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HOMOGENIZATION OF A MODEL FOR THE PROPAGATION OF
SOUND IN THE LUNGS∗

PAUL CAZEAUX† , CÉLINE GRANDMONT† , AND YVON MADAY‡

Abstract. In this paper, we are interested in the mathematical modeling of the propagation
of sound waves in the lung parenchyma, which is a foam-like elastic material containing millions of
air-filled alveoli. In this study, the parenchyma is governed by the linearized elasticity equations,
and the air by the acoustic wave equations. The geometric arrangement of the alveoli is assumed to
be periodic with a small period ε > 0. We consider the time-harmonic regime forced by vibrations
induced by volumic forces. We use the two-scale convergence theory to study the asymptotic behavior
as ε goes to zero and prove the convergence of the solutions of the coupled fluid-structure problem
to the solution of a linear-elasticity boundary value problem.
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1. Introduction and motivation. Lung sounds provide a cheap, noninvasive
diagnostic measure which is often used for the detection of some pathologies of the
respiratory system [35, 37]. Some diseases are associated with changes in the struc-
ture of the lung at various scales. Medical doctors have developed a good empirical
understanding of the relation between the characteristics of the lung sounds they can
hear, for example thanks to the stethoscope, and underlying pathologies. But one
lacks a precise physical understanding of the generation and propagation of sound
waves through the respiratory system and the lung tissue, as well as of the changes
in acoustic properties associated with underlying lung diseases. Another factor of in-
terest is the propagation of pressure waves due to high-velocity impacts on the chest,
thought to be responsible for lung contusions [28].

The lung tissue (called the parenchyma) is a very complex structure similar to
a foam. Indeed, the lungs contain up to 300 million air pockets, called the alveoli,
connected by a bifurcating network of airways and embedded in an elastic matrix
of connective tissue. The acoustic properties of this medium are the consequence
of this very complex, porous microstructure. Nevertheless, it is hard to describe
accurately the properties of such porous media, and, in practice, macroscopic models
of reduced complexity are used. Our goal is to obtain macroscopic models based on
more detailed tissue mechanics and geometry that are expected to further improve
the understanding of experimental studies [35].

Current models for the acoustic properties of the lung parenchyma are usually
based on the work by Rice [36], modeling the parenchyma as a homogeneous mixture
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of tissue and noncommunicating air bubbles. When the sound wavelength is greatly
superior to the size of the air bubbles, averaging the properties of the medium over vol-
ume leads us to consider the porous medium as an elastic one. In this case, the speed
of sound is independent of frequency and given by Wood’s formula, c = (K/ρ)1/2,
where K is the effective volumetric stiffness of the medium and ρ its average den-
sity. When the volumetric proportion of the tissue phase is h, and under adiabatic
conditions, the effective stiffness can be found by the following averaging process:

(1.1)
1

K
=

1− h

γP
+

h

Ks
,

where γ is the adiabatic index of the air, P is the gas pressure, and Ks is the stiffness
of the tissue structure. The average density is given by

ρ = (1 − h)ρg + hρs,

where ρg is the density of the air phase and ρs the density of the tissue phase. Exper-
imental measurements of the speed of sound in the low-frequency range (100 Hz to
1000 Hz) presented in [31, 36] show a good agreement with Wood’s formula. However,
this homogeneous elastic representation is not valid as the frequency increases and the
wavelength approaches the size of the alveoli, as studied in [28] on a one-dimensional
model.

Other acoustic models of the lung’s parenchyma have been proposed, mainly to
study the effects of air communication between alveoli, which may be an important
phenomenon at very low frequencies [16]. The main wave propagation models for
such porous media go back to the work of Biot [11, 12]. Biot’s equations were first
introduced to characterize the flow of a viscous fluid through a porous elastic frame
as well as the associated acoustic phenomena [13]. This model has then been derived
using general homogenization theory [7, 38, 15]. More recently, assuming periodic-
ity, the model has been obtained in [1, 27] by an asymptotic process using two-scale
homogenization theory [32, 2]. Concerning lung tissue modeling, the homogenization
approach has been used by Owen and Lewis [34] to study high-frequency ventilation,
and by Siklosi et al. [39] to study the lungs of fetal sheep. A homogenized model for
the propagation of sound waves in cancellous bone is also obtained by Fang et. al. [24],
who consider the vibrations of a viscoelastic frame containing a viscous, slightly com-
pressible fluid in the time-harmonic domain for a well-chosen small frequency.

Here, we propose to derive rigorously, thanks to the homogenization theory, the
nondissipative model developed by Rice [36] for the propagation of low-frequency
sound in a domain Ω modeling the parenchyma. We assume that this domain is occu-
pied by an elastic deformable structure (the lung tissue [40]) and closed pockets filled
with a compressible inviscid fluid (the air). Moreover, we assume that the size of the
alveoli is small compared to the wavelength, i.e., that the macroscale and microscale
are well separated, and we use the two-scale homogenization technique in order to
investigate the asymptotic behavior of this medium as the size of the alveoli tends
to zero. Consequently we have to find the homogenized limit of a fluid-structure
interaction problem where the structure is elastic and the enclosed air is compress-
ible and inviscid. Note that when the model includes a viscous fluid, the effective
material obtained by homogenization usually depends strongly upon the contrast of
property between the viscosity of the fluid and the elasticity of the structure, ranging
from a viscoelastic material when this contrast is small to material with a diphasic
macroscopic behavior when the contrast is strong [27]. The case of an inviscid but
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incompressible fluid can be found in [25]. In this work, since there is no viscosity, the
main difficulty is in dealing with the absence of space derivatives of the fluid velocity
in the linearized compressible Euler equations. As a result, the limit behavior depends
strongly upon the geometry of the microstructure and specifically the connectedness
of the fluid part. Here we assume that the alveoli are disconnected. This is based
on the common assumption [36, 28] that air does not communicate freely between
neighboring alveoli at frequencies above a few hundred Hertz under normal circum-
stances. This hypothesis has been validated by a number of experimental studies;
see, e.g., [31, 16]. Moreover, the space repetition of the alveoli leads us to consider
an idealized medium containing a periodic arrangement of disconnected pores with a
small period ε > 0.

