ F3 . . . In this way we will eventually identify the first segment α of the source text
and which portion of the coded text is χ(α) = b1 · · · b`(α). We now remove that from the coded text and
repeat the process to find the next segment of the source text, and so on.

These two lemmas tell tell us when a given assignment of code lengths `(α) for α ∈ S can be achieved
with a decodable (n, ∗) code but have nothing to do with the entropy of the Markov source, other than that
P (X0:n ∈ S) = 1. To achieve an efficient code we would want to choose the code lengths so that more likely
source texts have shorter code lengths. The next result gives a lower bound on the mean code length per
source n-segment that a decodable code may have in terms of the entropy per term.

Theorem 7.5. For any (n, ∗) code χ : S → B∗ which is decodable we must have

1

n
¯̀log2B ≥ H∆, (7.4)

where ¯̀= E[`(X0:n−1)] is the mean code length per source n-segment.

Observe that this generalizes (7.3) because for a fixed length (n,m) code ¯̀= m.
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Proof. From the lemma above,
∑
α∈S B

−`(α) ≤ 1. Therefore

log2

(∑
α∈S

B−`(α)

)
≤ 0.

We now apply Jensen’s inequality using the convex function − log2(x) in the second line:

0 ≤ − log2

(∑
α∈S

B−`(α)

)

= − log2

(∑
α∈S

p(α)
1

p(α)
B−`(α)

)
≤
∑
α∈S
−p(α) log2

(
1

p(α)
B−`(α)

)
=
∑
α∈S
−p(α) log2(B−`(α)) +

∑
α∈S
−p(α) log2

(
1

p(α)

)
= ¯̀log2B −H(X0:n−1).

Therefore, using Theorem 7.1 e)

¯̀log2B ≥ H(X0:n−1) = H(X0) + (n− 1)H∆ ≥ nH∆.

Dividing by n gives the inequality (7.4).

7.3.3 Nearly Optimal Codes

Theorem 7.5 gives us a theoretical lower bound on ¯̀/n for any code which successfully codes a Markov source
with entropy H∆. Now we will to see that the lower bound is “sharp”, meaning that exist codes for which
¯̀/n is arbitrarily close to the lower bound in the theorem.

Fixed Length Codes

Suppose χ is a 1-1 (n,m) code. Then ¯̀ = m. If every n-segment in A has positive probability and χ is
decodable we know that

m

n
log2B ≥ log2A.

We also know that log2A ≥ H∆, with equality if and only if the Xn of the chain are i.i.d. with uniform
distribution on A. Otherwise log2A > H∆ so no decodable (n,m) code can have a value of m

n log2B which
approaches the lower bound H∆ in (7.4). We can’t find fixed length codes which are nearly optimal in the
sense of Theorem 7.9.

But we can pursue a different idea: allow the code to “fail” on a set of low-probability segments. We will
choose a set T ⊂ An of at most Bm − 1 source segments which will be coded “faithfully,” i.e. in a 1-to-1
manner. There remains at least one segment in Bm which we will designate as the error code �. All α /∈ T
will be coded with the error code, χ(α) = �. This means that some source sequences will produce code
sequences which are not fully decodable. If that happens a coding error has occurred: χ(X0:n−1) = �. We
might consider 1

n log2(#T ) as a measure of the inefficiency of the code, the average amount of information
that is faithfully transmitted per source character, and P (χ(X0:n−1) = �) a measure of the inaccuracy. For
an efficient and accurate code we would like both of these to be small.

The next two results address the idea that that H∆ is the lower limit of 1
n log2(#T ) for accurate codes.

The first of them says that for any sufficiently large n we can design a code with 1
n log2(#T ) as close to H∆

as we like and probability of error as small as we like.

Theorem 7.6. Given any ε, δ > 0 there exists N so that for every n ≥ N there exists an (n,m) code χ as
described above with 1

n log2(#T ) < H∆ + δ and P (χ(X0:n−1) = �) < ε.
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Proof. Let ε, δ > 0 be given. The Shannon-Breiman-McMillan Theorem says that there exists N so that for
any n ≥ N we have

P

(
1

n
log2 p

(n)(X0:∞) > −H∆ − δ
)
> 1− ε.

In other words if T is the set of n-segments a0:n−1 for which

p(n)(a0:n−1) > 2−n(H∆+δ)

then
P (X0:n−1 ∈ T ) > 1− ε.

It follows that
2−n(H∆+δ)#T ≤

∑
α∈T

p(α) ≤ 1,

and so 1
n log2 #T ≤ H∆ +δ. Now just choose m so that #T < Bm−1. Then we can map the segments from

T ⊂ An faithfully into Bm. And the probability of encountering a segment not in T is less than 1−P (T ) < ε.
Thus we have an (n,m) code with the desired properties.

From the proof it appears that we may need to use a very large block size n to get 1
n log2 #T close to

H∆. The next theorem says that if 1
n log2 #T ≤ H∆ − δ then for long source texts we are very likely to

encounter coding errors. Even if the block size n is small, once the overall length of the source text nk is
big enough the probability of encountering a coding error will be large. Using single blocks of very large size
won’t overcome this. In brief, H∆ is the lowest that 1

n log2(#T ) can go for codes with low probability of
coding errors on large blocks.

Theorem 7.7. Given the Markov chain and values ε, δ > 0 there exists N with the following property.
Suppose χ is any (n,m) code with

1

n
log2(#T ) < H∆ − δ

and T is the set of n-segments which are coded uniquely by χ. If nk > N then

P (X0:nk−1 /∈ T k) > 1− ε.

Proof. First observe that an (n,m) code can be considered as a (nk,mk) code by concatenating k blocks at
a time. The set of nk-segments on which the concatenated code is one-to-one is simply T k, and

1

nk
log2(#T k) =

1

nk
log2((#T )k) =

1

n
log2(#T ).

This means it is enough to prove the theorem just for k = 1.
The hypothesis that 1

n log2(#T ) < H∆ − δ implies

#T = 2log2(#T ) < 2n(H∆−δ).

Let Vn be the set of those n-segments with p(n)(α) < 2−n(H∆−δ/2). Then

P (X0:n−1 ∈ T ∩ Vn) ≤ 2n(H∆−δ)2−n(H∆−δ/2) = 2−nδ/2.

Now we can write

P (X0:n−1 ∈ T ) ≤ P (X0:n−1 /∈ Vn) + P (X0:n−1 ∈ T ∩ Vn)

≤ 1− P (X0:n−1 ∈ Vn) + 2−nδ/2.

The right side does not depend on the code χ, only on the chain and the values of n and δ. We know
that 2−nδ/2 → 0 as n → ∞, and the Shannon-Breiman-McMillan implies that P (X(n) ∈ Vn) → 1. So
there is an N for which the right side is < ε for all n > N . The inequality applies to all (n,m) codes with
1
n log2(#T ) < H∆ − δ. Thus if n > N and 1

n log2(#T ) < H∆ − δ then we have a failure probability of at
least 1− ε.
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Variable Length Codes

Next we will see that variable length codes can get arbitrarily close to the theoretical limit of (7.4) without
incurring errors. Consider first a finite set S of segments with probabilities p(σ). We want to find a code
χ : S → B∗ with for which the mean codeword length ¯̀

¯̀(χ) =
∑
σ∈S

p(σ)`(σ)

is close to the smallest possible. For the resulting code on A∗ to be decodable requires that χ to be 1-to-1
on S, but that alone is not sufficient, as Example 7.1 showed. A sufficient condition is that no codeword
χ(σ) occurs as an initial segment of some other codeword: χ(ρ) 6= χ(σ)01 · · · . (Example 7.1 does not satisfy
that. For instance χ(D) = 100 = χ(B)0.) Then as we scan the coded text from left to right, as soon as we
recognize a codeword we can be sure that there is no other possible decoding to worry about; we can record
the source segment for the codeword we just found and then resume scanning where we left off. A code with
this property is called a prefix-free code. (Often this is misleadingly shortened to “prefix code”.) The code
constructed in the proof of Lemma 7.4 was prefix-free, which was why it worked.

We can think of a prefix-free code as a (directed) tree with at most B branches (one for each b ∈ B)
descending from each non end node. The ends of the tree (nodes with no branches emanating from them) are
the elements of S corresponding to the coded sequence that leads from the top of the tree to that end node.
For example see the picture at the end of this section for a binary (B = 2) code for E . A code associated
with such a tree is always a prefix-free code because if you reach an end node there are no more branches to
follow, so no other source segment could lead you to that same end node and then past it to a different end
node.

Given a finite set S with probabilities p(σ), α ∈ S the next theorem guarantees the existence of a
prefix-free code with a particular bound on its mean codeword length ¯̀.

Lemma 7.8. Let Y be a random variable taking values in a finite set F , and B any code alphabet. Let
B = #B > 1. There exists a prefix-free code χ : F → B∗ with

¯̀≤ H(Y )/ log2B + 1,

where ¯̀= E[`(Y )].

Proof. Let
p(σ) = P (Y = σ) for σ ∈ F.

Consider the values
`(σ) = d− logB(p(σ))e, σ ∈ F.

(By dxe we mean the ceiling function, i.e. the result of rounding x up to the next highest integer.) We
are going to show that there does exist a prefix-free code using codewords with lengths `(σ). Since `(σ) ≤
− logB(p(σ)) + 1 such a code will have

¯̀=
∑
S
p(σ)`(σ) ≤

∑
S
p(σ)(− logB(p(σ)) + 1) = H(Y )/ log2B + 1,

which is the inequality claimed by the lemma.
To see that there is a prefix-free code with with codeword lengths `(σ) we just need to check that the

inequality of Lemma 7.4 holds. (Inspection of the proof of that lemma shows that it produces a prefix-free
code.) Our definition of the `(σ) values implies B−`(σ) ≤ p(σ). Summing this, we know that∑

S
B−`(σ) ≤

∑
S
p(σ) = 1.
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If we use F = An and Y = X0:n−1 in this lemma then H(Y ) = H(X1) + (n − 1)H∆. We know from
Theorem 7.5 (actually the last line of the proof), that for any decodable code

H(X0:n−1) ≤ ¯̀log2B

and the above result shows that there always exists a code for which

¯̀log2B ≤ H(X0:n−1) + log2B.

Dividing by n, there exists a prefix-free (n, ∗) code with

1

n
H(X0:n−1) ≤ 1

n
¯̀log2B ≤

1

n
H(X0:n−1) +

1

n
log2B.

Since 1
nH(X0:n−1)→ H∆ and 1

n log2B → 0 as n→∞, this says that by choosing a large n there exists an
(n, ∗) prefix-free code with 1

n
¯̀log2B arbitrarily close to the optimum in Theorem 7.5, proving the following.

Theorem 7.9. Given ε > 0 there exists a decodable (n, ∗) code for which all source texts are decodable and

1

n
¯̀log2B < H∆ + ε.

Taken together, Theorems 7.5 and 7.9 show that the entropy per term H∆ is the infimum of 1
n

¯̀log2B
over all decodable (n, ∗) codes. In this sense it delineates exactly how much efficiency is or is not possible
for a given Markov source.

When B = 2 there is a nice iterative construction which will always produce a prefix-free code with
the smallest possible ¯̀ in Lemma 7.8, called the Huffman code. Rather than prove these various assertions
about the Huffman code, we will simply illustrate the procedure with our English alphabet F = E , and the
probabilities we indicated in Chapter 6.

First we sort the alphabet according to the probabilities (smallest to largest):

E = {Z, Q, J, X, K, V, B, Y, W, G, P, F, M, U, C, D, L, H, R, S, N, I, O, A, T, E, }.

Next pick the two characters with the smallest probabilities, Z and Q in our case. Now form a new alphabet
S ′ in which Z and Q are replaced by a single new symbol with probability equal to to the sum of those
we just combined: if we denote the new symbol by [ZQ] its probability will be .00165. This gives the new
alphabet, which we again sort by probabilities:

E ′ = {J, X, [ZQ], K, V, B, Y, W, G, P, F, M, U, C, D, L, H, R, S, N, I, O, A, T, E, }.

Now when we find an optimal code χ′ for S ′ and use it to construct a a code χ for S by letting χ and χ′ be
the same for all but the new combined symbol, and appending a 0 or 1 to χ′([ZQ]) in order to “split” the
character [ZQ]: χ(Q) = χ′([ZQ])1, χ(Z) = χ′([ZQ])0. Now we repeat the procedure on S ′: combine J and X
to get [JX] with probability .002924 and a new alphabet

E ′′ = {[ZQ], [JX], K, V, B, Y, W, G, P, F, M, U, C, D, L, H, R, S, N, I, O, A, T, E, }.

We continue like this

E ′′′ = {[[ZQ][JX]], K, V, B, Y, W, G, P, F, M, U, C, D, L, H, R, S, N, I, O, A, T, E, }
...

until we get down to a reduced alphabet of just two characters, for which an optimal code is obvious. Then
we work backward from that, building the code back up until we reach S. This procedure can be shown to
always produce an optimal prefix-free code; see [8] for a proof. Below is the resulting Huffman code for our
English alphabet E , presented as a binary tree. As an example, our “YES SIR” codes as

0110010010101111010110000100
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The entropy for this alphabet and probability assignments is H(E) = 4.10644, the entropy per term for
the Markov chain is H∆ = 3.36477. The mean codeword length for the Huffman code is ¯̀= 4.13793. Since
n = 1 and log2(B) = 1 we knew that the best we could do was

H(E) = 4.10644 ≤ ¯̀= 4.13793.

That’s pretty good; compare this to the mean codeword length for Morse code, which works out to be
8.16735. To get closer to H∆ we would need to use an (n, ∗) code with a larger n.

0 1

00 01

000 001:E

0000:H 0001

00010:U 00011:C

010 011

0100:R 0101:S 0110 0111:N

01100 01101

011000:B 011001:Y 011010:W 011011:G

10 11

100 101

1000:I 1001:O 1010 1011:A

10100:D 10101:L

110 111:�

1100 1101:T

11000 11001

110000:P 110001

1100010:V 1100011

11000110 11000111:K

110001100 110001101

1100011000:Z 1100011001:Q 1100011010:J 1100011011:X

110010:F 110011:M

Summary

In conclusion, we can view both 1
n

¯̀(χ) log2(B) and 1
n log2(#T ) as measures of the average amount of

information (in bits per source term) that the code χ can transmit in a decodable form (or nearly decodable
in the case of fixed length codes). For both the variable and fixed length codes we have found that the
entropy per term of the source provides the theoretical lower bound on these measures for effective codes.
The theory of information begun by C. Shannon in 1948, and continued by many others since, develops these
ideas much more extensively.

Problem 7.1
Let X be a random variable and Y = f(X). I.e. the value of Y is the result of applying a prescribed function
f to the result X. Prove that H(Y ) ≤ H(X). (f need not be one-to-one.)
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Problem 7.2
In the Monte Hall problem of Example 3.14, compare the entropy of 1C 6=2 with H (assuming H is as described
using the conditional probabilities γ and 1− γ). Which has greater entropy?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MHent

Problem 7.3
Using the Markov transition probabilities for English from Chapter 6 calculate the entropy per term for
English text.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MCEnglish

Problem 7.4
Let Xn be the Markov chain on S = {a, b, c, d} with transition matrix

P =


13
16

1
16

1
16

1
16

0 0 0 1
1
4

1
4

1
4

1
4

1 0 0 0

 ,

started with the corresponding equilibrium distribution. Calculate the entropy H∆ for this chain. With
B = {0, 1} find a Huffman (1, ∗) code and its mean word length ¯̀. Find a Huffman (2, ∗) code (i.e. a
Huffman code for X0:1 on S2) and it’s mean word length. Compare the value of H∆ and the two values of ¯̀

and discuss in light of the results of this chapter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC4

Problem 7.5
What does Lemma 7.3 say if all `(a) = 1? What if all `(a) = m?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . One

For Further Study

Most of this chapter is based on Blahut [8] and Khinchin [35]. If you want to read more about coding and
cryptography you might also consider [37] and [62].
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Chapter 8

Optimization of Markov Chains

In this chapter we consider some optimization problems involving Markov chains.

8.1 Optimal Stopping

Suppose there is a hike you want to take, but you are waiting for a day with good weather. Each day when
you get up you check the weather and decide whether to go or wait for a better day. Imagine that the
weather from day to day is described by a Markov chain Xn with a state space S consisting of some set of
possible weather descriptions: snowy, heavy rain, light rain, overcast, clear but cold, clear and moderate,
hot, . . . . Your personal hiking preferences are described by a function φ which assigns a numerical value to
each weather description: perhaps φ(snowy) = 0 and φ(clear and moderate) = 10 for instance. Given the
transition probabilities for the chain and your weather preference function φ how should you pick the day on
which you take your hike? To be specific, if T denotes the day on which you eventually take your hike, how
can you choose T to make E[φ(XT )] as large as possible? If there is no cost for waiting you could just wait
for the perfect hiking conditions. But suppose you have already rented some equipment for the trip and it
costs you additional rental fees for each extra day you rent it while waiting. Now it is not so simple.

For another example suppose the chain Xn describes the market price on day n of a share of stock in
the XYZ Corporation. You own an (american) call option for one share of this stock with an exercise price
of $20 and an expiration date of T = 365. This option entitles you to buy one share of the stock for $20,
regardless of the market price, at any time T ≤ T . (It’s like a sale coupon for one share of the stock, good
until T .) If Xn = 36 and you decide to exercise your option at time T = n you will pay $20 and receive
the share of stock worth $36, for a net gain of 36 − 20 = $16. But on a day when Xn = 12, why would
you pay $20 for something you could buy directly for $12? Your option would be worthless to you in those
circumstances. In general if you exercise your option at time n the benefit to you will be

φ(Xn) = max(0, Xn − 20).

Assuming you know the transition probabilities of the Markov chain, the problem is to choose T ≤ T so as
to maximize E(φ(XT )].

Each of the above is an optimal stopping problem. The general form of this problem will involve a Markov
chain Xn with state space S and transition matrix P. There will be a specified reward function φ : S → R
and a continuation cost function c : S → R. We observe Xn as time proceeds, deciding at each time n
whether to stop now and receive reward φ(Xn) or pay c(Xn) and continue, stopping at some later time. At
time n our decision whether to stop or not can depend only on the values X0, . . . , Xn observed so far, not
on any future values Xk, k > n. The time at which we eventually stop will be denoted T . Its value depends
both on the strategy we are using to make our stop-or-continue decisions and the evolution of the chain.
Thus T is a time-valued random variable with a special dependency property which we will describe below,
what we call a stopping time. We may require that T be obey an upper bound, T ≤ T ; these are called
finite time horizon problems. If any T ≤ ∞ is allowed we call it an infinite time horizon problem. (T =∞
corresponds to forever putting off the decision to stop; you pay continuation costs indefinitely and never
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receive the reward.) The goal is to formulate a strategy for selecting T to maximize the expected reward:

E

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
. (8.1)

The 1T<∞ means that we only get the reward φ(XT ) if we do stop at a finite time; if T = ∞ there is no
reward, but we do pay the continuation costs. We will make the following assumptions.

• 0 ≤ φ(·) ≤ bφ for a constant bφ,

• 0 ≤ c(·).

There are many possible generalizations of this problem. For instance we might want to allow φ(·) to be
unbounded. If we were considering when to sell a revenue generating asset we might want to allow c(x) < 0
in order to describe the benefit of continuing to hold the asset. In financial situations it is appropriate to
use a discount rate λ > 0 to compute present values of future rewards (and costs), seeking a strategy to
maximize

E

[
e−λT φ(XT )1T<∞ −

T −1∑
n=0

e−λnc(Xn)

]
. (8.2)

The theory is cleaner for a positive discount rate, but weakening our assumptions on φ(·) and c(·) intro-
duce more technical issues. We will limit our discussion the undiscounted problem (8.1) under the above
hypotheses on φ(·) and c(·) because the main ideas are present without as many technicalities.

Stopping Times

We will need a strategy to tell us what to look for as we observe X0, X1, . . . and decide when to stop. We
could choose T in some mindless way, for instance just decide to stop at T = 5 regardless of what the chain
does and take φ(X5) as our reward, for better or worse. But this makes no use of our observations of Xn;
surely we can do better by using those observations together with knowledge of the transition probabilities.
If there are no continuation costs (c(·) ≡ 0) we might look for a state s∗ ∈ S which maximizes φ(·) and wait
until the first time T = n that which Xn = s∗:

T = min{n : Xn = s∗}.

If Xn is recurrent then P (T < ∞) = 1 and this clearly gives us the largest possible reward φ(XT ). But if
Xn is transient , or φ(s) has no maximum, or c 6= 0 then the above strategy is usually a poor choice. In
general we need to design a strategy more intelligently.

The time-valued random variable T is the result of following some stopping strategy as the chain evolves.
Each different strategy corresponds to a different random variable T . But T cannot be just any time-valued
random variable. The event {T = 5} can depend on X0, . . . , X5 but not on X6 or any of the later states of
the chain. Similarly {T = 6} is allowed to depend on X0, . . . , X6, but not X7. In other words T must be a
stopping time, as we defined on page 62.

For example suppose our strategy was to take T to be the first time n for which φ(Xn) exceeds some
threshold, say φ(Xn) ≥ 25. Then to decide whether T ≤ 12 or not we only need to examine X0, . . . X12. So
this is a stopping time. (It could be however that φ(Xn) ≥ 25 never happens, in which event we would say
T =∞.) Generally the first time something happens is a stopping time. In contrast supposeM is the time
at which φ(Xn) takes its largest value over all n = 0, 1, 2, . . .. In general to decide whetherM≤ 12 requires
us to look ahead at all the Xn to see if any of the future positions of the chain give larger φ-values than
X0, . . . X12 did. This M may be a legitimate random variable, but in general it is not a stopping time.

Our problem is to maximize (8.1) over all stopping times T in the infinite horizon case, or all stopping
times with T ≤ T in the finite horizon case.

There are various ways we can modify stoping times to obtain new stopping times. For instance if T is
a stopping time and N is an integer (not random), then

T ∧N =

{
T if T ≤ N
N if N < T
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is also a stopping time. That is because the event {T ∧N ≤ n} is the same as {T ≤ n} for n ≤ N , and for
n > N is the certain event Ω, which always depends on X0:n. We can also form the maximum:

T ∨N =

{
T if T ≥ N
N if T < N

The following is the key technical result which is needed for the results of this chapter. Please recall our
“operator notation”: for a function f(s, n) of state and time we write Pf(i, n) for

Pf(i, n) =
∑
j∈S

pi,jf(j, n).

Thus the Markov property says that

E[f(Xn+1, n+ 1)|X0:n = i0:n] = Pf(in, n+ 1),

or as a generalized conditional,

E[f(Xn+1, n+ 1)|X0:n] = Pf(Xn, n+ 1).

Lemma 8.1. Suppose T is a bounded stopping time, and f : S × Z+ → R is a bounded function. Then for
any k = 0, 1, 2, . . . we have

E[f(XT , T ) |X0:k]1T>k = f(Xk, k)1T>k + E

[T −1∑
n=k

[Pf(Xn, n+ 1)− f(Xn, n)]

∣∣∣∣∣ X0:k

]
1T>k.

Proof. The key calculation is this:

E[f(Xn+1, n+ 1)− f(Xn, n) |X0:n] = E[f(Xn+1, n) |X0:n]− f(Xn, n)

= Pf(Xn, n+ 1)− f(Xn, n).

This is just the basic Markov property and the fact that f(Xn, n) is X0:n-determined. Since {T > n} is
X0:n-determined, Proposition 3.8 implies that

E [ [f(Xn+1, n+ 1)− f(Xn, n)]1T>n |X0:n] = E[f(Xn+1, n+ 1)− f(Xn, n) |X0:n]1T>n

= [Pf(Xn, n+ 1)− f(Xn, n)] 1T>n.

Now by the Tower Law, for k ≤ n we can say

E [ [f(Xn+1, n+ 1)− f(Xn, n)]1T>n |X0:k] = E [ [Pf(Xn, n+ 1)− f(Xn, n)] 1T>n |X0:k] . (8.3)

Next write f(XT , T )1T>k using a telescoping sum:

f(XT , T )1T>k = f(Xk, k)1T>k +

T −1∑
n=k

[f(Xn+1, n+ 1)− f(Xn, n)]1T>k.

Suppose N is an (integer) upper bound on T . Then we can write

T −1∑
n=k

[· · · ]1T>k =

N∑
n=k

[· · · ]1T>n,

because on both sides the sum is over n = k, . . . , T − 1. Therefore

f(XT , T )1T>k = f(Xk, k)1T>k +

N∑
n=k

[f(Xn+1, n+ 1)− f(Xn, n)]1T>n.
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Take conditional expectations of both sides and use (8.3) to complete the proof:

E[f(XT , T ) |X0:k]1T>k = E[f(XT , T )1T>k |X0:k]

= E

[
f(Xk, k)1T>k +

N∑
n=k

[f(Xn+1, n+ 1)− f(Xn, n)]1T>n |X0:k

]

= E

[
f(Xk, k)1T>k +

N∑
n=k

[Pf(Xn, n+ 1)− f(Xn, n)] 1T>n

∣∣∣∣∣ X0:k

]

= E

[
f(Xk, k)1T>k +

T −1∑
n=k

[Pf(Xn, n+ 1)− f(Xn, n)] 1T>k

∣∣∣∣∣ X0:k

]

= f(Xk, k)1T>n + E

[T −1∑
n=k

[Pf(Xn, n+ 1)− f(Xn, n)]

∣∣∣∣∣ X0:k

]
1T>k.

Problems with Finite Time Horizon

Let’s first consider problems with a specified time constraint

T ≤ T,

where T is a prescribed constant integer. At each time n ≤ T our decision whether or not to stop (if we
haven’t already) may involve the value of n. Like many of the problems in preceding chapters, we can solve
this by working with an appropriate function of position and time. We define V (s, n) to denote the maximum
expected future reward less costs assuming we start a time n from Xn = s:

V (s, n) = sup
n≤T ≤T

Es,n

[
φ(XT )−

T −1∑
t=n

c(Xt)

]
. (8.4)

(The notation Es,n[·] means that we start the chain at time n (not time 0 as before) and with initial state
Xn = s.) Of course only stoping times n ≤ T ≤ T are included in the supremum. This V is usually called
the optimal value function.

Suppose for the moment that we have somehow determined the values of V (s, n) for all s ∈ S and
n = 0, . . . , T . Imagine that we start at time 0 and reach t = n and Xn = s without having stopped yet. We
have to decide whether to stop now or continue at least one step longer. If V (s, n) = φ(s) then we should
stop now, because no strategy for stopping in the future will produce a better expected future reward (less
costs). But if φ(s) < V (s, n) then there is a better policy than stopping now, so we should continue. So it
seems clear that best strategy is to stop the first time that Xn = s has V (s, n) = φ(s). Of course if we reach
time T then we have to stop.

To actually carry out this strategy we need work out V (s, n) in advance. We can (in principle) solve for
V (s, n) by working backward from n = T to n = 0. If we are at the final time n = T there is no choice left;
we most stop now and take our reward. So we have

V (s, T ) = φ(s).

Next suppose we are at time n < T and the current state is Xn = s. Suppose also that we know the values
of V (n+ 1, ·). We can either stop now or continue at least one more step. Suppose we continue at least one
more step. We pay c(s) to continue and find ourselves at some Xn+1 = x. Then we should follow an optimal
strategy for starting at Xn+1 = x. Now observe that if T > n then

φ(XT )−
T −1∑
t=n

c(Xt) = −c(Xn) +

[
φ(XT )−

T −1∑
t=n+1

c(Xt)

]
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The quantity in square brackets is what an optimal strategy starting from Xn+1 would minimize (in mean).
Its optimized mean, conditional on Xn+1, is V (Xn+1, n + 1). So it seems that the best we could do with a
stopping time T > n from Xn = s would be

Es,n[−c(Xn) + V (Xn+1, n+ 1)] = −c(s) + Es,n[V (Xn+1, n+ 1)]

= −c(s) + PV (s, n+ 1). (8.5)

On the other hand if we stop at time n our reward is simply φ(s). So V (s, n) must be the larger of φ(s) and
the expression in (8.5). So we calculate V (·, n) from V (·, n+ 1) as

V (s, n) = max(φ(s),−c(s) + PV (s, n+ 1)), (8.6)

for each state s ∈ S.
Thus starting with V (·, T ) = φ(·) and iterating (8.6) backwards (n = T − 1, T − 2, . . . , 3, 2, 1, 0) we will

be able to construct the optimal value function V (·, ·), and with that in hand we know what an optimal
stopping strategy should be.

Example 8.1. To illustrate the above procedure let’s consider a primitive example of an American call option.
Xn will be the Markov chain on S = {5, 10, 15, 20, 25, 30} with transitions Xn → Xn−5, Xn+0, Xn−5 with
equal probabilities of 1/3 except at the end points, where the two possible transitions Xn → Xn + 0, Xn ± 5
are equally likely. We take

φ(s) = max(s− 15, 0).

There is no continuation cost: c ≡ 0. We take T = 10 The calculation is rather simple in Matlab. We
use an 6× 11 array v in which v(i,n) will hold V (5i, n− 1). The first index i coresponds to state s = 5i;
since Matlab indexes arrays starting at 1, not 0,the second index n corresponds to t = n− 1. In brief, we
calculate the values of φ(s) and put them in a (column) vector:

phi=[0,0,0,5,10,15]’

We assign the values V (·, T ) = φ(·) with the statement

v(:,11)=phi;

and then carry out (8.6) by iterating

v(:,i)=max(phi,P*v(:,i+1));

as i goes from 10 to 1. The results are displayed in the following graphic; the higher values of n are the
lower curves, and the horizontal axis uses the array index i instead of the corresponding value s = 5i. The
second graph (produced by spy(v==phi*ones(1,11))) shows the (i,n) pairs at which it is optimal to stop.
The optimal strategy (produced by spy(v==phi*ones(1,11))) is to stop (T ∗ = t) when (t+ 1, Xt) first hits
a dot in the figure.
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We now want to prove that our prescription above does produce an optimal strategy. We could do this
directly by by writing out proofs for all the steps in our reasoning above but that is long and tedious. For
instance we would have to be explicit about how we take optimal stopping times, one for each Xn+1 starting
value, and assemble them into a single stopping time for starting at Xn = s. Instead we start with the
function defined by (8.6) and then prove that it is in fact the optimal value function.

Theorem 8.2. The function V (s, n) for s ∈ S and n = 0, 1, . . . , T defined by V (·, T ) = φ(·) and the iteration
(8.6) is the optimal value function for the finite time horizon optimal stopping problem with T ≤ T . Given
a starting time n and position Xn = s, define the stopping time T ∗ to be the smallest t with n ≤ t ≤ T for
which V (Xt, t) = φ(Xt). Then T ∗ is optimal.

Proof. We assume that V (·, ·) is the function produced by the iteration (8.6) starting from V (·, T ) = φ(·).
Consider any stopping time n ≤ T ≤ T and any starting point Xn = s. Applying Lemma 8.1 we have

V (s, n) = Es,n

[
V (XT , T )−

T −1∑
t=n

[PV (Xt, t+ 1)− V (Xt, t)]

]
.

But we know from (8.6) that
V (Xt, t) ≥ −c(Xt) + PV (Xt, t+ 1),
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which rearranged says that
−[PV (Xt, t+ 1)− V (Xt, t)] ≥ −c(Xt).

We also know that V (XT , T ) ≥ φ(XT ). Making these substitutions we find that

V (s, n) ≥ Es,n

[
φ(XT )−

T −1∑
t=n

c(Xt)

]
.

Now consider T ∗. As the first time (n or larger) that V (Xt, t) = φ(Xt) we know that T ∗ is a stopping

time. Since V (XT , T ) = φ(XT ) is always true, we know that T ∗ ≤ T . The t’s in the sum
∑T ∗−1
t=n are all

t < T ∗, so it must be that V (Xt, t) 6= φ(Xt). But then (8.6) says that

V (Xt, t) = −c(Xt) + PV (Xt, n+ 1),

so that
−c(Xt) = [PV (Xt, t+ 1)− V (Xt, t)].

And since V (XT ∗ , T ∗) = φ(XT ∗) the substitutions we made above are all equalities in this case, so we find
that

V (s, n) = Es,n

[
φ(XT ∗)−

T ∗−1∑
t=n

c(Xt)

]
.

It now follows that V defined by (8.6) is the same as (8.4).

Problems with Infinite Time Horizon

Next we remove the restriction T ≤ T and allow any T ≤ ∞. The situation is a little simpler now, because
the optimal value function will be a function of the state variable alone, V (x). It will no longer depend on
the time variable t. But by including the possibility that T = ∞ we are allowing strategies that continue
waiting for some combination of circumstances that might never actually occur. If that happens there is no
payoff, because

φ(XT )1T<∞ = 0 when T =∞.

This complicates things because waiting for the first time V (Xn) = φ(Xn) may produce T =∞ and may be
non-optimal!

Dealing with unbounded and possibly infinite T is the principal technical issue we face in the proofs
below. The next lemma provides the technical tool that will allow us to use T = limN→∞ T ∧N in certain
expectations.

Lemma 8.3. Suppose that T is a stopping time for which

−∞ < Es

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
.

Then

lim
N→∞

Es

φ(XT ∧N )1T<∞ −
(T ∧N)−1∑
n=0

c(Xn)

 = Es

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
.

Proof. Let

B = Es

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
.

Then

Es

[T −1∑
n=0

c(Xn)

]
≤ Es [φ(XT )1T<∞]−B ≤ bφ −B <∞.
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Since
(T ∧N)−1∑
n=0

c(Xn)→
T −1∑
n=0

c(Xn)

it follows from the Dominated (or Monotone) Convergence Theorem that

Es

[T ∧N−1∑
n=0

c(Xn)

]
→ Es

[T −1∑
n=0

c(Xn)

]
.

Since
φ(XT ∧N )1T<∞ → φ(XT )1T<∞

and |φ(XT ∧N )1T<∞| ≤ bφ the Dominated Convergence Theorem applies again to tell us that

Es [φ(XT ∧N )1T<∞]→ Es [φ(XT )1T<∞] .

Subtracting these two limits gives the assertion of the lemma.

We start by characterizing the optimal value function,

V (s) = sup
T
Es

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
,

where T ranges over all stopping times. The same reasoning which led to (8.6) now suggests that V (·) should
solve equation (8.7) of the following theorem. But as before, we will start by defining V (·) in terms of this
equation and then proving that V (·) really is the optimal value function.

Lemma 8.4. There exists a bounded function V : S → R which solves

V (s) = max(φ(s),−c(s) + PV (s)), s ∈ S, (8.7)

and which is less than or equal to every other function u(s) which solves

u(s) ≥ max(φ(s),−c(s) + Pu(s)) for all s ∈ S.

Notice that because φ(s) is nonnegative any solution V must be nonnegative. Likewise any function u(·)
satisfying the inequality of the theorem must be nonnegative.

Proof. Starting with v0(s) = φ(s), define the sequence of functions

vn+1(s) = max(φ(s),−c(s) + Pvn(s)). (8.8)

The bound φ(s) ≤ bφ for all s implies that Pφ(s) ≤ bφ, and therefore −c(s) + Pφ(s) ≤ bφ as well (because
c(s) ≥ 0). Therefore v1(s) ≤ bφ. It follows by induction that vn(s) ≤ bφ for all n and s.

Observe also that v1(s) ≥ φ(s) = v0(s) for all s. This implies that

Pv1(s) ≥ Pv0(s)

−c(s) + Pv1(s) ≥ −c(s) + Pv0(s)

max(φ(s),−c(s) + Pv1(s)) ≥ max(φ(s),−c(s) + Pv0(s))

v2(s) ≥ v1(s).

We can repeat this inductively to see that (vn(s)) is an increasing sequence, for each s. Since it is a bounded
increasing sequence we know that its limit exists. So we can define

V (s) = lim
n→∞

vn(s).

This function obeys the same bounds 0 ≤ V (s) ≤ bφ as all the vn(s). By taking limn→∞ on both sides of
(8.8) we see that V (·) solves (8.7). (Note that if S is infinite then Pvn(s) is an infinite series, but since all
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terms are nonnegative and the vn(s) are increasing, limn Pvn(s) = P(limn vn)(s) is valid by the monotone
convergence theorem for infinite series.)

Now suppose u(·) solves the u-inequality of the theorem. Then

v0(s) = φ(s) ≤ u(s).

It follows that

v1(s) = max(φ(s),−c(s) + Pv0(s)) ≤ max(φ(s),−c(s) + Pu(s)) ≤ u(s).

Repeating this inductively we find that vn(s) ≤ u(s) for all n, and consequently V (s) ≤ u(s) as well.

In the case of c(s) ≡ 0 the u-equation of the theorem says that φ(s) ≤ u(s) and Pu(s) ≤ u(s). The
latter is often called a superharmonic or excessive function for the chain. Thus for 0 ≡ c(·), the function
V (·) is referred to as the minimal superharmonic majorant or minimal excessive majorant of φ(·). The next
example illustrates this graphically.

Example 8.2. Let Xn be the random walk on {1, . . . , 20} with absorption at the endpoints, 1 and 20.
Take 0 ≡ c(·) and the reward function φ(i) as illustrated by the dots in the figure below. For u(·) to be
superharmonic in this example means that for each 1 < i < 20,

u(i− 1) + u(i+ 1)

2
≤ u(i).

Graphically this says that u(i) must lie on or above the straight line connecting its two neighbors on the
graph. The solid line is the graph of V (·), the minimal superharmonic majorant. This is what you get if you
draw a string tightly over the points on the graph of φ(·) and tie the ends at φ(1) and φ(20).
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The set H = {1, 4, 12, 16, 18, 20} of points where V (i) = φ(i) are the states where an optimal policy should
stop, as we will see.

Theorem 8.5. The function V (s) of Lemma 8.4 is the optimal value function of the optimal stopping
problem.
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Proof. Since V (s) refers to the function constructed in the proof of Theorem 8.4, we will want a different
notation to refer to the optimal value function. We will use

W (s) = sup
T
Es

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
.

Our goal is to prove that V (s) = W (s). (Once the proof is over we will no longer need the separate notation
W .)

Begin by observing that the iteration (8.8) is the same as (8.6), just using different notation. They both
start with φ(·). What we called vn(s) in (8.8) is identical with what we called v(s, T − n) in (8.6). So our
vn(s) is the optimal value function for the stopping problem with stopping times contained by T ≤ n. Such
a T is still allowed in the unconstrained problem, so we know that for T ≤ n we must have

Es

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
≤W (s).

Moreover the supremum on the left side over T ≤ n gives us vn(s). This shows that vn(s) ≤ W (s) for each
n. Taking the limit implies that

V (s) ≤W (s).

To establish inequality in the other direction we want to show that for any stopping time,

Es

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
≤ V (s). (8.9)

This will imply that W (s) ≤ V (s) and complete the proof. So consider any stopping time T . If it turns out
that

Es

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
< 0

then we don’t have to do anything, because we know 0 ≤ V (s). So suppose that

0 ≤ Es

[
φ(XT )1T<∞ −

T −1∑
n=0

c(Xn)

]
. (8.10)

Pick any integer N and consider the bounded stopping time T ∧N . By Theorem 8.2 we can say that

Es

φ(XT ∧N )1(T ∧N)<∞ −
(T ∧N)−1∑
n=0

c(Xn)

 ≤ vN (s) ≤ V (s).

Notice that 1T<∞ ≤ 1 = 1(T ∧N)<∞, so we make the left side even smaller if we make that change.

Es

φ(XT ∧N )1T<∞ −
(T ∧N)−1∑
n=0

c(Xn)

 ≤ vN (s) ≤ V (s).

By virtue of (8.10) we can apply Lemma 8.3. Letting N →∞ implies (8.9). Taking the supremum over all
stopping times T we find that

W (s) ≤ V (s),

completing the proof.

Example 8.3. The Best Offer Problem.
Imagine you are trying to sell your house. Offers come in one at a time given by an i.i.d. sequence Xn.

We will suppose the Xn > 0 are discrete with pi = P (Xn = xi) and that E[|Xn|] < ∞. After receiving
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an offer you must decide whether to accept it or reject it. If you accept the offer Xn your receive Xn in
exchange for your house. If you reject it you pay c > 0 in taxes, maintenance and upkeep costs before the
next offer comes in. The problem is to determine the strategy for deciding when to accept or reject an offer
so as to maximize your expected net gain.

We can view Xn as a Markov chain with pi,j = pj for the transition xi → xj . The reward function is
φ(x) = x and the continuation cost is a constant c > 0. We seek the optimal value function V (x) (defined
for the set of possible offer values x = xi), which must satisfy

V (x) = max(x,−c+ PV (x)).

Now −c+ PV (x) = −c+ E[V (X)] does not depend on x, so is a constant which we will call α. Thus V (x)
is of the form

V (x) = max(x, α).

We need to determine the value of α. It is determined by the equation

α = −c+ E[V (X)]

= −c+ E[max(X,α)]

c = E[max(X,α)− α]

= E[max(X − α, 0)].

So if we define the function ψ(a) by

ψ(a) = E[max(X − a, 0)] =
∑
i

(xi − a)+pi

the α will be the value of a which solves ψ(a) = c.
Some elementary properties of ψ(a) are as follows.

• ψ(a) ≥ 0;

• ψ(a) is a continuous function of a;

• ψ(a) is strictly decreasing for a < maxi xi, and ψ(a) = 0 for maxxi ≤ a;

• lima→−∞ ψ(a) =∞, ψ(0) = E[X], and lima→+∞ ψ(a) = 0.

It follows that for any 0 < c there will be a unique solution α. For c < E[X] the solution will be α > 0 but
for E[X] ≤ c < maxxi the solution will be α ≤ 0. What this means for the optimal strategy is that if you
get an offer Xi < α then Xn < V (Xn) so it is best to reject this offer and wait. But when you get an offer
Xn ≥ α then Xn = V (Xn) so you can’t do any better than stopping now. Notice that if E[X] ≤ c then
α ≤ 0 so every offer will satisfy α ≤ Xn; you should simply take the first offer regardless!

Let’s consider some particular cases. First suppose the Xn are the outcomes of a fair dice roll, and c = 1.
Here is the graph of ψ(a).
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We find that ψ(3) = 1 = c so α = 3. We accept the first offer Xn ≥ 3.
For a different example suppose the Xn has a Poisson distribution with λ = 5. The graph of ψ(a) is as

displayed here.
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If we again take c = 1 we solve ψ(a) = 1 numerically to find that α = 4.780 . . .. Since the Xn are always
integers, the optimal policy is to accept the first offer Xn ≥ 5.

Next we want to explore the connection between the optimal value function V and optimal stoping times.
By analogy with the finite time horizon case, we would expect to be able to form an optimal stopping time
by finding the set

H = {s ∈ S : V (s) = φ(s)},

and taking TH to be the first time that Xn ∈ H. Unfortunately this can fail, as the next example shows.

Example 8.4. Consider the chain with state space N and the following transition probabilities.

pn,1 = 1/n2, pn,n+1 = 1− 1/n2, pn,k = 0 otherwise.

In other words the only possible transitions are n→ n+ 1 and n→ 1, with probabilities 1/n2 and 1− 1/n2

respectively. We want to consider the optimal stopping problem with reward function φ(n) = 1 − 1/n for
1 < n and φ(1) = 1 and c ≡ 0. For an initial position n > 1 pick any m > n and let T m be the first time
the chain reaches either 1 or m. Clearly

1 ≥ En[φ(XTm)] ≥ 1− 1/m.

It follows that V (n) = 1 for all n. So H = {1} and TH is the first time that Xn = 1. But the chain is
transient, in other words P (TH =∞) > 0. To see this, consider any X0 = n > 1.

Pn(TH > k) = Pn(X1 = n+ 1, X2 = n+ 2, . . . , Xk = n+ k)

= pn,n+1pn+1,n+2 · · · pn+k−1,n+k.

Now

pj,j+1 = 1− 1/j2 =
j2 − 1

j2
=

(j − 1)(j + 1)

j2
.

So we find that

Pn(TH > k) =
(n− 1)(n+ 1)

n2

(n)(n+ 2)

(n+ 1)2

(n+ 1)(n+ 3)

(n+ 2)2
· · · (n+ k − 2)(n+ k)

(n+ k − 1)2

=
n− 1

n

n+ k

n+ k − 1
.

Therefore

Pn(Th =∞) = lim
k→∞

Pn(TH > k) =
n− 1

n
> 0.
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Thus,

En[φ(XT )1TH<∞] = 1− n− 1

n
=

1

n
.

We see that TH is a rather bad strategy for large X0 = n. In fact no optimal strategy exists for this example,
because an optimal strategy would have to produce XT ∗ = 1 with P (T ∗ < ∞) = 1, which is impossible
because of the transience of the chain!

For infinite horizon problems in general it is possible that no optimal strategy exists. The following gives
us some sufficient conditions for TH to be optimal.

Theorem 8.6. Consider the infinite horizion optimal stopping problem and let H = {s ∈ S : V (s) = φ(s)}
and TH be the first time that Xn ∈ H. TH will be an optimal stopping time if any of the following is true.

a) TH <∞ with probability 1.

b) there exists some optimal strategy T ∗.

c) S is finite.

Part a) says that the possibility of TH =∞ is the only thing that prevents TH from being optimal. Part b)
says that TH will be optimal if anything is. Part c) says that non-optimality of TH is never a concern for
finite state spaces.

To apply this in the Best Offer Problem, note that for 0 < c we have α < maxxi so that with probability
1 there will eventually be an offer with α ≤ Xn. This means part a) of the theorem applies; the strategy we
described above is indeed optimal!

The proof of the theorem is a bit too technical for us so we will not include it. Versions of the three
parts of the theorem, under hypotheses not quite the same as ours, have been proven at various places in the
literature. Part a) is Taylor’s Corollary 1; [61]. Part b) is his Theorem 3 as well as Theorem 3 in Ferguson
[23]. Part c) is explained in Dynkin & Yushkevtich [20].

Finally when there is no optimal strategy, we can always produce a nearly optimal one in a manner
similar to TH . For ε > 0 let

Hε = {s ∈ S : φ(s) ≥ V (s)− ε}.

and define
THε = min{n : Xn ∈ Hε}.

Theorem 8.7. For ε > 0, THε <∞ with probability 1 and is an ε-optimal strategy, meaning that

Es

φ(XTHε )−
THε−1∑
n=0

c(Xn)

 ≥ V (s)− ε.

A proof of a version of this can be found in Taylor [61]; see his Theorem 2 (ii). It is also discussed in Dynkin
& Yushkevtich [20].

Example 8.5. An example which appears in many treatments of optimal stopping is the problem of optimal
choice. (See [20] Chapter 3 for instance, although their analysis is different than ours). You are interviewing
applicants for a job. There is a pool of N ≥ 2 applicants, the number N being known to you. Once you have
interviewed a set of applicants you will be able to rank order them from most qualified to least qualified.
The goal is to offer the job to the most qualified applicant in the pool. (Second best is not acceptable!)
This would be simple if you could interview them all before making the job offer, but the rules are that
after each interview you must offer the job to the person you just interviewed or dismiss them and go on to
interview another applicant. You can’t call an applicant back once you have dismissed them. What should
your strategy be to maximize the probability that you offer the job to the most qualified applicant from the
original pool? If you interview an applicant and find that they are not the best so far, then clearly you don’t
want to offer the job to them. Only when the most recently interviewed applicant is the best you have seen
so far do you need to decide whether or not to offer them the job.

It may not be obvious that there is a Markov chain here, but there is. Let the state space S consist of
the ordered pairs (n, i) where n = 1, . . . , N and i = 0, 1 together with a dead state ∆. The interpretation of
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Xn = (n, i) is that n applicants have been interviewed and the most recent one is the best so far if i = 1, but
not the best so far if i = 0. The chain starts in state (1, 1). From (n, i) there are two possible transitions:

(n, i)→ (n+ 1, 0) with probability
n

n+ 1

(n, i)→ (n+ 1, 1) with probability
1

n+ 1
.

These transition probabilities may seem intuitively reasonable; we will give a careful justification at the end
of our calculations. For now we will take them for granted. To complete the specification of the chain we
include the probability 1 transitions to the dead state:

(N, i)→ ∆ and ∆→ ∆

You might notice that this is really a finite time horizon problem, but for a Markov chain whose transition
probabilities depend on the time of the transition, a nonhomogenous chain. So we have made it homogeneous
by making the time part of the state, and adding the dead state to account for “time has run out”. In this
way we can treat it as an infinite horizon problem. Since there are only a finite number of states, there will
be an optimal strategy. Our goal is to describe it explicitly.

The reward for a given state is the probability that the person you just interviewed is actually the best
in the original pool. This means φ(n, 0) = 0, and we take φ(∆) = 0 because if you didn’t offer the job to
any of the applicants, then you have certainly failed to offer it to the best. For n ≤ N we want φ(n, 1) to be
the probability that the future states of the chain are precisely (n+ 1, 0), (n+ 2, 0), . . . , (N, 0) and then ∆.
Based on the transition probabilities, this probability is

φ(n, 1) =
n

n+ 1

n+ 1

n+ 2
· · · N − 1

N
=

n

N
.

(There is no continuation cost: c ≡ 0.)
Now let’s consider the value function V . For n < N (8.7) becomes the following equations describing V

V (n, 0) =
n

n+ 1
V (n+ 1, 0) +

1

n+ 1
V (n+ 1, 1)

V (n, 1) = max

(
n

N
,

n

n+ 1
V (n+ 1, 0) +

1

n+ 1
V (n+ 1, 1)

)
= max

( n
N
, V (n, 0)

)
.

For n = N we have
V (N, 1) = 1, V (N, 0) = 0.

Starting with these we can work backwards to determine V (n, i). Observe that starting at n = N and
progressing downward the V (n, 0) values start small and the V (n, 1) values start large. In fact as long
as V (n, 0) ≤ n

N we will have V (n, 1) = n
N , (n, 1) ∈ H. So for some segment of the larger n values,

n = k + 1, . . . , N − 1, N we will have V (n, 1) = n
N and

V (n, 0) =
n

n+ 1
V (n+ 1, 0) +

1

n+ 1

n+ 1

N
=

n

n+ 1
V (n+ 1, 0) +

1

N
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We can work this out recursively:

V (N − 1, 0) =
1

N

=
N − 1

N

[
1

N − 1

]
V (N − 2, 0) =

N − 2

N − 1

1

N
+

1

N

=
N − 2

N

[
1

N − 1
+

1

N − 2

]
V (N − 3, 0) =

N − 3

N − 2

N − 2

N

[
1

N − 1
+

1

N − 2

]
+

1

N

=
N − 3

N

[
1

N − 1
+

1

N − 2
+

1

N − 3

]
...

V (n, 0) =
n

N

[
1

N − 1
+ · · ·+ 1

n

]
This remains correct as long as V (n, 0) ≤ n

N , i.e. as long as

1

N − 1
+ · · ·+ 1

n
≤ 1.

But at some k we will find that

1

N − 1
+ · · ·+ 1

k
> 1 ≥ 1

N − 1
+ · · ·+ 1

k + 1
.

That means that

V (k, 0) =
k

N

[
1

N − 1
+ · · ·+ 1

k

]
but (k, 1) /∈ H, and

V (k, 1) = V (k, 0).

As we continue to n = k − 1 we see that V (k − 1, 0) = V (k, 0), and since k−1
N < k

N we have (k − 1, 1) /∈ H
and V (k − 1, 1) = V (k − 1, 0) as well. This will continue for all n ≤ k:

V (n, 0) = V (n, 1) = V (k, 0) for all n ≤ k.

So we have completely solved the problem! Given N we identify k as the largest value for which

1

N − 1
+ · · ·+ 1

k
> 1.

Then the optimal stopping set is
H = {(n, 1) : k < n}.

This means that the optimal strategy is to interview but dismiss the first k applicants regardless of how good
they are, and then offer the job to the next applicant who is better qualified than all who were interviewed
previously. The optimal value function is

V (n, 0) =


n
N

[
1

N−1 + · · ·+ 1
n

]
for k < n

k
N

[
1

N−1 + · · ·+ 1
k

]
for n ≤ k;

V (n, 1) =

{
n
N for k < n
k
N

[
1

N−1 + · · ·+ 1
k

]
for n ≤ k;
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The probability of success is V (1, 1) = V (k, 0).
We can calculate the values k and V (k, 0) for various N . For instance when N = 5 it turns out that

k = 3 and the probability of success is V (1, 1) = .4333. When N = 20 then k = 8 and V (1, 1) = .3854 .

Now we return to justify the transition probabilities that we specified above. Let

A = {1, 2, . . . , N}

be the set of applicants, numbered in the order in which they will be interviewed. Their qualifications
produce a rank ordering of them. We will represent that by a function ρ so that ρ(i) indicates what position
in the ordering applicant i has. For instance ρ(5) = 2 means that the fifth applicant has the second worst
qualifications. Our goal is to offer the job to that applicant j with ρ(j) = N . Now ρ is a permutation on N
elements, a one-to-one mapping from A to itself. (A is doing double duty here, both as the set of applicants
and as the set of ranks.) There are N ! different rankings ρ, and our basic assumption will be that they are
all equally likely, the actual ρ being chosen from among them using a uniform distribution.

Now suppose you have interviewed applicants 1 through n. The ranks of these applicants form a subset
B ⊆ A:

B = {ρ(1), ρ(2), . . . , ρ(n)}.

Let’s use b1, b2, . . . , bn to indicate the elements of B listed in numerical order.
For example, suppose N = 10 and

(ρ(1), ρ(2), . . . , ρ(10)) = (8, 4, 2, 9, 3, 1, 10, 5, 6, 7).

With n = 4 we have

B = {8, 4, 2, 9}
= {2, 4, 8, 9} listed in order,

so that
b1 = 2, b2 = 4, b3 = 8, b4 = 9.

After the fourth interview you don’t know what B is, but you do know the relative order within B, i.e. in
our example you know that

ρ(3) < ρ(2) < ρ(1) < ρ(4).

This corresponds to a certain permutation α of {1, . . . n}. In our example

α(1) = 3, α(2) = 2, α(3) = 1, α(4) = 4.

In general,
ρ(i) = bα(i), for i = 1, . . . , n. (8.11)

The applicants you have not interviewed yet form the set C = Ac. There is a relative ordering γ within C
as well. γ is a permutation of {n+ 1, . . . N} so that if the elements of C listed in order are cn+1, cn+2, . . . cN
then

ρ(j) = cγ(j), for j = n+ 1, . . . , N. (8.12)

In our example,
c5 = 1, c6 = 3, c7 = 5, c8 = 6, c9 = 7, c10 = 10,

and
γ(5) = 6, γ(6) = 5, γ(7) = 10, γ(8) = 7, γ(9) = 8, γ(10) = 9.

This gives us a decomposition of ρ into three parts: a subset B ⊆ A of n elements, a permutation α on
n elements, and a permutation γ on N −n elements. Given the subset size n, each ρ determines B, α and γ
uniquely. Conversely given any B, α and γ we can reconstruct ρ from (8.11) and (8.12). (The complement
C and the numberings bi, cj are completely determined by the choice of B.) In other words we have a
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one-to-one correspondence between ρ and triples (B,α, γ). We can confirm this by counting. There are
(
N
n

)
choices for B, n! choices for α and (N − n)! choices for γ, so the total number of triples is(

N

n

)
n!(N − n)! = N !,

agreeing with the total number of choices for ρ.
The overall ranking ρ is not known to you, but once you have interviews the first n applicants you know

their relative ranking α. If α(n) = n you the chain is in state (n, 1) and if α(n) < n the chain is in state
(n, 0). For a given α there are a total of (

N

n

)
(N − n)! =

N !

n!

possible ρ’s consistent with it, each equally likely.
When you interview the (n + 1)st applicant the overall ranking ρ doesn’t change, but you will have a

new relative ranking α̃ on the n+ 1 applicants you have interviewed so far. It has to be consistent with α,
meaning that the the relative rankings of 1, . . . , n according to α̃ must agree with those according to α. All
that changes is where the new interviewee n+ 1 falls in the ranking relative to 1, . . . , n. So there are a total
of n+ 1 possibilities for α̃ for a given α. Each α̃ is consistent with a total of(

N

n+ 1

)
(N − (n+ 1))! =

N !

(n+ 1)!
,

possible ρ’s. So the conditional probability one of the consistent α̃’s given α is

N !
(n+1)!

N !
n!

=
1

n+ 1
.

Of the n+ 1 possibilities for α̃ which are consistent with α, exactly one has α̃(n+ 1) = n+ 1 so corresponds
to a chain state of (n+ 1, 1).

Problems with Discounting

This yet-to-be-written section is to give a brief summary of how the above results generalize to discounted
case: equation (8.2). This will be worthwhile for discussion of American options in Chapter 10.

8.2 Dynamic Programming and Optimal Control

This yet-to-be-written section is to discuss dynamic programming and optimal control of finite horizon and
discounted problems. Consideration of gambling strategies is a nice place to start the discussion. Some
references are Bertsekas [5] and Puterman [49].

8.3 Optimizing the Mean per Step

This yet-to-be-written section is to discuss optimal control of the long run average cost. See Howard [30]
and Bertsekas [5] for instance.

Problems

Problem 8.1
Consider our standard optimal stopping problem except that instead of φ(·) ≥ 0 we assume only that φ(·) is
bounded below:

φ(·) ≥ −b
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for some constant b. Show that replacing the reward by φ̃(·) = φ(·)+b gives an equivalent problem for which
φ̃(·) ≥ 0 is satisfied. How are the optimal value functions V (·) and Ṽ (·) related? How are optimal stopping
rules for the two versions related?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . neg

Problem 8.2
You roll a fair dice until you either choose to stop or else roll a 1 (at which time you are required to stop).
Your reward is the result of the final dice roll. Your goal is to design a stopping strategy to produce the
largest possible expected reward. Describe this as an optimal stopping problem of the type considered in
this chapter, with a Markov chain having an absorbing state at 1. Find the optimal value function V and
use that to identify the optimal strategy.

Suppose someone proposes the “beat the mean” strategy: stop the first time that either φ(Xn) ≥ E[φ(X1)]
or Xn = 1. Is that optimal?

Repeat the problem using the final dice roll to the fourth power as the reward. Is the beat the mean
strategy optimal here? (Modified from [25].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OSB

Problem 8.3
You are to roll a dice up to N times. After each roll you may stop and keep the value of your most recent
roll, or (if you have not used up your N rolls) roll again. If you get as far as N rolls you must stop and accept
the value of the N th roll. You want to find the strategy which maximizes the expected value of your final
roll. Certainly if you roll a 6 you should stop, and if you roll a 1 you should continue (if you can). For each
of the other values k = 2, 3, 4, 5 there is a number mk so that you should stop if Xn = k and N − n ≤ mk

but roll again if N − n > mk. Find the values of mk.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HW6D

Problem 8.4
Consider a game of chance which works as follows. If your winnings so far are Xn(< 1000) and you play one
more round you will with probability p win an additional (1000−Xn)/2 so that Xn+1 = (1000 +Xn)/2, or
else with probability 1− p you will lose everything so that Xn+1 = 0. Thus your winnings will never reach
or exceed 1000 but could get close if you have a run of good luck. If you stop playing you get to keep your
current winnings. You are forced to stop playing once you loose everything. You want to decide when to
stop playing so as to maximize the expected value of your winnings at the time you stop. It turns out that
the optimal strategy is to stop playing the first time Xn ≥ α but to keep playing as long as Xn < α for
some threshold value α. Find the value of α. (You are not being asked to determine the full optimal value
function V (x) but what you are told about it above is enough to find α.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FE4

Problem 8.5
You are driving along a one-way street with parallel parking on one side. Suppose that the parking places
are occupied with probability p, each parking space being independent of the others. Your destination is at
parking space #100 and you want to park as close as possible to that. You start at parking space #1 and
as you drive along you can only see the parking space closest to you; you can’t see ahead. You can’t turn
around and go back. So as you encounter each empty parking space you must decide whether to park there
or keep going and hope to find a vacant space closer to #100. If T is the number of the space you end up
parking in, what should your strategy be to minimize E[|T − 100|]? (Modified from [49].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parking

Problem 8.6
Suppose Xn is a Markov chain (on a countable state space S) and f : S → R is a bounded function. We
know that there exists a smallest nonnegative excessive function v0 which majorizes f . This means that v0
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is the smallest function so that for each x ∈ S all the following inequalities hold:

v0(x) ≥ 0, v0(x) ≥ f(x), v0(x) ≥
∑
y∈S

px,yv0(y). (8.13)

a) Show that for each x ∈ S, one of the above inequalities must be an equality.

b) Suppose that v is some function so that for each x ∈ S the inequalities (8.13) hold (for v) and one of
them is an equality. (For different x, the equality may be for a different one of the three inequalities.)
Give an example to show that it is not necessarily true that v = v0.

c) Suppose in addition to the hypotheses of b) that the Markov chain is irreducible and recurrent, and
that there is at least one x at which either v(x) = 0 or v(x) = f(x). Prove that v = v0. (Hint: Use
Problem 1.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S9Mid2

Problem 8.7
Suppose Xn is our standard symmetric random walk on Z. Take the reward function φ(i) = 10e−i

2/100

and continuation cost c(i) = |i|. Find an optimal policy for the infinite horizon optimal stopping problem.
(Observe that if |Xn| is large enough you should stop immediately, because the cost of continuing for a single
step is more than you can ever make up for from a future reward φ(XT ).)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RW

Problem 8.8
Consider the general optimal stopping problem as in Theorem 8.6.

a) Is it possible that H = ∅?

b) Show that if S is finite then H is not empty.

c) Explain why any finite, communicating, recurrent class must contain a point of H.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . phimax

Problem 8.9
This problem explores the asymptotic behavior of the solution to the problem of optimal choice as N →∞.
The special value of k depends on N so we will denote it by kN here. It is the integer determined by

1

N − 1
+ · · ·+ 1

kN
> 1 ≥ 1

N − 1
+ · · ·+ 1

kN − 1
.

Use the inequalities ∫ N

m

1

x
dx <

1

N − 1
+ · · ·+ 1

m− 1
<

∫ N−1

m−1

1

x
dx

to show that
N

e
< kN <

N − 1

e
+ 2− 1

e
and therefore

kN
N
→ 1

e
as N →∞.

Also show that 1
N−1 + · · ·+ 1

kN−1 is between ln(N/kN ) and ln((N − 1)/(kN − 1)), and therefore converge to
ln(e) = 1. What is limN→∞ V (1, 1)?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AsymOpt

Problem 8.10
In the problem of optimal choice, Example 8.5, suppose we change the goal to offering the job to the most
qualified applicant as possible, so you want to maximize E[ρ(T )], the mean rank of the selected applicant.
The interviewing rules stay the same.
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a) Formulate the problem: specify an appropriate Markov chain and reward function to use.

b) Can you work out an optimal strategy? Try it for N = 10 first (using numerical calculations if
necessary), and then see if you can work it out in general.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BestChoice

For Further Study

Some references on this material are Ferguson [23], Dynkin & Yushkevitch [20], Bertsekas [5], Puterman [49].
The same problems can be posed for continuous time processes, but there are more technicalities to deal

with in that case. See Taylor [61] for a summary treatment of optimal stopping in that setting.

139



Chapter 9

Martingales

A martingale Mn is another type of stochastic process, characterized by different properties than a Markov
process. A stochastic process Xn is Markov if the dependence of its future values Xn+1 on the past X0:n

only involves the most recent past, Xn. We have expressed this in the form

E[f(Xn+1)|X0:n] = Pf(Xn).

A martingale is characterized by the property that its mean future change, Mn+1−Mn, given the past, is 0:

E[Mn+1 −Mn|X0:n] = 0, or equivalently E[Mn+1|X0:n] = Mn.

There is no requirement of limited dependence on the past, as for Markov processes.
Why are martingales important? Here are three general reasons.

• Many important relationships are concisely described by saying the certain expressions are martingales.
We will see this in Chapter 10, where all the pricing formulas reduce to the martingale property of
the present value of various financial assets. Even the Markov property turns out to be equivalent
to certain expressions being martingales, as we will see in Section 9.2 below. Thus martingales are
valuable as a unifying concept.

• There is a substantial theory of martingales. This includes theorems about convergence limn→∞Mn

(see Section 9.4) as well as a “calculus of martingales” (see Section 9.3) which describes how new
martingales can be constructed from old martingales. In Section 9.6 we will see several applications of
the convergence theory. And in Chapter 10 the calculus of martingales will play a vital role.

• Martingales are an essential part of contemporary stochastic process theory, a required topic for anyone
who wants to be literate in the mathematics of stochastic processes.

9.1 Defining Martingales

We assume that there is an underlying process Xn. (For us it will be a Markov chain but it doesn’t need to
be.) Based on Xn many auxiliary processes can be constructed. Suppose for instance that Xn is the familiar
symmetric random walk on Z, and we define M0 = X3

0 and

Mn = X3
n − 3(X0 +X1 + · · ·+Xn−1) for n ≥ 1. (9.1)

This is not itself a Markov process. One way to see this is to observe that the two possible values of Mn+1

are

Mn+1 = (Xn ± 1)3 −X3
n − 3Xn +Mn

= Mn ± (1 + 3X2
n).
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So the states that Mn+1 can move to from Mn depend on more that just Mn itself; they depend on Xn as well.
We can determine Xn from the full history M0:n but not from Mn alone. Said differently, P (Mn+1 = x|M0:n)
is not Mn-determined; for the same Mn value this conditional probability will be different for different Xn

values.
However Mn from (9.1) does have a different expectation property: its future increments have zero

conditional mean given the past: E[Mn+1 −Mn|X0:n] = 0, or as it is usually presented,

E[Mn+1|X0:n] = Mn.

For our example this holds because E[X3
n+1|X0:n] = X3

n + 3Xn. (Check that for yourself.) Using this we
find that

E[Mn+1|X0:n] = E[X3
n+1 −X3

n − 3Xn +Mn|X0:n]

= E[X3
n+1|X0:n]−X3

n − 3Xn +Mn

= X3
n + 3Xn −X3

n − 3Xn +Mn

= Mn

Definition. Given an underlying process Xn, a martingale is a real-valued process Mn which is integrable
and satisfies

E[Mn+1|X0:n] = Mn

for each n = 0, 1, 2, 3, . . ..

Some immediate consequences of the definition are as follows.

• Mn is X0:n-determined for each n.

• E[Mm|X0:n] = Mn for all n < m.

• E[Xn] = E[X0] for all n.

Generalizing the definition, an integrable, X0:n-determined process Mn is called a submartingale if

E[Mn+1|X0:n] ≥Mn for all n,

and a supermartingale if
E[Mn+1|X0:n] ≤Mn for all n.

For Mn to be a martingale is to be both a submartingale and a supermartingale.

Examples

The example in (9.1) above is just one of many martingales associated with the standard symmetric random
walk Xn on Z. Here are several others.

• Mn = Xn.

• Mn = X2
n − n.

• Mn = θXn/θ̄n where θ̄ = (θ + θ−1)/2 (provided θ̄ 6= 0).

• Y0 = 0, Yn = 1− 2n if X1 = −1, X2 = −2, . . . , Xn = −n and 1 otherwise.

• Mn = E[Z|X0:n] for an integrable random variable Z.
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9.2 Martingales and Markov Chains

Suppose that the underlying process Xn is a Markov chain with state space S and transition matrix P. If
f : S → R is a (bounded) function and g : S → R is the function determined from it by

g(s) = Af(s)

then

Mn = f(Xn)−
n−1∑

0

g(Xk),

is a martingale. This is easy to check.

E[Mn+1|X0:n] = E[f(Xn+1)|X0:n]−
n∑
0

g(Xk)

= Pf(Xn)−
n∑
0

g(Xk)

= f(Xn) + Af(Xn)−
n∑
0

g(Xk)

= f(Xn) + g(Xn)−
n∑
0

g(Xk)

= f(Xn)−
n−1∑

0

g(Xk)

= Mn.

The example (9.1) is just this using f(n) = n3 for the random walk. The reasoning runs in reverse as well:
if Mn as defined above is a martingale then it must be that

E[f(Xn+1)|X0:n] = Pf(Xn).

And if that is true for all (bounded) functions f(·) then it follows that for all xn, j ∈ S

P (Xn+1 = j|X0:n = x0:n) = pxn,j .

This means that Xn is a Markov chain with transition matrix P. We have proven the following martingale
characterization of the Markov chain with transition matrix P.

Theorem 9.1. Suppose that Xn, n = 0, 1, 2, . . . is a stochastic process with values in a countable set S and
P is a transition matrix on S. Then Xn is a Markov chain with transition matrix P if and only if

Mn = f(Xn)−
n−1∑

0

Af(Xk),

is a martingale for every bounded function f : S → R.

This characterization of Xn resembles a differential equation. One way to describe a solution y(t) to
y′(t) = G(y(t)) would be to say that for every differentiable function f(x)

f(y(t))−
∫ t

0

g(y(s)) ds is a constant

where g(y) = 〈∇f(y), G(y)〉. In the Markov setting “is a constant” is replaced by “is a martingale” and
instead of g(y) = 〈∇f(y), G(y)〉 we use g(s) = Af(s).
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The theorem can be generalized in many ways. For instance we can include time as well as state
dependence. If

g(s, n) = Pf(s, n+ 1)− f(s, n)

= Af(s, n+ 1) + [f(s, n+ 1)− f(s, n)]

then the following is a martingale

Mn = f(Xn, n)−
n−1∑

0

g(Xk, k).

This, in conjunction with Theorem 9.6 below, imply Lemma 8.1 of the previous chapter.
A multiplicative version is as follows. Suppose that c 6= 0 and

Pf(s) = c(s)f(s) for all s ∈ S.

Then

Mn = f(Xn)

n−1∏
k=0

1

c(Xk)
(9.2)

is a martingale, provided f and 1/c are bounded. The essential calculation is that

E[f(Xn+1)/c(Xn)|X0:n] = Pf(Xn)/c(Xn) = f(Xn).

(This is a discrete version of what is often called a Feynmann-Kac formula in continuous time settings.)
Again the converse is true: if (9.2) is a martingale for all such f and c then Xn is Markov with transition
matrix P.

Example 9.1. Let Xn be the standard symmetric random walk on Z and f(k) = θk. Then Pf(k) = θ̄f(k)
where θ̄ = (θ + 1/θ)/2. This gives the third example in Section 9.1.

9.3 Discrete Stochastic Integrals

Imagine an i.i.d. sequence X1, X2, . . . with Xn ≥ 0 and 1 = E[Xn]. Think of these as the outcomes of a
sequence of dice rolls or some other game of game of chance. A gambler is going to place wagers Wn on the
outcomes of these games, specifically Wn−1 is the wager placed on the nth game. This means that the gambler
pays Wn−1 before the game is played and then receives Wn−1Xn after, for a net gain of Wn−1(Xn− 1). The
assumption that E[Xn] = 1 means that this is a fair game in the sense that constant wagers Wn = 1 will
produce zero average net gain in the long run:

lim
n→∞

1

n

n∑
i=1

(Xi − 1) = 0.

(This is the Strong Law of Large Numbers.) Suppose the gambler starts with Y0 in cash. His cash holdings
after the nth game will be

Yn = Y0 +

n∑
i=1

Wi−1(Xi − 1).

Under the reasonable assumption that Wn depends only on X0:n, the gambler’s fortune Yn is a martingale:

E[Yn+1|X0:n] = E[Yn +Wn(Xn+1 − 1)|X0:n]

= Yn +WnE[(Xn+1 − 1)|X0:n]

= Yn +WnE[(Xn+1 − 1)] (by independence)

= Yn + 0 = Yn.

An interesting example is the following doubling strategy. Suppose Xn = 0 or 2 with equal probabilities
(flip a coin, heads=2, tails=0). We start with Y0 = 0. Our goal is to win $1. We wager W0 = 1 on the first
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play. If we win we have Y1 = 1 and now we take all future wagers to be Wn = 0. But if we loose we have
Y1 = −1. We now double our wager to W1 = 2 for the second play. If we win on the second play we have
Y2 = 1 and now make all future Wn = 0. If we lose the second play we will have Y2 = −3. We double our
bet again to W2 = 4 for the third play. We keep doubling our wagers until the first time we win a play. This
produces the fourth in our list of example martingales above. The strategy will eventually succeed: Yn = 1
once n is large enough. But it is possible that Yn will take large negative values before that happens; you
may need to be a courageous gambler to ride out a string of bad luck and large gambling debts (Yn < 0)
before you eventually win and have Yn = 1.

In general the martingale property says that E[Yn] = E[Y0] = 0 for even n. That means there is no
betting strategy which will achieve the goal of Yn = 1 with certainty in a fixed finite number of steps. For
the doubling strategy in particular you have to be willing to play for an arbitrarily long time for the strategy
to succeed with probability 1. The managers of a gambling casino would want to impose some kind of rules
to prevent people from successfully playing such a doubling strategy. Otherwise they would have lots of
people starting with Y0 = 0 and leaving with 1, at the expense of the casino. So that raises the question of
what rules could put in place to prevent it. We will come back to that in Section 9.6.1.

Let Mn be the fortune of a gambler who always wagers Wn = 1 every time:

Mn = M0 +

n∑
i=1

(Xi − 1).

This is a martingale. The fortune Yn of a gambler following a more complicated wagering scheme Wn can
be expressed in terms of Mn as

Yn = Y0 +

n∑
k=1

Wk−1(Mk −Mk−1) (9.3)

In fact starting with any martingale Mn and a sequence Wn of X0:n-determined random variables, (9.3) will
always produce a new martingale Yn. (There are some technical conditions that are needed to justify this.
Something needs to be assumed to insure that Wn−1∆Mn is integrable.)

Theorem 9.2. Assume Mn is a martingale (with E[M2
n] < ∞ for each n) and Wk are X0:n-determined

random variables (with E[W 2
k ] <∞) then Yn defined by (9.3) is also a martingale.

Proof. Using the notation ∆Mn = Mn −Mn−1, the argument is

E[Yn+1|X0:n] = E[Yn +Wn∆Mn+1|X0:n]

= Yn +WnE[∆Mn+1|X0:n]

= Yn +Wn · 0
= Yn

The construction (9.3) is called a discrete stochastic integral or sometimes a martingale transform. This
always produces a new martingale Yn from the original martingale Mn, for any “integrand” process Wn which
for each n is X0:n-determined. Such a stochastic process Wn is called a non-anticipating stochastic process. I
like to think of Wn as associated with the time interval between t = n and t = n+1; non-anticipating means
Wn should be known at the start of that interval. We will see the continuous-time version of stochastic
integrals in Chapter 12.

9.4 Martingale Convergence Theorems

Consider the example
Mn = E[Z|X0:n]

described above (for any integrable random variable). If Z is dependent on the full sequence X0:∞ then
E[Z|X0:∞] = Z. We might expect to obtain this in the limit as n→∞:

lim
n
Mn = lim

n
E[Z|X0:n]

?
= E[Z|X0:∞] = Z.
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This is indeed the case. Even if a martingale does not come to us in the form Mn = E[Z|X0:n] it is often
the case that Z = limMn does exist. There are certainly martingales which do not converge as n→∞; an
example is the symmetric random walk Mn = Xn itself. But if they are bounded in mean they do converge.
Here are some basic results on convergence of martingales, stated without proof. (See “For Further Study”
at the end of the chapter for references to proofs.)

Theorem 9.3. Suppose Mn is a supermartingale with the property that E[|Mn|] is bounded (i.e. there is a
value 0 ≤ B <∞ with E[|Mn|] ≤ B for all n). Then with probability 1

lim
n→∞

Mn exists.

Every martingale is a supermatringale. And if Mn is a submartingale then −Mn is a supermatringale. So
the theorem applies to martingales, submartingales, and supermartingales.

Observe that for a nonnegative supermartigale,

E[|Mn|] = E[Mn] ≤ E[M0],

so the theorem applies.

Corollary 9.4. If Mn is a nonnegative supermartingale, then limn→∞Mn exists with probability 1.

Given that M∞ = limn→∞Mn exists the next question is whether it is legitimate to let m → ∞ in
Mn = E[Mm|X0:n] to obtain

Mn = lim
m→∞

E[Mm|X0:n] = E[ lim
m→∞

Mm|X0:n] = E[M∞|X0:n].

The answer to this is “yes” if Mn satisfies a condition called “uniform integrability”, which is a bit too
technical for us to describe here. However a simple sufficient condition is the following.

Theorem 9.5. Suppose Mn is a martingale with the property that E[M2
n] is bounded. Then M∞ =

limn→∞Mn exists with probability 1, has E[M2
∞] <∞, and

Mn = E[M∞|X0:n].

This says that many martingales are of the form in the last bullet on page 141.

Example 9.2. Suppose Xn is an irreducible Markov chain and ψ is a nonnegative superharmonic function:
Aψ ≤ 0. Then it follows from Theorem 9.1 that ψ(Xn) is a nonnegative supermartingale and so by the
corollary must converge almost surely: ψ(Xn)→ c. If Xn is recurrent then it visits all states infinitely often,
which means that ψ must be constant. In particular for a irreducible, recurrent chain all bounded harmonic
functions are constant. If a nonconstant, nonnegative, superharmonic function exists for an irreducible chain
then the chain must be transient. This is another result in the same category as Theorem 4.7.

Example 9.3. The doubling strategy above is an example when this theorem does not apply!

9.5 Optional Stopping

Martingales also interact nicely with stopping times. Recall that a stopping time is a time-valued random
variable T with the property that

{T ≤ n} is X0:n-determined for each n.

If Mn is a (sub- or super-) martingale we can define its stopped version

MT ∧n =

{
Mn if n < T
MT if T ≤ n.

This is usually referred to as “optional stopping” (not to be confused with “optimal stopping”).
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Theorem 9.6. If Mn is a (sub- or super-) martingale and T is a stopping time, then MT ∧n is also a (sub-
or super-) martingale. Moreover, in the case that Mn is a submartingale

E[MT ∧n] ≤ E[Mn],

or ≥ in the case of a supermartingale, or = for a martingale.

Proof. The supermartingale and martingale cases follow easily from the submartingale case. Suppose that
Mn is a submartingale. We want to show that

E[MT ∧(n+1) | X0:n] ≥MT ∧n.

Write MT ∧(n+1) = MT ∧n + 1{T>n} · (Mn+1 −Mn). As a consequence,

E[MT ∧(n+1)|X0:n] = MT ∧n + 1{T>n}E[(Mn+1 −Mn)|X0:n] ≥MT ∧n + 0.

For the other inequality asserted in the theorem write

MT ∧n =

n∑
k=0

1{T=k}Mk + 1{T>n}Mn

Mn =

n∑
k=0

1{T=k}Mn + 1{T>n}Mn.

So the key argument is that for each k = 0, . . . , n

E[1{T=k}Mk] ≤ E[1{T =k}E[Mn|X0:k]] = E[E[1{T=k}Mn|X0:k]] = E[1{T =k}Mn].

In the case of a martingale (so all the inequalities are equalities) it follows that E[M0] = E[MT ∧n]. We
can ask what happens in the limit as n→∞. If T <∞ with probability 1, or Mn →M∞ then

MT ∧n →MT .

It turns out that if Theorem 9.5 applies, i.e. if E[M2
n] is bounded, then the limit can be taken under the

expectation and we obtain
E[M0] = E[MT ].

9.6 Applications

Now that we have laid out some of the basic properties, let’s look at a couple applications.

9.6.1 Casino Policies

Consider again the martingale Yn resulting from a betting strategy Wn applied to a game represented by
a martingale Mn, i.e. Yn is as in (9.3). Instead of making the wagers Wn = 0 after the gambler’s goal is
reached it is a little more natural to let T be the time the gambler achieves his goal and consider YT as the
final result of the betting strategy. Let’s consider the problem the casino faces with strategies such as the
doubling strategy which produces Y0 < YT . Certainly they want this to be possible, meaning to have positive
probability, because it is the prospect of winning more than you started with that attracts customers. But
they don’t want E[Y0] < E[YT ], because the mean of E[Y0 − YT ] < 0 over many customers is what they
would see in their long term profits (or losses). So what policies would prevent E[Y0] < E[YT ]?

First of all we can assume that T <∞ with probability 1. No gambler can play forever. We know that
E[Y0] = E[YT ∧n] and YT ∧n → YT . If the casino put a limit on the number of times the gambler can play,
T ≤ k for some fixed k, then by Theorem 9.6

E[YT ] = E[YT ∧k] = E[Y0].
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That would accomplish the casino’s goals, but might be a bit too heavy-handed for customers to be encour-
aged to come.

One way to think about the problem is this. To avoid E[Y0] < E[YT ] the casino wants to be able to pass
limn→∞ through the expectation

E[Y0] = lim
n→∞

E[YT ∧n]

to conclude that E[Y0] = E[YT ]. Stated this way, the casino cares about the applicability of one of our
convergence results, dominated or monotone convergence. We can’t hope for monotone convergence; martin-
gales cannot be monotone unless they are constant, and that wouldn’t make for a very interesting gambling
opportunity. Dominated convergence would require the existence of some integrable random variable Z with
|YT ∧n| ≤ Z. This would mean cutting off the gambler’s betting if they have won too much. But all the
casino really needs is a lower bound on Yn, it turns out. This is accomplished by requiring gamblers to
play using chips or tokens. The gambler starts by converting his initial $Y0 to chips. All wagers must be
made using the chips which the gamble holds. Wagers are paid up-front before each play, which insures that
Wn ≤ Yn. The gambler can never loose more than his wager, which insures 0 ≤ Yn. If the gambler runs
out of chips he can’t place any more wagers; he must stop. This system insures that Yn ≥ 0; the gambler
can’t go into debt by producing Yn < 0. This will serve the casino’s purpose because of Fatou’s Lemma,
Theorem 3.4. Consider Xn = YT ∧n. Observe that

limXn = limYT ∧n = YT

and
limE[Xn] = limE[YT ∧n] = limE[Y0] = E[Y0].

So Fatou’s Lemma guarantees that
E[YT ] ≤ E[Y0],

even better than equality from the casino’s point of view! In other words there can be no betting strategy
which achieves Y0 < YT with certainty and which maintains Yn ≥ 0 for all n. Requiring all gamblers to use
chips enforces Yn ≥ 0 (and probably has other benefits to the casino management) and so protects them
from sure-fire winning strategies!

9.6.2 Branching Processes

The classical branching process was first introduced to study the extinction of a reproducing species. The
idea is that Xn ∈ N represents the number of individuals of a certain species which exist in the nth generation.
To make the transition Xn → Xn+1 each of the Xn individuals gives birth to a random number of children
(and then the parent dies). The numbers of offspring from each parent are independent, but with a common
distribution pi = P (Y = i). So if Xn = k then we take k independent copies of Y : Y1, . . . , Yk and form

Xn+1 =

k∑
i=1

Yi.

Provided P (Y = 0) > 0 it is possible for the population to become extinct, Xn+1 = 0, in which case it
remains extinct forever. In other words 0 is an absorbing state. The resulting Xn is a Markov chain, called
a branching process or sometimes a Galton-Watson process. The basic theory is focused on the extinction
probability assuming that X0 = 1:

P (T0 <∞),

where T0 is the first time Xn = 0.
We can learn a lot from martingale theory here. Consider

Mn = Xn/µ
n.

This is the martingale from (9.2) using f(x) = x, since

Pf(n) = E[

n∑
1

Yi] = nµ = µf(n).
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A simple consequence of E[Mn] = E[M0] = 1 is that E[Xn] = µn.
Consider the case of µ < 1. If T0 is the first time Xn = 0, i.e. the time of extinction , then P (T0 > n) ≤

E[Xn] = µn → 0 as n→∞. We conclude that P (T0 <∞) = 1. Extinction is certain.
Suppose µ = 1 and p1 = P (Y = 1) < 1. In this case Mn = Xn. Theorem 9.3 implies that Xn converges

as n→∞. But Xn is integer valued. The only way it can converge is if it is constant after some time n. In
other words Xn must reach an absorbing state with probability 1. But if p1 < 1 the only absorbing state is
0. It follows that Xn reaches 0 with probability 1. Extinction is certain.