The material we study thus behaves like a closed foam. We consider time-
harmonic solutions to understand the behavior of the material in response to a har-
monic forcing. Such a material was studied in the static case in [9], and we will
see that we recover the same model in the vanishing frequency limit. To obtain a
homogenized system, we pass to the limit as ε goes to zero and use the two-scale
convergence theory. In the case of a vanishing viscosity of order ε2 and a connected
incompressible fluid, the limit of the time-harmonic system was studied in [5]. The
harmonic nondissipative case brings some specific difficulties, since the problem set
in the frequency domain, of a Helmholtz nature, is not coercive. This means that
the standard two-scale homogenization procedure cannot be applied directly, and we
have to use some nonstandard arguments to obtain our main convergence theorem,
Theorem 3.17, applying the theory of collectively compact sequences of operators; see,
e.g., [6, 33, 3]. Another possible method would be to use a contradiction argument,
as first presented in [14] and then, e.g., in [8, 5].

In the limit, we obtain a homogeneous, nondispersive elastic medium, as ex-
pected [35]. We can recover the effective coefficients by computing the solutions of
cell problems. Interestingly, on one hand, the averaging effects on the fluid pressure
give rise to a nonlocal term in the formulation of the cell problems, and we obtain the
same elastic tensor as in [9]. On the other hand, the macroscopic effect of the gaseous
bubbles is mainly a modification of the bulk modulus (compressibility) of the limit
material.

The paper is organized as follows. First, we detail the geometry and derive the
equations of the model. Then, we study the well-posedness of the coupled elastic-
acoustic problem for a fixed value of the microscale parameter ε and show that it
verifies a Fredholm alternative principle (Proposition 2.12). In section 3, we analyze
the asymptotic behavior of the displacement field, using homogenization techniques
and an argument by contradiction. The main result of the paper is the convergence
theorem, Theorem 3.17, which describes both the two-scale convergence of the dis-
placement field and the homogenized problem (3.31).

2. Description of the coupling of the elastic and acoustic equations in
a perforated domain.

2.1. Geometric setting. We consider that the lung tissue occupies a smooth
domain Ω of Rd with d = 2 or 3. This domain is homogeneously composed of a porous
medium modeling the air-filled alveoli embedded in the elastic structural matrix. We
assume that the alveoli are periodically distributed and of size ε > 0. More precisely,
we define an open periodic unit cell Y representing the geometry of an alveolus. By
rescaling, we normalize Y so that |Y| = 1, and we define the associated periodic array
Z of Rd, which is the discrete set of translation vectors such that Y + Z is a tiling of
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Figure 1. Domain Ω and reference cell Y.

the whole space. The standard example is Y = (−1/2, 1/2)d and Z = Zd. We can also
study, for example, a honeycomb as presented in Figure 1, where Y is a hexagon with
side a > 0 such that its volume is 1 and Z the discrete lattice with basis (0,

√
3a) and(

3a/2,
√
3a/2

)
in R2, or a paving based on the truncated octahedron in 3D which is

a standard representation of the alveolus [22]. Note that we will always use bold face
to denote vectors or spaces of vectors.

The reference unit cell is supposed to be divided between an elastic and a fluid
(acoustic) part, YS and YF , where YF ⊂ Y̊ is smooth, simply connected, and locally
lies on only one side of its boundary. The boundary ΓF = ∂YF is the interface between
the two components of Y. For the sake of simplicity, we suppose that the barycenter
of YF is at the origin of Rd.

Next, for any given small parameter ε > 0, we introduce the following notation:
• For a given multi-index k ∈ Z, let

Yk
ε = ε(Y + k), Yk

F,ε = ε(YF + k), Yk
S,ε = ε(YS + k), Γk

F,ε = ε(ΓF + k),

which are a translation by k and a rescaling by ε of the unit cell Y and of
the fluid and structure part as well as of the fluid-structure boundary.

• Introducing the multi-index set

ZΩ
ε = {k ∈ Z|Yk

ε ⊂ Ω},

we define the periodically perforated structure domain, the fluid domain, and
the interior interface respectively as

(2.1) ΩS,ε = Ω \
⋃

k∈ZΩ
ε

Yk
F,ε, ΩF,ε =

⋃
k∈ZΩ

ε

Yk
F,ε, ΓI

ε =
⋃

k∈ZΩ
ε

Γk
F,ε.

• Let nS and nS
ε be unit normal vectors on the fluid-structure cell interface ΓF

and interior interface ΓI
ε, respectively, pointing in each case to the exterior of

the structure represented respectively by YS and ΩS,ε.
• Let χF , χS be the characteristic functions of YF and YS , respectively, and
χF,ε, χS,ε, χ

k
F,ε, χ

k
S,ε the characteristic functions of ΩF,ε, ΩS,ε, Yk

F,ε, and Yk
S,ε,

respectively.
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• The subscript # on the functional spaces’ name denotes the property of peri-
odicity with respect to Z, in the sense that C∞

# (Y) is the space of Z-periodic

functions on Rd indefinitely differentiable on Rd, and H1
#(Y) and L2

#(Y) are
the closure of C∞

# (Y) respectively in the H1- and the L2-norms. Moreover,

H1
#(YS) and L2

#(YS) are defined as the spaces of restrictions of functions in

H1
#(Y) and L2

#(Y) to YS + Z.

Note that, due to the choice of ZΩ
ε , no hole intersects the exterior boundary of Ω. For

this reason, ∂ΩS,ε = ∂Ω does not depend on ε. This will make the homogenization
process, as ε goes to zero, more convenient but not fundamentally different from a
case where the holes are allowed to sometimes intersect the exterior boundary. As
is standard, we introduce x ∈ Ω, the slow space variable, and y = ε−1x, the fast
variable.

To make a difference between differentiation with respect to either set of variables
x or y, we will use a subscript as in ∇x or ∇y when there is a doubt. When necessary,
we will use the Einstein convention of repeated indexes to write summations.

2.2. Acoustic-elastic interaction. Following [30], we write the model equa-
tions for the propagation of sound waves through our perforated material. As a first
step, we describe the equations governing this propagation in the time domain for a
given parameter ε. As we are studying sound waves, the perturbation or displacement
from the reference configuration of the structure or air is the relevant unknown to con-
sider. This perturbation is supposed to be small, so one can consider the linearized
models to describe the behavior of both structure and air parts of the material to
understand the wave propagation. As a second step, the signal will be represented by
a harmonic superposition of monochromatic waves, for which every excitation source
and every unknown obeys a harmonic dependence of frequency ω. Our goal is then to
obtain a homogenized system in the asymptotic limit where ε goes to zero, providing
the effective equation satisfied by the pressure wave for each value of ω.

Let us write the equations describing the mechanical behavior of the material.
For simplicity, we adopt a Lagrangian point of view and denote by Uε the time-
dependent displacement field throughout the structure and air parts of the domain
Ω. We begin by describing the equations modeling the behavior of the structure part.
Assuming that the wall material behaves like a linearized elastic medium, the stress
tensor satisfies Hooke’s law:

σε(Uε) = λ
(
x,

x

ε

)
div(Uε)Id + μ

(
x,

x

ε

)
e(Uε),

where λ > 0, μ > 0 are the Lamé parameters, Id the identity matrix, and e(Uε) is
the linearized Cauchy strain tensor,

e(Uε) =
1

2

(
∇Uε +

T ∇Uε

)
.

Note that we allow λ and μ to vary through the domain, for example to model a
pathology where the parenchyma is locally rigidified. To model variations both at
the macroscopic level and at the alveolar, microscopic level, we allow a dependence
on both the slow variable x and the fast variable y = ε−1x. We assume that λ and
μ are essentially bounded, continuous in the x variable on Ω, and periodic in the
y variable. (This is the right regularity for the two-scale convergence method, and
continuity in at least one variable is necessary for x �→ μ(x, ε−1x) to be measurable;
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see [2].) Moreover, μ is supposed to be uniformly bounded away from 0; consequently
there exists a constant μ0 > 0 independent of (x,y) such that

(2.2) ∀x ∈ Ω, ∀y ∈ Y, μ(x,y) ≥ μ0 > 0.

Suppose that the material reacts to a volumic force F. Newton’s law then yields the
equations for the linearized elastic material, with ρs denoting the density, assumed to
be constant:

(2.3) ρs
∂2Uε

∂t2
− div(σε(Uε)) = F in ΩS,ε.

Finally we also impose homogeneous Dirichlet boundary conditions on the outer
boundary ∂Ω:

(2.4) Uε = 0 on ∂Ω.

Let us describe the fluid behavior. The fluid domain ΩF,ε is filled with air, which
is considered as an inviscid, irrotational, compressible perfect gas. We consider only
small perturbations with respect to a reference equilibrium state in each hole, with
the reference pressure being the atmospheric pressure P0 and a constant equilibrium
density ρg, under a potential volumic excitation force ∇G. Following [30], a complete
description of the behavior of the gas is given by two conservation laws and an appro-
priate state law of the gas, using three unknowns: the displacement Uε, the absolute
pressure Pε, and the gas density ρε.

The momentum conservation law for an inviscid, irrotational gas can be written

(2.5) ρε
∂2Uε

∂t2
+∇Pε = ∇G in ΩF,ε.