Now consider that case of µ > 1. Nonextinction is possible in this case. But Theorem 9.3 still says that

M∞ = lim
n→∞

Xn/µ
n

exists. In other words there is a limiting normalized population size. This means that asymptotically the
population grows exponentially, with only the coefficient being random:

Xn ∼ µnM∞ as n→∞.

9.6.3 Stochastic Lyapunov Functions

The proofs we gave for Theorems 4.7 and 4.8 do not provide much insight into how properties of a solution
to Aφ ≤ 0 are related to transience or recurrence. The connection between martingales and Markov chains
allows us to present alternate arguments which may be a bit more satisfying intuitively. Suppose Xn is
an irreducible Markov chain with an infinite state space. For technical reasons we will also assume that
for each i there are only a finite number of j with pi,j > 0, i.e. that there are only a finite number of
possible transitions from each state. For simplicity lets suppose the state space is the integer lattice Zd in d
dimensions, so that we can talk about |Xn|. Suppose we can find a nonnegative function φ which satisfies

Pφ(x) ≤ φ(x) for all r < |x|.

This means the inequality is allowed to fail for a finite number of states. Then φ(Xn) will be a supermartin-
gale, as long as |Xn| > r. That’s because if |Xn| > r then

E[φ(Xn+1)|X0:n] = Pφ(Xn) ≤ φ(Xn).

This may fail once |Xn| ≤ r, but if we stop at the first time that happens,

Tr = the first time that |Xn| ≤ r,

then φ(XTr∧n) will be a nonnegative supermartingale. This must have a limit as n → ∞. If we also know
something about lim|x|→∞ φ(x) we will be able to make some deductions about the probability that Tr =∞,
which is intimately related to the issue of recurrence.

Let’s define a second stopping time,

TR = the first time that |Xn| ≥ R,

where r < R. We must have
TR →∞ as R→∞. (9.4)

This is because the chain cannot jump to ∞ in a finite number of steps; for any n

Px(max(|X1|, |X2|, . . . , |Xn|) ≥ R)→ 0 as R→∞.

Since Px(TR ≤ n) = Px(max(|X1|, |X2|, . . . , |Xn|) ≥ R) we see that limR→∞ TR ≤ n has probability 0 for
each n. Thus (9.4) holds with probability 1.

The set of x with r < |x| < R is a finite set, and assuming the chain is irreducible we know

Px(Tr ∧ TR <∞) = 1. (9.5)
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That’s because the chain must eventually jump out of the finite set of r < |x| < R. Now we have a bounded
supermartingale φ(XTr∧TR∧n). (This where we are using the assumption that for each i the set {j : pij > 0}
is bounded.) It follows that

φ(x) ≥ lim
n→∞

Ex[φ(XTr∧TR∧n)] = Ex[φ(XTr∧TR)].

If we have lower bounds

0 < Br ≤ φ(x) for all |x| ≤ r
BR ≤ φ(x) for all |x| ≥ R,

(note that Br > 0 is slightly more than we get from the hypotheses of Theorem 4.7) then we can say

BrPx(Tr < TR) +BRPx(Tr > TR) ≤ φ(x). (9.6)

From here the conclusions of Theorems 4.7 and 4.8 are pretty easy.
Suppose φ(x)→ 0 as |x| → ∞. Equation (9.6) implies

Px(Tr < TR) ≤ φ(x)/Br.

Letting R→∞ in this we find
Px(Tr <∞) ≤ φ(x)/Br.

Since the right side → 0 as |x| → ∞ we see that it is not possible that Px(Tr < ∞) = 1 for all x, as would
be the case if the chain were recurrent. We conclude that the chain must be transient.

Suppose instead that φ(x)→∞ as |x| → ∞. Using the other half of (9.6) we have that

BRPx(TR < Tr) ≤ φ(x),

and therefore
Px(TR < Tr) ≤ φ(x)/BR.

Since BR →∞ as R→∞ it follows that

lim
R→∞

Px(TR < Tr) = 0.

From here it follows that
Px(Tr <∞) = 1.

This means that the chain must be recurrent.

9.7 Change of Measure and Martingales

There is one more important role of martingales that we should introduce here. In some circumstances there
are reasons to consider more than one assignment of probabilities. In terms of the Kolmogorov model P (A)
denotes the probability assigned to events A ⊆ Ω. There may be a second way of assigning them, Q(A),
that we want to consider as well. We will encounter this in Chapter 10 and again in Chapter 12, where
market prices of contingent claims are associated with a different probability assignment Q than the original
P which describes the stock price evolution.

One way an alternate probability assignment Q can be described is this: take a nonnegative random
variable Z ≥ 0 with E[Z] = 1. Use it to define Q(A) for A ⊆ Ω by

Q(A) = E[Z;A].

We can now check that Q(A) is a legitimate assignment of probabilities, in that all the properties listed on
page 33 are satisfied. Every random variable X now has two means, E[X] calculated using the original P ,
and EQ[X] calculated using the new probability Q. But it is easy to convert:

EQ[X] = E[XZ].
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A process Mn can be a martingale with respect to Q while not a martingale with respect to P . That is
because E[Mn+1|X0:n] and EQ[Mn+1|X0:n] will be different in general, so they can’t both be = Mn. The
technical issue we will face in Chapter 12 is how Q-martingales are related to P -martingales. For starters
we know that

ζn = E[Z|X0:n]

Is a P -martingale. Now suppose Mn is a Q-martingale. If we go back to the definition of generalized
conditionals, the martingale property says that for any X0:n-determined event A

EQ[Mn+1;A] = EQ[Mn;A].

Now

EQ[Mn;A] = E[MnZ1A] = E[E[MnZ1A|X0:n]] = E[E[Z|X0:n]Mn1A] = E[ζnMn1A] = E[ζnMn;A].

The same argument (conditioning on X0:n+1 instead) shows that EQ[Mn+1;A] = E[Mn+1ζn+1;A]. So we
see that the Q-martingale property of Mn is equivalent to

E[Mn+1ζn+1;A] = E[ζnMn;A]

for all X0:n-determined events A. This means that

E[Mn+1ζn+1|W0:n] = Mnζn,

namely that Mnζn is a P -martingale. What we have found is that for Mn to be a Q-martingale is equivalent
to Mnζn being a P -martingale! We will see this at work in Chapter 12.

Problems

Problem 9.1
Suppose Mn is a martingale (and each Mn is square-integrable) and let ∆Mn = Mn −Mn−1. Although

∆(M2
n) = M2

n −M2
n−1 and (∆Mn)2 = (Mn −Mn−1)2

are not the same, show that
E[∆(M2

n)|X0:n−1] = E[(∆Mn)2|X0:n−1].

In fact the following are both martingales:

An = M2
n −

n∑
1

(∆Mk)2,

Bn = M2
n −

n∑
1

(∆Mk)2,

where
(∆Mk)2 = E[(∆Mk)2|X0:n−1].

Show in particular that

E[M2
n] = E[M2

0 ] +

n∑
1

E[(∆Mk)2]. (9.7)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MQV

Problem 9.2
Let Xn be the asymmetric random walk on Z for which with Xn+1 = Xn + 1 has probability p and Xn+1 =
Xn−1 has probability q = 1−p. Assume 0 < p < 1 and p 6= 1/2. Find a value θ so that θXn is a martingale.
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Let N be a positive integer and suppose 0 < X0 < N . Let TN be the first time that Xn = 0 or Xn = N .
Explain why Mn = θXn∧TN is a bounded martingale. Taking for granted that TN < ∞ with probability 1,
explain why optional stopping implies

θX0 = θ0PX0
(XTN = 0) + θNPX0

(XTN = N).

Deduce a formula for PX0
(XTN = N) in terms of p and q. If p 6= 1/2 you can use the same martingale to

prove that TN <∞ with probability 1 – explain how.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ASYMRW

Problem 9.3
Let Zn = (Xn, Yn) be the standard two-dimensional random walk on Z2. Show that

Mn = X2
n + Y 2

n − n

is a martingale. (This is an instance of the martingale at the bottom of page 142. What can you conclude
about E(x0,y0)[|Zn|2]? Let Tr be the first time that |Zn| ≥ r. Use optional stopping to produce an upper
bound on E(0,0)[Tr]. (Hint: |ZTr | ≤ r + 1.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RW2

Problem 9.4
Suppose you are gambling on a sequence of fair coin tosses, represented as in Section 3.3 by an i.i.d. sequence
with P (Xi = 0) = P (Xi = 2) = 1/2. You start with Y0 = 100 and plan to gamble until the first time T
when Yn is either 0 or 1000. Until that happens (i.e. while n < T ) you follow some wagering strategy
for which your wagers Wn satisfy 1 ≤ Wn ≤ min(Yn, 1000 − Yn). This means you don’t give up until
T happens, you never wager more than your current cash holding Yn−1 or more than necessary to reach
your goal of Yn = 1000 on the next game. (And of course Wn should be X0:n-determined.) Explain why
any such wagering strategy does eventually terminate (P (T < ∞) = 1), and the probability of success is
P (YT = 1000) = 1/10, regardless of strategy. (Hint: Use optional stopping again.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FairHouse

Problem 9.5
Let Sn be our usual simple, symmetric random walk on Z, starting at S0 = 0. Given K 6= 0 let

T = inf{n ≥ 0 : Sn = K}

be the first time that the random walk reaches K. We know that Sn is a martingale and T is a stopping
time.

a) Explain why the optional stopping result E[S0] = E[ST ] is false. (This is elementary.)

b) Explain why E[S2
n] is not bounded, so that the sufficient condition mentioned at the end of Section 9.5

is not satisfied.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S9G

For Further Study

There are many nice introductory treatments of martingales. We have drawn material from Grimmet &
Stirzaker [25], Rogers & Williams [51]. In particular the convergence theorems of Section 9.3 are discussed
in Sections II.48, 49 of [51]. See also §5.5 of Durrett [18]. More references are indicated at the end of
Chapter 11.

The standard treatment of branching processes is based on generating functions. See for instance Example
5.1.1 in Norris [45], Section 5.4 in Grimmiet and Stirzaker [25], Example 4.4 in Varadhan [63], or Section 6.4
of Whittle [65].
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Chapter 10

Mathematical Finance in Discrete
Time

A financial market allows people and organizations to buy and sell various types of assets and to form
binding agreements (contracts) under which the participants agree to exchange of assets under terms which
are contingent on future market conditions. Familiar examples of financial assets are stocks and bonds.
Examples of contingent contracts are financial derivatives and options. Virtually every asset has a price,
determined by the market to be the price at which buyers and sellers agree to trade. This applies to contracts
as well. These prices change over time, often in seemingly random ways. Market participants often have
long term goals that they hope to achieve by means of their transactions. They need strategies to guide
them in pursuit of their goals. Mathematical finance tries to develop models to help design such strategies.
Given the apparent randomness of the evolution of prices it is natural that these models involve stochastic
processes.

In this chapter we will consider a Markov chain model which is relatively simple, but which allows us to
exhibit some of the ideas which are important in mathematical finance. There will be a single stock, whose
share price Sn evolves over time according to a random walk. There will also be a bank account whose value
Bn evolves deterministically in accord with a fixed interest rate. In this setting we want to study the price
of a financial derivative or contingent claim, examples of which are described below. We will revisit some of
the same issues in a continuous time setting in Chapter 12.

10.1 Stocks and Bonds

To own a share of stock in a particular company is simply to own part of the company itself. If the company
does well your share will become more valuable and others will be more eager to buy it from you and willing
to pay a higher price. Thus its market price will go up. If the company does poorly the market price of your
share will decrease. Initially a company will sell shares to raise capital to get the business going. After that
shares are bought and sold on the stock market and the price is determined solely by that market; the price
of a share is the price at which buyers and sellers are currently agreeing to buy and sell. That can vary from
day to day for all kinds of reasons, both material as well as psychological. There are other complicating
features. There can be different “classes” of shares that entitle their owners to different voting privileges
in company decision making. Some companies pay their stockholders dividends, essentially passing some of
the company’s profits back to the owners. Other companies don’t pay dividends. We won’t try to handle
all those complexities. We will just describe the price per share of a particular stock as a Markov chain
Sn, with no dividend payments. The value of Sn is the market price, meaning that at time n shares of the
company can be bought or sold for $Sn apiece. To keep things simple we do not consider any sales charges,
transaction costs, or brokerage fees.

We will assume that Sn follows a random walk through a set of possible (positive) prices · · · < si <
si+1 < · · · with transition probabilities

P (Sn+1 = si+1 |Sn = si) = pi and P (Sn+1 = si−1 |Sn = si) = 1− pi, (10.1)
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for a set of 0 < pi < 1. In this finance literature this is sometimes called a “binary tree”. Notice that we
allow only two possible transitions: si → si+1 and si → si−1. There is a reason for keeping the structure so
simple. See Problem 10.4.

A bond is essentially an I.O.U. issued by a company or government. It is a promise to pay a specified
amount to the bond holder on a specified date of maturity. The specified payment amount is called the “face
value” or “par value”. Companies and governments issue bonds as a way of borrowing money. They must
pay it back on the specified date (else no one will buy their bonds in the future, thus ruining their chances
of raising more money, not to mention all the legal consequences). Some bonds make a series of interest
payments in addition to the final payment. Like stocks there is a market where bonds can be bought and sold,
again at market-determined prices. The stochastic modeling of a bond’s market price Bt is more complicated
than for stocks, because the random evolution of Bt prior to maturity has to lead to a deterministic final
value BT .

We are not going to consider a stochastic model for bond prices. Instead our “bond” will be completely
predictable. Its market value at time n will be

Bn = (1 + r)n,

where r is a constant called the interest rate per period. In particular the price at time n = 0 is B0 = 1. If
the date of maturity is T , then its face value is BT = (1+ r)T . This is really more like a fixed-rate certificate
of deposit than a real-world bond. It functions as the bank account in our considerations below and so we
will refer to it as the bank. It will be convenient to refer to the value invested in the bank in terms of the
number of deposit certificates rather than cash value. One certificate is simply the value at time n of an
initial deposit of B0 = 1, so a certificate is worth Bn at time n. To put $100 in the bank at time n is to buy
y = 100/Bn certificates. If I keep those until time n+ 6 and sell them I will recover a cash amount of

yBn+6 =
100

Bn
Bn+6 = 100(1 + r)6.

This is the original $100 plus 6 time periods of compounded interest. We will call this “buying y deposit
certificates”. Using the terminology of certificates rather than value allows us to describe both investments,
stock and bank, in a common format. In our model the bank provides a safe or risk-free asset, in contrast
to the stock which is the risky asset. The interest rate r is often called the risk free rate for this reason.

10.2 Contingent Claims

In addition to the basic assets Sn and Bn we want to consider financial contracts that are dependent on
future asset prices. For example, suppose Sn represents the market price at time n of a bushel of wheat. If I
am a baker I may want to arrange for my next year’s supply of wheat, and I want to establish now what price
I will have to pay in the future. To do this I could sign a forward contract with a wheat supplier. Under this
contract the supplier would promise to deliver a certain quantity of wheat (lets say 1000 bushels) next year
(on date T ) and I promise to pay him $K on delivery, where K is a value we write into the contract today.
I may have to pay the wheat producer something up front to get them to sign that contract, especially if K
is low. If after the contract has been signed wheat prices rise, my contract becomes increasingly valuable,
so some third party may want to buy it from me. If the price of wheat falls, I may wish I was not bound to
pay the price required by the contract and may want to sell it to someone else. The basic problem we are
interested in is how to determine the market price for this contract.

If I’m really worried about the price of wheat falling, a different contract arrangement might be more
attractive. Imagine a contract that does not require me to buy 1000 bushels of wheat for $K but only
guarantees that I can if I want to. Then if wheat prices are low on the exercise date T I can simply ignore
the contract and buy at the lower market price. This kind of contract is called a call option. The value of
this contract to me at time T is {

1000ST −K if 1000ST −K ≥ 0

0 if 1000ST −K < 0,
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where ST is the price per bushel of wheat at time T . The value of 0 on the second line is because in those
circumstances I am better off buying at the market price and not using the contract.

In general the time T at which a contract like this matures is called the exercise time. The value of the
contract at the exercise time all be

VT = φ(ST )

for some function φ(s) of the final stock price, called the exercise value function. (Actually this is called a
European option. So-called American options are a bit different; see Section 10.6.5 below.) Different choices
of the function φ(s) correspond to different types of options.

1. φ(s) = s−K, a forward contract ;

2. φ(s) =

{
s−K if s−K ≥ 0

0 if s−K < 0
, a call option;

3. φ(s) =

{
0 if s−K ≥ 0

K − s if s−K < 0
, a put option;

4. φ(s) = s, the stock itself;

5. φ(s) = K, the bank account itself.

There are other φ(s) which are of interest in finance. Some of them will be mentioned in Section 10.5 below.
Mathematically we can consider any function for φ(s). We want to consider the pricing problem: assuming
that the contract can be bought and sold just like other marketable assets, how can we determine the market
price Vn of the contract at times n < T prior to expiry? We expect this to be a S0:n-determined stochastic
process but we want to understand how it works in more detail.

10.3 No-Arbitrage Pricing

Prices are determined by what rational people will do in the market. Let’s start with an extremely simple
version of the pricing problem to see how this works out.

10.3.1 A Single Branch

Consider just two times: n = 0 and n = 1(= T ). The stock price is initially S0 = s0. At time n = 1 there
are two possible values, S1 = s±1 with probabilities p (for S1 = s+1) and 1− p (for S1 = s−1). We assume

s−1 < s+1 and 0 < p < 1.

A certificate of deposit purchased today for B0 = 1 will be worth B1 = 1 + r tomorrow. The value of the
contract tomorrow is φ(S1) = V1, which will have two possible values depending on which way the stock
price goes. Here is a specific example.

Example 10.1. Take s0 = 20, s−1 = 10, s+1 = 30, p = 1/2, and r = .05. For the exercise value function
take φ(s) = s − 20. This is what we called a forward contract above. The final value of our contract is
V1 = φ(S1) = S1 − 20, which depends on which value S1 turns out to have. What is its value V0 today? A
(naive) guess might be that

V0 =
1

1.05
E[V1] =

1

1.05

[
1

2
(30− 20) +

1

2
(10− 20)

]
= 0,

the mean present value of tomorrow’s contact value. If that were right this contract should be free in today’s
market; people would be willing to enter into this contract with each other without any money changing
hands. If so I could take advantage of this market in the following way.

• I get one of these contracts at no cost.
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• I sell 1 share of stock in the market, producing $s0 = $20.

• I invest my $20 in the bank, i.e. buy 20 certificates at B0 = 1 each.

The contract requires that tomorrow I must pay $20 and will receive one share of stock. Its value then will
be S1 − 20, which might turn out to be either positive or negative; we won’t know until tomorrow. I gained
$20 by selling the share of stock today but I immediately invested it in the bank. So my net spending today
is $0. This has cost me nothing so far.

Tomorrow I use my contract; I pay the $20 and receive one share of stock (which replaces the one I sold
yesterday). My investment in the bank has grown in value because of the interest rate; it’s value today is

20B1 = 20(1.05) = 21.

This covers the $20 I just paid you with $1 to spare. I have made $1 through this transaction and otherwise
have exactly the same assets as I did yesterday before all this started. It doesn’t matter whether S1 is 30 or
10; it comes out the same either way. I made $1 with no risk at all!

If I were greedy I could have acquired a thousand of those free contracts and carried out the above plan
a thousand times over, to make a cool $1000 overnight. Of course I wouldn’t be the only person to see this
free money opportunity. People would be clamoring to get these free contracts, and no one would be willing
to issue them, at least not without being paid something for it. Obviously this contact is not really worthless
and the market would be telling us that. Our guess that V0 = E[V1]/(1 + r) is wrong!

So what is the correct value V0 of this contract today? To answer this we can design a strategy using
just Sn and Bn which will leave us with exactly V1 = S1 − 20 tomorrow, the same as the contract would,
and then ask how much it would cost today to execute that strategy. The strategy will be to buy one share
of stock today and “borrow” some amount of money from the bank, so that tomorrow the amount “owed”
to the bank comes to exactly 20. The amount to borrow today is 20/1.05 = 19.0476 · · · . The value today of
this combination is

S0 − 19.0476 · · · = .9524 · · ·

In other words starting with $0.9524 today, I can borrow the remaining $19.0476 I need to buy one share
of stock and my strategy will be in place. I spend $0.9524 today and have exactly V1 = S0 − 20 tomorrow.
Thus

V0 = $0.9524 · · · .

The reason I could make money if the contract were available for free is that I could get for free something
that was actually worth $0.9524. I just capitalized on that, turning $0.9524 today into 0.9524 · 1.05 = $1
tomorrow.

In real-world forward contracts the value of K in our φ(s) = s−K is adjusted so that the contract really
is worth V0 = 0 today. In our example here K = 20 is not that value. Rethinking the above, we see that for
my strategy to produce no net gain or loss, the correct value of K must be K = S0(1 + r) = 21.

The key idea from this example is that we can “replicate” tomorrow’s VT = φ(ST ) with a certain
combination of stock and deposit certificates which we purchase today. Let’s work this idea out more
generally in our single branch setting. Consider a “portfolio” consisting of α shares of stock and β deposit
certificates. The idea is to choose α and β so that the portfolio’s value tomorrow is the same as φ(S1) for
both possible values of S1. The value tomorrow of this portfolio will be

αS1 + βB1 = αs±1 + β(1 + r),

depending on whether S1 = s±1. For the portfolio to match the option value V1 in both cases α and β must
be chosen to solve the following equations:

αs+1 + β(1 + r) = φ(s+1)

αs−1 + β(1 + r) = φ(s−1).

Solving for α and β results in

α =
φ(s+1)− φ(s−1)

s+1 − s−1
, β =

s+1φ(s−1)− s−1φ(s+1)

(1 + r)(s+1 − s−1)
.
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We will call this the replicating portfolio for the contingent claim with exercise value φ(S1). To buy this
portfolio today (t = 0) costs

c = αS0 + βB0 =
φ(s+1)− φ(s−1)

s1 − s−1
s0 +

s1φ(s−1)− s−1φ(s+1)

(1 + r)(s1 − s−1)
1.

This value c must be the market value V0 of the contract today. To see why, consider what I can do if
V0 is different from c. Suppose V0 > c. Then I will sell someone a copy of the contract, i.e. they pay me V0

and I promise to deliver V1 to them tomorrow. Now I use c of what they just paid me to buy a copy of my
replicating portfolio, and put the difference of V0 − c > 0 in the bank. Tomorrow my replicating portfolio is
worth exactly enough for me to fulfill my obligation to the person I sold the contract to. But I now have a
bank investment worth (1+r)(V0− c). That’s risk-free profit for my being smart enough to see this strategy.

What if V0 < c? Now I can make risk-free profit another way. This time I sell α shares of stock and β
deposit certificates. That brings in c in revenue. I take V0 of this and buy a copy of the contract, leaving
V0− c > 0 in cash which I put in the bank. Tomorrow I cash in my option which pays me V1, exactly enough
for me to buy back at today’s prices the α and β shares of stock and deposit certificates, but still leaving me
the value (1 + r)(V0 − c) from the bank shares I bought with the yesterday’s leftover cash. I’m right back
where I started yesterday in terms of stock and bank investments but plus (1 + r)(V0 − c) in risk-free profit.

Each of these scenarios for V0 6= c constitute an arbitrage opportunity, a way to buy and sell assets on the
market consisting of St, Bt, and Vt to make a guaranteed profit. Our basic premise is that the market
sets the prices so that no arbitrage opportunities exist. If such an opportunity did exist there would
be a huge demand for the undervalued assets, which would bring their prices up until until the arbitrage
opportunities are eliminated. If St and Bt are the correct market prices then the option price at t = 0 must
be V0 = c. The market enforces the no-arbitrage principle of prices, which is a sort of balance among all the
prices in the market.

We will call (α, β) an arbitrage portfolio if its value Vt = αSt + βBt has these properties.

1. V0 = 0,

2. P (V1 ≥ 0) = 1, and

3. P (V1 > 0) > 0.

In other words an arbitrage portfolio is a strategy with which we can start from nothing, have no chance
of loosing money and a positive probability of making money. What we considered above was actually a
portfolio in the market with three assets, St, Bt, and Vt. Could there be arbitrage opportunities in our simple
single-branch model consisting of just St and Bt alone? The answer should be “no” for any reasonable model.

Lemma 10.1. There are no arbitrage portfolios for the single-branch model St, Bt described above if and
only if

s−1 < (1 + r)s0 < s+1.

Proof. Recall that we are assuming 0 < p < 1.
Suppose that α, β is an arbitrage portfolio. First observe that either α or β must be nonzero; otherwise

V1 > 0 would be impossible. Since V0 = 0 and both S0 and B0 are positive, both α 6= 0 and β 6= 0 are
necessary for an arbitrage portfolio. That V0 = 0 implies

β

α
= − S0

B0
.

Therefore

V1 = αS1 + βB1 = α

(
S1 −

B1

B0
S0

)
= α (S1 − (1 + r)S0)

Now consider the possibility of α > 0. To be an arbitrage portfolio we must have both s±1−(1+r)s0 ≥ 0.
Looking just at the smaller of these, if there is an arbitrage portfolio with α > 0 then

s−1 − (1 + r)s0 ≥ 0. (10.2)
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Conversely suppose (10.2) holds. Consider the portfolio with α = 1 and β = −s0. We see that (10.2) implies
that V1 ≥ 0 in both cases. With probability p > 0 have

V1 = S1 − (1 + r)s0 = s+1 − (1 + r)s0 > s−1 − (1 + r)s0 ≥ 0,

so that P (V1 > 0) > 0. Thus there is an arbitrage opportunity. Thus (10.2) is equivalent to the existence of
an arbitrage portfolio with α > 0.

Next consider the possibility of α < 0. Arguing similarly to the above we must have both s±1−(1+r)s0 ≤ 0
for such an arbitrage portfolio to exist. Thus

s+1 − (1 + r)s0 ≤ 0 (10.3)

is necessary. Conversely if (10.3) holds the we can take α = −1 and β = s0 to produce a portfolio with
V1 ≥ 0 and

V1 = −(s−1 − (1 + r)s0) > −(s+1 − (1 + r)s0) ≥ 0,

with probability 1− p > 0, so that we do indeed have an arbitrage portfolio.
Combining our conclusions we see that the nonexistence of arbitrage portfolios is equivalent to

s−1 < (1 + r)s0 < s+1,

as claimed.

Suppose that in addition to St and Bt we allow a portfolio Vt = αSt + βBt constructed from them to be
traded directly, i.e. as a new market asset. Could we create arbitrage opportunities in this way? A portfolio
in this 3-asset market would be something of the form

V̂t = α̂St + β̂Bt + γVt

= α̂St + β̂Bt + γ(αSt + βBt)

= (α̂+ γα)St + (β̂ + γβ)Bt.

In other words any portfolio in the new 3-asset market is really the same as some portfolio in the original
2-asset market. So if there were no arbitrage portfolios in the 2-asset market there can’t be any in the 3-asset
market either.

Lemma 10.2. If the single-branch market consisting of Bt and St is free of arbitrage and (α, β) is a portfolio
with value Vt, then the market consisting of Bt, St and Vt is free of arbitrage.

Let’s look again at the formulas we found for the portfolio which replicated the contingent claim φ(S1).
The market value of the claim at t = 0 is given by

V0 = αS0 + βB0

=
φ(s+1)− φ(s−1)

s+1 − s−1
S0 +

s+1φ(s−1)− s−1φ(s+1)

(1 + r)(s+1 − s−1)
B0

=
1

1 + r

[
(1 + r)

φ(s+1)− φ(s−1)

s+1 − s−1
s0 +

s+1φ(s−1)− s−1φ(s+1)

s+1 − s−1

]
=

1

1 + r

[(
(1 + r)s0 − s−1

s+1 − s−1

)
φ(s+1) +

(
s+1 − (1 + r)s0

s+1 − s−1

)
φ(s−1)

]
.

We can write this as

V0 =
1

1 + r
[qφ(s+1) + (1− q)φ(s−1)] , (10.4)

where

q =
(1 + r)s0 − s−1

s+1 − s−1
.

This is a very appealing way to write the formula. In fact the inequality 0 < q < 1 is equivalent to our
no-arbitrage conditions in Lemma 10.1 above:
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s−1 < (1 + r)s0 < s+1 is equivalent to 0 < q < 1.

Moreover formula (10.4) looks like the mean present value,

V0 =
1

1 + r
E[φ(S1)],

except that the expected value is computed using q in place of p. Note also that the value of q is uniquely
determined by the equation

s0 = q
s+1

1 + r
+ (1− q) s−1

1 + r
.

10.3.2 Pricing for the Random Walk Model

Now lets consider our full problem over several time steps n = 0, 1, . . . T , and an arbitrary exercise value
function φ(s). We are interested in the contingent claim whose exercise value is φ(ST ). We have the stock
price process Sn given by the random walk on an (infinite) set of si values as described above, and the
deposit certificate price process Bn = (1 + r)n, both for n = 0, . . . , T . If we keep track of both time and
price (n, Sn) follows a zig-zag path moving left to right through the lattice of (n, s) pairs in the plane. We
have illustrated a section of this lattice in the following figure with a possible path for (n, Sn) drawn in.
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At each time transition the path moves one step to the right (time advancement) and one step either up or
down (price transition). Because Sn must move either up or down, Sn cannot stay constant. The path is
not allowed to move strictly horizontally.

With this picture in mind, for each lattice position (s, n) with 0 ≤ n ≤ T there should be a value v(s, n)
which gives the correct market price of the contingent claim when Sn = s. Our task is the calculate the
values of this function v(s, n).

Observe that each n→ n+ 1 time step is a version of our single branch model. If we know the values of
v(·, n+ 1) we can use our single step calculation (10.4) to calculate the values of v(·, n). The calculation is
not complicated. We first calculate the values

qk =
(1 + r)sk − sk−1

sk+1 − sk−1
. (10.5)

Then starting from the values of v(s, T ) = φ(s) work backwards in time, calculating v(sk, n) from v(sk±1, n+
1) according to

v(sk, n) =
1

1 + r
[qkv(sk+1, n+ 1) + (1− qk)v(sk−1, n+ 1)] . (10.6)
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We will see how to organize such a calculation in Matlab below, but first we need to work out the rest of
the mathematical ideas.

Having determined the values of v(s, n) the market price of the contingent claim is the stochastic process
derived from Sn by

Vn = v(Sn, n).

The justification for this again depends on the existence of a replicating portfolio for the claim. This is more
complicated than the single branch setting. Suppose we are at Sn = sk. Our single branch calculations give
us portfolio values

α(sk, n) =
v(sk+1, n+ 1)− v(sk−1, n+ 1)

sk+1 − sk−1
, β(sk, n) =

sk+1v(sk−1, n+ 1)− sk−1v(sk+1, n+ 1)

(1 + r)n+1(sk+1 − sk−1)
(10.7)

with the property that
v(sk, n) = α(sk, n)Sn + β(sk, n)Bn,

and for both possible values of Sn+1 = sk±1,

v(sk±1, n+ 1) = α(sk, n)sk±1 + β(sk, n)Bn+1. (10.8)

(The reason for the higher power of (1 + r) in the denominator of β is that the bank portion of the portfolio
goes from βBn to βBn+1 instead of βB0 to βB1. So βBn is what replaces the value of β in our single
time-step calculation.) Restated, for each n = 0, . . . , T − 1 we have

α(Sn−1, n− 1)Sn + β(Sn−1, n− 1)Bn = v(Sn, n) = α(Sn, n)Sn + β(Sn, n)Bn. (10.9)

The implementation of (10.9) is as follows. The values α(Sn−1, n− 1), β(Sn−1, n− 1) are the stock and
bond holdings we use for the n− 1→ n time step. The left equality of (10.9) says they produce a portfolio
with value v(Sn, n) at time n. Having reached time n we get ready for the t = n → n + 1 time step. The
holdings we want to use for this transition are α(Sn, n), β(Sn, n) because they maintain today’s value (the
right inequality in (10.9)) and by (10.8) will have value v(Sn+1, n + 1) tomorrow for both possible values
of Sn+1. The key feature is that there are two portfolios producing today’s value v(Sn, n): the one we just
used for the n−1→ n time transition and the one we are about to use for the n→ n+ 1 time transition. At
time n we refinance the portfolio by changing from α(Sn−1, n−1), β(Sn−1, n−1) to α(Sn, n), β(Sn, n). This
involves buying and selling at time n but the portfolio’s value is the same before and after the transaction
(that’s what (10.9) says) so the sales proceeds will exactly cover the purchase expenses. This is called a
self-financing transaction. Now we are ready for the n→ n+ 1 time step.

...

t = n− 1 : Vn−1 = v(Sn−1, n− 1) = Sn−1α(Sn−1, n− 1) +Bn−1β(Sn−1, n− 1)

(time step)

t = n : Vn = v(Sn, n) = Snα(Sn−1, n− 1) +Bnβ(Sn−1, n− 1)

refinance to = Snα(Sn, n) +Bnβ(Sn, n)

(time step)

t = n+ 1 : Vn+1 = v(Sn+1, n+ 1) = Sn+1α(Sn, n) +Bn+1β(Sn, n)

refinance to = Sn+1α(Sn+1, n+ 1) +Bn+1β(Sn+1, n+ 1)

(time step)

t = n+ 2 : Vn+2 = · · ·
...

You may notice that (10.7) does not produce α(s, n) and β(s, n) for n = T ; it only produces values for
n < T . That is why we said (10.9) holds only for n = 1, . . . , T − 1; the right side is undefined for n = T .
But the left side is correct for n = T , giving the exercise values.
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Observe that a portfolio which replicates the value of the claim at all times is not just a pair of constants
α, β, but is something that changes as time evolves and in a random way that depends on the evolution of
the price process Sn. Thus a replicating portfolio is a pair of stochastic processes Xn, Yn constructed from
the Markov chain using the functions α(·, ·), β(·, ·) which we have computed:

Xn = α(Sn, n), Yn = β(Sn, n).

The value of this portfolio always agrees with the value Vn = v(n, Sn) that we calculated for the option:

Vn = XnSn + YnBn, for n = 0, . . . , T.

But it also has the important self-financing property (10.9). Stated in terms of Xn, Yn this means that the
refinancing from Xn−1, Yn−1 to Xn, Yn which occurs at time n does not change the portfolio value:

Vn = Xn−1Sn + Yn−1Bn.

Subtracting the tow formulas for Vn the self-financing property can be expressed as

0 = (Xn −Xn−1)Sn + (Yn − Yn−1)Bn, or

0 = ∆Xn
Sn
Bn

+ ∆Yn (10.10)

where ∆Xn = Xn −Xn−1 and ∆Yn = Yn − Yn−1 are the backward differences. Another way to express it is

∆Vn = Vn − Vn−1

= (Xn−1Sn + Yn−1Bn)− (Xn−1Sn−1 + Yn−1Bn−1)

= Xn−1 ·∆Sn + Yn−1 ·∆Bn. (10.11)

We can interpret this as saying that the changes in the portfolio’s value are due entirely to changes in the
prices Sn and Bn; the adjustments to the portfolio’s holdings at each time t = n are not producing any
change in the portfolio’s value. Once such a portfolio is created its management does not require or produce
new funds as time proceeds (though it does take intelligence).

Self-financing portfolios play two important roles in our discussion. First, they are the way we can
replicate the evolving value Vn = v(Sn, n) of a contingent claim using a portfolio of stock and savings alone..
A replicating portfolio for such a claim φ(ST ) is a self-financing portfolio (Xn, Yn) with the property that

φ(ST ) = XTST + YTBT , for all possible values of ST .

It is the existence of replicating portfolios which determines the market value Vn of the claim; see the theorem
below.

Secondly, self-financing portfolios allow us to define what we mean by an arbitrage opportunity. An
arbitrage portfolio is a self-financing portfolio whose value process Vn = XnSn + YnBn satisfies

1. V0 = 0,

2. P (VT ≥ 0) = 1, and

3. P (VT > 0) > 0.

We maintain that the only reasonable market models are arbitrage-free, meaning that no arbitrage portfolios
exist. We can state exactly what this requires of our random walk model.

Lemma 10.3. The random walk market model is arbitrage-free if and only if

si−1 < (1 + r)si < si+1

for all states si which are accessible before time T .
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By “accessible before time T” we mean that

P (Sn = si for some n < T ) > 0.

This depends on the distribution of S0. If S0 = sk, a fixed starting price, the possible values of ST are those
si with k − T < i < k + T , sometimes called the cone of influence of sk. We will come back to prove the
lemma once we have talked about martingales in the next section, because they make the proof easier to
describe. For now let’s take the lemma for granted and see what else we can say about the random walk
model.

Theorem 10.4. If the random walk model is free of arbitrage, then every contingent claim with terminal
value at time T given by an exercise value function φ(ST ) of the final stock price has a replicating portfolio
(Xn, Yn). The market price of the claim must agree at all times with the market value of the replicating
portfolio: Vn = XnSn + YnBn.

Proof. The proof is the success of our construction above.

Suppose you are the writer/issuer of a contract on this claim; you are paid V0 at time n = 0. At time T
you have to be prepared to deliver something of value φ(ST ). You have to invest that V0 and then manage
that investment portfolio as time proceeds so that when n = T arrives the portfolio will be worth exactly
the φ(ST ) you need to fulfill your obligation. This is called hedging your obligation and thus a replicating
portfolio is also called a hedging portfolio. This is not hard to do, provided we have calculated all the α(n, sk),
β(n, sk) values. It simply consists of following the replicating portfolio Xn = α(n, Sn), Yn = β(n, Sn) as it
evolves. Example 10.2 below will illustrate this.

Computing Examples

Given the si and r satisfying Lemma 10.3, an exercise value function φ(s), and a final time T , here are what
the calculations need to do.

1. Calculate the qi from (10.5).

2. Set v(si, T ) = φ(si) for all i.

3. Iterate backwards from n = T − 1 down to n = 0 in (10.6) to find the value and portfolio values for
each (s, n). If we are going to be responsible for managing a hedging portfolio we will also need to use
(10.7) to calculate the values of α(s, n) and β(s, n) as we go.

This is relatively simple to have Matlab do, except for two practical issues. First, Matlab doesn’t let us
use n = 0 as an array index. So if we use an array v we just need to remember that the time index is shifted
by 1: v(i,k+1) holds the value v(si, k), k = 0, . . . , T .

The second issue is that the calculations can only use a finite list of states, s= (s1, . . . , sm). But the
formulas in (10.6) and (10.7) for s1 refer to s0, and for sn they refer to sn+1. Mathematically the equations
involve the full infinite collection of states. There are a couple ways around this. The simplest is to use some
approximate formulas for v(s1, ·) and v(sm, ·) which can be worked out in advance, so that we only need to
do the calculations for i = 2, . . . , n − 1. When we get to Section 10.5.1 we will explain the simple linear
approximation used in the code below. Regarding q for s1 and sn we will effectively treat those as absorbing
states; indicated in the code by the NaN values in q. That interpretation allows us to fill in portfolio values
for s1 and sn as well. Since Sk = s1 → Sk+1 = s1 with certainty, self-financing requires

α(s1, k)s1 + β(s1, k)Bk = v(s1, k), and

α(s1, k)s1 + β(s1, k)Bk+1 = v(s1, k + 1).

Solving these yields

α(s1, k) =
(1 + r)v(s1, k)− v(s1, k + 1)

rs1

β(s1, k) =
v(s1, k + 1)− v(s1, k)

rBk
,
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and similarly for sn. The code uses these (last two lines of the iteration loop) to fill in values for alpha(1,k),
alpha(n,k), beta(1,k) and beta(n,k).

Here then is a script to do these calculations for us.

EuroOpt.m

%This script assumes that s, phi, T and r are already defined.

%If s, phi are rows switch them to columns.

if dot([1,-1],size(s))<0

s=s’;

end

if dot([1,-1],size(phi))<0

phi=phi’;

end

%

%Calculate the array of s(i+1)-s(i-1) and list of Bank account values.

n=length(s);

dds=s(3:n)-s(1:n-2);

B=(1+r).^(0:T);

%

%Calculate the martingale probabilities.

q=[NaN;((1+r)*s(2:n-1)-s(1:n-2))./dds;NaN];

%

%Initialize v, alpha, beta

v=zeros(n,T+1);

alpha=v; beta=v;

v(:,T+1)=phi;

%

%Fill in v(1,:) and v(n,:) using linear approximation formula:

v(n,1:T)=s(n)*(phi(n)-phi(n-1))/(s(n)-s(n-1))+B(1:T)*(phi(n-1)*s(n)-phi(n)*s(n-1))/(B(T+1)*(s(n)-s(n-1)));

v(1,1:T)=s(1)*(phi(2)-phi(1))/(s(2)-s(1))+B(1:T)*(phi(1)*s(2)-phi(2)*s(1))/(B(T+1)*(s(2)-s(1)));

%

%The iteration.

for k=T:-1:1

v(2:n-1,k)=(q(2:n-1).*v(3:n,k+1)+(1-q(2:n-1)).*v(1:n-2,k+1))/(1+r);

alpha(2:n-1,k)=(v(3:n,k+1)-v(1:n-2,k+1))./dds;

beta(2:n-1,k)=(s(3:n).*v(1:n-2,k+1)-s(1:n-2).*v(3:n,k+1))./(B(k+1)*dds);

%

%Portfolio values for s(1) and s(n) as absorbing states

alpha([1;n],k)=((1+r)*v([1;n],k)-v([1;n],k+1))./(r*s([1;n]));

beta([1;n],k)=(v([1;n],k+1)-v([1;n],k))/(r*B(k));

end

%

%Display results, flipped top to bottom

disp(’s and q:’)

disp(flipud([s,q]))

disp(’v:’)

disp(flipud(v))

disp(’alpha:’)

disp(flipud(alpha))

disp(’beta:’)

disp(flipud(beta))
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Example 10.2. As an example suppose the stock price states include 20, 40, 60, 80, 100, 120, 140 and the
interest rate is r = .05. Let’s consider a call option with strike price K = 70:

φ(s) =

{
s− 70 if s ≥ 70

0 if s < 70.

and work it out for T = 3 time periods, from the initial stock price of S0 = 80. Here are the results
(calculated with the script EuroOpt.m).

s and q:

140.0000 NaN

120.0000 0.6500

100.0000 0.6250

80.0000 0.6000

60.0000 0.5750

40.0000 0.5500

20.0000 NaN

v:

79.5314 76.5079 73.3333 70.0000

59.9849 56.5079 53.3333 50.0000

41.1835 37.8685 33.3333 30.0000

25.2154 21.1338 17.1429 10.0000

12.7343 9.3878 5.4762 0

4.9174 2.8685 0 0

0 0 0 0

alpha:

1.0000 1.0000 1.0000 0

0.9660 1.0000 1.0000 0

0.8844 0.9048 1.0000 0

0.7120 0.6964 0.7500 0

0.4566 0.4286 0.2500 0

0.2347 0.1369 0 0

0 0 0 0

beta:

-60.4686 -60.4686 -60.4686 0

-55.9335 -60.4686 -60.4686 0

-47.2519 -50.1026 -60.4686 0

-31.7460 -32.9338 -38.8727 0

-14.6636 -15.5491 -8.6384 0

-4.4704 -2.4835 0 0

0 0 0 0

Let’s follow this carefully through the sequence S0 = 80, S1 = 100, S2 = 120, S3 = 100 and see how the
replicating portfolio evolves. We start with

V0 = .712 · S0 − 31.746 ·B0 = .712 · 80− 31.746 · 1 = 25.2154.