The continuity equation, or mass conservation law, is written

∂ρε
∂t

+ div

(
ρε

∂Uε

∂t

)
= 0 in ΩF,ε.(2.6)

To close the system, we make the assumption that the air compression associated with
the propagation of sound waves is an adiabatic process. This is a usual assumption
regarding sound propagation, and it is motivated by the difference in characteristic
times between the heat dissipation process and the short timescale associated with
the propagating waves. Pressure and density are then linked by the following relation:

Pε = P0

(
ρε
ρg

)γ

in ΩF,ε,(2.7)

where γ is the adiabatic index of the air (γ ≈ 1.4). Let us linearize (2.5), (2.6), and
(2.7) around the reference state, following our assumption of small perturbation from
rest:

ρg
∂2Uε

∂t2
+∇Pε = ∇G in ΩF,ε,(2.8a)

∂ρε
∂t

+ ρgdiv

(
∂Uε

∂t

)
= 0 in ΩF,ε,(2.8b)

Pε − P0 = c2(ρε − ρg) in ΩF,ε,(2.8c)
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where we have introduced c =
√
γP0/ρg, the sound speed in the air. We eliminate

the density ρε by combining (2.8b) and (2.8c), and we find that the displacement and
pressure in the fluid are solution to the coupled system of equations

ρg
∂2Uε

∂t2
+∇Pε = ∇G in ΩF,ε,(2.9a)

1

c2
∂Pε

∂t
+ ρgdiv

(
∂Uε

∂t

)
= 0 in ΩF,ε.(2.9b)

Let us describe the coupling conditions between the fluid and the structure. The first
condition expresses the continuity of the normal component of the strain tensor at
the interface:

−Pεn
S
ε = σε(Uε|ΩS,ε)n

S
ε on ΓI

ε.(2.10)

Because the air is inviscid, there is no constraint on the tangential component of
the trace of the velocity at the interface. Rather, we have slip boundary conditions,
meaning that the normal component of the displacement is continuous:

Uε|ΩS,ε · nS
ε = Uε|ΩF,ε · nS

ε on ΓI
ε.(2.11)

Finally, our coupled fluid-structure interaction problem is described by (2.3), (2.9)
and the boundary conditions (2.4), (2.10), and (2.11), complemented with initial
conditions. By construction, this coupled system is now linear, and its behavior can
be understood by harmonic superposition technique. We thus assume that both G, F
and the initial conditions are coherent with a time-harmonic forcing along the mode
eiωt. This leads to assume that the unknowns can be written

Uε(x, t) = uε(x)e
iωt in Ω, Pε(x, t) = pε(x)e

iωt in ΩF,ε,

F(x, t) = f(x)eiωt in Ω, G(x, t) = g(x)eiωt in Ω.

Note that the fields uε, pε, f , g will be complex-valued in what follows. In particular,
the Hilbert spaces we consider will be complex-valued spaces unless otherwise speci-
fied. We denote by Re (·) and Im (·) , respectively, the real and imaginary parts of a
complex argument.

2.3. Harmonic formulation. Taking into account this time dependency, the
behavior of the coupled fluid and structure for some frequency ω is described by the
complex displacement/pressure field (uε, pε) solving the following system:

−ρsω
2uε − divσε(uε) = f in ΩS,ε,(2.12a)

−ρgω
2uε +∇pε = ∇g in ΩF,ε,(2.12b)

1

c2
pε + ρgdiv(uε) = 0 in ΩF,ε,(2.12c)

−pεn
S
ε = σε(uε)n

S
ε on ΓI

ε,(2.12d)

uε|ΩS,ε · nS
ε = uε|ΩF,ε · nS

ε on ΓI
ε,(2.12e)

uε = 0 on ∂Ω.(2.12f)

Remember that we have assumed that uε is irrotational in ΩF,ε, which has led to
(2.12b). To write this system in a more suitable form for further analysis, let us
introduce a velocity potential φε, defined up to a constant in each hole, such that

∇φε = iωuε.(2.13)
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We choose to work with the potential that has zero mean in each hole so as to fix the
constant. By combining the three relations (2.12b), (2.12c), and (2.13), we see that

∇
(
−ω2φε − c2Δφε − iωg/ρg

)
= 0 in ΩF,ε.

To get rid of the gradient in this equation we need to introduce a constant Ck
ε on each

connected component of ΩF,ε, depending only on the hole index k. This leads to the
following Helmholtz equation set on each hole Yk

F,ε:

(2.14) −ω2φε − c2Δφε = iω
g + Ck

ε

ρg
.

Moreover, the boundary condition (2.12e) together with (2.13) implies that the fol-
lowing compatibility condition is satisfied:∫

Yk
F,ε

(
iω

g + Ck
ε

ρg

)
= c2

∫
Γk
F,ε

∂φε

∂nS
ε

= iωc2
∫
Γk
F,ε

uε · nS
ε .(2.15)

From (2.15) the constant Ck
ε appearing in (2.14) can be determined and satisfies

(2.16) Ck
ε =

1

|Yk
F,ε|

(
ρgc

2

∫
Γk
F,ε

uε · nS
ε −

∫
Yk

F,ε

g

)
,

which allows us to define a function Cε of L2(Ω), constant in each cell Yk
ε , by

(2.17) Cε(x) =

{
Ck

ε if x ∈ Yk
ε for some k ∈ ZΩ

ε ,

0 else.

Let us eliminate the fluid pressure from the equations. From (2.12c) and (2.13) we
derive that iωpε = −ρgc

2Δφε, which, combined with (2.14), yields

(2.18) pε = −iωρgφε + g + Cε.

Bringing together (2.14), (2.16), and (2.18), we write a new, equivalent system of
equations describing the behavior of our coupled fluid-structure material. The new
unknowns are the structure displacement and the fluid velocity potential (uε, φε).
Note that the displacement field uε is defined only on ΩS,ε from now on.

−ρsω
2uε − divσε(uε) = f in ΩS,ε,(2.19a)

−ω2φε − c2Δφε = iω
g + Cε

ρg
in ΩF,ε,(2.19b)

σε(uε)n
S
ε = − (−iωρgφε + g + Cε)n

S
ε on ΓI

ε,(2.19c)

iωuε · nS
ε =

∂φε

∂nS
ε

on ΓI
ε,(2.19d)

uε = 0 on ∂Ω,(2.19e)

with Cε defined by (2.17).
We are going to write the variational formulation of this problem. Let us define

the complex Hilbert spaces:

H1
0(ΩS,ε) =

{
vε ∈ H1(ΩS,ε),vε|∂Ω = 0

}
,
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H1
mean(ΩF,ε) =

{
ψ ∈ H1(ΩF,ε), ∀k ∈ ZΩ

ε ,

∫
Yk

F,ε

ψ = 0

}
.

The norms associated with functional spaces on ΩF,ε are to be understood, as is
standard, as broken norms. Let us also define the L2-projector Πε onto the space of
functions that are constant on each cell Yk

ε by

(2.20) Πε(φ) =
∑
k∈ZΩ

ε

1

|Yk
ε |

(∫
Yk

ε

φ

)
χYk

ε
=
∑
k∈ZΩ

ε

1

εd

(∫
Yk

ε

φ

)
χYk

ε
.

Using the operator Πε and (2.16), we can rewrite the L2 function Cε introduced in
(2.17) as

Cε = ρgc
2
∑
k∈ZΩ

ε

1

εd|YF |

(∫
Γk
F,ε

uε · nS
ε

)
χYk

ε
− 1

|YF |
Πε (χF,εg) .

By taking a pair of test functions (v, ψ) in H1
0(ΩS,ε)×H1

mean(ΩF,ε) and using v
as a test function in (2.19a) and ψ in (2.19b), the weak formulation of (2.19) reads as
follows: for f ∈ L2(Ω) and g ∈ H1(Ω), find (uε, φε) ∈ H1

0(ΩS,ε)×H1
mean(ΩF,ε) such

that, for any (v, ψ) ∈ H1
0(Ω)×H1

mean(ΩF,ε),

(2.21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
ΩS,ε

−ρsω
2uε · v + σε(uε) : e(v) + ρg

∫
ΓI
ε

iω
(
ψuε · nS

ε − φεv · nS
ε

)
+ ρgc

2
∑
k∈ZΩ

ε

1

εd|YF |

(∫
Γk
F,ε

uε · nS
ε

)(∫
Γk
F,ε

v · nS
ε

)

+ ρg

∫
ΩF,ε

−ω2

c2
φεψ +∇φε · ∇ψ

=

∫
ΩS,ε

f · v −
∫
ΓI
ε

(
g − 1

|YF |
Πε(χF,εg)

)
v · nS

ε

+

∫
ΩF,ε

iω

c2

(
g − 1

|YF |
Πε(χF,εg)

)
ψ.

Note that the trace of Πε(χF,εg) over Γ
I
ε = ∪k∈ZΩ

ε
Γk
F,ε makes sense since its restriction

to each Yk
ε is constant and thus belongs to H1(Yk

ε ).
Remark 2.1. If we take the frequency ω to be zero, we recover precisely the static

model studied in detail in [9].
Remark 2.2. Note the presence of the unusual term

∑
k∈ZΩ

ε

1

εd|YF |

(∫
Γk
F,ε

uε · nS
ε

)(∫
Γk
F,ε

v · nS
ε

)
,

which, for instance, appeared in the models studied in [4, 9]. It is a local term at the
macroscopic scale and nonlocal at the microscopic (alveolar) scale, and it comes from
an average pressure in each hole that mathematically was expressed by the compatibility
condition (2.15).

We are going to study this system and its limit as ε goes to zero. But first let us
introduce some useful notation and tools.
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2.4. A few useful definitions and results. Let us describe here a few defini-
tions and results that we will frequently use in what follows. In particular, we recall
the framework of two-scale homogenization laid out by Nguetseng [32] and Allaire [2].
Since we want to pass to the limit as ε goes to zero, we have to pay special attention
to the dependency of the various constants on ε: it is indeed crucial to get uniform
bounds in order to obtain the compactness properties of the weak or two-scale topolo-
gies. For this purpose we will first define extension operators for functions defined on
the domains ΩS,ε or ΩF,ε to functions defined on the whole domain Ω, whose norms
are independent of ε. Next, we will derive Poincaré and Korn inequalities on ΩS,ε.
Finally, after recalling the two-scale convergence properties, we will study the well-
posedness of (2.21) for a given ε > 0 and derive some uniform energy bounds. As is
standard, let us denote by | · |H1(Ω) = ‖∇(·)|L2(Ω) the H1 Sobolev seminorm.

2.4.1. Extension operators. As is standard when dealing with porous multi-
scale domains, we need extension operators from ΩS,ε and ΩF,ε onto Ω since conver-
gence cannot be described in parameter dependent domains. We define two extension
operators:

• An extension operator in L
(
Hk(ΩS,ε),H

k(Ω)
)
for k = 0, 1, denoted by ·̂,

such that for some C > 0 independent of ε and depending only on Ω and YS ,
for all uε ∈ H1(ΩS,ε),

ûε = uε in ΩS,ε,

‖ûε‖L2(Ω) ≤ C‖uε‖L2(ΩS,ε), ‖∇ûε‖L2(Ω) ≤ C‖∇uε‖L2(ΩS,ε).(2.22)

The construction of such an operator can be found, e.g., in [20].
• An extension still denoted by ·̂ : H1

mean(ΩF,ε) → H1
0 (Ω), which we are going

to construct in the following lemma.
Lemma 2.3. There exists an extension operator ·̂ : H1

mean(ΩF,ε) �→ H1
0 (Ω) for

every ε > 0 such that ∀φε ∈ H1
mean(ΩF,ε) we have the property

|φ̂ε|H1(Ω) ≤ C|φε|H1(ΩF,ε),

where the constant C depends only on YS , YF and not on ε.
Proof. First, let us consider a linear continuous extension operator fromH1

mean(YF )
(defined as the set of functions in H1(YF ) with zero average) to the space H1

0 (Y). As
an example, we define for any φ ∈ H1

mean(YF ) its harmonic extension E(φ) ∈ H1
0 (Y)

by solving the Poisson problem⎧⎪⎨⎪⎩
−Δψ = 0 in YS ,

ψ = φ|ΓF on ΓF ,

ψ = 0 on ∂Y.