(If you do the arithmetic you will find a discrepancy in the third decimal; that’s because we have rounded
of the values of α and β in the display above.) Now make the transition to n = 1.

V1 = .712 · S1 − 31.746 ·B1 = .712 · 100− 31.746 · 1.05 = 37.8685.

We now refinance the portfolio to

V1 = .9048 · S1 − 50.1026 ·B1 = .9048 · 100− 50.1026 · 1.05 = 37.8685.
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With the new portfolio allocations we are ready for the transition to n = 2.

V2 = .9048 · S2 − 50.1026 ·B2 = .9048 · 120− 50.1026 · 1.052 = 53.3333.

Refinance again.

V2 = 1.0 · S2 − 60.4686 ·B2 = 1.0 · 120− 60.4686 · 1.052 = 53.3333.

Now make the final transition to n = 3.

V3 = 1.0 · S3 − 60.4686 ·B3 = 1.0 · 100− 60.4686 · 1.053 = 30.0,

which agrees with the exercise value φ(S3) = φ(100) = 30.

10.4 No-Arbitrage Pricing and Martingales

Now we will see that the relationships we have found for the random walk model can be expressed naturally
in terms of martingales. The relationships we find here turn out to describe more complicated models and
are foundational ideas of mathematical finance in general. In particular the martingale properties here will
guide us when we talk about the Black-Scholes model in Chapter 12.

The first thing to observe is that the qi values are determined by

si =
1

1 + r
[qisi+1 + (1− qi)si−1].

If we think of qi as replacing the pi for the Markov chain Sn, these equations collectively say that

Sn/Bn = Eq[Sn+1/Bn+1|S0:n].

In other words, when we use the qi instead of the pi, Sn/Bn is a martingale! For this reason the qi are
often referred to as martingale probabilities or risk-neutral probabilities. The “Eq” above means expectation
for the Markov chain under the martingale probabilities. We found that the absence of arbitrage in
our model is equivalent to the the existence of martingale probabilities with 0 < qi < 1. Every
sequence of states Sn which is possible under the original pi is possible under the qi (although with a different
probability), and conversely. If you read other discussions of mathematical finance you may see the phrase
“equivalent martingale probabilities” or “equivalent probability measure”. Here “equivalent” doesn’t mean
equal or the same, but only that the same paths have positive probabiliites under each. (In fact the only
role of the original pi in these pricing calculations is to determine which stock price paths can occur with
positive probability.)

We will use
Mn = Sn/Bn

to denote this important q-martingale. This is not the only q-martingale hiding among our various formulas.
Consider a self-financing portfolio (Xn, Yn). The portfolio’s value is Vn = XnSn + YnBn. Let

Cn = Vn/Bn.

This is related to our Mn by
Cn = XnMn + Yn.

Let’s calculate Cn as a sum of its increments

Cn = C0 +

n∑
k=1

∆Ck,

were ∆Ck = Ck − Ck−1. Now we can work out this difference as a sort of discrete product rule.

∆Ck = (XkMk + Yk)− (Xk−1Mk−1 + Yk−1)

= (Xk −Xk−1)Mk + (Yk − Yk−1) +Xk−1(Mk −M−1)

= ∆XkMk + ∆Yk +Xk−1∆Mk.
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Now notice that the self-financing property (10.11) says that

∆XkMk + ∆Yk = 0.

So we find that
∆Ck = Xk−1∆Mk

and therefore

Cn = C0 +

n∑
k=1

Xk−1∆Mk.

This is what we called a discrete stochastic integral in Chapter 9, which we know produces another martingale.
We find that Cn is also a q-martingale! In particular we find the martingale pricing formula (or risk-neutral
pricing formula): if there is a replicating portfolio for φ(ST ) then the market value Vn of this portfolio
divided by Bn is a q-martingale: for 0 ≤ n ≤ T

Vn/Bn = Cn = Eq[CT |S0:n] = Eq[φ(ST )/BT |S0:n]. (10.12)

This implies

v(s, n) = BnE
q[φ(ST )/BT | Sn = s]

v(s, 0) = Eqs [φ(ST )/BT ],

the last line because B0 = 1. This formulation assumes the existence of a replicating portfolio but otherwise
makes no reference to what the replicating portfolio Xn, Yn actually is; everything is in terms of the qi.

This is a good place to go back and prove Lemma 10.3.

Proof. To say that si−1 < (1 + r)si < si+1 for all i is the same as saying there exists a set of equivalent
martingale probabilities qi. If that is true we claim that no arbitrage opportunity can exist. Suppose that
there was a starting state s0 and a self-financing portfolio so that VT = XT−1ST + YT−1BT ≥ 0 and VT > 0
with positive probability. If VT > 0 has positive probability under the pi then it has positive probability
under the qi. As above, Cn = Vn/Bn is a q-martingale so

C0 = Eqs0 [CT ].

But CT ≥ 0 and P q(CT > 0) > 0 implies that the above expectation is strictly positive. So V0 = C0B0 = 0
is not possible. Therefore no arbitrage opportunities exist.

Now suppose that no arbitrage opportunities exist. Consider any particular branch sk−1 ↖ sk ↗ sk+1.
We know that if sk−1 < (1 + r)sk < sk+1 were not true there would exist α and β so that

0 = αsk + β

0 ≤ αsk±1 + β(1 + r), strictly in one case.

Pick a starting position s0 from which it is possible to reach sk at some time prior to the terminal time T .
Now construct a portfolio as follows. Initially X0 = Y0 = 0. We keep Xn = Yn = 0 up to the first time K
when SK = sk. At that time we make XK = α and YK = β/BK. That makes

VK = αsk + β = 0.

We go one time step past K and now

VK+1 = αsk±1 + β(1 + r).

We know this is nonnegative, and strictly positive in one case. Now refinance by converting the portfolio’s
value to bonds: XK+1 = 0 and

YK+1BK+1 = VK+1.

Now we just leave Xn and Yn unchanged for the remaining k + 1 < n < T . This is clearly self-financing. It
has V0 = X0S0 +Y0B0 = 0. VT ≥ 0 in all cases. And in the event that the price Sn does hit si at some time
n = K < T we will have VK+1 > 0 with positive probability, and will remain so until the final time. In other
words VT > 0 does have positive probability. Thus an arbitrage portfolio does exist. But we are assuming
that this in not possible, so sik1 < (1 + r)sk < sk+1 must be true of all k.
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To summarize the description of the random walk model in martingale terms, we have found the following.

• The model is free of arbitrage if and only if the pi can be replaced by equivalent “martingale probabil-
ities” qi under which

Mn = Sn/Bn

is a q-martingale. Lemma 10.3 characterizes this in terms of r and the si.

• Assuming the model is free of arbitrage, if Vn = XnSn + YnBn is the value process for a self-financing
portfolio Xn, Yn then

Vn/Bn

is also a q-martingale.

• Assuming the model is free of arbitrage given any exercise value function φ(s) we can always find
a self-financing portfolio which replicates VT = φ(ST ). This is described by saying that the market
Sn, Bn is complete.

10.5 Pricing and Parity Relations Among Options

There are some simple relationships between the prices of various types of assets. These are easily derived
from the martingale pricing formula (10.12). Forwards are elementary; for φforward(s) = s−K we have

V forward
n = BnE

q

[
ST −K
BT

∣∣∣∣S0:n

]
= BnE

q

[
ST
BT

∣∣∣∣S0:n

]
−KBn

BT

= Bn
Sn
Bn
−KBn

BT

= Sn −K(1 + r)n−T .

The exercise value functions for the call and put (using the same “strike price ”K) are

φcall(s) =

{
s−K if s ≥ K
0 if s < K

, φput(s) =

{
0 if s ≥ K
K − s if s < K

.

Explicit pricing expressions for these exist for specific models, such as CRR in Section 10.6.1 below. (For the
continuous time model, the explicit pricing formula is the famous Black-Scholes formula; see Chapter 12.)
But there is a simple relation between them:

φcall(s)− φput(s) = s−K = φforward(s).

Consequently
V call
n − V put

n = V forward
n = Sn −K(1 + r)n−T .

This relation is called put-call parity. (Bear in mind that it assumes that the call and put have the same
terminal time T and strike price K.) In particular if there is an explicit pricing formula for a call then there
is for a put as well.

Other exercise value functions are considered in the literature, many with colorful names.

• A cash-or-nothing call: φc-n call(s) =

{
C if s ≥ K
0 if s < K

.

• A stock-or-nothing put: φs-n call(s) =

{
s if s ≥ K
0 if s < K

.
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• A strangle: φstrangle(s) =


K1 − s if s ≥ K1

0 if K1 < s < K2

s−K2 if K2 ≤ s
.

There are put versions of cash-or-nothings and stock-or-nothings. There are “straddles”, “bear spreads”,
“bull spreads”, “butterfly spreads”, . . . . There are many parity-like relations among these, so only a couple
nontrivial pricing formulas are needed to obtain formulas for the rest. In principle any piecewise linear
exercise value function can be represented using a combination of calls and puts, all with the same exercise
time T . Hull [31] discusses these and others. There are compound options, such as a put on a call. We won’t
pursue the endless varieties.

10.5.1 Approximations for Small or Large Price

If φ(s) = c1s+c2 then we can work out a simple expresson for v(n, s). The martingale pricing formula makes
this simple.

v(Sn, n)/Bn = Eq
[
c1ST + c2

BT
|S0:n

]
= c1E

q

[
ST
BT
|S0:n

]
+ c2E

q

[
1

BT
|S0:n

]
= c1

Sn
Bn

+ c2
1

BT
,

so that
v(s, n) = c1s+ c2(1 + r)n−T . (10.13)

Most of the exercise value functions φ(s) considered in the literature are piecewise linear, with φ(s) = c1s+c2
for all sufficiently large (or small) s. We might reason from this that for sufficiently large (or small) s the
formula (10.13) should be a good approximation.

We used that in the code on page 162 to produce an approximate formula for v(sn, k) for the largest sn
carried by the calculations. The code simply fitted a linear formula to

φ(sn) = c1sn + c2 and φ(sn−1) = c1sn−1 + c2

to obtain

c1 =
φ(sn)− φ(sn−1)

sn − sn−1
and c2 =

snφ(sn−1)− sn−1φ(sn)

sn − sn−1

and then used these values in (10.13) to approximate v(sn, k). We did likewise for s1 and s2.

10.6 Generalizations

Our random walk model has served to introduce some key ideas in the mathematical modeling of financial
markets. But it is rather simplistic compared to the complexities of real markets. To make it a bit more
realistic there are many possible refinements, extensions, and generalizations which can be considered. In
this section we briefly mention a few of them.

10.6.1 The Cox-Ross-Rubinstein Model

We have said little about how the states S = {si} and transition probabilities pi ought to be chosen. In
the mathematical finance literature random walk-like models typically assume that the stock price changes
according to some prescribed ratios: Si+1/Si being either u > 1 for a price increase or d < 1 for a price
decrease. This is usually called the Cox-Ross-Rubenstein model. In the special case that u = ρ and d = 1/ρ
for a constant ρ > 1 this becomes an instance of our random walk model, with states consisting of all integer
powers of ρ: si = ρi. Under this model at each transition the stock price either increases or deceases by a
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factor of ρ. Although probabilities pi, 1− pi for the transitions could be specified, there is no need because
they are replaced by the martingale probability of (10.5)

qi = q =
(1 + r)ρ− 1

ρ2 − 1
.

for all the pricing calculations. For an arbitrage-free model we can use any interest rate r with ρ−1 < r < ρ.
Under the martingale probabilities we see that Sn = ρXn where Xn is the random walk on the integers

with Xn → Xn+1 = Xn ± 1 with probabilities q and 1− q respectively. This reduces the pricing calculation
to calculations for a random walk. With s = ρx

P qs (Sn = ρy) = Px(Xn = y)

With initial value X0 = x the possible values of Xn = y are

y = x+ `− (n− `) = x+ 2`− n for ` = 0, 1, . . . , n

with probabilities

P qx (Xn = x+ 2`− n) =

(
n

`

)
q`(1− q)n−`.

This allows us to write down price formulas. For instance in the case of a call option with exercise price
K = ρL exercise date T , if the initial stock price is S0 = s = ρx we have

v(s, 0) = (1 + r)−TEqs [(ρXT −K)+]

= (1 + r)−TEqx[ρXT − ρL;XT ≥ L]

= (1 + r)−T
∑
`=···

[
ρx+2`−T − ρL

](T
`

)
q`(1− q)T−`,

where the sum “` = · · · ” is over those ` = 0, 1, . . . , T for which x + 2` − T ≥ L. This formula is not
particularly illuminating. But it would be simple for a computer to evaluate this formula and not need to
go through the time iteration of page 162.

10.6.2 Multiple Stocks

Suppose there are M different stocks with prices given by Sjn for j = 1, . . . ,M and n = 0 . . . , T . We assume
that these are all random variables taking only a countable number of possible values. We can assemble
the prices as a vector Sn = (S1

n, . . . , S
M
n ), along with our bank account process Bn = (1 + r)n. A portfolio

consists of processes Yn and Xn = (X1
n, . . . , X

M
n ), these being S0:n-determined for each n = 0, . . . T −1. The

value of such a portfolio is the process

Vn = Xn · Sn + YnBn

=

 M∑
j=1

Xj
nS

j
n

+ YnBn.

The portfolio Xn, Yn is self-financing if

Xn−1 · Sn + Yn−1Bn = Xn · Sn + YnBn

for all n = 1, . . . , T − 1. An arbitrage portfolio is a self-financing portfolio with

• V0 = 0,

• VT ≥ 0, and

• P (VT > 0) > 0.
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We say that the model is free of arbitrage if no arbitrage portfolios exist. This will imply that there
is an “equivalent” assignment of probabilities which makes all of the Sjn/Bn martingales. If we refer to
the new assignment of probabilities as the “q-probabilities” then by “equivalent” is meant that the events
which have positive probability under the original probabilities are the same as those which have positive
probabilities under the q-probabilities. (There is no assumption that Sn is Markov here, either under the
original probabilities or the q-probabilites.)

A contingent claim φ(ST ) is replicated by a self-financing portfolio Xn, Yn if

VT = φ(ST ).

If such a replicating portfolio exists, then the market value of the claim at time n is Vn, determined mathe-
matically by the property that Vn/Bn must be a q-martingale:

Vn/Bn = Eq[φ(ST )/BT |S0:n].

The argument for this is just a vector version of the reasoning which led to (10.12).

10.6.3 Path-Dependent Claims

The exercise value VT we have been considering is a function φ(ST ) or the final stock price. In some situations
this needs to be generalized to allow the exercise value to be an S0:T -dependent random variable Φ(S0:T ).
This means it may involve past as well as present values of the stock price. These are called path-dependent
options because the final value depends on the path the stock price followed to reach its final value, not just
the final value itself. An example is a forward lookback put, for which

VT = (ZT −K)+, where ZT = min
k≤T

Sk.

The martingale pricing formula still holds for path-dependent options, although the calculations are more
complicated in general because the value Vn at time n depends on the price history S0:n not just Sn itself.
In the particular case of our lookback put we can turn it back in to a Markov chain situation by considering
the chain consisting of the pair (Sn, Zn) where Zn = mink≤n Sk. We could then use an iterative calculation
similar to that of page 161 to compute values v(s, z, n) for s and z in some large but finite range of values.
We are not going to pursue the details.

10.6.4 General Results about Finite Markets

The success of our pricing of contingent claims for the random walk model is based on three key features.

• The absence of arbitrage in the market (no arbitrage portfolios exist).

• The existence of martingale probabilities (Sn/Bn is a q-martingale).

• The market is complete (every contingent claim Φ(S0:T ) can be replicated with a self-financing port-
folio).

We have seen that all claims of the form φ(ST ) can be replicated. That remains true for the more general
path-dependent case Φ(S0:T ); the details are just more involved.

A couple possible ways to improve our stock price model were mentioned above. But with each new
model we are faced with the question of whether our three key features continue to hold. So what can we say
in general? Can these features fail if we replace the random walk with a more general vector-valued Markov
chain?

Even in the random walk model we know that absence of arbitrage can fail if the interest rate r is outside
a certain range. In general it turns out that the market is free of arbitrage if and only if there is an equivalent
assignment of probabilities which makes all of the Sjn/Bn martingales. (Again, “equivalent” means that the
events which have positive probability under the original probabilities are the same as those which have
positive probabilities under the q-probabilities.) In the random walk model we saw that the condition on r
for absence of arbitrage was the same as for the existence of the martingale probability q. That the existence

169



of martingale probabilities is equivalent to the absence of arbitrage turns out to be true in the more general
models.

However in some cases there can be more than one choice of martingale probability. See Problem 10.4
for a simple instance in which this occurs. This is one reason why our simple random walk model, with
only two possible price transitions at each stage, works out so nicely. If there are different choices of
martingale probabilities then the martingale pricing formula produces different option prices depending on
which martingale probability is being used. This means the price will depend on considerations beyond those
we have discussed.

What about completeness? If there is no replicating portfolio for an option then our reasoning breaks
down. It turns out however that this can happen if and only if the martingale probabilities are not unique!
In other words if there is only one way to choose martingale probabilites, then all contingent claims can
be replicated with a self-financing portfolio and so our martingale pricing formula will prescribe the market
value. (This is reminiscent of basic linear algebra, in which the non-solvability of some equations Ax = b is
equivalent to nonuniqueness of solutions for those equations which are solvable.)

For a development of this general theory see Musiela and Rutkowski [44], Chapter 3 specifically, and the
other references cited there. These general features continue to hold in continuous time models, but there
are more technicalities to deal with in that setting. We will encounter them again in Chapter 12 when we
have a brief look at the Black-Scholes model.

10.6.5 American Options

Consider again our random walk model and an exercise value φ(ST ). We want to mention birefly another
new feature: the possibility of early exercise. This means that the option owner is allowed to exercise the
option at a time T ≤ T of their choosing, instead of always waiting to the final time T . The option owner
will need to have a strategy for deciding when to exercise, and that will likely depend on the stock price
history, but of course can not take advantage of some prophetic knowledge of what the stock price will do
in the future. In other words T must be a stopping time. Options with this feature are called American
options. Without this early exercise feature (i.e. with the requirement that T = T ) they are called European
options. As you might expect the market value of an American option depends on the optimal strategy for
deciding when to exercise. This becomes an optimal stopping (under the martingale probabilities). Without
drawing out all the details, the essential change in the calculations is that (10.6) is replaced by

v(sk, n) = max

(
φ(sk),

1

1 + r
[qkv(sk+1, n+ 1) + (1− qk)v(sk−1, n+ 1)]

)
.

The option holder’s strategy must be to use the early exercise privilege the first time T = k that v(Sk, k) =
φ(Sk). American options are very computable in this discrete-time setting. (They become considerably
harder in continuous time.)

Problems

Problem 10.1
Consider the single branch model. Show that if p = 1 but s+1 6= (1 + r)s0 then the market has an arbitrage
opportunity and explain what transactions would take advantage of the opportunity. Do the same if p = 0
and s−1 6= (1 + r)s0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P01

Problem 10.2
Consider a random walk stock price model whose prices include

. . . , s0 = 20, s1 = 40, s2 = 60, s3 = 80, s4 = 100, s5 = 120, s6 = 140, . . .

Based on this much of the model, what bounds must the interest rate r obey to insure the absence of
arbitrage?
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Now suppose that interest rate is r = .10 and consider the contingent claim with exercise value function

φ(s) =

{
50 if 50 ≤ s ≤ 110

0 otherwise

and exercise time T = 3. Compute the market value v(80, 0) of this contingent claim at t = 0 assuming that
S0 = 80.

Suppose you write such a contract to a client. They pay you v(80, 0) and now you need form and manage
a hedging portfolio. What would your initial hedging portfolio X0, Y0 be? Describe the changes you would
make to your hedging portfolio between t = 0 and t = 3 if the stock price evolves through the values S1 = 60,
S2 = 40, S3 = 60. (This should be something similar to what is on the top of page 167.)

You can do the calculations by hand or with Matlab. But you should write out at least one step of the
calculation by hand, for instance the calculation of v(80, 0), α(80, 0), β(80, 0) from v(60, 1) and v(100, 1)
(just to be sure you understand what calculations take place at each stage).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3step

Problem 10.3
For the CRR model find an explicit pricing formula if the exercise value function is φ(s) = sγ for a positive
constant γ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CRRgamma

Problem 10.4
Consider a one-step market model in which S1 has three possible values instead of two. To be specific,
consider the single branch of a “trinomial tree” illustrated in Figure 10.1 below. The values inside the nodes
are the respective stock prices. Suppose that the interest rate is r = 0, so that B0 = B1 = 1.

m30

m20

m40

m50

��
��

�
��*q3

-q2
HH

HHH
HHj

q1

t = 0 t = 1

Figure 10.1: Trinomial Branch

a) Assuming that all three branches have nonzero probabilities, show that there are no arbitrage oppor-
tunities in this market.

b) Show that there is more than one way to assign probabilities q1, q2, q3 (nonnegative, with q1 +q2 +q3 =
1) to the three branches so that S0 = Eq[S1]; i.e. there is more than one martingale measure.

c) Show that there does not exist a replicating portfolio for the European call option with exercise price
of 30 at time t = 1, i.e. for the contingent claim with

X =

{
S1 − 30 if S1 ≥ 30

0 if S1 < 30
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The point is that binomial trees are special. With three or more branches martingale probabilities will exist
but be non-unique and even if there is no arbitrage, the market may fail to be complete.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trinomial

Problem 10.5
Consider a random walk stock price model whose prices include

s1 = 1, s2 = 2, . . . , s20 = 20

using interest rate r = .03 over T = 50 time periods. Consider a call option with exercise value function
φ(s) = max(0, s− 10). Using our script EuroOpt.m calculate the values v(s, n). (You might want to disable
the disp ... lines at the end of the script to keep it from printing all the results in the command window.)
Now produce a surface plot of the resulting values of v(s, n) as a function of s and n. You can do that with
the following commands.

t=0:50;

[tt,ss]=meshgrid(t,s)

surf(tt,ss,v)

Now add the values of φ(s) the plot, as follows.

hold on

Phi=phi*ones(1,51)

surf(tt,ss,Phi)

Repeat the above for the corresponding put option: φ(s) = max(0, 10− s).

The values you have computed are for the European versions of the options (no early exercise). For one
of the two options there would be no benefit from exercising the option early even if you could, while for
the other there are some circumstances in which early exercise would be preferable (i.e. φ(s) > v(s, n)) if it
were allowed. Which one is which? How can you tell this from your graphs?

Just you you don’t misunderstand, you will have only calculated the values of the European versions
of these, not the values of their American counterparts. However you can tell from this simple comparison
whether the American version would or would not be more valuable than the European version.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA-Comp

For Further Study

A very good reference is Shreve [55]. The first volume provides a more thorough treatment of discrete models.
The second volume develops the continuous time theory. The Cox-Ross-Rubinstein model and general theory
of finite markets (Section 10.6) is developed in [44]. Hull [31] includes a lot details about actual markets.
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Chapter 11

Continuous Time Markov Chains

This chapter considers a class of Markov chains Yt for which time varies continuously, rather than discretely
as in the preceding chapters. We will continue to assume that the state space S is countable. (The term
“chain” is typically used to distinguish processes with countable state space from those with continuous
state spaces, such as we will encounter in Chapter 12.) The Markov chains of this chapter are sometimes
called jump processes because they move only by instantaneous jumps, with waiting times of random lengths
between jumps.

The transition probabilities will be denoted

pi,j(t) = P (Yt = j|Y0 = i), i, j ∈ S.

The i, j range over the state space S, and the time variable t can take any real value 0 ≤ t. Because there is
no smallest possible time step the statement of the Markov property must involve two time values 0 ≤ s < t:

P (Yt = k|Y[0,s] = y[0,s]) = pys,k(t− s).

This should hold for all 0 ≤ s < t; all k ∈ S; and all possible histories y[0,s]. The difference from (3.19) is
that we understand y[0,s] to be a function y(u) of a continuous variable u defined for 0 ≤ u ≤ s and taking
values in S, so that “Y[0,s] = y[0,s]” is specifying the full history of Y over the time interval [0, s]. The Markov
property is that the right side only depends on the most recent state ys, not what happened prior to that.
The Tower Law (part 8 of Proposition 3.8) says

P (Yt = k|Y0 = y0) = E[P (Yt = k|Y[0,s] = y[0,s])|Y0 = y0].

Replacing y0 = i and ys = j this boils down to the Chapman Kolmogorov equation

pi,j(k) =
∑
j

pi,j(s)pj,k(t− s), (11.1)

generalizing (2.4). We would expect that ∑
j

pi,j(t) = 1

as well, but this turns out to be problematical in some cases. The difficulty is due to a new phenomenon
which can occur for continuous time chains: that an infinite number of jumps occur in a finite amount of
time. This is what we call explosion in finite time. If that occurs before t then it is not clear what the
state Yt should be. We see an example in Section 11.2.2 and discuss the possibility more in Section 11.6.
Sections 11.3.2 and 11.3.1 describe two areas of application where chains of this type are being studied.

11.1 The Exponential Distribution and the Markov Property

Markov chains in continuous time depend on the memoryless property of the exponential distribution. Recall
that a random variable W has an exponential distribution (with parameter λ > 0) if it has density f(w) =
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λe−λw for w ≥ 0 and f(w) = 0 for w < 0. In particular W ≥ 0 with probability 1 and for t ≥ 0

P (W > t) =

∫ ∞
t

λe−λw dw = e−λt.

Observe that
P (W > t+ s) = e−λ(t+s) = e−λte−λs = P (W > s)P (W > t).

In terms of conditional probabilities,

P (W > t+ s|W > t) = P (W > s). (11.2)

This is the memoryless property of the exponential distribution. It means that if you are waiting for W to
happen and it has not happened yet (W > t) the conditional probability that you will wait at least s time
units more is the same as the probability of waiting at least s in the first place. In brief, how long you have
already waited does not affect how much more you can expect to wait.

Now consider the possibility of a Markov process Yt which starts at Y0 = 0 and waits there for an
exponentially distributed random amount of time W , at which it jumps to Yt = 1 where it stays ever after:

Yt =

{
0 for t < W

1 for W ≤ t.
(11.3)

We claim that this is a Markov chain. Clearly the state space is S = {0, 1} and 1 is an absorbing state. The
Markov property would say that

P (Ys+t = 0|Yu = 0 for all 0 ≤ u ≤ t) = P (Ys = 0|Y0 = 0).

In terms of W this reduces to
P (W > t+ s|W > t) = P (W > s).

In other words if W is an exponential random variable then Yt does have the Markov property. Conversely,
only exponential random variables have the memoryless property (see Problem 11.1), so if Yt of (11.3) is
Markov then W must be an exponential random variable.

The construction (11.3) is only random with regard to when the jump occurs. We know with certainty
where it will jump to: state 1. A similar construction will produce a continuous time Markov chain for
which where it jumps to is also random. Let W1,W2 be two independent exponential random variables with
parameters λ1, λ2 respectively. We view the Wi as timers. At time t = 0 we set Y0 = 0 and start both timers.
We wait to see which timer goes off first. If timer 1 goes off first (W1 < W2) then Yt jumps to state 1 at time
t = W1 and remains there forever. If timer 2 goes off first Yt jumps to state 2 at time t = W2 and remains
there forever.

Yt =

{
0 for 0 ≤ t < min(W1,W2)

k if Wk = min(W1,W2) ≤ t.
(11.4)

This process has state space S = {0, 1, 2}. We claim that it is again a Markov process. Both states 1, 2 are
absorbing. The principal thing to check is that for either k = 1, 2

P (Ys+t = k|Yu = 0 for all 0 ≤ u ≤ t) = P (Ys = k|Y0 = 0). (11.5)

Let’s check this for k = 1. Start with the right side.

P (Ys = 1|Y0 = 0) = P (W1 ≤ s and W1 ≤W2).

Because the W1 and W2 are independent their joint density is

f(w1, w2) = λ1e
−λ1w1λ2e

−λ2w2 .
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So

P (Ys = k|Y0 = 0) = P (W1 ≤ s and W1 ≤W2)

=

∫ s

0

[∫ ∞
w1

f(w1, w2) dw2

]
dw1

=

∫ s

0

λ1e
−λ1w1e−λ2w1 dw1

=
λ1

λ1 + λ2
(1− e−(λ1+λ2)s). (11.6)

The left side of (11.5) is

P (t < W1 ≤ s+ t and W1 ≤W2)/P (t < min(W1,W2)).

Because of independence the denominator is

P (t < W1 and t < W2) = P (t < W1)P (t < W2) = e−tλ1e−tλ2 = e−t(λ1+λ2). (11.7)

Using the joint density again the numerator is

P (t < W1 ≤ s+ t and W1 ≤W2) =

∫ s+t

t

[∫ ∞
w1

f(w1, w2) dw2

]
dw1

=

∫ s+t

t

λ1e
−λ1w1e−λ2w1 dw1

=
λ1

λ1 + λ2
(e(λ1+λ2)(s+t) − e(λ1+λ2)t).

Dividing numerator by denominator now confirms (11.5) (for our test case of k = 1, m = 2).
There is an alternate way to understand this same construction. Let J = min(W1,W2) be when the first

timer goes off and K the index of the winning timer: K = 1 if J = W1 or K = 2 if J = W2. We see from
(11.7) that J is another exponential random variable, with parameter λ̄ = λ1 + λ2:

P (J > t) = P (t < W1 and t < W2) = e−λ̄t.

The distribution of K follows by letting s→∞ in (11.6):

P (K = 1) = P (W1 < W2) =
λ1

λ1 + λ2
=
λ1

λ̄
.

Similarly,

P (K = 2) =
λ2

λ̄
.

Moreover J and K are independent. We see this by calculating again with the joint density of W1,W2 as
follows.

P (a ≤ J ≤ b and K = 1) = P (a ≤W1 ≤ b and W1 < W2)

=

∫ b

a

∫ ∞
w1

f(w1, w2) dw2 dw1

=

∫ b

a

λ1e
−λ1w1e−λ2w1 dw1

=
λ1

λ̄

∫ b

a

λ̄e−λ̄w1 dw1

= P (K = 1)P (a ≤ J ≤ b).

So the the construction (11.4) could be alternately described by starting at Y0 = 0, wait a λ̄-exponentially
distributed amount of time J , at which time Y jumps to a new state YJ given by the random variable K:

Yt =

{
0 for t < J

K for J ≤ t.
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11.2 Examples

The constructions we used above, (11.3) and (11.4), both produce processes which jump only once. We can
extend the constructions by starting new (independent) timers after each jump. The examples of this section
illustrate this with the most common examples of continuous time Markov chains.

11.2.1 The Poisson Process

We will describe the Poisson process Nt for initial state N0 = 0. (Ñt = k + Nt will give a Poisson process
with initial state Ñ0 = k.) At time t = 0 we start a timer W1 which determines how long we wait before
jumping to state 1. The instant we reach state 1 we start a new timer W2. When it goes off we jump to
state 2 and start a new timer W3. The process continues in this way. The timers W1, W2 , . . . are assumed
to be an i.i.d. sequence of exponential random variables with parameter λ. The successive jump times are

J1 = W1, J2 = W1 +W2, J3 = W1 +W2 +W3, . . . , Jn+1 = Jn +Wn+1.

The resulting Markov chain Nt is called the Poisson process with parameter λ.

Nt = the number of Ji with Ji ≤ t
= max

i
{i : Ji ≤ t}. (11.8)

(For this to produce Nt = 0 correctly we should include J0 = 0.) Nt is an integer-valued, piecewise constant,
continuous time Markov chain. Each jump increases Nt by one unit.

A Poisson process is often used to describe the physical process of radioactive decay. The intermittent
clicks of a Geiger counter are produced by alpha-particles emitted by a radioactive substance. They are the
jump times Jn above. Each click is a jump in the number Nt of emitted particles detected by the counter up
to time t. The number and times of the clicks heard in the past do not influence the probability distribution of
the time to the next click - that’s the Markov property. Poisson processes are also used to model breakdowns
of machinery and arrivals of packets in an electronic communications system, among other things.

Here is a typical path of Nt (for λ = 1).
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At the jump times themselves Nt is taken to be the new state, so that Nt is continuous from the right:
Nt = i for Ji ≤ t < Ji+1. So each horizontal line segment in the graph should be closed on the left and open
on the right: [Ji, Ji+1).

We would typically denote the transition probabilities as

pi,j(t) = Pi(Nt = j),

but for the Poisson process this only depends on the size of the increment: j − i. So we will simplify by
writing

pk(t) = P0(Nt = k) (= pi,i+k(t)).
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Downward jumps are impossible, so pi,j(t) = 0 for i > j; i.e. pk(t) = 0 for k < 0. The Markov property is
that (for any history n[0,s], s < t and nonnegative integer k)

P (Nt = ns + k|N[0,s] = n[0,s]) = pk(t− s). (11.9)

We won’t write out the technical verification of this – it boils down the the memoryless property (11.2) again
but in a more complicated calculation. Instead we will focus on calculating pk(t).

The first step is to find the density fn(·) of Jn = W1 + · · · + Wn. Of course f1(t) = λe−λt for t ≥ 0.
Since Jn+1 = Jn + Wn+1 and Jn and Wn+1 are independent, we obtain fn as a convolution of fn and the
exponential density f1:

fn+1(t) =

∫ t

0

fn(s)λe−λ(t−s) ds.

It is now straightforward to use the integration by parts to verify by induction that

fn(t) = λn
tn−1

(n− 1)!
e−λt.

With this in hand we can calculate the transition probabilities. Observe that for k ≥ 1 the event Nt = k
is equivalent to Jk ≤ t and t < Jk +Wk+1. Since the random variables Jk and Wk+1 are independent their
joint density is the product of their individual densities. So for k ≥ 1 we find

pk(t) = P0(Nt = k)

=

∫ t

0

∫ ∞
t−u

fk(u)λe−λv dv du

=

∫ t

0

fk(u)e−λ(t−u) du

=

∫ t

0

λk
uk−1

(k − 1)!
e−λue−λ(t−u) du

=
λktk

k!
e−λt. (11.10)

For k = 0

p0(t) = P0(Nt = 0)

= P (W1 > t)

= e−λt

=
λ0t0

0!
e−λt,

conforming to formula (11.10) in the case of k = 0 as well. We can now check the Chapman-Kolmogorov
equation explicitly, finding that it reduces to the Binomial Theorem (third line):

k∑
j=0

pj(s)pk−j(t) =

k∑
j=0

λjsj

j!
e−λs

λk−jtk−j

(k − j)!
e−λt

= e−λ(s+t)λ
k

k!

k∑
j=0

k!

j!(k − j)!
sjtk−j

= e−λ(s+t)λ
k

k!
(s+ t)k

= pk(s+ t).
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The (infinite) transition matrix would be

P(t) = [pi,j(t)] =


p0(t) p1(t) p2(t) · · ·

0 p0(t) p1(t) · · ·
0 0 p0(t) · · ·
...

. . .

 .
In this notation Chapman-Kolmogorov equation becomes

P(s)P(t) = P(s+ t). (11.11)

This is the continuous time version of the matrix power formula (2.4) with the integer powers m,n replaced
by continuous time variables s, t.

The following properties are simple consequences of what we have said about the Poisson process.

Proposition 11.1. A Poisson process with intensity λ > 0 is a Markov process Nt, t ≥ 0 taking values on
Z+ with the following properties.

a) N0 = 0 and Ns ≤ Nt for s ≤ t.

b) Nt −Ns is independent of N[0,s] for s ≤ t.

c)

P (Nt+h = n+m |Nt = n) =

{
1− λh+ o(h) if m = 0

λh+ o(h) if m = 1

The “o(h)” refers to some (unspecified) function f(h) with the property that limh→0 f(h)/h = 0. I.e. when
h is small o(h) is some quantity which is an order of magnitude smaller, a tiny fraction of h itself. So
“P (· · · ) = λh+ o(h)” simply means

lim
h→0

P (· · · )− λh
h

= 0.

A simple consequence of c) is that

P (Nt+h ≥ n+ 2 |Nt = n) = 1− (P (Nt+h = n+ 0 |Nt = n) + P (Nt+h = n+ 1 |Nt = n))

= 1− (1− λh+ o(h) + λh+ o(h))

= o(h) + o(h)

= o(h).

The interpretation of c) is that over a very small time interval [t, t + h] the probability of no jumps is
approximately 1− λh, the probability of exactly one jump is approximately λh, and the probability of 2 or
more jumps is approximately 0. The error in these approximations is a tiny faction of h itself. This is an
infinitesimal description of the behavior of the process. We will say more about it shortly, but first let’s look
at the very brief proof of the proposition.

Proof. Part a) is trivial since the process is only allowed to jump up.
Part b) is a consequence of the Markov property (11.9):

P (Nt −Ns = k|N[0,s]) = P (Nt = k +Ns|N[0,s]) = pk(t− s)

does not depend on N[0,s], so by part 6 of Proposition 3.8 Nt −Ns and N[0,s] are independent.
Since P (Nt+h = n+m |Nt = n) = pm(h) part c) follows from (11.10). For m = 0 we have

p0(h)− 1 + λh

h
=
e−λh − 1 + λh

h
→ 0.

For m = 1 we have
p1(h)− λh

h
=
λhe−λh − λh

h
= λ(e−λh − 1)→ 0,
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Kolmogorov Equations and the Generator

We have calculated the pk(t) from our wait-and-jump construction of the Poisson process and then used
the explicit expressions (11.10) to justify the infinitesimal properties of Proposition 11.1. Most other texts
use an infinitesimal approach. If we start with the Chapman-Kolmogorov equation (a consequence of the
Markov property) and use part c) of the proposition,

pj(t+ h) =

j∑
i=0

pj−i(t)pi(h)

= pj(t)p0(h) + pj−1(t)p1(h) +

j∑
i=2

pj−i(t)pi(h)

= pj(t)[1− λh+ o(h)] + pj−1(t)[λh+ o(h)] + o(h).

The last term is bounded above by P (Nt+h ≥ i+ 2 |Nt = i) = o(h), using what we said above. So we have

pj(t+ h) = (1− λh)pj(t) + λhpj−1(t) + o(h)

and therefore
pj(t+ h)− pj(t)

h
= λ[pj−1(t)− pj(t)] + o(h).

Letting h→ 0+ we find that
p′j(t) = λpj−1(t)− λpj(t) for j ≥ 1,

p′0(t) = −λp0(t) for j = 0.
(11.12)

(For j = 0 only the first term is present in the above calculation.) These are called the Kolmogorov
equations for the Poisson process. Since N0 = 0 we have p0(0) = 1 and pj(0) = 0 for j ≥ 1. These
initial conditions uniquely determine the solutions pj(t) given by the formulae (11.10). Thus if we start with
the Chapman-Kolmogorov equation and the infinitesimal properties of Proposition 11.1 we can derive the
equations (11.10) and then solve them to determine the transition probabilities. This is a natural approach
to finding transition probabilities for continuous time Markov chains in general. This will be considered
more carefully in Section 11.3 below.

The calculation above which led the differential equations can be summarized in matrix form as

P(t+ h) = P(t)P(h)

1

h
[P(t+ h)−P(t)] = P(t)

1

h
[P(h)− I]

P′(t) = P(t)P′(0)

P′(t) = P(t)A, (11.13)

where

A = P′(0) =


−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
0 0 −λ λ
0 0 0 −λ
...

...
. . .

 .
(Remember that all the diagonal entries of P(t) are p0(t) and all the superdiagonal entries are p1(t).)

The equations (11.13) are a differentiated or “infinitesimal time step” version of the Chapman-Kolmogorov
equation. In discrete time we have (2.4), rearranged as a difference equation

Pn+1 −Pn = Pn(P− I) = PnA.

But in continuous time we have (11.11) which leads to our differential equation

P′(t) = P(t)A.
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Note especially that the role of A = (P− I) for discrete time is taken over by A = P′(0) in continuous time.
This A is called the differential generator or infinitesimal generator of the Poisson process. We can think
of it as an infinitely big matrix, but for more general continuous time processes it is better to view it as an
operator on functions f(n) on the state space S = {0, 1, 2, . . .} of the Poisson process:

Af(n) = λ[f(n+ 1)− f(n)].

We can read off the dynamics of the process from here: from state n the process jumps to state n+ 1 with
“rate” λ. See (11.18) for the general case.

Instead of differentiating with respect to h in P(t + h) = P(t)P(h) we could use P(t + h) = P(h)P(t).
Following the reasoning of (11.13) this leads to

P′(t) = AP(t). (11.14)

For the Poisson process with pi,j(t) = pj−i(t) this reduces to the same equations (11.12) but in general it
leads to a different set of differential equations. We will see this in our next example.