It is well known (see, e.g., [23, Remark 5, p. 380]) that for some constant C depending
only on YS , YF ,

‖ψ‖H1(YS) ≤ C‖φ‖H1/2(ΓF ).

Thanks to both the trace inequality and the Poincaré–Wirtinger inequality, holding
in H1

mean(YF ), we have

C−1‖ψ‖H1(YS) ≤ ‖φ‖H1(YF ) ≤ C|φ|H1(YF ),
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where C depends only on YS , YF . The function E(φ) on Y, defined as

E(φ)(x) =

{
φ(x) if x ∈ YF ,

ψ(x) if x ∈ YS ,

belongs to H1
0 (Y), and the following estimate holds for some constant C depending

only on YS , YF :

(2.23) |E(φ)|H1(Y) ≤ C|φ|H1(YF ).

Let φε ∈ H1
mean(ΩF,ε). For each k ∈ ZΩ

ε we have φε|Yk
F,ε

(ε · +k) ∈ H1
mean(YF ).

Let us define

φ̂ε(x) =

{
E
(
φε|Yk

F,ε
(ε ·+k)

)
(ε−1(x− k)) if x ∈ Yk

ε , k ∈ ZΩ
ε ,

0 otherwise.

Because the traces of φ̂ε coincide on each side of ∂Yk
ε with 0, φ̂ε belongs globally to

H1
0 (Ω). We have the estimate

|φ̂ε|2H1(Ω) =
∑
k∈ZΩ

ε

∫
Yk

ε

|∇φ̂ε|2 =
∑
k∈ZΩ

ε

εd
∫
Y
|ε−1∇ (E {φε(ε ·+k)} (y)) |2

= εd−2
∑
k∈ZΩ

ε

|E {φε(ε ·+k)}|2H1
0 (Y)

≤ C2εd−2
∑
k∈ZΩ

ε

|φε(ε ·+k)|2H1(YF )

≤ C2|φε|2H1(ΩF,ε)
,(2.24)

where C is the same constant as in (2.23) and thus is independent of ε. This concludes
the proof of the lemma.

2.4.2. Korn and Poincaré inequalities. The L2-norm of the Cauchy stress
tensor e(u) will appear naturally when we compute energy bounds for our solutions.
To deduce H1-bounds, we rely on the Korn inequality [18]: there exists K1 > 0
depending only on Ω such that

(2.25) ‖e(u)‖L2(Ω) ≥ K1|u|H1(Ω) ∀u ∈ H1
0(Ω).

The Poincaré inequality also holds on Ω: there exists K2 > 0 depending only on Ω
such that

(2.26) ‖u‖H1(Ω) ≤ K2|u|H1(Ω) ∀u ∈ H1
0(Ω).

Here we also pay special attention to the dependency of the constants on ε. Using
the extension operator u �→ û, we can easily extend, uniformly with respect to ε, the
Korn and the Poincaré inequalities to ΩS,ε using the property (2.22), as follows.

Lemma 2.4 (Korn inequality on ΩS,ε). There exists a constant α, depending only
on Ω and YS, YF , such that

(2.27) ∀ε > 0, ∀uε ∈ H1
0(ΩS,ε), ‖e(uε)‖L2(ΩS,ε) ≥ α|uε|H1(ΩS,ε).
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Lemma 2.5 (Poincaré inequality on ΩS,ε). There exists a constant β, depending
only on Ω and YS , YF , such that

(2.28) ∀ε > 0, ∀uε ∈ H1
0(ΩS,ε), ‖uε‖H1(ΩS,ε) ≤ β|uε|H1(ΩS,ε).

Remark 2.6. To sum things up, | · |H1
0(ΩS,ε), ‖ · ‖H1

0(ΩS,ε), ‖e( · )‖L2(ΩS,ε),

| ·̂ |H1
0(Ω), ‖ ·̂ ‖H1

0(Ω), and ‖e( ·̂ )‖L2(Ω) are all equivalent norms on H1
0(ΩS,ε), uni-

formly with respect to ε.
OnH1

mean(ΩF,ε), we also have a Poincaré inequality. Let φε belong toH
1
mean(ΩF,ε).

By rescaling each Yk
ε to Y and applying the Poincaré inequality for E (φε(ε ·+k)) ∈

H1
0 (Y), using (2.24), we have

‖φε‖2L2(Yk
F,ε)

≤ ‖φ̂ε‖2L2(Yk
ε ) = εd‖E (φε(ε ·+k)) ‖2L2(Y)

≤ Cεd ‖∇ (E(φε(ε ·+k)))‖2L2(Y)

≤ Cεd ‖∇ (φε(ε ·+k))‖2L2(YF )

≤ Cεd+2 ‖(∇φε)(ε ·+k)‖2L2(YF )

≤ Cε2|φε|2H1(Yk
F,ε)

,

where the constant C depends only on YS , YF . Summing these inequalities over k,
we get the following result.

Lemma 2.7 (Poincaré inequality on ΩF,ε). There exists a constant γ depending
only on YS , YF such that

(2.29) ∀ε > 0, ∀φε ∈ H1
mean(ΩF,ε), ‖φε‖L2(ΩF,ε) ≤ ‖φ̂ε‖L2(Ω) ≤ γε|φε|H1(ΩF,ε).

2.4.3. Two-scale convergence. Our objective in this paper is the study of the
behavior of the solutions uε and φε of problem (2.21) as the parameter ε tends to
zero. To achieve this, we will use the two-scale homogenization, and for the sake of
completeness, let us recall now the definition of two-scale convergence; see [32, 2].
Note that we could also use the closely related periodic unfolding method; see [19].

Definition 2.8. We say that a sequence (uε)ε>0 ⊂ L2(Ω) two-scale converges to
some function u ∈ L2(Ω;L2

#(Y)), and we note that uε � u if for all admissible test

functions v ∈ L2(Ω, C#(Y)),

(2.30) lim
ε→0

∫
Ω

uε(x)v
(
x,

x

ε

)
dx =

∫
Ω

∫
Y
u(x,y)v(x,y)dydx.

This definition can be extended in an obvious way to complex, vector- and tensor-
valued functions in L2(Ω), L2(Ω), or L2(Ω)d by changing the product to the sesquilin-
ear scalar product in C, the scalar product for vectors, or the tensorial product for
matrices, respectively.

The two-scale homogenization method relies on the following proposition; see [2]
for proof.

Proposition 2.9.

1. Let uε be a bounded sequence in L2(Ω); there exists u(x,y) ∈ L2(Ω×Y) such
that, up to a subsequence still denoted by uε, uε � u.

2. Let uε be a bounded sequence in H1(Ω) that converges weakly to a limit u in
H1(Ω). Then, uε two-scale converges to u(x) and there exists a function u1(x,y) in
L2(Ω;H1

#(Y)/R) such that, up to a subsequence, ∇uε two-scale converges to ∇xu(x)+

∇yu
1(x,y).
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3. Let uε and ε∇uε be two bounded sequences in L2(Ω). Then there exists a
function u(x,y) in L2(Ω;H1

#(Y)) such that, up to a subsequence, uε � u(x,y) and
ε∇uε � ∇yu(x,y).

2.5. G̊arding’s inequality and well-posedness. Let us now study the varia-
tional problem (2.21) for any given ε > 0. As is standard, using the fact that λ ≥ 0,
property (2.2) on μ, and Korn’s inequality derived at Lemma 2.4, we obtain for all
functions vε in H1

0(ΩS,ε) the inequality

(2.31)

∫
ΩS,ε

σε(vε) : e(vε) ≥ μ0‖e(vε)‖2L2(ΩS,ε)
≥ μ0α

2|vε|2H1(ΩS,ε)
.

We define the sesquilinear form on H1
0(ΩS,ε)×H1

mean(ΩF,ε) appearing in the left-hand
side of (2.21) by
(2.32)

aωε ((uε, φε); (v, ψ)) =

∫
ΩS,ε

−ρsω
2uε · v + σε(uε) : e(v) + ρg

∫
ΓI
ε

iω
(
ψuε · nS

ε − φεv · nS
ε

)
+ ρgc

2
∑
k∈ZΩ

ε

1

εd|YF |

(∫
Γk
F,ε

uε · nS
ε

)(∫
Γk
F,ε

v · nS
ε

)
+ ρg

∫
ΩF,ε

−ω2

c2
φεψ +∇φε · ∇ψ.

For fixed (f , g) we also define the antilinear form onH1
0(ΩS,ε)×H1

mean(ΩF,ε) appearing
in the right-hand side of (2.21) by

(2.33)

bωε (v, ψ) =

∫
ΩS,ε

f · v −
∫
ΓI
ε

(
g − 1

|YF |
Πε(χF,εg)

)
v · nS

ε

+

∫
ΩF,ε

iω

c2

(
g − 1

|YF |
Πε(χF,εg)

)
ψ.

With this notation, problem (2.21) reads: find (uε, φε) ∈ H1
0(ΩS,ε) × H1

mean(ΩF,ε)
such that for any (v, ψ) ∈ H1

0(Ω)×H1
mean(ΩF,ε),

(2.34) aωε ((uε, φε); (v, ψ)) = bωε (v, ψ) .

The analysis proceeds by the use of the Fredholm theory. We show that the alternative
holds by proving a uniform (in ε) G̊arding inequality on the sesquilinear form aωε
defined by (2.32).