11.2.2 Pure Birth

Suppose we generalize the Poisson process by allowing the exponential waiting time parameter λ to depend
on the state n: we havea λn > 0 associated with each state n. The waiting times in the successive states,
Wn = Jn+1 − Jn, are independent exponential random variables, but with different parameters λn (so not
identically distributed). Nt is constructed from such a sequence Wk in the same way as (11.8) above. The
result is called a pure birth process. Again it will be a Markov chain with state space S = {0, 1, 2, . . .} except
for the possibility of a phenomenon that we haven’t encountered before.

Suppose that λn → ∞. Then in some rough sense the Wn will get smaller as n → ∞. Could it be that
Wn → 0 so fast that

∑∞
1 Wn < ∞? If this happened the sequence of jump times would have a finite limit

J∞ called the explosion time:

J∞ = lim
n
Jn =

∞∑
1

Wn <∞.

This in turn would mean that Nt → ∞ as t → J∞ < ∞ , a phenomenon called explosion in finite time.
If this happens (and it can!) then we have a problem in defining Nt for t beyond J∞. For the pure jump
processes there is a nice criteria for when this does or does not occur.

Lemma 11.2. Let W1, W2, . . . be a sequence of independent exponentially distributed random variables with
parameters λ1, λ2, . . . respectively. Let J∞ =

∑∞
1 Wn. Then

P (J∞ <∞) =

{
0 if

∑∞
1 1/λn =∞

1 if
∑∞

1 1/λn <∞

It is remarkable that J∞ <∞ has probability either 0 or 1; no values in between are possible! Either J∞ is
certain to be finite or certain to be infinite. (If J∞ <∞ is certain that does not mean that the actual value
of J∞ is certain, only that it is certain to be some finite value.)

Proof. First suppose
∑∞

1 1/λn <∞. For any k we have

E

[
k∑
1

Wn

]
=

k∑
1

E[Wn] =

k∑
1

1/λn ≤
∞∑
1

1/λn.

Since
∑k

1 Wn ↑ J∞ the Monotone Convergence Theorem tells us that

E[J∞] ≤
∞∑
1

1/λn <∞.

This is only possible if P (J∞ <∞) = 1.
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Now suppose
∑∞

1 1/λn =∞ and consider e−J∞ . We know that

1 ≥ e−
∑k

1 Wn ↓ e−J∞ ,

so we can use the Dominated Convergence Theorem to say

E[e−J∞ ] = lim
k
E[e−

∑k
1 Wn ] = lim

k

k∏
1

E[e−Wn ].

Now

E[e−Wn ] =
λn

1 + λn
= (1 + λ−1

n )−1.

Therefore
k∏
1

E[e−Wn ] =

(
k∏
1

(1 + λ−1
n )

)−1

. (11.15)

But if you think about multiplying the product out and discarding some nonnegative terms you will see that

k∏
1

(1 + λ−1
n ) ≥ 1 +

k∑
1

1/λn →∞.

Therefore (
k∏
1

(1 + λ−1
n )

)−1

→ 0

and so

E[e−J∞ ] = lim
k

k∏
1

E[e−Wn ] = 0.

This is only possible if P (J∞ <∞) = 0.

We call the pure birth process Nt non-explosive when P (J∞ <∞) = 0 ad explosive when P (J∞ <∞) =
1. According to the lemma Nt is non-explosive precisely when

∑
1/λn = ∞. In that case Nt is defined for

all 0 ≤ t < ∞ and is a Markov chain. The infinitesimal description of Proposition 11.1 remains valid, but
with part c) generalized to

P (Nt+h = n+m |Nt = n) =


1− λnh+ o(h) if m = 0

λnh+ o(h) if m = 1

o(h) if m > 1

The transition probabilities pi,j(t) depend on both i and j, not just their difference j−i as in the Poisson case.
We could work out formulas for them by generalizing the calculations of page 177, but they get complicated.

The generator for the pure birth process is described by

Af(n) = λn[f(n+ 1)− f(n)]

or as an infinite matrix

A =


−λ0 λ0 0 0 · · ·

0 −λ1 λ1 0 · · ·
0 0 −λ2 λ2

0 0 0 −λ3

...
...

. . .

 .
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We will establish the validity of the Kolmogorov differential equations in Section 11.4. For now we want
to observe the form these equations take for the pure birth process. The calculation (11.13) leads to the
forward equations P′(t) = P(t)A. Written out these are

p′i,j(t) = λj−1pi,j−1(t)− λjpi,j(t) for 1 ≤ j,
p′i,0(t) = −λ0pi,0(t) for j = 0,

(11.16)

with initial conditions P(0) = I. The backward equation P′(t) = AP(t) of (11.14) is also valid, but works
out as

p′i,j(t) = λipi+1,j(t)− λipi,j(t) for all i, j ≥ 0. (11.17)

We see that the forward and backward equations are not the same (as they were for the Poisson process),
although they both hold.

In the explosive case what we mean by pi,j(t) is unclear because Nt is not well-defined if J∞ ≤ t. We
will consider one way to deal with this in (11.21) below.

Example 11.1. The simple birth process has λn = nλ. Think of a population consisting of Nt individuals
at time t. Each individual, independently of the others, waits an exponential–λ amount of time and then
gives birth to one new individual. If there are n individuals present then the time to the next new birth is
exponential with parameter nλ. This is non-explosive because

∑∞
1 1/n =∞.

Example 11.2. Suppose the rates are rates λn = n(n− 1)/2 and N0 = 2. (Since both λ0 = λ1 = 0 the states
1 and 2 are absorbing. That’s why we want to start with N0 = 2.) We can think of a collection of particles
moving around in a confined space. When two of them collide they survive but produce an additional new

particle. The number of different pairs that can be formed from a population of n particles is n(n−1)
2 , and

so the likelihood of a collision in a small amount of time should be proportional to n(n−1)
2 if n particles are

present. The process is explosive, since
∑∞

2
2

n(n−1) <∞. By plotting a simulation we can see that the sum

of the inter-arrival times is converging to an explosion time J∞, with Nt →∞ as t→ J∞, just as the lemma
said.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

20

40

60

80

100

In this simulation we see J∞ ≈ 1.4. This process is like a little nuclear reaction; the occurrence of collisions
accelerates until an infinite number of them happen in the instant just before time J∞.

11.2.3 Birth and Death Processes

Now consider a generalization of the construction (11.4). For each integer n suppose we have two rates: λ±n .
If Yt = n we start a pair of exponential timers with rates λ±n . The process will jump by ±1 when the first
timer goes off, to n+ 1 if the λ+

n timer was first, to n− 1 if the λ−n timer was first. Alternately we can start
a single exponential timer with rate λn = λ+

n + λ−n . When it goes off we jump up to n+ 1 with probability
qn,n+1 = λ+

n /λn and down to n − 1 with probability qn,n−1 = λ−n /λn. In general this process Yt will have
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the full integers Z as state space. But if λ−0 = 0 then it can’t jump down from 0 so we could use just the
nonnegative integers. Explosion in finite time is possible here if the λ±n → ∞ in some way as n → ±∞.
Two types of explosion are possible, Yt → ±∞ as t → J∞, depending of course on details of the λ±n . It is
not so easy to write down simple equivalent conditions for non-explosion. A simple sufficient condition for
non-explosion is that the λ±n be bounded; see Problem 11.2. Except in special cases there is little hope of
finding explicit formulas for the transition probabilities, but they do satisfy both the forward and backward
equations with generator described by

Af(n) = λ+
n [f(n+ 1)− f(n)] + λ−n [f(n− 1)− f(n)]

= λn {qn,n+1[f(n+ 1)− f(n)] + qn,n−1[f(n− 1)− f(n)]}

11.3 The General Case

We now want to describe the general process of this type. We assume a countable state space S; we will
use i, j, k, x, y to denote typical elements of S. For each state i there is a jump rate λi ≥ 0 and a jump
distribution qi,j . The intuitive idea is that when Yt arrives in state i, it stays there an exponential-λi amount
of time, and then jumps to a new state j selected using the qi,j distribution. A state i with λi = 0 is an
absorbing state because the waiting time to leave i is infinite. We will insist that qi,i = 0 for all states; a
state may not jump to itself. Such a jump would be completely undetectable to an observer and awkward
to deal with mathematically. So in general,

qi,i = 0, qi,j ≥ 0, and
∑
j

qi,j = 1.

We can describe the construction of Yt from the parameters λi and qi,j in the following way. Observe
that Q = [qi,j ] is the transition matrix of a discrete time Markov chain Xn, as in Chapter 4. (Give it the
same initial state or initial distribution as Y0.) This X-chain is the sequence of states Yt jumps to, but does
not account for the waiting times that Yt spends in the various states. Sometimes Xn is called the embedded
chain for Yt. Given the outcomes of the X-chain let W1 be an exponential-λX0

random variable, W2 an
exponential-λX1

random variable, . . .Wn an exponential-λXn−1
random variable, . . . all independent of each

other except for their shared dependence on the outcome of the X-chain. To be more explicit we could take
a i.i.d. sequence W̃1, W̃2, . . . of exponential-1 random variables, independent of the X-chain, and then take
Wn = W̃n/λXn−1

. These are the waiting times between jumps. The jump times are then

Jn =

n∑
k=1

Wk.

Specifically, t = Jn is when the Xn−1 → Xn jump occurs in Yt.

YJn = Xn.

We now complete the description of Yt by making it constant between jumps:

Yt = Xn for Jn ≤ t < Jn+1.

This is what we will call the wait-and-jump construction of Yt starting with the jump rates λi and jump
distributions qi,j . This description is how we would simulate Yt and will be our working understanding of
Yt. In practice it may be more natural to calculate the Xn and Wn one at a time: from Yt = i use a
λi-exponential random variable W to determine the next jump time t + W and then a single transition of
the Q-chain from i to find the next state j: Yt+W = j. Then repeat until the desired final time is reached.

The generator, applied to a function f : S → R, is described by the following formula:

Af(i) = λi
∑
j 6=i

qi,j [f(j)− f(i)]. (11.18)
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(The summation is over j ∈ S but excluding j = i because f(i)−f(i) = 0.) In general this is an infinite series
so convergence is an issue. However if f is bounded then the infinite series is convergent, since

∑
j qi,j <∞.

Equation (11.18) is the most intuitive form for the generator because we can see the i → j transitions
multiplied by their rates and jump distributions. However other arrangements of the terms can sometimes
be useful. If we separate out the subtracted terms we get

Af(i) = −λif(i) +
∑
j 6=i

λigi,jf(j).

As an infinite matrix A = [αi,j ] the entries are

αi,j =

{
λiqi,j for j 6= i

−λi for j = i.
(11.19)

In that notation
Af(i) =

∑
j

αi,jf(j),

the summation now being over all j ∈ S. Sometimes it is more convenient to specify the values of αi,j rather
than λi and qi,j . See the Examples in Sections 11.3.2 and 11.3.1 below for instance. It is easy to determine
λi and qi,j from the αi,j for i 6= j:

λi =
∑
j 6=i

αi,j and qi,j = αi,j/λi. (11.20)

Explosion is possible if J∞ < 0 has positive probability, where

J∞ = lim Jn =

∞∑
1

Wn.

We will say that the Markov process Yt is non-explosive if Py(T∞ <∞) = 0 for all initial states y ∈ S. To
be explosive from initial state y means Py(T∞ <∞) > 0. If we say the process is explosive we simply mean
explosive from some initial state.

A generator of the form described above determines the jump rates and jump distributions. The wait-
and-jump construction describes a process Yt but only up to the explosion time T∞. For T∞ ≤ t we consideer
Yt to be undefined. The literature calls this Yt the minimal process for A. There are various ways to extend
the definition to keep the process running past T∞. But these require specifying some additional structure
beyond A alone and is a difficult and complicated subject. We will limit our considerations to the minimal
process, i.e. those things which occur prior to T∞. In particular we can’t quite talk about Pi(Yt = j), but
only Pi(Yt = j; t < T∞). The transition probabilities for the minimal process are taken to be

pi,j(t) = Pi(Yt = j and t < T∞). (11.21)

Thus the pi,j(t) are the probabilities that the transitions occur before explosion. As usual we assemble these
into an S × S matrix

P(t) = [pi,j(t)].

Bear in mind that this is has infinitely many rows and columns if S is infinite. A consequence of our definition
of the transition probabilities for the minimal chain is that

P(t)[1](i) =
∑
j

pi,j(t) = Pi(t < T∞),

which may be < 1 in the explosive case. The Markov property, inclusive of the explosion time T∞, can be
expressed as

E[Φ(Y[t,T∞))|Y[0,t] = y[0,t]] · 1t<T∞ = Ey(t)[Φ(Y[0,T∞))] · 1t<T∞ (11.22)
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See (3.22) for comparison with the discrete time case. To write out a detailed argument like that of Sec-
tion 11.1 to prove the Markov property would be possible, but more tedious than instructive. We will take
the Markov property (11.22) for granted and proceed.

If we take

Φ(y[0,ζ)) =

{
1 if s < ζ and ys = j

0 otherwise,

then (11.22) says that

P (Yt+s = j and t+ s < T∞|Y[0,t] = y[0,t]) · 1t<T∞ = Py(t)(Ys = j and s < T∞) · 1t<T∞
= py(t),j(s) · 1t<T∞ .

It follows from the Tower Law for conditional expectations that

pi,j(t+ s) = Ei[P (Yt+s = j and t+ s < T∞|Y[0,t]) · 1t<T∞ ]

= Ej [1t<T∞pYt,j(s)]

=
∑
k

pi,k(t)pk,j(s).

This is the Chapman-Kolmogorov equation for the minimal process. In matrix form it says

P(t+ s) = P(t)P(s)

11.3.1 A Chemical Kinetics Example

A contemporary application area is stochastic chemical kinetics. Imagine a collection of different chemical
substances A, B, C, . . . mixed together in a container where the different kinds of molecules may make
contact with each other and react. Let Y At , Y Bt , Y Ct , . . . denote the numbers of molecules of the different
types that are present at time t. (Because we are reserving the subscript position for the time variable we
have put the “A”, “B”, “C” in the superscript position.) The vector of all these molecular counts Yt = (Y At ,
Y Bt , Y Ct , . . .) will be the state of the Markov chain. When a chemical reaction occurs these numbers change.

For instance consider a reaction which we will write as

A+B → C.

In this reaction one molecule of A and one molecule of B combine to form one molecule of C. The time
when this happens will be one of the jump times Jk, and when it does both Y A and Y B will decrease by
one and Y C will increase by one. To be more precise

(Y AJk , Y
B
Jk
, Y CJk , . . .) = (Y AJk−, Y

B
Jk−, Y

C
Jk−, . . .) + (−1,−1, 1, 0 · · · )

YJk = YJk− + ν

Here ν = (−1,−1, 1, 0 · · · ) is the state change vector for this particular reaction. Given all the molecular
counts the time until the next reaction of this type is random with a Poisson-like description:

P ( this type of reaction occurs in (t, t+ h]|Yt = y) ≈ αy,y+νh,

the “≈” is because some other reaction might occur first so the waiting time is not precisely exponential.
This is b) of Lemma 11.4 below in the general case. The jump coefficient αy,y+ν (see (11.19)) has values
determined by physical principles and the number of reactants involved. For our “second order” reaction
A+B → C the form is

αy,y+ν = c yAyB .

Here c is a parameter related to how likely the reaction is to occur when an A-molecule and B-molecule do
actually collide. Each different reaction has a different state change vector ν, parameter c and formula for
αy,y+ν depending on the numbers of reacting molecules involved. Together the combined reactions produce
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a stochastic process Yt of the general type considered in this chapter. The generator Af(y) consists of a sum
of terms, one for each type of reaction.

Af(y) =
∑

reactions ν

αy,y+ν [f(y + ν)− f(y)].

From here we could determine the jump rates

λy =
∑

reactions ν

αy,y+ν

and then the jump distributions
qy,y+ν = αy,y+ν/λy

as in (11.20). Most qy,z will be 0; only those z for which there is a reaction ν with z = y + ν will have a
nonzero qy,z. This is why the form of Af(y) above is more convenient than (11.18) for these examples.

The Michaelis-Menton model of enzyme kinetics is a well-studied example which illustrates the description
above. In this model an enzyme B converts a “substrate” A into an end product D by means of an
intermediate product C. This involves three reactions:

reaction #1: A+B → C; ν1 = (−1,−1, 1, 0)

reaction #2: C → A+B; ν2 = (1, 1,−1, 0)

reaction #3: C → B +D; ν3 = (0, 1,−1, 1).

In reaction #1 the enzyme B combines with the substate A to produce the intermediate product C. The
intermediate product can disassociate back into its original components in reaction #2 or release the enzyme
as it transforms to the final product D in reaction #3. The reaction “propensities” take the following forms:

αy,y+ν1
= c1y

AyB

αy,y+ν2 = c2y
C

αy,y+ν3
= c3y

C

The resulting generator is

Af(y) = c1y
AyB [f(yA − 1, yB − 1, yC + 1, yD)− f(y)]

+ c2y
C [f(yA + 1, yB + 1, yC − 1, yD)− f(y)]

+ c3y
C [f(yA, yB + 1, yC − 1, yD + 1)− f(y)]

If we start this process with Y A(0) > 0, Y B(0) > 0, Y C(0) = Y D(0) = 0 it will eventually convert all
the substrate to end product with the total amount of enzyme preserved: Y At → 0, Y Bt → Y B(0), Y Ct →
0, Y Dt → Y A(0) as t→∞.

Chemical systems underly most biological processes, and so understanding their properties is important
to current research in cell biology. In most cases the number of molecules needs to be quite large for the
chemical concentrations to be large enough to have a biological effect. It makes sense to introduce a scaling
parameter N = vol · nA where vol is the volume of the container in which the reaction is taking place and
nA is Avagadro’s number (≈ 6.023× 1023), the number of molecules in 1 mole. Then Y A = N corresponds
to a concentration of 1 mole/liter of substance A. The constant c1 in reaction #1 depends on N , because
the density of molecules per unit volume clearly influences the probability of the A & B collision needed for
reaction #1. (The other reactions don’t depend on molecules coming together so don’t depend on N .) This
leads to an N -dependent choice of the constants, such as (taken from [27])

c1 =
106

N
, c2 = 104, c3 = 10−1.

The initial values may be given in terms of concentrations (mole/liter) as well. This leads to a Markov
chain with a parameter N in its specification. There has been considerable research on the Markov chain’s
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behavior for very large N -values (including descriptions in the limit as N →∞). Simulations become more
challenging when parameters and state values are very large and/or small. The simulation idea described
in Section 11.3 has come to be called the Gillespie algorithm in these applications. The basic mathematical
idea behind the simulation is not new in Gillespie’s work, but he and others introduced enhancements and
approximations that made it more efficient and effective for use with complicated chemical kinetics processes
involving large numbers of transitions over short time periods. Higham [27] provides a nice overview of this
application area and references to the literature. Some simulations of the Michaelis-Menton example are
presented there.

11.3.2 A Queueing Network Example

Markov jump processes are also important in queueing network theory. A queue is a waiting line. Picture
the line waiting to check out at the grocery store. Suppose the times between when new customers join the
waiting line are i.i.d. exponential random variables with parameter λ+. The times needed to check out with
the cashier are given by i.i.d. exponential random variables, λ−. The resulting queue length process Yt can
jump either up by 1 or down by 1. It is a birth & death process as in Section 11.2.3. The only dependence
of the rates on the state n is that if the queue is empty Yt = n = 0 then it cannot jump down:

λ+
n = λ+, λ−n =

{
λ− if n > 0

0 if n = 0.

This is called an M/M/1 queue in the literature.
Now imagine a network of such queues. When a customer is finished in one queue they go get in line at

another queue, according to some routing mechanism. At each queue each item requires a new independent
service time (exponential distribution, with a parameter depending on the queue). Moreover several queues
may depend on the same server, which must follow some protocol to determine which of the queues delegated
to it will receive its attention next. This is called a queueing network. Processes of this type describe the
flow of work through a manufacturing facility or messages through a networked communication system, and
can often be described using continuous time Markov chains of the type we are discussing.

We want to look at a particular example, often called the Kumar-Sideman network. There will be four
queues and two servers (A and B). The state consists of a 4-vector of nonnegative integers y = (y1, y2, y3, y4) ∈
(Z+)4 counting the numbers of items in each of the four queues. (Again we are using superscripts instead
of subscripts to index the queues to reserve the subscript position for the time variable. Try to remember
that the superscripts do not mean exponents here.) Server A attends to queues 1 and 4; server B attends to
queues 2 and 3. New customers can arrive in both queues 1 and 3. When a customer is finished in queue 1
he joins queue 2. When finished in queue 2 he is done and leaves the system. When a customer in queue 3
is finished he joins queue 4, and when finished there leaves the system. This organization is illustrated with
the following diagram.

A B

-Y 1 -Y 2 -

�Y 3�Y 4�

The arrival rates for queues 1 and 3 are both 1. The service rates for queues 1 and 3 are 10. The service
rates for queues 2 and 4 are 5/3. Finally the service protocol for A is that queue 4 has higher priority: A
only serves queue 1 if queue 4 is empty. Similarly B only serves queue 3 if queue 2 is empty.

This again is a situation in which it is more convenient to describe the generator in terms of the combined
jump rate and distribution, αy,y+ν = λyqy,y+ν , rather than λy and qy,y+ν separately. From a state y there
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are 6 possible transitions y → y+ν, i.e. 6 possible choices of ν for which αy,y+ν = λyqy,y+ν could be nonzero,
one for each arrival or service event.

• Arrival in queue #1:
ν = (1, 0, 0, 0), αy,y+ν = 1.

• A-Service of item in queue #1:

ν = (−1, 1, 0, 0), αy,y+ν =

{
10 if y4 = 0 and y1 > 0

0 otherwise.

• B-Service of item in queue #2:

ν = (0,−1, 0, 0), αy,y+ν =

{
5/3 if y2 > 0

0 otherwise.

• Arrival in queue #3:
ν = (0, 0, 1, 0), αy,y+ν = 1.

• B-Service of item in queue #3:

ν = (0, 0,−1, 1), αy,y+ν =

{
10 if y2 = 0 and y3 > 0

0 otherwise.

• A-Service of item in queue #4:

ν = (0, 0, 0,−1), αy,y+ν =

{
5/3 if y4 > 0

0 otherwise.

The generator is then

Af(y) =
∑
ν

αy,y+ν [f(y + ν)− f(y)],

the summation being over the six choices of ν above.
Let’s look at a simulation over a modest time interval of about 90 time units.
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If you look closely you will see that Y 1 does not decrease while Y 4 > 0. Similarly Y 3 does not decrease
while Y 2 > 0. This is because of the server priorities described above.

Now let’s look at a simulation over a longer time scale, about 9000 time units. We have plotted Y 1 and
Y 4 together (Y 1 is blue) and Y 2 and Y 3 together (Y 2 is blue). The third plot is the sum, Y 1 +Y 2 +Y 3 +Y 4.
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There is clearly a regular pattern emerging, and escalating as time proceeds. Y 4 gets a big boost up when
Y 2 hits zero and releases the backed up items in queue 3. As Y 4 fills up it blocks service to items in Y 1

so Y 1 grows, until Y 4 reaches 0. Then Y 1 empties rapidly into Y 2, which causes Y 3 to fill up while Y 2

is emptying. When Y 2 reaches zero the cycle begins over again, but with more items in the system than
before. The number of items in all the queues combined is climbing steadily. If this were a real system the
queues would have finite capacities, which would eventually be exceeded and the system would fail. Based
on our simulation it appears that Yt is non-eplosive, but transient in that |Yt| → ∞.

One lesson of this example is that careful design of a network, its service rates and protocols can be
important for reliable performance. In particular methods to discern regular behavior that emerges over long
time periods, like what we observed above, can be very useful. See Chen and Yao [12] for an introduction
to queueing networks, and their Chapter 8 for more on the Kumar-Sideman example specifically.

11.4 Kolmogorov’s Equations

We want to focus on two aspects of Markov jump processes that are substantially different from the discrete
time case: the description of transition probabilities using differential equations (in this section) and the
phenomenon of explosion (in Section 11.6). Other topics, such as recurrence and equilibrium, are important
but we let readers consult other references for those.

We saw that the transition probabilities for the Poisson process satisfied a set of differential equations
which could be expressed concisely in terms of the generator (11.13). We want to do this for a Markov
jump processes in general. But we will have to face several technical difficulties. One is that in the general
case the generator (11.18) involves an infinite series. We have to worry about convergence and use care
when interchanging integrals and derivatives with infinite series expressions. Another is the possibility of
explosion. Remember that we have a meaning for pi,j(t) in the case of explosion; see (11.21). But we can’t
assume

∑
j pi,j(t) = 1, only that it is ≤ 1.

We are going to prove that in general P(t) = [pi,j(t)] solves two different systems of differential equations.
The first are called the Kolmogorov forward equations, written concisely as

P′(t) = P(t)A. (11.23)
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We interpret this entry-by-entry, meaning that for each pair i, j ∈ S

p′i,j(t) = (P(t)A)i,j

= −pi,j(t)λj +
∑
k 6=j

pi,k(t)λkqk,j . (11.24)

The right side is in general an infinite series over k. Notice also that the right side involves those pi,k(t) with
the same first index i but all possible values of the second index k. In other words it involves the ith row of
P(t).

The equations of the second system are called the Kolmogorov backward equations, expressed as

P′(t) = AP(t). (11.25)

Again this is to be understood entry-by-entry:

p′i,j(t) = (AP(t))i,j

=
∑
k 6=i

λiqi,k[pk,j(t)− pi,j(t)] (11.26)

= −λipi,j(t) +
∑
k 6=i

λiqi,kpk,j(t).

Now observe that the right side involves those pk,j with the same second index j but the first index taking all
possible values k. In other words this system involves jth column of P(t). Again the right side is an infinite
series (over k) in general.

More generally, given a (bounded) function φ : S → R, the backward equations describe how Ei[f(Yt)]
evolves over time. If we let u(i, t) = Ei[φ(Yt)] then this will satisfy the system of backward equations

u′(t) = Au(t).

with the initial condition u(0) = [φ(i)]. This is d) of the theorem below. There is a sort of time-reversal
here, which is one reason to call these the “backward” equations. If we associate φ(·) with a fixed time T
then u(·, ·) is associated with an earlier time:

u(Yt, T − t) = E[φ(YT )|Y[0,t]].

Increasing the value (T − t) in the time position of g corresponds to working back to an earlier t in the
conditional expectation. (The transition probabilities themselves are the special case φ(·) = 1j(·).)

In brief, time dependence of the distribution of Yt is described by the forward equation and time depen-
dence of the expected values Ei[φ(Yt)] of a function of Yt is described by the backward equation.

Properties of A

Before proceeding we need to make some observations about A. If f is a bounded function on S then we
can be sure that the infinite series in Af(i) is convergent. If |f | ≤ B then since

∑
j qi,j = 1 we know that∑

j λiqi,jB is convergent, so
∑
j λiqi,jf(j) converges (absolutely) by the dominated series test, and

|Af(i)| ≤ Bλi.

The forward equation involves a multiplication on the left of A. We will always be multiplying on the
left by something interpreted as a distribution ν on S, viewed as a row for purposes of multiplication on the
left. We will use subscripts: νi for i ∈ S and will only consider 0 ≤ νi. We understand the notation νA to
refer to the row vector with components

(νA)j =
∑
i

νiαi,j

= −νjλj +
∑
i6=j

νiλiqi,j .
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Since 0 ≤ νi only one term of the series can be negative. So we can always ascribe a value to this if we
allow +∞ when the series diverges. Since 0 ≤ qi,j ≤ 1 a simple sufficient condition for convergence is that∑
i νiλi <∞. If λi ≤M then

∑
i νi <∞ is sufficient.

Here are the principal results we want to prove about the Kolmogorov equations, gathered into a single
theorem.

Theorem 11.3. Let Yt be the minimal continuous time Markov chain with generator A on a countable state
space S and P(t) = [pi,j(t)] its matrix of transition probabilities, (11.21).

a) P(t) satisfies the backward equations: P′(t) = AP(t). Specifically for each pair of states i, j the
transition probability pi,j(t) is a continuously differentiable function of t ≥ 0 with derivative given by

p′i,j(t) = −λipi,j(t) +
∑
k 6=i

λiqi,kpk,j(t).

b) P(t) satisfies the forward equations: P′(t) = P(t)A. Specifically for each pair of states i, j the transition
probability pi,j(t) is a continuously differentiable function of t ≥ 0 with derivative given by

p′i,j(t) = −pi,j(t)λj +
∑
k 6=j

pi,k(t)λkqk,j .

c) Any nonnegative continuously differentiable solution of the forward equations Q′(t) = Q(t)A with
Q(0) = I satisfies P(t) ≤ Q(t) (componentwise). Likewise any nonnegative continuously differentiable
solution of the backward equations Q′(t) = AQ(t) with Q(0) = I satisfies P(t) ≤ Q(t) (componentwise).

d) Let φ : S → R be a bounded function, with |φ(i)| ≤ B for all i ∈ S.. The function u(t) = [u(i, t)] where

u(i, t) =
∑
j

pi,j(t)f(j) = Ei[φ(Yt)]

satisfies the backward equations u′(t) = Au(t). Specifically for each i ∈ S

d

dt
u(i, t) = −λiu(i, t) +

∑
k 6=i

λiqi,ku(k, t). (11.27)

The infinite series on the right converges to a continuous function satisfying the bound | ddtu(i, t)| ≤ λiB.

e) Let φ : S → R be a bounded function. The Markov chain is non-explosive if and only (11.27) has a
unique bounded solution with u(0) = [φ(i)].

Let’s try to digest what this is saying. First keep in mind that the pi,j(t) are the transition probabilities
for the minimal chain, defined as in (11.21). Parts a) and b) say that the backward and forward equations
do hold and that the infinite series in P(t)A and AP(t) are convergent and yield continuous functions of t.
Part d) is a generalization of a) to any bounded initial condition φ. We have included it because it will be
used in the proof of part e).

The next question is uniqueness. If we find some solution Q(t) of either the forward or backward equations
with the correct initial values Q(0) = I can we be sure that Q(t) = P(t)? In the finite state case, yes, but
in general no! So what can we say about the relation of P(t) to other possible solutions Q(t)? Part c)
says something about this, namely that if Q(t) ≥ 0 then P(t) ≤ Q(t) for either the forward or backward
equations. In other words P(t) is always the smallest among all nonnegative solutions Q(t). But can there
exist solutions which are either larger than P or take some negative values? For the backward equation
part e) says the answer is yes if the chain is explosive, but no (at least for bounded solutions) if the chain is
non-explosive. For the forward equation this is a difficult question to answer. The next two examples will
illustrate.
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Example 11.3. Consider the forward equations for the pure birth process (11.16). We know that this can
be either explosive or non-explosive depending on the choice of jump rates. But solutions of the forward
equations are unique regardless. This is easy to see because the equations can be solved one j at a time.
Given any set of initial values pi(0) the forward equation for p0(t) is

p′0(t) = −λ0p0(t),

which has the unique solution
p0(t) = e−λ0tp0(0).

For j > 0 once pj−1(t) is determined we see that the forward equation

p′j(t) = −λjpj(t) + λj−1pj−1(t)

has the unique solution

pj(t) = e−λjtpj(0) +

∫ t

0

e−λj(t−s)λj−1pj−1(s) ds.

So even if the process is explosive there is still only one solution to the forward equations with given initial
conditions.

Example 11.4. Suppose we take a pure birth process but reverse the direction of the jumps. When the process
leaves state i it goes to state i− 1 (instead of i+ 1). From any initial state Y (0) = n the process jumps its
way down through the positive integers until it reaches 0. If we make λ0 = 0 then 0 is an absorbing state
so that once 0 is reached the chain never jumps again. Perhaps we should call this a pure death process.
Clearly this is a non-explosive chain. In Problem 11.8 you will show that the forward equation q′(t) = q(t)A
has a non-zero solution (a row q(t) = [q0(t), q1(t), . . .]) with q(0) = 0. This means that the solutions to
Q′(t) = Q(t)A with Q(0) = I are not unique. There are always infinitely many solutions.

We might hope that none of these extra solutions are nonnegative. But that is not true either! Suppose
we choose jump rates so that

∑∞
1 1/λi < ∞. Let Wn be independent exponentially distributed waiting

times with parameters λn. Then
∑∞

1 Wn <∞ with probability 1, by Lemma 11.2. Imagine constructing a
process Zt which starts at “Z0 =∞” and jumps from n to n− 1 at time

Jn =

∞∑
k=n

Wk.

So

Zt = n for Jn−1 ≤ t < Jn and Zt = 0 for J1 =

∞∑
1

Wn ≤ t.

This is just like our construction of the pure birth process except that this one starts at ∞, makes infinitely
many downward jumps in the first fraction of a second and continues jumping down until it eventually
reaches 0. We can define

qn(t) = P (Zt = n) = P (Jn−1 ≤ t < Jn).

Clearly qn(0) = 0 for all n. And although we won’t write out a proof, it should not be hard to accept that
the forward equations

q′n(t) = −λnqn(t) + λn+1qn+1(t)

will be satisfied, just as their counterparts for the true pure birth process are. This describes a solution of
q′(t) = q(t)A with q(0) = [0], 0 < qn(t) for all n and all t > 0, and

∑
qn(t) = 1. We can add multiples

of q to the rows of P to get infinitely many nonnegative solutions of Q′(t) = Q(t)A with Q(0) = I. Thus
even though the pure death process Yt is non-explosive, the forward equation for P(t) has many nonnegative
solutions with the correct initial conditions.

The rest of this section is devoted to the proof of Theorem 11.3. This will take several pages and lots of
work. Some readers may not want to go through all the details. Here is an overview in case you want to
just skip over the details and go on to the next section.
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• First we will assume that the jump rates are bounded: λi ≤ M for all i. Under this assumption we
will prove a generalization of part c) of Proposition 11.1 which is more precise about the o(h) terms:
Lemma 11.4 just below.

• Using the lemma the proof of the backward and forward equations is not hard: Theorem 11.5.

• The case of a finite state space is covered by Theorem 11.5. The connection with matrix exponentials
is described in Section 11.4.2.

• The assumption of bounded rates rules out explosive processes. To treat the general case we consider
a stopped version of the process in which we make all the states outside a finite set K absorbing (jump
rates of 0). This is what we call the K-process. It too falls within the scope of Theorem 11.5. This is
described in Section 11.4.3.

• Finally we get the general case by passing to the limit as K ↑ S. Lemma 11.6 gives the basic conver-
gence. The proof of Theorem 11.3 will finally come in Section 11.4.4.

11.4.1 Bounded Rates

We will say that the process has bounded rates if there is a constant M so that

λi ≤M for all i ∈ S.

The following lemma gives us a more precise version of Proposition 11.1 part c).

Lemma 11.4. Assume the Markov jump process Yt has bounded rates: λi ≤M and 0 < h.

a) For j 6= i
pi,j(h) = λiqi,jh+ oi,j(h),

where |oi,j(h)| ≤M2h2.

b)
pi,i(h) = 1− λih+ oi,i(h),

where |oi,i(h)| ≤M2h2.

c) For any bounded φ : S → R with |φ| ≤ B,

Ei[φ(Yh)] = φ(i) +
∑
j 6=i

λiqi,j [φ(j)− φ(i)] + oφ(h),

where |oφ(h)| ≤ 2BM2h2.

We recognize in part c) the generator as we defined it in (11.18).

Aφ(i) =
∑
j

λiqi,j [φ(j)− φ(i)].

In fact part c) is the backward equation of part d) of Theorem 11.3 at t = 0.

Proof. For small h the most likely way for Y (h) = j 6= i = Y (0) is for a single jump to occur between 0 and
h: 0 < J1 ≤ h < J2 and Y (J1) = j. But it is also possible to make the transition in 2 or more jumps, which
would imply J2 ≤ h. We can bound pi,j(h) as follows.

Pi(Yh = j;h < J2) ≤ pi,j(h) ≤ Pi(Yh = j;h < J2) + Pi(J2 ≤ h).

We will show that

Pi(J2 ≤ h) = o(h) where 0 ≤ o(h) ≤ 1

2
M2h2, (11.28)
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and for i 6= j
Pi(Yh = j;h < J2) = λiqi,jh− qi,joj(h) where 0 ≤ oj(h) ≤M2h2. (11.29)

Part a) will then follow using oi,j = max(qi,joj(h), o(h)) because

−qi,joj(h) ≤ pi,j(h)− λiqi,jh ≤ −qi,joj(h) + o(h).

Let’s examine (11.28) first. Assume Y0 = i. The time of the second jump is J2 = W1 +W2 where W1 is
exponential with parameter λi and W2 is exponential with parameter λj given that the outcome of the first
jump is j, Pi(YW1

= j) = qi,j . The probability of two or more jumps in [0, h] is

Pi(J2 ≤ h) =
∑
j

qi,j

∫ h

0

∫ h−s

0

λie
−λisλje

−λjt dt ds

≤M2

∫ h

0

∫ h−s

0

1 dt ds

= M2

∫ h

0

h− s ds

= M2h2/2,

as claimed.
Next consider (11.29). To say Yh = j;h < J2 means that W1 < h, the first jump is to j and then

W1 +W2 > h so there is no additional jump before time h. The probability of this is the following.

P (W1 < h < W1 +W2) = qi,j

∫ h

0

∫ ∞
h−s

λie
−λisλje

−λjt dt ds

= qi,j

∫ h

0

λie
−λise−λj(h−s) ds

= λiqi,j

[
h−

∫ h

0

1− e−λih−λj(h−s) ds

]
.

Now 0 ≤ 1− e−λih−λj(h−s) ≤ λih+ λj(h− s) so

0 ≤ oj(h)

= λi

∫ h

0

1− e−λih−λj(h−s) ds

≤ λi
∫ h

0

λih+ λj(h− s) ds

= λi(λi + λj)h
2/2

≤M2h2.

This completes our proof of part a).
For part b) we argue similarly, using

Pi(Yh = i;h < J1) ≤ pi,i(h) ≤ Pi(Yh = i;h < J1) + Pi(J2 ≤ h).

This is because if Y (0) = i and there is a jump before time h then there has to be at least one more jump
to bring Y (h) back to i. We will use (11.28) again but also will need

Pi(Yh = i;h < J1) = 1− λih+ oi(h) where 0 ≤ oi(h) ≤ 1

2
M2h2. (11.30)

This and (11.28) imply that
oi(h) ≤ pi,i(h)− (1− λih) ≤ oi(h) + o(h),
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from which b) follows.
To prove (11.30) observe that Y0 = i = Yh with no jumps in [0, h] simply means that W1 > h. This has

probability

Pi(Yh = i;h < J1) = Pi(W1 > h)

= 1−
∫ h

0

λie
−λit dt

= 1− λih+

∫ h

0

λi
[
1− e−λit

]
dt

Using 0 ≤ 1− e−λit ≤ λit we find that

0 ≤ oi(h) =

∫ h

0

λi
[
1− e−λit

]
dt ≤

∫ h

0

λ2
i t dt ≤M2h2/2.

Finally, for c)

Ei[φ(Yh)] = Ei[φ(Yh); J2 ≤ h] + Ei[φ(Yh);h < J2]

= Ei[φ(Yh); J2 ≤ h] +
∑
j

φ(j)Pi(φ(Yh = j;h < J2)

= Ei[φ(Yh); J2 ≤ h] + φ(i)[1− λih+ oi(h)] +
∑
j 6=i

φ(j)[λiqi,jh− qi,joj(h)]

= Ei[φ(Yh); J2 ≤ h] + φ(i) +
∑
j 6=i

λiqi,j [φ(j)− φ(i)]− φ(i)oi(h) +
∑
j 6=i

φ(j)qi,joj(h).

So using the bounds from (11.28), (11.29), (11.30) we have∣∣∣∣∣∣Ei[φ(Yh)]−

φ(i) +
∑
j 6=i

λiqi,j [φ(j)− φ(i)]

∣∣∣∣∣∣ ≤ Bo(h) +Boi(h) +B
∑
j 6=i

qi,joj(h)

≤ B

1

2
M2h2 +

1

2
M2h2 +

∑
j 6=i

qi,jM
2h2


= 2BM2h2.

Now we are ready to establish the Kolmogorov differential equations (both forward and backward) under
the assumption of bounded rates. (Problem 11.2 shows that the process is nonexplosive in this case.)

Theorem 11.5. Suppose Yt is a Markov jump process with bounded transition rates (λi ≤M). The matrix
P(t) = [pi,j(t)] satisfies both systems of differential equations: (11.24) and (11.26).

Proof. To prove (11.24) start with the Chapman-Kolmogorov equation and use parts a) and b) of the lemma.

pi,j(t+ h) =
∑
k

pi,k(t)pk,j(h)

= pi,j(t)[1− λjh+ oi,j(h)] +
∑
k 6=j

pi,k(t)[λkqk,jh+ ok,j(h)]

= pi,j(t) + h

−λjpi,j(t) +
∑
k 6=j

λkqk,jpi,k(t)

+
∑
k

pi,k(t)ok,j(h).

pi,j(t+ h)− pi,j(t)
h

= −λjpi,j(t) +
∑
k 6=j

λkqk,jpi,k(t) +
1

h

∑
k

pi,k(t)oi,k(h).
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The subscripts on the o·,·(h) terms to remind us that they depend on the indices i and k. But according to
the lemma they are all bounded by M2h2 so the last term above is bounded by∣∣∣∣∣ 1h∑

k

pi,k(t)ok(h)

∣∣∣∣∣ ≤M2h
∑
k

pi,k(t) = M2h→ 0 as h→ 0.

So we find that the forward equation holds:

p′i,j(t) = lim
h→0

pi,j(t+ h)− pi,j(t)
h

= −λjpi,j(t) +
∑
k 6=j

λkqk,jpi,k(t)

= (P(t)A)i,j .

(Technically we have only established the right-hand derivative since h > 0. But if we repeat the calculation
starting from pi,j(t) =

∑
k pi,k(t− h)pk,j(h) we establish the left-hand derivative as well.)

To prove (11.26) we again start with the Chapman-Kolmogorov equation (but with t and h reversed) and
apply part c) of the lemma using φ(k) = pk,j(t). (0 ≤ φ(k) ≤ 1 so the boundedness hypothesis is satisfied.)

pi,j(t+ h) =
∑
k

pi,k(h)pk,j(t)

= Ei[φ(Yh)])

= φ(i) +
∑
k

λiqi,k[φ(k)− φ(i)] + oφ(h)

= pi,j(t) +
∑
k

λiqi,k[pk,j(t)− pi,j(t)] + oφ(h).

So we conclude that

p′i,j(t) = lim
h→0

pi,j(t+ h)− pi,j(t)
h

=
∑
k

λiqi,k[pk,j(t)− pi,j(t)] + lim
h→0

1

h
oφ(h)

=
∑
k

λiqi,k[pk,j(t)− pi,j(t)]

= (AP(t))i,j .

(The left-hand derivative follows by the same revision as above.)

11.4.2 The Finite State Case

When the state space S is finite there are only finitely many λi so there is a common bound on the λi and
thus Theorem 11.5 applies. Now A is just a conventional (finite dimensional, square) matrix. From standard
theory of ordinary differential equations we know that the initial value problem for the backward equations

P′(t) = AP(t); P(0) = I

has a unique solution given by the matrix exponential:

P(t) = etA =

∞∑
0

tn

n!
An.

This is also the unique solution of the forward equations, since AetA = etAA.
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Example 11.5. As a simple example consider the chain on S = {1, 2} with

A =

[
−α α
β −β

]
.

In other words λ1 = α, λ2 = β and

Q =

[
0 1
1 0

]
.

The chain just jumps back and forth between the two states, spending 1/α on average on each visit to 1
and 1/β on average on each visit to 2. To calculate P(t) = etA the simplest thing to do is diagonalize:
A = BDB−1 where

B =

[
α 1
−β 1

]
, D =

[
−(α+ β) 0

0 0

]
.

This leads to

P(t) = BeDtB−1 =
1

α+ β

[
αe−(α+β)t + β α(1− e−(α+β)t)
β(1− e−(α+β)t) α+ βe−(α+β)t

]
In particular, by letting t→∞ we find a unique stationary distribution

π =
1

α+ β
(β, α).

11.4.3 The K-Process

Our approach for the general (possibly explosive) case is to obtain it as the limit of bounded-rate approxi-
mations, to which Theorem 11.5 applies. These bounded-rate approximations are the subject of this section.
In the next section we will carry out the limit to give a proof of Theorem 11.3.

Let K ⊆ S be a finite subset of the state space. The idea is to let Yt proceed as usual as long as it
remains inside K. But as soon as it jumps to a state outside of K we freeze it at that state forever. We will

call the result the K-process and write it as Y
[K]
t . If we let TKc be the first time that Yt /∈ K then we can

write
Y

[K]
t = Yt∧TKc . (11.31)

Observe that if J∞ < ∞ then it can not be that Y (t) stayed in K through all those jumps, because the
argument of Problem 11.2 would imply that J∞ =

∑
Wn =∞. So J∞ ≤ TKc is not possible (has probability

0). Thus Yt∧TKc does make sense.
The generator A[K] for Y [K] is obtained simply by setting the jump rates for states outside K to 0. The

qi,j are unchanged but

λ
[K]
i =

{
λi if i ∈ K
0 if i ∈ Kc.

If we write A in block matrix form

A =

[
AK,K AK,Kc

AKc,K AKc,Kc

]
=

[
A B
C D

]
(11.32)

then

A[K] =

[
AK,K AK,Kc

0 0

]
=

[
A B
0 0

]
.

We will use p
[K]
i,j (t) to denote the transition probabilities for Y

[K]
t . Because the states outside K are

absorbing we know that for i ∈ Kc

p
[K]
i,j (t) =

{
1 if j = i

0 if j 6= i.
(11.33)
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Since there are only finitely many nonzero jump rates Theorem 11.5 does apply to Y
[K]
t . So let’s concentrate

on i ∈ K. In the forward equations (11.24) we can ignore all k /∈ K because those λ
[K]
k = 0. So the forward

equations say that

p
[K]
i,j

′
(t) = −λ[K]

j p
[K]
i,j (t) +

∑
k∈K, k 6=i

λ
[K]
k qk,jp

[K]
i,k (t). (11.34)

This is a finite dimensional linear system for the j ∈ K. In matrix form and using A from (11.32),

P
[K]
K,K

′
(t) = P

[K]
K,K(t)A.

The initial values are P
[K]
K,K(0) = I so we know that

P
[K]
K,K(t) = eAt.

For p
[K]
i,j (t) when i ∈ K but j ∈ Kc see Problem 11.4.

For i, j ∈ K, if Y
[K]
0 = i = Y0 then Y

[K]
t = j is equivalent to Yt = j and t < TKc . So the transition

probabilities p
[K]
i,j (t) can be expressed in terms of the original process Yt as

Pi(Yt = j; t < TKc) = p
[K]
i,j (t). (11.35)

If t < TKc then Yt = Y
[K]
t ∈ K, so we find

Pi(t < TKc) =
∑
j∈K

p
[K]
i,j (t) = P

[K]
K,K(t)[1](i) = eAt[1](i).

We can differentiate this with respect to t:

d

dt
eAt[1](i) = AeAt[1](i).

To restate this, the function f(i, t) = Pi(t < TKc), i ∈ K is the solution of system

d

dt
f(i, t) = Af(i, t); f(i, 0) = 1. (11.36)

Now consider a second finite set K̃ which is larger than K: K ⊆ K̃. If Yt ∈ K̃c then Yt ∈ Kc. This
means that TKc ≤ TK̃c . So for i, j ∈ K

p
[K̃]
i,j (t) = Pi(Yt = j; t < TK̃c)

= Pi(Yt = j; t < TKc) + Pi(Yt = j; TKc ≤ t < TK̃c)

≥ Pi(Yt = j; t < TKc) (11.37)

= p
[K]
i,j (t).

In words, for i, j ∈ K the value of p
[K]
i,j (t) gets larger if we enlarge the set K to a bigger finite set K̃.

11.4.4 The Infinite State Case

The following lemma explains how we get the general case from a limit of the K-processes.

Lemma 11.6. As K ↑ S we have (with probability 1)

TKc ↑ J∞,

and
P[K](t) ↑ P(t).
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Proof. We know that TKc is monotone in K and that TKc ≤ J∞ (with probability 1). Therefore limK TKc ≤
J∞ (with probability 1). If K is a finite set with

K ⊇ {YJi : i = 0, . . . , n}

then Jn < TKc . Now it follows from the properties of probability described in Section 3.1.1 that P (K ⊇
{YJi : i = 0, . . . , n}) ↑ 1 as K ↑ S. Therefore P (Jn < limK TKc) = 1. Since Jn → J∞ it follows that
J∞ ≤ limK TKc (with probabiity 1). Having proven inequality both ways this establishes that J∞ = limK TKc

(with probabiity 1).
The convergence of P[K] now follows from the monotonicity of probabilities (last bullet of page 33):

p
[K]
i,j (t) = Pi(Yt = j; t < TKc) ↑ Pi(Yt = j; t < T∞) = pi,j(t).

We are now ready to write the proof of Theorem 11.3 in the general case.

Proof. We begin with the backward equations in a). For a given i, j choose K large enough that i, j ∈ K.
The backward equations for Y [K] say that

p
[K]
i,j

′
(t) = −λip[K]

i,j (t) +
∑
k 6=i

λiqi,kp
[K]
k,j (t).

(Since i ∈ K we have λ
[K]
i = λi.) Expressing this in integrated form,

p
[K]
i,j (t) = p

[K]
i,j (0)−

∫ t

0

λip
[K]
i,j (s) ds+

∫ t

0

∑
k 6=i

λiqi,kp
[K]
k,j (s) ds.

Each of the two integrals converges as K ↑ S by the Monotone Convergence Theorem. (We needed to
separate out the −λj integral to make this argument.) We find that

pi,j(t) = pi,j(0)−
∫ t

0

λipi,j(s) ds+

∫ t

0

∑
k 6=i

λiqi,kpk,j(s) ds. (11.38)

It follows from this that pi,j(t) is continuous. Moreover since
∑
k qi,k = 1 the series

∑
k 6=i λiqi,kpk,j(s)

converges uniformly and is therefore continuous. That allows us to deduce that pi,j(t) is in fact continuously
differentiable with

p′i,j(t) = −λipi,j(t) +
∑
k 6=i

λiqi,kpk,j(t),

which is the backward equation for P(t). Before proceeding observe that the backward equation implies that

d

dt

[
eλitpi,j(t)

]
= eλit

∑
k 6=i

λiqi,kpk,j(t) ≥ 0.

This means eλitpi,j(t) is monotone increasing, a fact we will need to prove b).
The argument for the forward equations b) starts in the same way. The forward equation (11.34) in

integrated form says

p
[K]
i,j (t) = p

[K]
i,j (0)−

∫ t

0

λjp
[K]
i,j (s) ds+

∫ t

0

∑
k∈K, k 6=i

λkqk,jp
[K]
i,k (s) ds.

(This is for K large enough to include j and we have omitted all λ
[K]
k = 0 for k /∈ K from the sum.) Both

integrals converge as K ↑ S by the monotone convergence theorem to give

pi,j(t) = pi,j(0)−
∫ t

0

λjpi,j(s) ds+

∫ t

0

∑
k 6=i

λkqk,jpi,k(s) ds.
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The final integral is trickier here because the convergence of the series is not obvious. However by rearranging
we deduce a bound on the the final integral:∫ t

0

∑
k 6=i

λkqk,jpi,k(s) ds ≤ 1 + λjt <∞.

So the integral is finite, which is enough to imply that pi,j(t) is continuous. By the observation at the end
of the argument for the backwards equation we know

eλit
∑
k 6=i

λkqk,jpi,k(t)

is monotone increasing. So for s ≤ t∑
k 6=i

λkqk,jpi,k(s) ≤ eλi(t−s)
∑
k 6=i

λkqk,jpi,k(t).

Since the series must converge (for its integral to be finite) this inequality implies that it converges uniformly
in s ≤ t. Therefore

∑
k 6=i λkqk,jpi,k(s) is continuous, allowing us to conclude that pi,j(t) is continuously

differentiable with
p′i,j(t) = −λjpi,j(s) ds+

∑
k 6=i

λkqk,jpi,k(s) ds,

which is the forward equation.
Next consider part c) for the forward equation. Suppose Q′(t) = Q(t)A with Q(0) = I. Consider any

finite K. Since P[K](t) ↑ P(t) it suffices to show P[K](t) ≤ Q(t). Using the block matrix components A and
C from (11.32) above the forward equations for Q say that

Q′K,K(t) = QK,K(t)A + QK,Kc(t)C.

Now the variation of constants formula, or an integrating factor argument, leads to

QK,K(t) = eAt +

∫ t

0

QK,Kc(s)CeA(t−s) ds

= P
[K]
K,K(t) +

∫ t

0

QK,Kc(s)CeA(t−s) ds

Since we are also assuming that Q(t) ≥ 0 the integral term is nonnegative. Therefore QK,K(t) ≥ P
[K]
K,K(t).

This being true for any finite K we conclude that Q(t) ≥ P(t) as claimed. The argument for the backward
equation works the same way, but with the matrix exponentials multiplied on the right.

To prove d) we back up to (11.38), multiply both sides by φ(j) and sum over j. (Dominated convergence
justifies passing the sums through the integrals.) We obtain

u(i, t) = u(i, 0)−
∫ t

0

λiu(i, s) ds+

∫ t

0

∑
k 6=i

λiqi,ku(k, s) ds.

From here the argument is the same as above, to deduce that g(i, t) is continuously differentiable in t with

∂

∂t
u(i, t) = Au(i, t).

Moreover since 0 ≤ g(i, t) ≤ B and
∑
k qi,k = 1 it follows that

|Au(i, t)| ≤ λiB.

For part e) let u(i, t) = P(t)[1](i), which we know is u(i, t) = Pi(T∞ < t) and a solution of the backward
equation (by part d)), and therefore so is ψ(i, t) = 1− u(i, t). Now ψ(i, 0) = 0 for all i, but in the explosive
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case ψ(i, t) > 0 for some state i and t > 0, so the backward equation does have non-unique bounded solutions
in the explosive case. Consider the non-explosive case and suppose u(t) = [u(i, t)] is a bounded solution of
(11.27) with u(0) = [0] we need to show that u(t) = [0] for all t > 0. Consider any finite K ⊆ S, with the
block matrix components A and B as above. The backward equations say that on K

u′K(t) = AuK(t) + BuKc(t).

Using e−At as an integrating factor we get

uK(t) = eAtuK(0) +

∫ t

0

eA(t−s)BuKc(s) ds

=

∫ t

0

eA(t−s)BuKc(s) ds.

We claim this → 0 as K ↑ S. Suppose |u(j, t)| ≤ c for all j ∈ S. Fix i. Once K is large enough to include i
we have 0 ≤ bi,j for all j ∈ Kc, so

|BuKc(s)| ≤ cB1Kc ,

and since eA(t−s) ≥ 0 we find by using Problem 11.4 that∣∣∣∣∫ t

0

eA(t−s)BuKc(s) ds

∣∣∣∣ ≤ c∫ t

0

eA(t−s)B1Kc ds

= cP
[K]
K,Kc(t)1Kc

= cPi(TKc < t).

If the process is non-explosive then Pi(TKc < t)→ Pi(T∞ < t) = 0. Therefore u(i, t) = 0 for all i.

11.5 Martingales and the Generator

Next we want to make the connection between the generator and martingales for a jump process. We will
not develop this as fully as we might, but will just discuss what we will need for use in the next section on
conditions for explosion or non-explosion.

The generator A is the continuous time analogue of the matrix A for discrete time Markov chains. By
analogy with Theorem 9.1 we might expect

Mt = f(Yt)−
∫ t

0

Af(Yu) du

to be a martingale for a bounded function f : S → R. This is essentially true but we need to be careful in
the continuous time setting because of the possibility of explosion as well as that Af might be unbounded,
so that we are unsure about E[Af(Yt)] being defined. Setting those issues aside for the moment, the basic
idea is as follows. Observe that for t < s

Ms = Mt + f(Yt)− f(Ys) +

∫ s

t

Af(Yu) du.

So

E[Ms|Y[0,t]] = Mt +

{
f(Yt)− E

[
f(Ys) +

∫ s

t

Af(Yu) du
∣∣∣Y[0,t]

]}
.

For Mt to be a martingale means that {· · · } = 0. The Markov property says that when Yt = y we should
replace E[· · ·Yu · · · |Y[0,t]] by Ey[· · ·Y(u−t) · · · ]. Rearranging we find that the martingale property reduces to

Ey[f(YT )] = f(y) + Ey

[∫ T

0

Af(Yu) du

]
.
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But this is essentially the forward equation for P(t): d
dt (P(t)f(y)) = P(t)Af(y), or in integrated form,

P(T )f(y) = f(y) +

∫ T

0

P(u)Af(y) du. (11.39)

There is an additional technical issue here that our notation hides. We have understood the forward equation
in a entry-by-entry sense: d

dtpy,j(t) = (P(t)A)y,j . But P(t)f(y) =
∑
j py,j(t)f(j) is in general an infinite

series. So we have to worry about the validity of differentiating the infinite series term-by-term. And then

there is the need to justify Ey[
∫ T

0
· · · du] =

∫ T
0
Ey[· · · ] du, which we used to arrive at (11.39). So we need

to impose hypotheses and formulate a proof which allows us to navigate through all these issues. And if
that is not enough, we are going to generalize to allow the function f to depend on both the state and time
variables: f(y, t). This will be useful for our discussion of conditions for non-explosion in Section 11.6.

Theorem 11.7. Suppose Yt is non-explosive and that f(y, t) is a bounded function on S × [0,∞) for which
both Af(y, t) and ∂

∂tf(y, t) are also bounded. Then

Mt = f(Yt, t)−
∫ t

0

∂

∂u
f(Yu, u) +Af(Yu, u) du

is a martingale.

Compare this to Theorem 9.1.

Proof. Rearranging as above (and making an elementary change of time variable) we find that the martingale
property reduces to

Ey[f(YT , T )] = f(y, 0) +

∫ T

0

Ey

[
∂

∂t
f(Yu, u) +Af(Yu, u)

]
du. (11.40)

Suppose that there is a finite set K such that f(i, t) = 0 if i /∈ K. Then

P(t)f(y, t) =
∑
j∈K

py,j(t)f(j, t)

is a finite sum so we can differentiate term-by-term and use the forward equation and the product rule to
conclude that

P(T )f(y, T ) = f(y, 0) +

∫ T

0

P(u)

[
∂

∂t
f(y, u) +Af(y, u)

]
du.

That both ∂
∂tf and Af are bounded is enough to justify the interchange Ey[

∫ T
0
· · · du] =

∫ T
0
Ey[· · · ] du, so

(11.40) does hold under the K assumption.
For a general f satisfying the hypotheses of the theorem we can consider fK = 1Kf . According to what

we just showed equation (11.40) does apply to fK . We want to pass to the limit as K ↑ S to get the general
case. But to justify that requires more information about AfK than is conveniently available to us. But
suppose in addition that Yt has bounded rates: λk ≤M . In that case Af and AfK are both bounded,

|Af | ≤ 2MB and |AfK | ≤ 2MB where |f | ≤ B,

as well as ∂
∂tf(y, u). Therefore the dominated convergence theorem applies as K ↑ S to tell us that∫ T

0

P(u)

[
∂

∂t
fK(y, u) +AfK(y)

]
du→

∫ T

0

P(u)

[
∂

∂t
f(y, u) +Af(y)

]
du,

as well as the other terms in (11.40). This proves the theorem in the case of bounded rates.

To establish the general case, our stopped process Y
[K]
t has bounded rates so the theorem holds for it.

Observe that

A[K]f(i) =

{
Af(i) if i ∈ K
0 if i /∈ K

= 1K(i)Af(i).
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So the martingale property for Y
[K]
t says that

Ey[f(Y
[K]
T , T )] = f(y, 0) + Ey

[∫ T

0

∂

∂t
f(Y [K]

u , u) + 1K(Y [K]
u )Af(Y [K]

u , u) du

]
.

With the assumption that Af and ∂
∂tf are bounded we can let K ↑ S, which entails TKc ↑ ∞, 1K(Y

[K]
u )→ 1

for a non-explosive process, and by dominated convergence again we conclude

Ey[f(YT , T )] = f(y, 0) + Ey

[∫ T

0

∂

∂t
f(Yu, u) +Af(Yu, u) du

]
,

as desired.

Before moving on we want to apply the theorem to the particular equation we will use in the next section.
Suppose ϕ is a bounded function satisfying

Aϕ = αϕ for some constant α > 0.

Let f(i, t) = ϕ(i)e−αt. This f satisfies all the hypotheses of the theorem: Af = − ∂
∂tf = αϕe−αt is bounded

since ϕ is. Observe that Af + ∂
∂tf = 0 so if Y (t) is not explosive it follows that

Mt = e−αtϕ(Y (t))

is a martingale. In particular for any state y

ϕ(y) = Ey[e−αtϕ(Y (t))]. (11.41)

We want to generalize this in a couple different ways. First, even if Y (t) is explosive we can apply the
same reasoning to the K-process Y [K](t) (for any finite subset K ⊆ S). Note that applying the generator
for Y [K](t) we get

A[K]f(i, t) = 1K(i)Af(i, t)

and so is still bounded. But

A[K]f +
∂

∂t
f =

{
0 if i ∈ K
∂
∂tf(i, t) if i /∈ K.

So applying the theorem to the K-process we obtain

ϕ(y) = Ey

[
f(Y [K](t), t)−

∫ t

t∧TKc

∂

∂t
f(Y [K](s), s) ds

]
= Ey

[
f(Y (t ∧ TKc), t)−

∫ t

t∧TKc

∂

∂t
f(Y (TKc), s) ds

]
= Ey [f(Y (t ∧ TKc), t)− f(Y (t ∧ TKc), t) + f(Y (t ∧ TKc), t ∧ TKc)]

= Ey [f(Y (t ∧ TKc), t ∧ TKc)]

= Ey

[
e−α(t∧TKc )ϕ(Y (t ∧ TKc))

]
.

This is optional stopping applied to the martingale Mt. Compare to Theorem 9.6.
Now suppose we replace ϕ with a function ψ, still assumed bounded but only satisfying the inequality

Aψ ≥ αψ and take f(i, t) = ψ(i)e−αt like before. We still have that ∂
∂tf is bounded but without additional

assumptions we can’t say that Af is bounded. However it does follow that A[K]f is bounded so we can
apply the theorem using Y [K]. We proceed as above, but using

A[K]f +
∂

∂t
f ≥

{
0 if i ∈ K
∂
∂tf(i, t) if i /∈ K.
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The conclusion is that
ψ(y) ≤ Ey

[
e−α(t∧TKc )ψ(Y (t ∧ TKc))

]
.

If in fact Y is non-explosive from Y (0) = y then we can let K ↑ S, TKc →∞ and use dominated convergence
(since ψ is bounded) to conclude that

ψ(y) ≤ Ey
[
e−αtψ(Y (t))

]
. (11.42)

If we reverse the inequality and assume Aψ ≤ αψ (but still that ψ is bounded) we simply reverse the
inequality in the preceeding result:

ψ(y) ≥ Ey
[
e−α(t∧TKc )ψ(Y (t ∧ TKc))

]
.

We want to weaken the hypotheses again to assume Aψ ≤ αψ and 0 ≤ ψ but not that ψ is necessarily
bounded above. First choose the finite set K. Next replace ψ by

ψc(i) = c ∧ ψ(i) =

{
ψ(i) if ψ(i) ≤ c
c if c < ψ(i)

and take fc(i, t) = e−αtψc(i). We want to apply the theorem using fc and the K-process Y [K]. Since
ψc is bounded and Y [K] has bounded rates all the hypotheses of the theorem hold. If c is large enough
(c ≥ maxi∈K ψ(i)) then ψc = ψ on K. So for i ∈ K we have

A[K]ψc(i) = −λiψc(i) +
∑
j 6=i

λiqi,jψc(j)

= −λiψ(i) +
∑
j 6=i

λiqi,jψc(j)

≤ −λiψ(i) +
∑
j 6=i

λiqi,jψ(j)

= Aψ(i)

≤ αψ(i)

= αψc(i).

So we again have an inequality

A[K]fc +
∂

∂t
fc ≤

{
0 if i ∈ K
∂
∂tfc(i, t) if i /∈ K.

This leads to
ψc(y) ≥ Ey

[
e−α(t∧TKc )ψc(Y (t ∧ TKc))

]
.

as above. Finally let c ↑ ∞ and use monotone convergence to conclude

ψ(y) ≥ Ey
[
e−α(t∧TKc )ψ(Y (t ∧ TKc))

]
. (11.43)

as desired.

11.6 Explosion

One of our themes has been to show how various probabilistic properties of a Markov process can be
established in terms of equations involving the generator. In this section we are going to do that for the
phenomena of explosion and non-explosion. Lemma 11.2 provided a simple test for the pure birth process.
The proof of that lemma focused on E[e−J∞ ]. Here we consider

ϕ(y) = Ey[e−αJ∞ ]

for a constant α > 0. If the process is non-explosive then ϕ(y) = 0 but in the explosive case ϕ(y) > 0. The
next lemma says that ϕ must solve the equation Aϕ = αϕ.
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11.6.1 The Distribution of J∞

Lemma 11.8. Let α > 0. The function ϕ(y) = Ey[e−αJ∞ ] is a nonnegative solution of

Aϕ = αϕ

bounded by ϕ(y) ≤ 1.

Proof. To begin,

Pi(t < J∞) =
∑
j

pi,j(t) = u(i, t) = P(t)[1](i),

as considered in part d) of Theorem 11.3. We know from there that

u′(t) = Au(t), u(0) = [1].

So we can calculate as follows.

e−αJ∞ = 1−
∫ J∞

0

αe−αt dt

= 1−
∫ ∞

0

1t<J∞αe
−αt dt

ϕ(i) = Ei

[
1−

∫ ∞
0

1t<J∞αe
−αt dt

]
= 1−

∫ ∞
0

Ei[1t<J∞ ]αe−αt dt

= 1−
∫ ∞

0

u(i, t)αe−αt dt.

We want to calculate Aϕ(i) using the right side of this expression. Since A[1] = [0] the first term vanishes.
We have

Aϕ(i) = λi

∫ ∞
0

u(i, t)αe−αt dt−
∑
j 6=i

λi

∫ ∞
0

qi,ju(j, t)αe−αt dt

In the last term (
∑∫

) we want to interchange the integral and summation. If the sum involved only a
finite number of terms this would be no problem. In general, since 0 ≤ u ≤ 1 and

∑
j 6=i qi,j = 1, the series∑

j 6=i qi,ju(i, t) converges uniformly. That justifies the interchange in general. So we have

Aϕ(i) = 0 +

∫ ∞
0

λiu(i, t)αe−αt dt−
∫ ∞

0

∑
j 6=i

λiqi,ju(j, t)αe−αt dt

= −
∫ ∞

0

Au(i, t)αe−αt dt

= −
∫ ∞

0

∂

∂t
u(i, t)αe−αt dt

= −u(i, t)αe−αt
]∞
0
− α

∫ ∞
0

u(i, t)αe−αt dt

= α

[
1−

∫ ∞
0

u(i, t)αe−αt dt

]
= αϕ(i).
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11.6.2 Conditions for Explosion and Non-Explosion

Here is a nice necessary and sufficient condition for non-explosion in terms of solutions to Aϕ = αϕ.

Theorem 11.9. Let α > 0. Yt is non-explosive if and only if the only bounded solution ϕ of Aϕ = αϕ is
ϕ ≡ 0.

Proof. Suppose Yt is nonexplosive from y and ϕ is any bounded solution of Aϕ = αϕ. From (11.41) we
know that

ϕ(y) = Ey[e−αtϕ(Yt)].

Letting t→∞ and using the boundedness of ϕ we deduce that ϕ(y) = 0.
For the converse assume that the only bounded solution of Aϕ = αϕ is ϕ ≡ 0. Since we know ϕ(y) =

Ey[e−αJ∞ ] is bounded and solves the equation, it follows that Ey[e−αJ∞ ] = 0 for every initial state y.
Therefore for every initial state J∞ =∞ implying nonexplosion.

We have stated this for “non-explosive” in general, meaning non-explosive from every initial state. The
theorem remains true if we focus on a specific initial state y: non-explosion from y is equivalent to saying
every bounded solution of Aϕ = αϕ has ϕ(y) = 0.

Similar to Section 4.3.2, inequality versions of Aϕ = αϕ can be easier to work with, and sometimes
provide sufficient conditions for explosion or non-explosion.

Theorem 11.10. Suppose ψ : S → R is nonegative bounded but not identically 0, and satisfies Aψ ≥ αψ
for a constant α > 0. Then Yt is explosive from any y with ψ(y) > 0.

Proof. If the process were nonexplosive from y we could use (11.42):

ψ(y) ≤ Ey[e−αtψ(Y (t))].

Since ψ is bounded, letting t → ∞ would imply the ψ(y) = 0. So if ψ(y) > 0 we see that Y (t) must be
explosive from y.

Theorem 11.11. Suppose ψ : S → R satisfies Aψ ≤ αψ for a constant α > 0 and ψ(x)→ +∞ as |x| → ∞.
Then Yt is nonexplosive (from all initial states).

Proof. This time we want to use (11.43). For that we need ψ ≥ 0, which is not assumed. But we can fix
that. Because ψ(x) → ∞ implies that ψ must be that ψ s bounded below. So there is a constant c > 0 for
which

ψ̄ = c+ ψ ≥ 0.

Now observe that
Aψ̄ = A(ψ + c) = Aψ ≤ αψ ≤ α(ψ + c) = αψ̄.

We can now apply (11.43) to conclude that for any finite K

ψ̄(y) ≥ Ey
[
e−α(t∧TKc )ψ̄(Y (t ∧ TKc))

]
.

Now if Y (t) were explosive then for some t we have Py(TKc < t) ≥ Py(J∞ < t) > 0. By hypothesis
ψ̄(Y (TKc))→∞ as K ↑ S. Taking this limit in the above would give

Ey

[
e−α(t∧TKc )ψ̄(Y (t ∧ TKc))

]
→∞.

This is not possible since ψ̄(y) <∞. So the process must be non-explosive.
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Finally let’s apply these conditions to our examples. The queueing example of Section 11.3.2 has bounded
rates so is non-explosive by Problem 11.2. For the chemical kinetics example of Section 11.3.1 observe that
Y A + Y B + 2Y C + Y D never changes; this quantity is unaltered by each of the three reactions. That means
that

ψ(y) = yA + yB + 2yC + yD

has Aψ = 0. So
Aψ = 0 ≤ ψ.

Since ψ ≥ 0 on the state space and ψ(y) → ∞ as |y| → ∞ Theorem 11.11 tells us that the process is
non-explosive.

Consider a pure birth process (Section 11.2.2) with rates λn > 0 for n ≥ 0. The equation Aϕ = αϕ is
the system

λn(ϕ(n+ 1)− ϕ(n)) = αϕ(n).

which we can rearrange as

ϕ(n+ 1) =
α+ λn
λn

ϕ(n).

To analyze the nontrivial bounded solutions (as needed to use Theorem 11.9) means studying the infinite
product

lim
k→∞

k∏
1

α+ λn
λn

.

Notice that for α = 1 this is the same as what we encountered in (11.15). For particular cases we can exhibit
solutions to either the equation of Theorem 11.9 or the inequalities of Theorems 11.10. Consider the simple
birth process of Example 11.1: λn = nλ. Take ψ(n) = n and use α = λ. This in fact satisfies Aψ = αψ
exactly, and has ψ ≥ 0 and ψ →∞ so we deduce non-explosion by Theorem 11.11.

Next consider the explosive pure birth process of Example 11.2: λn = n(n− 1)/2. Explosion will follow
from Theorem 11.10 if we can exhibit a nontrivial bounded solution of Aψ ≥ 1

2ψ:

ψ(n+ 1) ≥ 1/2 + n(n− 1)/2

n(n− 1)/2
ψ(n).

Try ψ(n) = e−
1

n−1 for n ≥ 2 and ψ(0) = ψ(1) = 0. You can check the inequality for n = 0, 1. For n ≥ 2 we
have

ψ(n+ 1) = e
1

n−1−
1
nψ(n)

= e
1

n(n−1)ψ(n)

≥
(

1 +
1

n(n− 1)

)
ψ(n)

=
1/2 + n(n− 1)/2

n(n− 1)/2
ψ(n),

as desired. Theorem 11.10 now implies the process is explosive from any initial state ≥ 2, but not from 0 or
1.

11.7 Extensions and Further Reading

We have not covered all the standard material on continuous time Markov chains. In particular we have
neglected recurrence and equilibrium. You can find these and other aspects discussed in references such as
Norris [45], Grimmett & Stirzaker [25]. See also Brémaud [10], Chung [15], Karlin [33], Kemeny & Snell [34],
and Stroock [57].

We have only developed the relation of jump processes to martingales to the extent needed for Section 11.6.
In particular we have not stated a full martingale characterization analogous to Theorem 9.1. The problem
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of showing the converse of that theorem is usually referred to as “the martingale problem”. It is developed
for jump processes in Ethier & Kurtz [21] and in Stroock [58].

Conditions for explosion or non-explosion are developed by many authors. See Norris [45], Brémaud [10],
Chow and Khasminskii [13], Has’minskĭi [26], Stroock [57], and Varadhan [64].

Continuing Past Explosion

A full treatment of solutions to the Kolmogorov equations is difficult. It involves ways of extending the
definition of an explosive process beyond its explosion time and boundary conditions “at infinity” for the
solutions. This is an interesting but complicated subject. See Feller [22] XVII.10 for some commentary and
references on this. Most approaches use the theory of semigroups. Rogers & Williams [51] presents some of
that theory in vol. 1 but it requires some graduate level background.

There are other types of Markov processes which move only by jumps but which are more complicated
than what we have described above. We close this chapter with just the briefest indication of what a couple
of them are.

The Cauchy Process

If we allow a continuous state space S = R then it is possible to have Markov processes which make infinitely
many jumps in a small amount of time, provided most of them are so small that the sum of their spatial
increments is finite. The best known example is the Cauchy Process. Its generator, applied to a smooth
function f , is

Af(x) =

∫ ∞
−∞

[
f(y)− f(x)− f ′(x)

y − x
1 + (y − x)2

]
1

π(y − x)2
dy.

Here the 1
π(y−x)2 dy plays a role like that of our λxqx,y. In fact if 1

π(y−x)2 were integrable w.r.t. y (it is

not, but if it were) then the f ′ term would integrate to 0 by symmetry and the above would reduce to∫∞
−∞ [f(y)− f(x)] 1

π(y−x)2 dy, which looks a lot like our (11.18). The additional term in Af(x) is necessary

for the integral to even exist. The effect is that small jumps (y ≈ x) occur at a faster rate, becoming infinitely
fast in the limit as y → x. Every time interval contains infinitely many jumps, most quite small in size.
Our wait and jump description is not adequate to describe it. The Cauchy process belongs a general class
of Markov processes called stable processes. Beriman [9] is a good introduction to these, but be advised that
this is a topic requiring a graduate-level background in analysis.

Interacting Particle Systems

Imagine a collection of individuals, one located at each integer point on the line. Each individual can be in
one of two states, healthy or infected. The state of this system is an infinite sequence of 0s and 1s:

X(t) = (. . . X−2(t), X−1(t), X0(t), X1(t), X2(t), . . .).

Xn(t) = 1 means that the individual at location n is infected at time t; Xn(t) = 0 means that the individual
at location n is healthy at time t. Each individual’s status jumps back and forth between 0 and 1 like a
Markov jump process. If Xn(t) = 1 (infected) then it jumps to the healthy state at rate of 1. If Xn(t) =
(healthy) then it jumps to the infected state at rate of λ[Xn−1(t) +Xn+1(t)], i.e. proportional to the number
of infected neighbors it has. So each individual’s status jumps back and forth at rates which depend on the
status of it’s neighbors. This is called the Contact Process on Z. We could consider the same thing with
individuals located at the integer lattice points Z2, or in higher dimensions. This example is interesting as a
simple model for the spread of a communicable disease. A natural question is whether the disease eventually
dies out, i.e. the process reaches the state of all 0s, or if it can survive (Xn(t) = 1 for some n) forever. It
turns out that there is a critical value λf so that if λ ≤ λf then the infection will die out with probability
1, but for λf < λ the infection can continue forever. (What happens when λ = λf was unresolved for many
years until it was finally solved in 1989.) See Durrett [19] for more on this interesting example. Markov
processes of this general type are called interacting particle systems. There are several important examples
in statistical physics.
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Problems

Problem 11.1
Suppose W ≥ 0 is a random variable with the memoryless property (11.2) holding for all 0 ≤ s, t. The
purpose of this problem is to show that W must be an exponential random variable. Let g(t) denote the
function

g(t) = P (W > t).

Explain why g(t) has these properties:

• 0 ≤ g(t) ≤ 1,

• nonincreasing,

• right continuous: g(t) = lims→t+ g(s),

• limt→∞ g(t) = 0,

• and satisfies
g(s+ t) = g(t)g(s) for all 0 ≤ s, t.

An extreme case would be if g(t) = 0 for all t > 0. In that case explain why W ≡ 0. (This might be
considered an exponential random variable with λ = ∞.) Let’s dismiss that case and assume g(t) > 0 for
some t > 0. Show that this implies g(t) > 0 for all t > 0. Similarly use the last bullet above to show that
g(t) < 1 for all t > 0. Since we now know that 0 < g(t) < 1 for all t > 0 we can consider its logarithm:
φ(t) = ln(g(t)). The last bullet above says that

φ(s+ t) = φ(s) + φ(t).

Show that φ(t) has these properties:

• φ(nt) = nφ(t) for all positive integers n and all t > 0,

• φ(t) = 1
nφ(nt) for all positive integers n and all t > 0,

• φ( nm ) = 1
mφ(n) = n

mφ(1) for all positive integers n,m,

• and φ(t) = tφ(1) for all t > 0.

So if we let λ = −φ(1) then φ(t) = −λt. Note that g(1) < 1 implies λ > 0. So we have found that for some
parameter λ > 0 the distribution of W must be described by

P (t < W ) = e−λt.

In other words W can only be exponentially distributed if it has the memoryless property.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ExpNoMem

Problem 11.2
Assume that as in Section 11.4.1 the jump rates obey a common bound

λi ≤M for all i ∈ S.

Prove that the associated jump process is nonexplosive. You can do this using the construction Wn = 1
λXn

W̃n

from Section 11.3 along with Lemma 11.2.
Do this a second way using Theorem 11.9. Hint: if |ϕ(i)| ≤ c for all i then, by working with the equation

Aϕ = αϕ deduce that |ϕ(i)| ≤ λi
α+λi

c ≤ M
α+M c. Conclude that ϕ ≡ 0.

Now suppose S = N and that there is a bound on the mean jump size.∑
j 6=i

qi,j |j − i| ≤ B.
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Show that you can choose α so that ψ(i) = i+1 satisfies the hypotheses of Theorem 11.11, giving yet another
proof, under the assumption of bounded mean jump size.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BddNExp

Problem 11.3
Explain why the forward equations for p

[K]
i,j (t) imply (11.33). Then show that it follows from the backward

equations as well.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CKC

Problem 11.4
In Section 11.4.3 we did not produce a formula for p

[K]
i,j (t) when i ∈ K but j ∈ Kc. These would be the

values in the submatrix P
[K]
K,Kc(t). Explain why the forward equations say that

P
[K]
K,Kc

′
(t) = P

[K]
K,K(t)B

and so P
[K]
K,Kc(t) must be given by the formula

P
[K]
K,Kc(t) =

∫ t

0

eAsB ds.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K-Kc

Problem 11.5
The monotonicity property (11.37) can be proven from the forward equations. Let L = K̃ \K and

G = AL,K .

Check that the forward equations say that

d

dt
P

[K̃]
K,K(t) = P

[K̃]
K,K(t)A + P

[K̃]
K,L(t)G.

Explain why the solution of this is

P
[K̃]
K,K(t) = eAt +

∫ t

0

P
[K̃]
K,L(s)GeA(t−s) ds.

(If you right-multiply both sides by eAt this is an integrating factor calculation.) We know that all entires
of eA(t−s) are nonnegative because they are probabilities. Explain why all entries of the integral term are
nonnegative, and therefore

P
[K̃]
K,K(t) ≥ P

[K]
K,K(t),

the inequality meaning entry-by-entry.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K-mono

Problem 11.6
Show that if a Markov chain with generator A is non-explosive then P(t) is the only solution of the forward
equations Q′(t) = Q(t)A which has initial values Q(0) = I, is nonnegative and satisfies Q(t)[1] = [1].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FNExp

Problem 11.7
Suppose that every nonnegative solution Q(t) of the forward equations with Q(0) = I has Q(t)[1] = [1].
Show that the chain is nonexplosive.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FE1
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Problem 11.8
Consider a “pure death process”: i→ i− 1 with rate λi > 0 and λ0 = 0. This is non-explosive because the
process will reach 0 after a finite number of steps and then never jump again. Take q0(t) to be a nontrivial

infinitely differentiable function with 0 = q0(0) = q′0(0) = q′′0 (0) = · · · = q
(n)
0 (0) = · · · . Explain how this

determines a solution of q′(t) = q(t)A with qi(0) = 0 for all i.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NUF

Problem 11.9
Here is another sufficient condition for explosion. Suppose ψ : S → R is nonnegative and satisfies Aψ+α ≤ 0
for a constant α > 0. Applying Theorem 11.7 show that

Ey[ψ(Yt∧TKc )] = ψ(y) + Ey[

∫ t∧TKc

0

Aψ(Ys) ds]

≤ ψ(y)− αEy[t ∧ TKc ].

Explain how, if the process was nonexplosive, we could let K ↑ S to conclude

0 ≤ ψ(y)− αt,

which would be a contradiction for large t. (See Theorem 4.3.6 of Stroock [57].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . StroockCond
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Chapter 12

Brownian Motion

The Markov processes we have considered so far all move by making discontinuous jumps. It is remarkable
that there are also Markov processes which produce continuous paths. These are generally called diffusions.
The premier example is Brownian motion. It is named after R. Brown, a botanist who in 1827 observed the
erratic motion of small particles suspended in water when observed under a microscope. The idea arose again
in the context of financial applications in the Ph.D. thesis of Bachelier [3] in 1900. It is also called the Wiener
process in honor of M.I.T. mathematician N. Wiener, who proved it’s mathematical existence in 1923. This
chapter is an introduction to Brownian motion, its most basic properties, its use in the Black-Scholes model
of mathematical finance, and a look at the formalism of Itô calculus. What we offer is only an introductory
sampler of properties of Brownian motion and a beginner’s guide to working with Itô calculus. We will not
attempt to prove the various features we describe.

12.1 Definition and Properties

We will introduce Brownian motion Wt by considering a limit (n→∞) of scaled random walks. Start with
a standard symmetric random walk Xk with initial state X0 = 0. It makes transitions Xk → Xk+1 = Xk±1,
each with probability 1/2. Thus Xk is defined for integer times k ≥ 0 and takes integer values. Next we
want to rescale time and space in just the right way: let

δt =
1

n
and δx =

1√
n

and define
W

(n)
t = δxXt/δt.

Thus in W
(n)
t the transitions happen every 1/n units of time are of size 1/

√
n. Brownian motion Wt is the

limit of W
(n)
t as n→∞ (in an appropriate sense).

Consider a single value of t. In that amount of time approximately k = nt jumps will have occurred. If
we write Xk =

∑k
1 Yi where Yi are i.i.d. with P (Yi = ±1) = 1/2 we recognize the Central Limit Theorem as

n→∞:

W
(n)
t = δxXt/δt =

1√
n

nt∑
i=1

Yk =
√
t ·

(
1√
nt

nt∑
i=1

Yk

)
⇒
√
t Z,

where Z is a standard normal random variable. So Wt = limn→∞W
(n)
t should be a normal random variable

with mean 0 and variance t. We need to remember that the Central Limit Theorem 3.7 only implies

convergence “⇒” in distribution, i.e. convergence of the probabilities of W
(n)
t , not convergence of the values

of W
(n)
t themselves:

P (a ≤Wt ≤ b) = lim
n→∞

P (a ≤W (n)
t ≤ b) =

∫ b

a

1√
2πt

e−
x2

2t dx.

212



Another way to say this is that

E[φ(W
(n)
t )]→ E[φ(Wt)] as n→∞ (12.1)

for every bounded continuous function φ(·).
The above describes what happens in the limit for a single t. The remarkable thing is that this limit still

exists if we consider W
(n)
t as a function of t over an interval t ∈ [0, T ], i.e. all t at once rather than one t at

a time. But before we proceed there is a technical issue we should address. We have only defined W
(n)
t for

those t which are multiples of δt: t = k
n = kδt for some k. As n changes the t for which W

(n)
t is defined also

change. This is awkward, but we can remedy that by using linear interpolation to define W
(n)
t for t between

multiples of δt. In other words we “connect the dots” to get the graph of W
(n)
t . Here is a sample of this for

n = 30. (A plot like this is simple to generate with Matlab. Simply specify a value for n and then enter
the command plot(0:1/n:1,[0,cumsum(randn(1,n))/sqrt(n)]).)
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This makes W
(n)
t defined for all 0 ≤ t ≤ T , and a continuous function of t. If t is not a multiple of δt, its

difference from W
(n)
t and the nearest multiple will be small: if (m− 1)δt ≤ t ≤ mδt then

|W (n)
t −W (n)

(m−1)δt| ≤ δx and |W (n)
t −W (n)

mδt| ≤ δx.

We won’t go through the details, but the upshot is that in the limit as n → ∞ we can proceed as if all t
were multiples of δt; the discrepancy is negligible as n→∞.

Our main assertion is that there is a stochastic process Wt to which W
(n)
t converges (in distribution) as

a process. This means that (12.1) generalizes if φ(W
(n)
t ) is replaced by Φ(W

(n)
· ), where Φ(·) is any bounded

continuous “functional” defined on C([0, T ]) (any 0 < T <∞). Basically Φ(f(·)) can be any quantity we can
construct from the values of the function f(t) over t ∈ [0, T ] and which is bounded and depends continuously
on the choice of f(·). For instance

Φ(f(·)) =

∫ T

0

φ(f(t)) dt,

Φ(f(·)) = φ(f(t1), f(t2), . . . , f(tN )),

Φ(f(·)) = max
0≤t≤T

φ(f(t)),

using any bounded and continuous φ. The assertion is that for any such Φ

lim
n→∞

E[Φ(W
(n)
· )] = E[Φ(W·)].

The Wt whose probabilities occur in the limit above discussion is Brownian motion with initial state
W0 = 0. In general a Brownian motion starting at W0 = w0 consists of a collection of random variables Wt,
t ≥ 0 defined on some probability space (Ω, P ) with the following essential features:
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1) W0 = w0;

2) For each pair 0 ≤ s < t, Wt −Ws is independent of W0:s (the history of Wu for all 0 ≤ u ≤ s);

3) For each pair 0 ≤ s < t, Wt −Ws has a normal distribution with mean 0 and variance t− s.

4) Wt is continuous in t.

There are a number of other equivalent characterizations, but this is most natural for us. You can see what

a typical path looks like by plotting W
(n)
t for a large n (say n = 500).
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A Sample Brownian Path

Let’s consider how our description of Wt as the limit of W
(n)
t leads to properties 1)–4) above, with w0 = 0.

Since X0 = 0 we have W
(n)
0 = 0, so W0 = 0 in part 1) above says. For part 2), consider s = mδt < t = kδt.

Then W
(n)
t −W (n)

s depends on Ym+1, . . . , Yk, while all W
(n)
u for u ≤ s depend only on Y1, . . . , Ym. Since the

Yi are all independent of each other, this makes it clear that W
(n)
u for u ≤ s is independent of W

(n)
t −W (n)

s .
The independence passes through to the limit as n→∞. That is because for any s1 < s2 < · · · < sM ≤ s < t
and bounded continuous functions φ, and ψ

E[φ(Ws1 , . . . ,WsM )ψ(Wt −WsM )] = lim
n→∞

E[φ(W (n)
s1 , . . . ,W (n)

sM )ψ(W
(n)
t −W (n)

s )]

= lim
n→∞

E[φ(W (n)
s1 , . . . ,W (n)

sM )]E[ψ(W
(n)
t −W (n)

s )]

= lim
n→∞

E[φ(W (n)
s1 , . . . ,W (n)

sM )] lim
n→∞

E[ψ(W
(n)
t −W (n)

s )]

= E[φ(Ws1 , . . . ,WsM )]E[ψ(Wt −Ws)].
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Part 3) is a modest generalization of our earlier calculation:

W
(n)
t −W (n)

s = δx

nt∑
k=ns+1

Yi

=
√
t− s

 1√
n(t− s)

n(t−s)∑
k=1

Yns+k


⇒
√
t− sZ,

where, by the Central Limit Theorem, Z is a standard normal random variable. So Wt−Ws is normal with
mean 0 and variance t− s, as claimed.

The continuity of Wt in part 4) is the difficult and amazing part. The process Wt is an assemblage of
infinitely many independent normal random variables, and yet continuity is a sort of dependence among the
different Wt. These ideas seem at odds with each other. (The proof of 4) is quite technical and well beyond
what we can describe here.) On the other hand, Wt is only continuous. You can see from the picture above
that a typical Brownian path is very irregular, although it is continuous. We will say more about this in
Section 12.2.4.

12.2 Properties

Brownian motion has many remarkable and important properties. We summarize just a few of them below.

12.2.1 Markov Property and Expected Values

Property 2) above implies the Markov property of Wt. Specifically the independence of Wt−Ws from W[0,s]

allows us to drop the conditional expectation in the third line below.

E[φ(Wt)|W[0,s] = w[0,s]] = E[φ((Wt −Ws) +Ws)|W[0,s] = w[0,s]]

= E[φ((Wt −Ws) + ws)|W[0,s] = w[0,s]]

= E[φ((Wt −Ws) + ws)]

=

∫ ∞
−∞

φ(v + ws)
1√

2π(t− s)
e−v

2/2(t−s) dv

=

∫ ∞
−∞

φ(y)
1√

2π(t− s)
e−(y−ws)2/2(t−s) dy

=

∫ ∞
−∞

φ(y)p(ws, t− s, y) dy.

We have used property 3) to write in the density of Wt −Ws in the fourth line. The Markov property is
the fact that this depends only on ws not the full history w[0,s]. We have then the transition density for
Brownian motion:

p(x, h, y) =
1√
2πh

e−(y−x)2/2h.

Here x is the starting state, y is the end state and h is the elapsed time between start and end. Since the
state ranges over all real numbers it is no longer reasonable to think of the p(x, h, y) values as making up
an infinite matrix. For that reason we are no longer writing the state variables as subscripts as in previous
chapters but as arguments to p. One way to express the above is the conditional expectation formula

E[φ(Wt) | W0:s] = g(Ws), s < t,

where g(x) is the function determined from φ(y) by

g(x) =

∫
φ(y)p(x, t− s, y) dy. (12.2)
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This is the analogue of (3.20) for Brownian Motion.
If we combine this with the Tower Law we can calculate as follows.∫ ∞

−∞
φ(y)p(x, t, y) = Ex[φ(Wt)]

= Ex[E[φ(Wt)|W[0,s]]]

= Ex[g(Ws)]]

=

∫ ∞
−∞

p(x, s, v)g(v) dv

=

∫ ∞
−∞

p(x, s, v)

[∫ ∞
−∞

p(v, t− s, y)φ(y) dy

]
dv

=

∫ ∞
−∞

φ(y)

[∫ ∞
−∞

p(x, s, v)p(v, t− s, y) dv

]
dy,

from which we extract the Chapman-Kolmogorov formula:

p(x, t, y) =

∫ ∞
−∞

p(x, s, v)p(v, t− s, y) dv.

Since we have an explicit formula for p(x, h, y) this can also be checked directly. (It is just the fact that the
sum of independent normal random variables is also normal.)

If you check you will find that for 0 < t

∂

∂t
p(x, t, y) =

1

2

∂2

∂x2
p(x, t, y).

This is the backward equation for the transition density

∂

∂t
p(x, t, y) = Ap(x, t, y)

where the generator is the partial derivative operator

A =
1

2

∂2

∂x2

acting on the “initial variable” x. From here it should be no suprize that for a bounded continuous function
φ(·),

u(x, t) =

∫
p(x, t, y)φ(y) dy

is solves the partial differential equation

ut(x, t) =
1

2
uxx(x, t) with u(x, 0) = φ(x). (12.3)

This follows the same pattern as part d) of Theorem 11.3. One way to think of this is that in order to find

u(x, t) = Ex[φ(Wt)]

we need to solve (12.3) using u(x, 0) = φ(x). This is now a partial differential equation. Its analogue for
Markov chains is that

u(i, n) = Ei[φ(Xn)]

is obtained by solving
u(n+ 1)− u(n) = Au(n)

starting from u(0) = [φ(i)]. This is just a way of writing u = Pn[φ(i)].
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12.2.2 Martingale

Brownian motion has several martingale properties. It is itself a martingale, as can be checked using prop-
erties 2) and 3) above. Suppose 0 ≤ s < t ≤ T . Then

E[Wt | W0:s] = E[(Wt −Ws) +Ws | W0:s]

= E[(Wt −Ws) | W0:s] +Ws

= E[Wt −Ws] +Ws

= 0 +Ws

= Ws.

Another martingale is

Mt = eθWt− θ
2

2 t.

The verification is again an integral calculation; see Problem 12.2. In fact for Mt to be a martingale for all
θ ∈ R implies that Wt is Brownian motion. The reason is that

E[eθ(Wt−Ws)|W[0:s]] = eθ
2/2t−θWsE[Mt|W[0:s]] = eθ

2/2t−θWsMs = eθ
2(t−s).

This is giving us the conditional moment generating function of Wt −Ws given W0:s. From here it can be
proven that Wt −Ws is normal with mean 0 and variance t− s and independent of W0:s. By using this idea
over 0 < t1 < t2 < · · · < tn you can eventually deduce 2) and 3) of the definition of Brownian motion. This
line of reasoning eventually leads to a proof that of the following.

Theorem 12.1. If Wt is a continuous process with W0 = 0 and

eθWt−θ2t/2

is a martingale for all θ ∈ R, then Wt is a Brownian motion.

This characterization will be useful in the Black-Scholes section below.
More generally the following characterizes Brownian motion in terms of martingales.

Theorem 12.2. Suppose Wt is a continuous process with W0 = 0 and that the following is a martingale

Mt = f(Wt, t)−
∫ t

0

ft(Ws, s) +
1

2
fxx(Ws, s) ds

whenever f, ft, fx, fxx are bounded continuous functions. Then Wt is a Brownian motion. Conversely, if Wt

is a Brownian motion then Mt is a martingale for all f as described.

Observe how this follows the pattern of Theorems 11.7 and 9.1 above with A = 1
2
∂2

∂x2 .

12.2.3 Scaling

It is sometimes said that “Brownian motion looks the same on any scale.” This is only true if interpreted
correctly.

If we take a function f(t) (lets say f(0) = 0 for simplicity) and look at its graph under a magnifying
glass. A point with coordinates (s, y) on the “viewing screen” of our magnifier corresponds to the point
(t, x) = (s/c, y/c) on the sample being magnified, where c > 1 is the magnification factor. (If c < 1 we would
have a “reducer”.) So (s, y) will appear on our magnified graph if y/c = f(s/c) is on the original graph. In
other words we will see the graph of y = cf(s/c) on the magnifier’s viewing screen. This is what happens
with a magnifier which rescales the time and space axes by the same factor c. For a differentiable function
f with f(0) = 0, under high magnification (large c) we will see essentially the graph of the tangent line at
0: y = f ′(0)s.

If we look at the graph of Brownian motion, with W0 = 0, under the same magnifier we will see the
graph of cWs/c. Now if you check the definition you will see that W̃s =

√
cWs/c is also a Brownian motion,
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with s as the time variable. So what we will see under the magnifier is the graph of
√
cW̃s, a graph of the

Brownian motion W̃s but with the vertical scale enlarged by a factor of
√
c. The ragged nature of the graph

will be enhanced. If we rescale the time and space axes differently, (t, x) = (s/c, y/
√
c), then the graph of

x = Wt would appear as the graph of y = W̃s, so would again be the graph of a Brownian motion. But a
standard magnifying glass does not behave this way.

There are other transformations of Brownian motion that result in new Brownian motions:

• −Wt,

• Wt+t0 −Wt0 , for any t0 ≥ 0;

• tW1/t.

The last one is particularly interesting because it reverses the direction of the time axis!

12.2.4 Irregularity

The definition of Brownian motion Wt says that the sample paths are continuous. However, as pictures of
the sample paths suggest, they are rather ragged functions. For one thing, they are never differentiable in t:

P (
d

dt
Wt exits for some t) = 0.

So we can never talk about W ′t in the usual sense of ′ = d
dt . It is important to remember this when we

encounter “dWt” in stochastic differential expressions below; it will not mean W ′t dt as you might expect
from change of variable calculations in calculus.

The Law of the Iterated Logarithm explains more about just how continuous Wt is. It says that for any
s, the following two limits hold with probability 1:

lim sup
h↓0

Ws+h −Ws√
2h ln(ln(1/h))

= 1, and lim inf
h↓0

Ws+h −Ws√
2h ln(ln(1/h))

= −1.

This means that if a Brownian path passes through x = Ws, then the extremes of its up and down motion
for t just beyond s will be described approximately by

x±
√

2(t− s) ln(ln(
1

t− s
)) (12.4)

in the limit as t ↓ s. If we could watch Wt, as we decrease t down to s we would see it move between the top
and bottom half of this curve infinitely many times. In particular this means that Wt oscillates dramatically,
recrossing Wt = x infinitely many times on any time interval s < t < s + δ, if Ws = x. Thus Wt oscillates
so frantically in the vertical direction that once it hits a level x it will hit it again infinitely many times in
the next split-second.

12.3 Itô Calculus

Section 9.3 pointed out how discrete parameter martingales could be used to form new martingales in an
integral-like summation procedure called discrete stochastic integration. With Brownian motion this idea
blossoms more fully. Once we define stochastic integrals we also find that there is a “calculus” involving
integrals and differentials and a form of the chain rule which can then be used to calculate with stochastic
processes in the same way as we do with ordinary functions in freshman calculus. In this section we outline
the main features of this calculus.

The key ingredient is the stochastic integral (also called the Itô integral)

It =

∫ t

0

ψs dWs,
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where ψs is another stochastic process. We pointed out above that Brownian motion has no derivative in
the conventional sense, so the dWs above cannot be interpreted using dWs = W ′s ds as change of variable
based on ordinary techniques from calculus. Moreover the Brownian paths have infinite arc length, so the
integral cannot be defined as a kind of integral along paths either. There is a way to make sense of the above
integral, but it depends very much on stochastic properties of Brownian motion, especially its martingale
properties.

Simple Integrands

Integrals are usually defined by means of a limiting process: first identify a special type of integrand ψs for
which we can write down what

∫ t
0
ψs dWs should be directly using finite sums. Then for a more general ψs

define ∫ t

0

ψs dWs = lim
n→∞

∫ t

0

ψ(n)
s dWs

where ψ
(n)
s → ψs and the ψ

(n)
s are integrands of the special type. For instance the Riemann integral of

calculus
∫
f(x) dx is defined in this way, where the special type of integrand is a piecewise constant function

(whose integral is a Riemann sum). A similar idea is used here. The special type of integrand is called
a simple process: piecewise constant, W0:t-determined and square-integrable. This means that there exist
some 0 = t0 < t1 < . . . < tm = t and random variables X1, . . . , Xm so that

• ψs = Xi for s in (ti−1, ti],

• each Xi is W0:ti−1
-determined,

• each E[X2
i ] <∞.

For such a ψs we define

It =

∫ t

0

ψs dWs =

m∑
i=1

Xi(Wti −Wti−1
).

When ψs is not simple want to approximate it using a sequence ψ
(n)
s of simple processes, form I

(n)
t =∫ t

0
ψ

(n)
s dWs for each of them (as above), and then take the limit

It =

∫ t

0

ψs dWs = lim
n→∞

I
(n)
t .

To form simple approximates ψ
(n)
s we can divide [0, t] up using ti = i

n t for i = 0, . . . , n and in each interval
just “freeze” ψs at the start of each interval.

ψ(n)
s = ψti−1

for ti−1 < s ≤ ti. (12.5)

An Example

As an example of the above strategy for defining stochastic integrals of non-simple ψt, we will work out the
case of ψt = Wt: ∫ t

0

Ws dWs.

Our approximation strategy (above) produces

ψ(n)
s = Wti−1

for ti−1 < s ≤ ti.

To write out the approximating integrals we will use the notations

∆Wti = Wti −Wti−1 and ∆(W 2
ti) = W 2

ti −W
2
ti−1

.

219



We have

I
(n)
t =

∫ t

0

ψ(n)
s dWs =

n∑
i=1

Wti−1
∆Wti

To simplify this, observe that

1

2
[∆(W 2

ti)− (∆Wti)
2] =

1

2
[W 2

ti −W
2
ti−1 − (W 2

ti − 2WtiWti−1
+W 2

ti−1
)]

=
1

2
[2WtiWti−1

− 2W 2
ti−1

]

= Wti−1
∆Wti .

So we find that

I
(n)
t =

1

2

n∑
i=1

[∆(W 2
ti)− (∆Wti)

2]

=
1

2
W 2
t −

1

2

n∑
i=1

(∆Wti)
2

To understand the last summation, the ∆Wti are independent normal random variables with mean 0 and
variance t/n. We might write ∆Wti =

√
t/nYi where the Yi are standard normal. So

n∑
i=1

(∆Wti)
2 =

t

n

n∑
i=1

Y 2
i .

This looks like the Law of Large Numbers as n→∞. Since E[Y 2
i ] = 1 this suggests that

n∑
i=1

(∆Wti)
2 → t. (12.6)

Its not actually this simple, because as we change n we change the ∆Wti by breaking the Brownian path up
into smaller increments, so that the Yi themselves change with n. In other words we are not working with
a single i.i.d. sequence of Yi. Nonetheless, it turns out that (12.6) is still correct under a different notion of
convergence:

E

( n∑
i=1

(∆Wti)
2 − t

)2
→ 0.

We find then that with an appropriate notion of convergence∫ t

0

Ws dWs = lim
n→∞

I
(n)
t =

1

2
(W 2

t − t). (12.7)

Contrast this with the conventional integral
∫ t

0
s ds = 1

2 t
2.

A second example that can be worked out by hand (see Problem 12.3) is∫ t

0

s dWs = tWt −
∫ t

0

Ws ds, (12.8)

the integral on the right being a conventional Riemann integral.
There are several comments to be made about this calculation and the approach we have described to

obtain
∫ t

0
ψs dWs as It = lim I

(n)
t in general.

• We set up the partition ti so that the upper limit of integration t was a partition point: t = tn. That is
just a convenience to keep our calculations above as simple as possible. If t fell between two partition
points tn < t < tn+1 we would need to include an extra term in the above to account for the last bit
of the integral from tn to t. A different way to handle it would be to start with a partition ti and then
if the t we are interested in is not one of the partition points, just insert it as a new partition point.
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• The convergence (12.6) is not simple almost sure convergence, but so-called “mean-square” convergence.

That turns out to be the appropriate sense in which I
(n)
t → It in general.

• Our freeze-at-the-left-endpoint approach (12.5) for constructing approximating ψ
(n)
s for a given parti-

tion will work if ψs is continuous (or left-continuous), is W0:s-determined for each s (usually described
by saying that ψs is adapted to the Brownian motion) and satisfies some integrability hypothesis. A

full treatment would need to specify the sense in which we need ψ
(n)
s → ψs. That turns out to be an

integrated mean-square sense. But we are not going to develop those details.

• In the usual Riemann integral
∫ t

0
f(s) ds if we approximate f(s) on an interval ti−1 ≤ s ≤ ti using

a single value f(si), it won’t matter in the limit whether we use the left endpoint si = ti−1 or right

endpoint or midpoint; we will get the same limit
∫ t

0
f(s) ds regardless. But for the stochastic integral

it does matter. The choice of the left endpoint in (12.5) is what insures that the value of ψ
(n)
s is

W0:ti−1
-determined on [ti−1, ti]. That in turn is important for the martingale properties of

∫ t
0
ψs dWs.

If, for instance, you use the right endpoint instead in our example above, you will get a different limit
in (12.7)!

When the theory is worked out in general (which we are not doing here) the integrands ψs which can be
allowed are those for which

• ψs is adapted to the Brownian motion (i.e. is W0:s-determined for each s),

• E
[∫ T

0
ψ2
t dt
]
<∞,

• is “progressively measurable”. This is a form of regularity in it’s s-dependence which is too technical
for us to describe. A sufficient condition which is adequate for our purposes is that ψs is continuous.

We will call these admissible integrands. For an admissible integrand the resulting stochastic integral

It =

∫ t

0

ψs dWs

is best considered as a stochastic process in its own right, like the indefinite integral of calculus, rather than
for a fixed t alone. Here are some of the most important properties.

1. I0 = 0;

2. It is is W0:t-determined and continuous in t;

3. It is a martingale;

4. I2
t −

∫ t
0
ψ2
s ds is a martingale.

If ψs and φs are two admissible integrands then the following hold.

5.
∫ t

0
aψs + bφs dWs = a

∫ t
0
ψs dWs + b

∫ t
0
φs dWs for any two constants a, b;

6. (
∫ t

0
ψs dWs)(

∫ t
0
φs dWs)−

∫ t
0
ψsφs ds is a martingale.

7. E[(
∫ t

0
ψs dWs)(

∫ t
0
φs dWs)] = E[

∫ t
0
ψsφs ds].

These are verificatied by first proving them for simple integrands, and then passing to the limit to get
the general case. Suppose that ψs = Xi on (ti−1, ti]. If t falls in the interval tk < t ≤ tk+1. Then we can
write

It =

k−1∑
i=1

Xi(Wti −Wti−1) + Xk(Wt −Wtk).

From this you should be able to convince yourself that It is indeed continuous in t as claimed in 2, because
Wt is. What about the martingale property, 3? Considered at just at the discrete set of times ti, we see that
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Iti is a martingale, because it is just an instance of discrete stochastic integration as in (9.3). To check that
Is = E[It| W0:s] when s and t are not among the ti, observe that we can just insert them into the list of
the ti and using some duplicate copies of the Xi on the new intervals, thereby re-expressing ψt as a simple
process with an enlarged set of ti that now does include both s and t.

The assertion 4 above is especially important. If 0 ≤ s < t, we want to show that

E[I2
t −

∫ t

0

ψ2
u du | W0:s] = I2

s −
∫ s

0

ψ2
u du

Consider a simple integrand with ψs = Xi for ti−1 < s ≤ ti. We can assume s and t are among the ti. Now
the calculations are essentially the same as for the martingale Bn of Problem 9.1. Observe that

∆Iti = Iti − Iti−1 = Xi(Wti −Wti−1).

Adopting the notation from Problem 9.1 we have

(∆Iti)
2 = E[(∆Iti)

2|W0:ti−1
]

= E[X2
i (Wti −Wti−1)2|W0:ti−1 ]

= X2
i E[(Wti −Wti−1

)2|W0:ti−1
]

= X2
i ∆ti.

So we have

I2
tn −

n∑
1

(∆Iti)
2 = I2

tn −
n∑
1

X2
i ∆ti

= I2
tn −

∫ tn

0

ψ2
s ds.

12.3.1 The Formal Structure of Itô Calculus

Just as with freshman calculus, it is rare that we actually calculate a stochastic integral from the definition.
We usually work from a few elementary known integrals together with various rules for manipulation, such as
the technique of substitution (which is really the Chain Rule). We will describe these rules in this subsection.

The stochastic processes we want to work with are all ones that can be written as sums of Riemann and
stochastic integrals, i.e. Xt for which

Xt = X0 +

∫ t

0

φs ds+

∫ t

0

ψs dWs,

for some admissible stochastic integrands φt and ψt. This is what is meant when we write the stochastic
differential relationship

dXt = φt dt+ ψt dWt.

The differentials dXt and dWt have no direct meaning. The differential relationship really refers to its
integrated form,

Xt −X0

(
=

∫ t

0

dXt

)
=

∫ t

0

φs ds+

∫ t

0

ψs dWs.

It is important to note here that the second (stochastic) integral is a martingale but the first (Riemann)
integral is not (unless φs ≡ 0). This is a very important practical observation: we can recognize martin-
gales because their stochastic differential will contain no dt term, only a dWt term! (Actually
this is not quite right: dXt = 0 dt + ψt dWt makes Xt a local martingale. A little more is needed to insure

that it is a true martingale. A sufficient condition is that E[
∫ T

0
ψ2
s ds] < ∞. But we don’t want to tackle

these technicalities.)
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Stochastic differential expressions can be manipulated following a couple basic rules. For instance suppose
we have differential expressions for two stochastic processes,

dXt = φXt dt+ ψXt dWt, dYt = φYt dt+ ψYt dWt.

The stochastic differential for the product is obtained from the stochastic product rule

d(XtYt) = Xt dYt + Yt dXt + dXt dYt. (12.9)

This differs from the conventional product rule because we retain the product of the differentials: dXt dYt.
To work out dXt dYt substitute in the differentials dXt and dYt in terms of dt and dWt and use the basic
differential multiplication formulas

(dt)2 = 0, dt · dWt = 0, (dWt)
2 = dt. (12.10)

to reduce the right side of (12.9).
For instance,

d(W 2
t ) = Wt dWt +Wt dWt + dWt dWt

= 2Wt dWt + dt,

which agrees with our example (12.7). In the case of (12.8) we get

d(tWt) = t dWt +Wt dt+ dt dWt = t dWt +Wt dt+ 0.

The same method produces a correct stochastic differential expression from (12.9) in general. Actually there
are some technical qualifications, related to whether the product of two admissible integrands is also an
admissible integrand. We will just ignore those issues, since our concern here is to learn how to manipulate
formulas using stochastic differentials. If you study this stochastic calculus again with a more rigorous
approach, those issues will have to be dealt with.

Itô’s Formula

We can continue to build up more stochastic differential formulas. For instance, using our formula for d(W 2
t )

from above,

d(W 3
t ) = d(WtW

2
t )

= Wt d(W 2
t ) +W 2

t dWt + d(W 2
t ) · dWt

= Wt[dt+ 2Wt dWt] +W 2
t dWt + [dt+ 2Wt dWt] · dWt

= 3W 2
t dWt + 3Wt dt.

If you continue working up to higher powers you will find that

d(Wn
t ) = nWn−1

t dWt +
n(n− 1)

2
Wn−2
t dt. (12.11)

You will recognize the two terms on the right as f ′(Wt) and 1
2f
′′(Wt), for f(x) = xn. We are starting to see

the emergence of Itô’s formula.
For conventional calculus the Chain Rule can be exposed as follows. if x′(t) = ψ(t) and f(x) is a

continuously differentiable function, then

d

dt
f(x(t)) = f ′(x(t))ψ(t)

so that

f(x(b)) = f(x(a)) +

∫ b

a

f ′(x(t))ψ(t) dt.
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In a differential notation, the conventional Chain Rule could be written this way. Assuming

dxt = ψt dt,

and f(x) is a continuously differentiable then

df(xt) = f ′(xt)ψt dt.

Itô’s formula is an extension of this form of the Chain Rule to stochastic differentials for which dXt includes
a dWt term as well.

Theorem 12.3 (Itô’s Formula). Suppose Xt has a stochastic differential using admissible integrands, and
f(x) is twice continuously differentiable. Then f(Xt) has the stochastic differential

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) (dXt)

2,

provided all the resulting integrands are admissible.

Of course we need to expand and simplify the right side using (12.10). Notice how much the formula resembles
the first two terms of a Tayor expansion. That’s a good way to remember it. Itô calculus is sometimes called
a second order calculus because the second order terms are important.

Example 12.1. As an example consider ζt = eθWt− 1
2 θ

2t, our familiar exponential martingale. With Xt =
θWt − 1

2θ
2t and f(x) = ex we can write ζt = f(Xt) and then work out its differential using Itô’s formula.

dζt = eXt dXt +
1

2
eXt (dXt)

2

= ζt [−1

2
θ2 dt+ θ dWt +

1

2
θ2 dt]

= θζt dWt.

This explains why we should expect it to be a martingale: there is no dt term. This would be a proof that
it’s a martingale if we took the trouble to verify that θζt is an admissible stochastic integrand. That’s not
hard to do, but we won’t.

Suppose f(x1, . . . , xn) is a function of several variables, with all second order partial derivatives contin-

uous, and we have several stochastic processes X
(i)
t each with stochastic differentials. For brevity, lets write

f(Xt) for f(X
(1)
t , . . . , X

(n)
t ). Itô’s formula for functions of several variables says that

df(Xt) =

n∑
i=1

∂f

∂xi
(X

(·)
t ) dX

(i)
t +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(Xt) (dX

(i)
t dX

(i)
t ), (12.12)

again with the technical qualification that all resulting integrands be admissible. One important clarification:
The double sum

∑n
i,j=1 is a sum of a sum:

n∑
i,j=1

. . . =

n∑
i=1

 n∑
j=1

. . .

 .
This means that the “mixed” second order partial derivatives (i 6= j) will each occur twice. For instance
∂2f

∂x1∂x2
occurs once for i = 1, j = 2 and again for i = 2, j = 1. The “diagonal” terms (i = j) only occur once.

To illustrate this we will compute the stochastic differential for

Yt = sin(W 2
t )Wt.

The simplest approach would be to apply Itô’s formula for functions of a single variable to f(x) = x sin(x2).
However we want to illustrate (12.12). With

f(x1, x2) = sin(x1)x2,
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and

X
(1)
t = W 2

t , dX
(1)
t = 2Wt dWt + dt;

X
(2)
t = Wt, dX

(2)
t = dWt,

we have
Yt = f(X

(1)
t , X

(2)
t ),

to which we apply Itô’s formula. We will use fxi and fxi,xj to denote the various partial derivatives. These

will always be assumed to be evaluated at X
(1)
t , X

(2)
t in the dYt calculation below. Itô’s formula says that

dYt = fx1 dX
(1)
t + fx2 dX

(2)
t +

1

2

[
fx1,x1(dX

(1)
t )2 + 2fx1,x2dX

(1)
t dX

(2)
t + fx2,x2(dX

(2)
t )2

]
.

Here are the various pieces:

fx1 = cos(x1)x2

fx2 = sin(x1)

fx1x1 = − sin(x1)x2

fx1x2 = cos(x1)

fx2x2 = 0

(dX
(1)
t )2 = 4W 2

t dt

dX
(1)
t dX

(2)
t = 2Wt dt

Now assemble the pieces and make the substitutions for X
(1)
t and X

(2)
t to obtain

dYt = cos(W 2
t )Wt (2Wt dWt + dt) + sin(W 2

t ) dWt +
1

2

[
− sin(W 2

t )Wt 4W 2
t + 2 cos(W 2

t )2Wt

]
dt

=
[
cos(W 2

t )2W 2
t + sin(W 2

t )
]
dWt +

[
3 cos(W 2

t )Wt − 2 sin(W 2
t )W 3

t

]
dt.

12.4 The Black-Scholes Model and Option Pricing

We return to the topic of mathematical finance to illustrate the application of martingale properties of
Brownian Motion and stochastic calculus. Just as in Chapter 10 we will consider a bank process

Bt = ert.

Here the constant r > 0 is the continuously compounded interest rate. We understand Bt as the value at
time t of $1 deposited at time 0. Its dynamics are described in differential notation by

dBt = rBt dt.

For the stock price process St we want a process with a stochastic differential

dSt = µSt dt+ σSt dWt. (12.13)

The idea is that µ > 0 is the mean relative growth rate of the value of a share of stock, similar to the interest
rate for Bt. But we want the stock price to have some random fluctuation. The σSt dWt term is intended
to provide that. The dWt is viewed as providing up-down fluctuations from an underlying Brownian motion
and the σSt makes the magnitude of the fluctuations proportional to the price itself. The constant σ (usually
called the volatility) determines how strongly the dWt fluctuations influence dSt.

Equation 12.13 does not tell us directly what St. It is only a stochastic differential equation that St must
satisfy. Given an initial value S0 our first task is see if we can solve for St. Looking back at Example 12.1
suggests that by picking constants c1 and c2 we might be able to get

St = S0e
c1t+c2Wt
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to work. Calculating as in the example,

dSt = St(c1 dt+ c2 dWt) +
1

2
St(c1 dt+ c2 dWt)

2

= St(c1 dt+ c2 dWt) +
1

2
Stc

2
2 dt

= (c1 +
1

2
c22)St dt+ c2St dWt.

We can now easliy pick the constants to fit (12.13):

c2 = σ and c1 = µ− 1

2
σ2.

So the desired stock price process is

St = S0e
(µ− 1

2σ
2)t+σWt . (12.14)

This with Bt as above is the Black-Scholes model of a market with a single stock in continuous time.
We will work out the option pricing formulas for this model by following the basic theoretical structure

we discovered in the discrete time setting. The first step is to find an “equivalent” probability measure Q
with respect to which Mt = St/Bt is a Q-martingale. Observe that

Mt = S0e
σWt+(µ− 1

2σ
2)te−rt.

Following the lead of Section 9.7 we expect this to be described by a nonnegative martingale ζt with ζ0 = 1.
If we fix the time horizon T , Q will be related to P by

Q(A) = E[ζT ;A]

for S0:T -determined events A. In fact our basic exponential martingale

ζt = eθWt− 1
2 θ

2t

will be exactly what we need, for a carefully selected value of θ. But how can we recognize when a process Mt

is a Q-martingale? We thought about this in Section 9.7 and found that we need Mtζt to be a P -martingale.
That means the following should be a P -martingale.

Mtζt = S0e
σWt+(µ− 1

2σ
2)te−rteθWt− 1

2 θ
2t

= S0e
(σ+θ)Wt−( 1

2 θ
2+r+ 1

2σ
2−µ)t.

By Theorem 12.1 this will be a martingale if

1

2
(σ + θ)2 =

1

2
θ2 + r +

1

2
σ2 − µ,

which reduces to
θ = (r − µ)/σ.

So this value of θ accomplishes what we have been seeking: it gives us an equivalent probability measure Q
which makes Mt = St/Bt a martingale.

The next step is to recognize that with respect to Q the following is a Brownian motion (for 0 ≤ t ≤ T ),

WQ
t = Wt − θt.

In other words under the new Q the original Wt is no longer a Brownian motion, but a modified version is.
The simplest way to confirm this is to use Theorem 12.1: check that for any γ

ξt = eγW
Q
t − 1

2γ
2t
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is a Q-martingale (for t ≤ T ). For that we check that ξtζt is a P -martingale. This is simple, because

ξtζt = eγ(Wt−θt)− 1
2γ

2t+θWt− 1
2 θ

2t

= e(γ+θ)Wt− 1
2 (γ+θ)2t,

just another version of our original exponential P -martingale.
Calculations with respect to Q are more natural if we rewrite St in terms of WQ

t rather than Wt:

St = S0e
σWt+(µ− 1

2σ
2)t

= S0e
σ(Wt−θt)+(σθ+µ− 1

2σ
2)t

= S0e
σWQ

t +(r− 1
2σ

2)t.

We now can price options using the risk-neutral formula from Chapter 10:

v(t, s)/Bt = EQ[φ(ST )/BT |St = s].

Said otherwise,
v(St, t)e

−rt = EQ[φ(ST )e−rT |S0:t]. (12.15)

So the calculation boils down to

v(s, t) = er(T−t)EQ[φ(ST )|St = s]

= er(T−t)
∫
φ(seσy+(r− 1

2σ
2)(T−t))

1√
2π(T − t)

e−y
2/2(T−t) dy.

It looks nasty, but it is explicit. (It would be simple to write a Matlab m-file to compute the right hand
side by numerical integration for given s, σ, r, T, t and φ(·).)

We should make it clear that we have just blindly followed the patterns from Chapter 10 to obtain these
formulas. Their justification really depends on making clear what we mean by self-financing portfolios in this
setting, and to verify that there does exist a self-financing portfolio which replicates φ(ST ) for any exercise
value function φ(s) (subject to technical hypotheses). A more sophisticated analysis is needed to address
these issues properly, so we will not attempt it. But we will at least point out what “self-financing” is usually
taken to mean in terms of Itô calculus in Section 12.4.2 below. First however let’s work out the most famous
particular example of (12.15).

12.4.1 The Black-Scholes Formula

Consider the case of a call option: φ(s) = max(s−K, 0). We will work out the calculation of (12.15), which
will produce the famous Black-Scholes formula. Some notation will help clean things up.

τ = T − t

r̃ = r − 1

2
σ2

z0 =
ln(K/s)− r̃τ

σ
√
τ

.

With the change of variable y =
√
τz our calculation becomes

v(s, t) = e−rτ
∫ ∞
−∞

φ(ser̃τ+σ
√
τz)p(z) dz,

where p(z) is the standard normal density,

p(z) =
1√
2π
e−z

2/2.
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For

φ(s) =

{
s−K if s−K ≥ 0

0 otherwise

we want to integrate over those z for which

ser̃τ+σ
√
τz ≥ K,

which is equivalent to
z ≥ z0 as defined above.

So ∫ ∞
−∞

φ(ser̃τ+σ
√
τz)p(z) dz =

∫ ∞
z0

(ser̃τ+σ
√
τz −K)p(z) dz

= s

∫ ∞
z0

er̃τ+σ
√
τzp(z) dz −K

∫ ∞
z0

p(z) dz

The integral in the second term is∫ ∞
z0

p(z) dz =

∫ −z0
−∞

p(ẑ) dẑ, using ẑ = −z

= N (−z0),

where

N (x) =

∫ x

−∞

1√
2π
e−z

2/2

is the standard normal distribution function. The integral in the first term can be rewritten as follows.∫ ∞
z0

er̃τ+σ
√
τzp(z) dz =

er̃τ√
2π

∫ ∞
z0

e−z
2/2+σ

√
τz dz

= e(r̃+σ2/2)τ

∫ ∞
z0

e−
1
2 (z−σ

√
τ)2 1√

2π
dz

= erτ
∫ σ
√
τ−z0

−∞
p(ẑ) dẑ, using ẑ = σ

√
τ − z

= erτN (σ
√
τ − z0).

Putting the pieces back together, we have

v(s, t) = sN (σ
√
τ − z0)− e−rτKN (−z0).

The two arguments of N (·) are usually expressed as follows.

σ
√
τ − z0 = σ

√
τ − ln(K/s)− r̃τ

σ
√
τ

=
ln(s/K/) + (r̃ + σ2)τ

σ
√
τ

=
ln(s/K/) + (r + 1

2σ
2)(T − t)

σ
√
T − t

and
−z0 = (σ

√
τ − z0)− σ

√
T − t.

Here then is the usual form of the Black-Scholes formula for a European call:

vcall(s, t) = sN (d1(s, t))− e−r(T−t)KN (d2(s, t)), (12.16)
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where

d1(s, t) =
ln(s/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2(s, t) = d1(s, t)− σ
√
T − t

=
ln(s/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

.

12.4.2 Itô Calculus and Self-Financing Portfolios

Our next goal is to see how Itô calculus reveals the features we have discussed for the Black-Scholes model.
Let’s start with the change of probability measure from P to Q. This was designed so that Mt = St/Bt
would be a Q-martingale. We also recognized that it had the effect that

WQ
t = Wt − θt

is a Q Brownian motion. In terms of differentials

dWQ
t = dWt − θ dt.

For working with respect to Q we will want to replace all the dWt with dWQ
t by means of the above

relationship. For instance the natural way to arrange the stochastic differential of St for consideration under
Q is as follows.

dSt = µSt dt+ σSt dWt

= µSt dt+ σSt (dWQ
t + θ dt)

= (µ+ σθ)St dt+ σSt dW
Q
t

= rSt dt+ σSt dW
Q
t

Comparing this to (12.13) we see that the effect of changing to Q is that the growth rate µ has been replaced
with the interest rate r.

Next let’s see why, based on stochastic differentials, St/Bt is a Q-martingale. Since B−1
t = e−rt we have

dB−1
t = −rB−1

t dt and so (remembering that θ = (r − µ)/σ)

d(StB
−1
t ) = St dB

−1
t +B−1

t dSt + dSt dB
−1
t

= −rStB−1
t dt+B−1

t (µSt dt+ σSt dWt) + 0

= StB
−1
t σ(−θ dt+ dWt)

= σStB
−1
t dWQ

t .

So once we convert to the Q-Brownian motion WQ there are no dt terms, so this should be a Q-martingale.

The Black-Scholes Equation

Next notice that (12.15) says that the pricing function v(s, t) should be such that v(St, t)e
−rt is a Q-

martingale. We can use the Q-stochastic differential of St see what this means about the function v(s, t).
According to Itô’s formula,

d[v(St, t)e
−rt] = vs(St, t)e

−rt dSt +
1

2
vss(St, t)e

−rt (dSt)
2 + vt(St, t)e

−rt dt− rv(St, t)e
−rt dt

= e−rt
[
vs(St, t) (rSt dt+ σSt dW

Q
t ) +

1

2
vss(St, t)σ

2S2
t dt+ vt(St, t) dt− rv(St, t) dt

]
= e−rt

[
1

2
σ2S2

t vss(St, t) + rStvs(St, t)− rv(St, t) + vt(St, t)

]
dt+ e−rtσSt dW

Q
t
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For v(St, t)e
−rt to be a Q-martingale we need the [· · · ] dt term to vanish, i.e. for v(s, t) to satisfy the partial

differential equation
1

2
σ2s2vss + rsvs − rv + vt = 0, for t < T, 0 < s. (12.17)

This is called the Black-Scholes equation. If we are given an exercise value function φ(s) then we can find
the associated option’s pricing function by solving (12.17) with the terminal data v(s, T ) = φ(s). Then the
option’s market price at time t will be v(St, t). In (12.16) we worked out the solution for φ(s) = max(s−K, 0)
in particular. For φ in general an explicit solution may not be possible. In those cases a common approach
is to employ numerical methods for partial differential equations to compute v(s, t) from (12.17).

Self-Financing Portfolios

A portfolio consists of a pair Xt, Yt of S0:t-determined processes, representing holdings of stock and bank
shares at time t. The value of this portfolio is the stochastic process

Vt = XtSt + YtBt.

In the discrete time setting all these processes were constant over the time intervals (ti−1, ti), making dis-
continuous changes at the ti. Using the backward difference notation ∆Fti = Fti − Fti−1

we had several
equivalent ways to express the self-financing property, one of which was equation (10.11):

∆Vi = Xti−1
∆Sti + Yti−1

∆Bti .

With the understanding that the processes Xt and Yt are constant over [ti−1, ti) we might view this as in an
integrated form as

Vt − V0 =

∫ t

0

Xs dSs + Ys dBs.

In differential form it would say
dVt = Xt dSt + Yt dBt. (12.18)

This is what we will take as our definition of self-financing in continuous time. Although Xt, Yt are not
assumed piece-wise constant, self-financing means that their differentials do not contribute to dVt. Itô’s
formula tells us that in general dVt has some additional terms. Self-financing means that those additional
terms cancel each other out. Observe that the self-financing property makes Vt/Bt a martingale, because

d[VtB
−1
t ] = Vt dB

−1
t +B−1

t dVt + 0

= −r(XtSt + YtBt)B
−1
t dt+B−1

t (Xt dSt + Yt dBt)

= XtB
−1
t (−rSt dt+ dSt)

= XtB
−1
t σ dWQ

t

Suppose that we have solved (12.17) using a particular exercise value φ(s) and want to construct a
self-financing portfolio Xt, Yt which replicates the option:

v(St, t) = XtSt + YtBt.

From Itô’s formula and (12.17) we can work out that

dv(St, t) = vs dSt +

[
vt +

1

2
σ2S2

t vss

]
dt

= vs dSt +
1

rBt

[
vt +

1

2
σ2S2

t vss

]
dBt

= Xt dSt + Yt dBt,
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where

Xt = vs

Yt =
1

rBt

[
vt +

1

2
σ2S2

t vss

]
.

Using (12.17) we can rewrite

Yt =
1

Bt
[v − Stvs],

so that
XtSt + YtBt = v(St, t).

This confirms that the value of the self-financing portfolio Xt, Yt is indeed v(St, t) as desired. Once again we
see that (12.17) is intimately connected with the self-financing property.

Technicalities

Back in Section 9.3 we considered the possibility of doubling strategies by which a gambler can insure an
eventual profit, provided there are no limits on how many times he is able to play or how deep in debt he is
able to go before his eventual big win. Mathematically the same type of thing is possible in the Black-Scholes
model. A mathematically complete treatment of mathematical finance in continuous time needs to impose
technical conditions which eliminate such strategies from consideration, and address other technical issues.
We of course have not attempted to do that. But you should be aware that there are such details that we
have not dealt with.

For Further Study

There are many references on this material at various levels of sophistication and generality, see for instance
Øksendal [46], Karatzas and Shreve [34], Stroock and Varadhan [59], and Rogers and Williams [51]. For
the applications to mathematical finance in particular see Mikosch [42], Shreve [56]&[55] and Musiela and
M. Rutkowski [44].

Problems

Problem 12.1
Show, for any 0 < s < t, tW1/t− sW1/s is a normally distributed random variable with mean 0 and variance
t−s. (You may find it helpful to use the fact that the sum of a pair of independent normal random variables
is again normal. The mean of the sum is the sum of the means and the variance of the sum is the sum of
the variances.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BrMo1

Problem 12.2
Show that Nt = W 2

t − t and (for any θ ∈ R) Mt = eθWt− 1
2 θ

2t are both martingales.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BrMo2

Problem 12.3
Compute the stochastic integral

∫ T
0
t dWt. (For each n describe a partition t

(n)
i of [0, T ]. Let ψ

(n)
t = t

(n)
k−1 on

(t
(n)
k−1, t

(n)
k ]. Explain why E[

∫ T
0

(ψ
(n)
t − t)2 dt]→ 0. Use Problem the “discrete product rule”

∆(xiyi) = xi−1∆yi + yi−1∆xi + (∆xi)(∆yi).

to rewrite
∫ T

0
ψ

(n)
t dWt and take the limit to determine

∫ T
0
t dWt.)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tWt

Problem 12.4

a) Verify the following formula, for each integer n ≥ 1:∫ t

0

sn dWs = tnWt −
∫ t

0

nsn−1Ws ds

b) Find a similar formula for
∫ t

0
Wn
s dWs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wpowers

Problem 12.5
Write out the induction argument to verify (12.11).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wn

Problem 12.6
For ordinary integration the n-fold iterated integrals of f(t) = 1 are the familiar monomials from Taylor
series: ∫ t

0

∫ sn

0

∫ sn−1

0

· · ·
∫ s2

0

1 ds1 · · · dsn−1 dsn = tn/n! .

The analogous formula for stochastic integrals is different. Verify the following formulas.∫ t

0

∫ s2

0

1 dWs1dWs2 =
1

2
(W 2

t − t)∫ t

0

∫ s3

0

∫ s2

0

1 dWs1dWs2dWs3 =
1

6
(W 3

t − 3tWt)∫ t

0

∫ s4

0

∫ s3

0

∫ s2

0

1 dWs1dWs2dWs3dWs4 =
1

24
(W 4

t − 6tW 2
t + 3t2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ItIntg

Problem 12.7
Use Problem 12.6 to compute E[W 4

t ].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EW4

Problem 12.8
Use Itô’s formula to verify that e

1
2 θ

2t sin(θWt) is a martingale for any θ ∈ R.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ExpMg

Problem 12.9

a) Show that if ∂
∂tf(t, x) + 1

2
∂2

∂x2 f(t, x) = 0 then

df(t,Wt) =
∂

∂x
f(t,Wt) dWt.

Thus if f satifies the PDE above, then f(t,Wt) should be a martingale (subject to integrability condi-
tions which we have been neglecting).
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b) For our discounted stock price process, Mt = St/Bt (considered with respect to the “risk neutral”

probability Q), we know that dMt = σMt dW
Q
t . Similar to a), find a partial differential equation for

a function w(t, z) which would imply that w(t,Mt) is a martingale with respect to Q (again assuming
the appropriate integrability condition can be verified).

c) Suppose we form a portfolio φt = f(t,Mt) and ψt = g(t,Mt) using a pair of functions ft, z), g(t, z).
For (φt, ψt) to be self-financing would require that Ut = φtMt + ψt satisfy dEt = φt dMt. Find an
equation or equations that f and g would need to satisfy in order for (φt, ψt) to be self-financing.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HeatEqn

Problem 12.10
Based on the stock price process (12.14) show that

E[St] = S0e
(µ+σ2/2)t.

Find a density for St, a function p(s) so that

P (St ≤ c) =

∫ c

−∞
p(s) ds.

Using S0 = 1, µ = 2, and σ = 1/2 produce a plot of p(s) for −1 ≤ s ≤ 10.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSmean

Problem 12.11
Using the Black-Scholes formula, calculate the value of a call option at time t = 0 assuming σ = .05, r = .03,
K = 10, T = 10, S0 = 8.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSFeval

Problem 12.12
In this problem you are asked to establish some properties of the Black-Scholes formula (12.16). Remember
also that vcall is given by an expectation:

vcall(s, t) = e−r(T−t)EQ[(ST −K)+|St = s].

In each part below one or another of these may be more convenient. Also remember that vcall depends on
the parameter values K, r, σ.

a) Show that vcall(s, t) ≥ (s−K)+. An implication of this is that there is never an advantage to exercising
a call option early. (Hint: (s−K)+ ≥ s−K.)

b) Show that vcall(s, t) is decreasing in K.

c) Show that limt→−∞ vcall(s, t) = s

d) What is the limit of vcall(s, t) as the volatility increases without bound: i.e. σ →∞?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSFprop

Problem 12.13
A digital contract with strike price k is one whose final value is

VT =

{
1 if ST ≥ k
0 if ST < k

.

Show that for our familiar Black-Scholes market model (the box on pg. 83) the market price of this contract
is given by the formula

Vt = e−r(T−t)N
(

log(St/k) + (r − 1
2σ

2)(T − t)
σ
√
T − t

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
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Appendix A: Random Variables

Chapter 3 gave a brief introduction to random variables and the basic ideas of the Kolmogorov model of
probability theory. Here we collect some supplemental information.

A.1 Common Distributions

The distribution of a random variable refers to the collection of probabilities for its different possible out-
comes. We often describe the type of a random variable by identifying its distribution. Here are the common
distributions for discrete random variables which come up in our discussions. (The parameters below are
0 < p < 1, 0 < λ, n ∈ N.)

• Bernoulli with parameter p: P (X = 1) = p, P (X = 0) = 1− p.

• Uniform on {a1, . . . , an}: P (X = ai) = 1
n (the same for all i = 1, . . . , n).

• Binomial with parameters (n, p): P (X = i) =
(
n
i

)
pi(1− p)n−i for i = 0, . . . n.

• Geometric with parameter p: P (X = n) = p(1− p)n, n = 0, 1, . . ..

• Poisson with parameter λ: P (X = n) = λn

n! e
−λ, n = 0, 1, . . ..

Here are the densities for the continuous distributions which we will encounter. (The parameters are α < β;
λ > 0; σ, µ ∈ R.)

• Uniform on [α, β]: f(x) = 1
β−α for α ≤ x ≤ β (and f(x) = 0 otherwise).

• Exponential with parameter λ: f(x) = λe−λx for x ≥ 0 (and f(x) = 0 for x < 0)

• Normal with parameters (µ, σ2): f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 .

A.2 Distribution Functions

There exist distributions that are neither discrete nor continuous. A general approach to describing the
distribution of a random variable X is based on its distribution function:

FX(y) = P (X ≤ y).

When X is discrete with P (X = ai) = pi the distribution function is constant on the intervals between the
ai and with discontinuities of size pi at ai. Assuming the ai are labeled in order, ai < ai+1,

FX(y) =
∑
ai≤y

pi.

Example A.2. For a geometric random variable with parameter p = 1/3 the distribution function looks like
this (except that software has not rendered the discontinuities properly).
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When X is continuous the distribution function can be expressed in terms of the integral of the density
f(x)

FX(y) =

∫ y

−∞
f(x) dx.

Example A.3. The distribution function for a uniform random variable on [−1, 2] is this.
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A distribution function always has the following properties.

Proposition A.4. The distribution function F (·) = FX(·) of a random variable X has the following prop-
erties.

a) F (·) is nondecreasing: if a ≤ b then F (a) ≤ F (b).

b) F (·) is right continuous, i.e. F (c) = limy→c+ F (y) for any c.

c) limy→c− F (y) (denoted F (c−)) always exists and is ≤ F (c).

d) limy→−∞ F (y) = 0 and limy→+∞ F (y) = 1.

e) P (X < c) = F (c−).

f) P (X = c) = F (c)− F (c−)

g) P (X > c) = 1− F (c).

h) P (a < X ≤ b) = F (b)− F (a), for a < b.

i) P (a ≤ X ≤ b) = F (b)− F (a−), for a < b.

j) P (a < X < b) = F (b−)− F (a).
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These properties can be proven using the properties of probabilities in Section 3.1. As an example let’s look
at b): FX(c) = limy→c+ FX(y). Consider any decreasing sequence y1 > y2 > · · · → c. We want to show that
limn FX(yn) = FX(c). The values of the distribution function are given by FX(yn) = P (An) where An are
the events

An = {ω ∈ Ω : X(ω) ≤ yn}.

Because the yn are decreasing this is a diminishing sequence of sets: A1 ⊇ A2 ⊇ · · · and so by the fifth bullet
on page 33

limP (An) = P (A),

where (since yn ↓ c)
A = ∩An = {ω ∈ Ω : X(ω) ≤ c}.

Since P (A) = FX(c), this proves that FX(yn)→ FX(c). The same thing does not work if y1 < y2 < · · · → c
because in that case A1 ⊆ A2 ⊆ · · · but

A = ∪An = {ω ∈ Ω : X(ω) < c} 6= {ω ∈ Ω : X(ω) ≤ c}.

We won’t pursue such proofs any further. Our point is simply that rigorous proofs can be given based on
the mathematical properties of the Kolmogorov model.

Distribution functions provide a unified approach to random variables of all types: discrete, continuous
or neither. One important practical use for them is in the inverse method for computer simulation in
Section A.3.2 below.

If X ≥ 0 with probability 1, then its expected value can be calculated from its distribution function using
the formula

E[X] =

∫ ∞
0

1− F (x−) dx.

This is the general version of equation (3.8) and Problem 3.4.

A.3 Random Number Generation

We have used experiments in which we examined a collection of computer-generated samples of a random
variable to illustrate it’s properties. In this section we want to discuss how we can produce such a set of
sample values of a random variable X with a prescribed distribution. We will be interested specifically in
how to do this in Matlab.

A.3.1 Random and Pseudo-Random Numbers

For certain discrete random variables (with only a finite number of possible outcomes) we can build a
physical device that behaves in the desired way: a dice, a roulette wheel or “spinner” with colored regions
of specified relative sizes. There are a number of physical processes that are fundamentally random which
can be used to construct such devices. One is the decay of radioactive substances. Such substances decay
by emitting sub-atomic particles intermittently over a period of time. The times between particle emissions
are exponentially distributed random variables. (This has to do with the quantum-mechanical description
of what goes on inside the atoms of such unstable substances.) Think of the ”clicks” produced by a Geiger
counter; the spacings between the clicks are i.i.d. exponential random variables. There is an internet random
number service that works along these lines: http://www.fourmilab.ch/hotbits/ . They will supply
sets of random numbers generated by the decay of a sample of Cæsium-137. Atmospheric noise in radio
transmissions is another source. At Random.org you can download files of random numbers produced in that
way.

The most famous “physical” random number generator is probably the one constructed by the Rand
Corporation in the late 1940s, and used to produce the book A Million Random Digits with 100,000
Normal Deviates [50]. They built a machine which used some known noisy electronic phenomena to
produce random digits. The book’s introduction describes the machine as follows. “In principle the machine
was a 32-place roulette wheel which made, on the average, about 3000 revolutions per trial and produced
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one number per second. A binary-to-decimal converter was used which converted 20 of the 32 numbers (the
other twelve were discarded) and retained only the final digit of two-digit numbers; this final digit was fed
into an IBM punch to produce finally a punched card table of random digits.” The book is available on-line:
[50]. Their list of a million random digits (i.e. numbers 0, 1, ..., 9, all with equal probability of 1/10) can be
downloaded from there as a text file if you wish. For instance, here are the first 500 random digits of their
table. (The first column is just an index.)

00000 10097 32533 76520 13586 34673 54876 80959 09117 39292 74945
00001 37542 04805 64894 74296 24805 24037 20636 10402 00822 91665
00002 08422 68953 19645 09303 23209 02560 15953 34764 35080 33606
00003 99019 02529 09376 70715 38311 31165 88676 74397 04436 27659
00004 12807 99970 80157 36147 64032 36653 98951 16877 12171 76833
00005 66065 74717 34072 76850 36697 36170 65813 39885 11199 29170
00006 31060 10805 45571 82406 35303 42614 86799 07439 23403 09732
00007 85269 77602 02051 65692 68665 74818 73053 85247 18623 88579
00008 63573 32135 05325 47048 90553 57548 28468 28709 83491 25624
00009 73796 45753 03529 64778 35808 34282 60935 20344 35273 88435

There are several physical random number generators in use today. For instance a Swiss firm (IDQ) sells
a random number generator using quantum phenomena that will plug into the USB port of a computer. But
physical random number generators are slow compared to the processing speed of modern computers. To get
around this many approaches have been developed to get the computer itself to produce random numbers, so
they will be available at a much higher rate than physical generators like those described above. But there is
nothing random about a contemporary computer — it is a purely deterministic device. So random number
generating software doesn’t produce true random numbers but rather pseudorandom numbers. These are
numbers which come from a deterministic algorithm but which have statistical properties which make them
a suitable substitute for many purposes.

Pseudo-random number generators typically use some deterministic function Φ(x) for which the values
y = Φ(x) vary in a highly sensitive and irregular way as a function of the input x. We select a starting value
x0, called the seed, and iterate:

x1 = Φ(x0), x2 = Φ(x1), . . . , xn+1 = Φ(xn), . . .

These values x1, x2, . . . , xn, . . . are taken as the i.i.d. samples. One of the first such methods to be proposed
was J. von Neumann’s middle square method. If we want random integers from 0000 to 9999 (i.e. four
decimal digits), here is how Φ for the middle square method would work. Starting with a four digit number,
4234 for instance, we would square it and then extract the four digits from the middle of the result. To
illustrate,

42342 = 17926756

So Φ(4234) = 9267. To see how irregular the dependence of Φ(x) on x is we can look at its graph.
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But look what happens if work out a long section of the sequence starting with our seed, x0 = 4234:

. . . x88 = 8100, x89 = 6100, x90 = 2100, x91 = 4100, x92 = 8100, . . .

We see that the numbers start repeating. So after a while they are hardly random-like at all.
All pseudo-random number generators will eventually repeat, but good ones take an insanely long time

before that starts. Although the middle square method works somewhat better if implemented for a larger
number of digits than four, it still turns out to be rather poor. Many more effective methods have been
developed. Since the 1950’s most programming languages (at least those used for mathematical calculation)
have included some pseudo-random number generating algorithm.

The selection of a good pseudo-random number generator takes care. D. Knuth says in [36],“The moral
to this story is that random numbers should not be generated by a method chosen at random. Some theory
should be used.” It is not our purpose to pursue that theory further. We just want to use a pseudo-random
number generator to simulate random variables and stochastic processes. Below we will talk about Matlab
commands to do this. But we will trust that the developers of Matlab have considered the issues and made
good choices for the algorithms they built into their software. However, we should keep in mind that we are
using pseudo-random numbers, instead of true random numbers, and that could conceivably introduce some
unexpected feature into our calculations.

If you are interested in the algorithms used for pseudo-random number generation, your software’s doc-
umentation will probably give you some references that the developers used. A couple helpful but older
references are Anderson [2] and Knuth [36].

A.3.2 Conversion of Uniform to Other Distributions

Virtually all true or pseudo-random number generators produce a sequence of samples of a discrete random
variable Y taking values in {0, 2, . . . , n− 1} with equal probabilities, for some n that depends on the choice
of generator. Most software will also produce pseudo-random samples of the uniform distribution on [0, 1]
or a standard normal distribution for us. But if we want something other than uniform or standard normal
distribution and the software does not have a built in command for that distribution we may have to do a
conversion ourselves. By this we mean to start with Y of one distribution and apply some function to it to
get a random variable X = φ(Y ) with a different distribution. For instance if Y is standard normal (from
randn) then X = σY + µ will be normal with parameters (µ, σ2). If U is uniform on [0, 1] (from rand) then
X = cU + a will be uniform on [a, a+ c].

The inversion method is a general way to convert a uniform – [0, 1] random variable to a random variable
with a different distribution. Let F be the distribution function for the desired random variable X. We
know F : R → [0, 1] is right continuous and nondecreasing. We need a function F ∗ : (0, 1) → R with the
property that

F ∗(u) ≤ a if and only if u ≤ F (a). (A.19)

With such a function consider X = F ∗(U), where U is uniform on [0, 1]. (Notice that we have not required
F ∗(0) or F ∗(1) to be defined. That is not a problem because P (U = 0 or 1) = 0 so we will not encounter
F ∗(0) or F ∗(1). More on this shortly.) By virtue of (A.19) the distribution function of X is

P (X ≤ a) = P (F ∗(U) ≤ a) = P (U ≤ F (a)) = F (a).

so X has the desired distribution F .
Such a function F ∗ does always exist; it is called the generalized inverse of F and is defined in general

by
F ∗(u) = min{x : u ≤ F (x)}. (A.20)

Because F is right continuous the set on the right does have a minimum for any 0 < u < 1. Visually the
definition means that we look at the part of the graph of F which is at or above the level u. Then F ∗(u)
is the smallest (leftmost) x value for this portion of the graph. When there is a unique x with F (x) = u
then we just get x = F ∗(u) as with a typical inverse function. But suppose there is a gap F (c−) < F (c)
in the graph of F . (This means F is not onto.) If u falls in the gap, F (c−) ≤ u ≤ F (c), then we find
that F ∗(u) = c. This produces a flat section in the graph of F ∗. Suppose u corresponds to a flat section
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in the graph of F : u = F (x) for all x ∈ [a, b) or x ∈ [a, b]. (This means F is not one-to-one.) Then we
get F ∗(u) = a, the leftmost point of the flat section. But for F (a) = F (b−) < u we get b ≤ F ∗(u). This
produces a gap or discontinuity in the graph of F ∗.

We see (and can prove) that F ∗ is nondecreasing but is left-continuous. In some cases (A.20) would
produce F ∗(0) = −∞ or F ∗(1) = +∞. That is why we have not required F ∗(0) or F ∗(1) to be defined. As
pointed out, because P (U = 0) = 0 = P (U = 1) we have no practical need for those values.

If Un are i.i.d. uniform on [0, 1] then Xn = F ∗(Un) will be i.i.d. with distribution F . So to generate a set
of independent samples Xn we use rand to produce i.i.d. uniform–[0, 1] samples and then take F ∗ of them
to obtain i.i.d. samples of X. This is illustrated in Examples A.4 and A.5 below.

A.4 Matlab

Let’s look at how we can use Matlab to simulate random variables. Before using any of the commands
described below we need to “seed” the random number generator. It is possible to specify a specific seed.
You might want to do this if you will want to repeat your calculations with exactly the same sequence of
randomly generated values. But we generally won’t be doing that. The simplest thing to do is use the
command rng(’shuffle’) just once at the beginning of your Matlab session. That will “randomly” select
a seed for you. You don’t need to repeat it until the next time you start up Matlab.

There are three basic random number producing commands: randi produces pseudo-random integers in a
specified range {m,m+1, . . . n}, uniformly distributed; rand produces uniformly distributed pseudo-random
numbers in [0, 1]; and randn produces pseudo-random real numbers with a standard normal distribution.
(There is also randperm to produce random permutations, but we won’t be using that.) In addition Matlab’s
Statistics Toolbox1 includes commands for simulating many other common distributions. For instance there
are binornd for binomial, geornd for geometric, poissrnd for Poisson, exprnd for exponential as well as
many others. You can consult Matlab’s help to learn details about the syntax for these. Note that if you
want an array of pseudo-random values you don’t need to use for-loops to fill up an array; these commands
will allow you to specify the dimensions for an array of results.

We will need to be able write our own pseudo-random number generating m-files to simulate various types
of stochastic processes in later chapters. To gain some experience with that the next examples illustrate how
we can use the F ∗-technique to write Matlab m-files various distributions.

Example A.4. First consider an exponentially distributed random variable X with parameter λ > 0. For
0 < x the distribution function is

F (x) =

∫ x

0

λe−λt dt = 1− e−λx.

Solving u = F (x) for 0 < u < 1 we find the generalized inverse to be

F ∗(u) =
− ln(1− u)

λ
.

So our m-file will use rand produce a value of a uniform random variable U and then use

X =
− ln(1− U)

λ
.

That’s pretty simple. We just need to write the m-file to accept a parameter lambda to specify λ, and an
optional second parameter n which specifies how many such values to produce.

1To see if you have the Statistics Toolbox, just enter the command ver and you will get a listing
which includes the toolboxes that you have. For a list of all the commands provided by the toolbox, see
http://www.mathworks.com/help/stats/functionlist.html .
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randexpn.m

function x = randexpn(lambda,n)

%randexpn(lambda,n) produces a 1xn array of exponentially distributed

%pseudo-random variables, with parameter lambda.

%

if nargin==1

n=1;

end;

x=-log(1-rand([1,n]))/lambda;

end

% M. Day, August 7, 2014

Example A.5. Next let’s write an m-file to produce samples of a random variableX with values in {1, 2, 3, . . . n}
with a specified set of probabilities pi = P (X = i). (Matlab does not provide a command to do this!) The
distribution function is piecewise constant,

F (x) =

k∑
1

pi for k ≤ x < k + 1.

For F ∗ we need the values

c0 = 0, c1 = p1, c2 = p1 + p2, c3 = p1 + p2 + p3, . . . , cn = 1.

It turns out that
F ∗(u) = k for ck−1 < x ≤ ck.

In other words, F ∗(u) is the smallest k ≥ 1 with u ≤ ck. Here is an implementation of this as an m-file.

randd.m

function x = randd(pmf,n)

%randd(pmf,n) produces a 1xn array of pseudo-random integers with

%probabilities specified in the vector pmf. If n is absent a single

%such vale is produced.

%

if nargin==1

n=1;

end

c=cumsum(pmf);

pick=@(u) find(u<=c,1); %Anonymous function for first i with u<=c(i).

x=arrayfun(pick,rand([1,n])); %Apply to each entry of i.i.d. unform array.

end

% M. Day, August 7, 2014

A.4.1 List of Relevant Commands

To help you out with Matlab we want to provide a short list of commands you might use for simulating
random variables. For more details of their syntax consult the documentation2.

rng(’shuffle’) seeds the random number generator. Use it at the start of each session.

The following commands each produce an array with dimensions specified by size of pseudo-random
numbers from the specified distribution. Specifying [m,n] for size produces an m × n array of values. If
size is a single value n an n× n array will be produced. If size is omitted a single such value is produced.

2Matlab’s Help Menu, or http://www.mathworks.com/help/matlab/index.html
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rand(size) for the uniform distribution on (0, 1).
randn(size) for the standard normal distribution.
randi(k,size), randi([m,n],size) for the uniform distribution on {1, . . . , k} or {m,n}.
binornd(n,p,size) for the binomial distribution with parameters (n, p) (Statistics Toolbox ).
geornd(p,size) for the geometric distribution (Statistics Toolbox ).
poissrnd(lambda,size) for the Poisson distribution with parameter λ =lambda (Statistics Toolbox ).
exprnd(lambda,size) for the exponential distribution with parameter λ =lambda (Statistics Toolbox ).
nchoose(n,m) calculates the binomial coefficient

(
n
m

)
= n!

(n−m)!m! .

If you have two lists (vectors) of data X and Y of the same size, the following may be useful to explore
them.

mean(X), var(X) produce the sample mean and variance (respectively) of the data in X. (Note that var uses
“n− 1 normalization.”)
histogram(X,m) produces a “histogram” plot showing the number of terms from X separated into m equal
sized “bins.” There are many options for specifying the bins other than just their total number.
histcounts(X,m) will give you the numbers of terms falling the the respective bins.
scatter(X,Y) or plot(X,Y,’.’) produces a plot of the (X(i),Y(i)) pairs. (Don’t leave ’.’ out of plot

or it will connect the dots!)
plot(X,’.’) plots the points (i,X(i)).

save(’x.mat’,’X’,’-ASCII’) will save the contents of X in an ASCII file named x.mat in the default
directory. You can use load ’x.mat’ to read that data back in on a future occasion.
Another way to import data from a file is to select Import Data ... from the file menu to start the Import
Wizard.
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Appendix B: Mathematical
Supplements

This appendix provides summaries of mathematical topics you may not have encountered in your previous
courses.

A.1 Convex Functions and Jensen’s Inequality

A convex function is essentially what is called “concave up” in a freshman calculus class.

Definition. Suppose I ⊆ R is an interval. A function f : I → R is called convex on I if for any x, y ∈ I
and any 0 ≤ p ≤ 1

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y).

If the above inequality is strict (<) whenever x 6= y and 0 < p < 1 we say f is strictly convex.

You should view px+(1−p)y as a (weighted) average of x and y. The definition says that if you first average
two points and then evaluate the function you should get no more than if you first evaluated the function at
the two points and then averaged the function values: “f of average ≤ average of f .” The following picture
illustrates this. The point on the straight line corresponds to pf(x) + (1− p)f(y).

x px+H1-pLy y

Convex functions do not need to be differentiable. The definition above is phrased in a way that avoids
any reference to derivatives. For instance the absolute value function f(x) = |x| is convex. (They do have
to be continuous, however.) For functions that are twice differentiable f ′′ ≥ 0 is a sufficient condition for f
to be convex.

Lemma A.5. Suppose f : I → R where I is an interval. If f is continuous on I and twice differentiable
with f ′′(x) ≥ 0 at all interior points of I, then f is convex on I. If f ′′(x) > 0 at all interior points then f
is strictly convex.

Proof. Suppose f is as hypothesized in the lemma, and x, y ∈ I and 0 ≤ p ≤ 1. We need to verify the
inequality of the definition of convex function. If x = y or p = 0 or p = 1 then the inequality is trivial. So
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suppose x < y and 0 < p < 1. Let z = px+ (1− p)y. Then x < z < y. (Because I is an interval z must be in
I as well.) By the usual Mean Value Theorem there exist points a and b with x < a < z < b < y for which

f(z)− f(x)

z − x
= f ′(a),

f(y)− f(z)

y − z
= f ′(b).

Because f ′′ ≥ 0 on [a, b] we know that f ′(a) ≤ f ′(b) and therefore

f(z)− f(x)

z − x
≤ f(y)− f(z)

y − z
.

Our choice of z implies that z − x = (1 − p)(y − x) and y − z = p(y − x). Making those replacements and
multiplying both sides by p(1− p)(y − z) we find that the above inequality reduces to f(z) ≤ pf(x) + (1−
p)f(y).

As an example, consider f(x) = −
√
x on I = [0,∞). This function is continuous but not differentiable

at the left endpoint x = 0. But for all interior points (x > 0) we have f ′′(x) = 1
4x
−3/2 > 0, so by the lemma

this is a convex function. Using p = 1/2 in particular leads (after rearrangement) to the inequality
√
x+
√
y ≤
√

2
√
x+ y for any x, y ≥ 0.

Many useful inequalities can be derived this way using different convex functions. We will see several
applications in Chapter 7. Jensen’s Inequality says that the inequality in the definition must also hold for
averages of any finite number of points.

Theorem A.6 (Jensen’s Inequality). Suppose f : I → R is a convex function on an interval I. For any
finite set of points xi ∈ I, i = 1, . . . , n and probabilities pi ≥ 0,

∑n
1 pi = 1,

f

(
n∑
1

pixi

)
≤

n∑
1

pif(xi).

If f is strictly convex then the above inequality is strict whenever those xi for which pi > 0 are not identical.

Proof. We use induction on n ≥ 2. The definition is the case of n = 2. Suppose it holds for n (and any

choice of xi, pi with
∑n

1 pi = 1). Let yi, i = 1, . . . n + 1 and qi ≥ 0 with
∑n+1

1 qi = 1 be given. We can
reduce this to the case of n terms as follows. Let pi = qi i = 1, . . . n − 1 and pn = qn + qn+1. Then take
xi = yi for i = 1, . . . n− 1 and xn = 1

pn
(qnyn + qn+1yn+1). Observe that

n+1∑
1

qiyi =

n∑
1

pixi.

The assumed validity for n points implies that

f

(
n∑
1

pixi

)
≤

n∑
1

pif(xi) =

n−1∑
1

qif(yi) + pnf

(
qn
pn
yn +

qn+1

pn
yn+1

)
But since qn

pn
+ qn+1

pn
= 1 we can use convexity for the last term as well:

f

(
qn
pn
yn +

qn+1

pn
yn+1

)
≤ qn
pn
f(yn) +

qn+1

pn
f(yn+1).

Assembling the pieces, we have Jensen’s Inequality for n+ 1 terms:

f

(
n+1∑

1

qiyi

)
≤
n+1∑

1

qif(yi).

That completes the proof by induction.

The definition of convex functions extends to functions f : Rm → R. If f is convex then in fact Jensen’s
Inequality holds for any random variable X taking values in Rm provided both X and f(X) are integrable:

f(E[X]) ≤ E[f(X)].
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A.2 Inf and Sup

For a finite (nonempty) set of numbers A ⊆ R we can always find a largest value, which we call the maximum,
and likewise a smallest value with we call the minimum. For instance

A = {2, 4, 6.6, 45}

has minA = 2 and maxA = 45. But when A is infinite there may or may not be a largest or smallest value.
For instance the half-open interval

A = (0, 1]

has largest value maxA = 1 but there is no smallest value. We might say something like “A has a lower
limit of 0, although 0 does not actually belong to A”. This idea of lower limit is what we call the infimum
of a set, denoted “inf A”. It’s sort of where the minimum ought to be if there were one. So we would say

inf(0, 1] = 0.

When a set has a minimum then the minimum and infimum are the same, but sets can have an infimum even
if they don’t have a minimum. That’s essentially because the infimum is not required to belong to the set.
Any nonempty set which is bounded below always has an infimum. This very general existence property is
what makes the concept useful.

The counterpart for largest element is the supremum, denoted “supA”. When a set has a maximum the
maximum and supremum agree, but supA will always exist for any nonempty set which is bounded above.
lim inf

A.3 Order in Infinite Series

We say that the infinite series
∑∞
n=0 an of real numbers an converges to a value A when the sequence of

partial sums converges

lim
k→∞

k∑
n=0

an = A.

In particular the limit A must be a finite value for the series to be called convergent. (If limk→∞
∑k
n=0 an =

+∞ we might write “
∑∞
n=0 an = +∞” but we would not call this a convergent series.)

The convergence of a series can be influenced by cancellation between positive and negative values
among the an. The usual example is the harmonic series

∑∞
1

1
n which is divergent, and the alternating

harmonic series
∑∞

1
(−1)n−1

n which is convergent. When the series converges after removing any negative
signs, i.e. when

∞∑
0

|an| converges,

we call the series absolutely convergent. An absolutely convergent series is always convergent, but it is possible
to be conditionally convergent which means that the series converges but not absolutely. In other words
its convergence depends on some cancellation between the positive and negative terms. The alternating
harmonic series is an example. One reason absolute convergence is important has to do with changing the
order in which the terms are summed. Suppose

∑∞
0 bn uses the same terms as

∑∞
0 an but in a different

order, i.e. the an are permuted to obtain the bn. If
∑∞

0 an is absolutely convergent, then

∞∑
0

an =

∞∑
0

bn.

(Norris [45] gives a version of this in his Lemma 6.1.1, but only for series with nonnegative terms. Convergence
is the same as absolute convergence in that case. For nonnegative terms the equality of the two series also
holds if they both diverge, i.e. “=∞”.) But this is not true for conditionally convergent series. In fact there
is a famous theorem which says that if

∑∞
0 an is conditionally convergent, then for any B, finite or not, it is
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possible to find a rearrangement with
∑∞

0 bn = B. I.e. you can reorder a conditionally convergent series to
make it converge to anything you want, or even to diverge. Order of summation matters for conditionally
convergent series! (See Rudin [53].)

With that in mind we might consider this approach to analyzing a given series
∑∞

0 an. First separate
the terms into the positive ones and negative ones: let

a+
n =

{
an if an ≥ 0

0 if an < 0,
and a−n =

{
0 if an ≥ 0

−an if an < 0.

This creates two series,
∑∞

0 a−n and
∑∞

0 a+
n both of which have only nonnegative terms. Moreover an =

a+
n − a−n . So we can try to understand

∑∞
0 an by writing it as

∞∑
0

an =

( ∞∑
0

a+
n

)
−

( ∞∑
0

a−n

)
.

You could view this as rearranging the original series into two series, one with all the nonnegative terms and
one with all the nonpositive terms (and lots of extra zeros thrown in). For both of the separated series

∑∞
0 a±n

to converge is equivalent to saying
∑∞

0 an is absolutely convergent. (That’s because
∑
|an| =

∑
a+
n +
∑
a−n .)

But when
∑∞

0 an is conditionally convergent, the left side of the above equation is finite but both terms
on the right are +∞ so that their difference is undefined. Our point is that only for absolutely convergent
series can you sum the positive and negative terms separately!

When X is a discrete random variable but
∑
aiP (X = ai) is conditionally convergent we will have trouble

defining E[X] =
∑
aiP (X = ai), because the result will depend on the order of summation. Only when∑

|ai|P (X = ai) < ∞, which is to say E[|X|] < ∞, can we define E[X] without worrying about the order
in which the sum is taken. When E[|X|] =∞ we have something analogous to the conditionally convergent
situation for infinite series, and we consider E[X] to be undefined.

The issue of ordering the terms also comes up when we multiply two convergent series A =
∑∞
n=0 an and

B =
∑∞
m=0 bm. We expect their product

AB =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)

to be a double series of all anbm. But any effort to multiply the product out and gather the terms back
together into a single series involves some shifting around of the order of summation. When both original
series are absolutely convergent then again the order turns out not to matter; see [1] page 73. One particularly
important ordering results from grouping the terms according to the value of k = n+m. This leads to

AB =

∞∑
k=0

(
k∑

n=0

anbk−n

)
=

∞∑
k=0

ck,

where ck is the convolution sequence:
ck = a0bk + · · · akb0.

A.3.1 Interchanging Limits

We occasionally need to take limits of series, or series of limits. Suppose the terms an,m depend on two
parameters n. We want to sum over n and take the limit with respect to m. The basic problem is whether
or not it is valid to say

lim
m→∞

( ∞∑
n=1

an,m

)
=

∞∑
n=1

(
lim
m→∞

an,m

)
.

These are sometimes equal, but not always.

Example A.6. Suppose an,m = 1 when n = m and = 0 otherwise. Then
∑∞
n=1 an,m = 1 for all m and

therefore limm→∞ (
∑∞
n=1 an,m) = 1. But limm an,m = 0 so

∑∞
n=1(limm an,m) = 0.
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Here are the two best-known results which insure equality. (Neither of them apply to the preceding
example!) These are both cousins to the results of the same names in Section 3.2.1: Theorems 3.3 and 3.2.
Here the setting is simple enough that we can write out proofs.

Theorem A.7 (Dominated Convergence for Series). Suppose there is an absolutely convergent series
∑∞

0 cn
so that for every m

|an,m| ≤ cn.

If limm→∞ an,m = bn for each n, then

lim
m→∞

( ∞∑
n=0

an,m

)
=

∞∑
n=0

bn.

Proof. Since
∑∞
n=0 cn converges and |bn| ≤ cn, the comparison test implies that

∑∞
n=0 bn is convergent, and

that
∑∞
n=0 an,m is convergent for every m. Let B =

∑∞
n=0 bn.

Consider any ε > 0. There exists N so that

∞∑
n=N+1

cn < ε/3.

So we have ∣∣∣∣∣
∞∑
n=0

an,m −
∞∑
n=0

bn

∣∣∣∣∣ ≤
N∑
n=0

|an,m − bn|+
∞∑

n=N+1

|an,m|+
∞∑

n=N+1

|bn|

≤
N∑
n=0

|an,m − bn|+ 2

∞∑
n=N+1

cn

≤ 2ε/3 +

N∑
n=0

|an,m − bn|

Now the limit of the right side as m→∞ is simply 2ε/3. It follows that for sufficiently large m that∣∣∣∣∣
∞∑
n=0

an,m −
∞∑
n=0

bn

∣∣∣∣∣ < ε,

which proves the theorem.

Theorem A.8 (Monotone Convergence for Series). Suppose 0 ≤ an,m and for each n

an,1 ≤ an,2 ≤ · · · an,m ≤ an,m+1 · · · with lim
m
an,m = bn.

Then

lim
m→∞

( ∞∑
n=0

an,m

)
=

∞∑
n=0

bn

This holds even if
∑∞
n=0 bn =∞.

Proof. Let B =
∑∞
n=0 bn and consider any β < B. There exists N with

β <

N∑
n=0

bn.

Now

lim
m

∞∑
n=0

an,m ≥ lim
m

N∑
n=0

an,m =

N∑
n=0

lim
m
an,m =

N∑
n=0

bn > β.
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Considering all possible β < B this implies

lim
m

∞∑
n=0

an,m ≥ B.

But since an,m ≤ bn we also know

lim
m

∞∑
n=0

an,m ≤ lim
m

∞∑
n=0

bn = B.

A.4 About Greatest Common Divisors

The d greatest common divisor of a set W ⊆ N of positive integers is by definition a positive integer g which
is a common divisor of W (i.e. g divides every n ∈W ) and which is divisible by any other common divisor.
The standard argument for the existence of a d = gcd(W ) is to consider all finite linear combinations of W
with integer coefficients:

L =

{
k > 0 : k =

m∑
i=1

αini for some ni ∈W and αi ∈ Z

}
.

As a set of positive integers L has a smallest element g which can then be proven to be the greatest common
divisor of W . This also shows that g = gcd(W ) can be written as a (finite) linear combination of integers
from W :

g =

m∑
i=1

αini (A.21)

for some n1, . . . , nm ∈ W and αi ∈ Z. Clearly all multiples of g belong to L. An additional fact which we
need in Lemma 2.4 is that all sufficiently large multiples of g can be written as linear combinations of W
with using nonnegative coefficients.

Lemma A.9. Suppose W ⊆ N and g = gcd(W ). There exists K ≥ 0 so that for all k ≥ K it is possible to
express kg as

kg =

m∑
i=1

αini

for some ni ∈W and αi ∈ N.

Proof. Starting with (A.21) divide the terms into two sets with ai being the nonnegative coefficients and
−bj being the negative ones (so bj > 0):

g =
∑
i

aini −
∑
j

bjnj .

(If all the ci in (A.21) are positive the lemma is trivial, so we can assume that there is at least one positive
bj .) Consider M =

∑
j bjnj . Since g is a divisor of all the nj it is also a divisor of M : M = βg for some

integer β ≥ 1. Let K = βM . For any k ≥ K we can write k = mM + ` with m ≥M and 0 ≤ ` < M . So

kg = mgM + `g

= mg
∑
j

bjnj + `

∑
i

aini −
∑
j

bjnj


=
∑
i

(`ai)ni +
∑
j

(mg − `)bjnj

247



Since k ≥ K = βM it follows that m ≥ β. Therefore

mg ≥ βg = M > `.

Thus all the nj coefficients in the above representation of kg are nonnegative.
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