Lemma 2.10. The sesquilinear form aωε (·, ·) verifies G̊arding’s inequality on
H1

0(ΩS,ε) × H1
mean(ΩF,ε): for all ω ∈ R there exist constants C(ω), γ > 0, both

independent of ε but with C dependent on ω, such that for any ε > 0 and (vε, ψε) ∈
H1

0(ΩS,ε)×H1
mean(ΩF,ε),

γ
(
‖vε‖2H1(ΩS,ε)

+ ‖ψε‖2H1(ΩF,ε)

)
≤ Re (aωε ((vε, ψε); (vε, ψε))) + C(ω)

(
‖vε‖2L2(ΩS,ε)

+ ‖ψε‖2L2(ΩF,ε)

)
.(2.35)
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Proof. Let ε > 0, ω ∈ R, (vε, ψε) ∈ H1
0(ΩS,ε) × H1

mean(ΩF,ε). From (2.32) we
have

aωε ((vε, ψε); (vε, ψε))

=

∫
ΩS,ε

(
−ρsω

2|vε|2 + σε(vε) : e(vε)
)
+ ρgc

2
∑
k∈ZΩ

ε

1

εd|YF |

∣∣∣∣∣
∫
Γk
F,ε

vε · nS
ε

∣∣∣∣∣
2

+ ρg

∫
ΩF,ε

(
−ω2

c2
|ψε|2 + |∇ψε|2

)
+ ρg

∫
ΓI
ε

iω
(
ψεvε · nS

ε − ψεvε · nS
ε

)
.

Taking the real part of the previous equality and using the coercivity of the stress
tensor operator (2.31), it follows that

μ0α
2‖vε‖2H1(ΩS,ε)

+ ρg‖ψε‖2H1(ΩF,ε)
− 2ρg|ω|

∣∣∣∣∣
∫
ΓI
ε

ψεvε · nS
ε

∣∣∣∣∣
≤ Re (aωε ((vε, ψε); (vε, ψε))) +

(
μ0α

2 + ρsω
2
)
‖vε‖2L2(ΩS,ε)

+ ρg

(
ω2

c2
+ 1

)
‖ψε‖2L2(ΩF,ε)

.

If ω is equal to zero, we have proved the G̊arding inequality (2.35). Else, we bound the
last term as follows. Using the divergence theorem, the Cauchy–Schwarz inequality,
and the extension operator properties (see (2.22)), we have as in [21, Lemma 3.6]:

(2.36)

∣∣∣∣∣
∫
ΓI
ε

ψε vε · nS
ε

∣∣∣∣∣ =
∣∣∣∣∣
∫
ΩF,ε

div(v̂ε) ψε +

∫
ΩF,ε

∇ψε · v̂ε

∣∣∣∣∣
≤ C

(
|vε|H1(ΩS,ε)‖ψε‖L2(ΩF,ε) + |ψε|H1(ΩF,ε)‖vε‖L2(ΩS,ε)

)
,

where C is a constant independent of ε and ω. Upper-bounding the H1-seminorm by
the full norm of vε, there exists a constant C(ω) > 0, independent of ε but dependent
on ω, such that

2ρg|ω|
∣∣∣∣∣
∫
ΓI
ε

ψεvε · nS
ε

∣∣∣∣∣ ≤ μ0α
2

2
‖vε‖2H1(ΩF,ε)

+ C(ω)‖ψε‖2L2(ΩF,ε)

+
ρg
2
|ψε|2H1(ΩF,ε)

+ C(ω)‖vε‖2L2(ΩS,ε)
.

Finally we have, with C(ω) > 0 independent of ε but dependent on ω,

μ0α
2

2
‖vε‖2H1(ΩS,ε)

+
ρg
2
‖ψε‖2H1(ΩF,ε)

≤ Re (aωε ((vε, ψε); (vε, ψε))) + C(ω)
(
‖vε‖2L2(ΩS,ε)

+ ‖ψε‖2L2(ΩF,ε)

)
.

We have proved that aωε satisfies (2.35) for all ω ≥ 0.
Next we derive bounds for bωε , as follows.
Lemma 2.11. The antilinear form bωε verifies that, for all ω ∈ R, there exists

a constant C(ω), independent of ε but dependent on ω, such that for any ε > 0 and
(vε, ψε) ∈ H1

0(ΩS,ε)×H1
mean(ΩF,ε),

(2.37) |bωε (vε, ψε)| ≤ C(ω)
(
‖f‖L2(Ω) + ‖g‖H1(Ω)

) (
‖vε‖H1(ΩS,ε) + ‖ψε‖H1(ΩF,ε)

)
.
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Proof. We denote by g0ε the L2-function defined by

(2.38) g0ε = g − 1

|YF |
Πε(χF,εg).

Note that ∇
(
g0ε |Yk

ε

)
= ∇

(
g|Yk

ε

)
and ‖g0ε‖L2(Ω) ≤

(
1+ 1

|YF |
)
‖g‖L2(Ω). From (2.33) we

have for any (vε, ψε) ∈ H1
0(ΩS,ε)×H1

mean(ΩF,ε)

(2.39) bωε (vε, ψε) =

∫
ΩS,ε

f · vε +
iω

c2

∫
ΩF,ε

g0εψε −
∫
ΓI
ε

g0εvε · nS
ε .

To control the last term in (2.39), we proceed as for (2.36), the two first terms of
bωε (vε, ψε) being treated in a standard way.

G̊arding’s inequality (2.35) is a sufficient condition for the Fredholm alternative
principle to hold for problem (2.21) (see [26]). Moreover, from the two previous
lemmas, we can deduce an “energy” estimate satisfied by any solution. Note that it
is not possible to obtain directly a priori estimates uniform in ε because ω could be
an eigenvalue for the harmonic problem (2.21); see Remark 2.13. Thus the following
proposition holds true.

Proposition 2.12. Either the problem (2.21) has a unique solution (uε, φε) ∈
H1

0(ΩS,ε)×H1
mean(ΩF,ε) or there exists a nonzero solution (ũε, φ̃ε) to the homogeneous

adjoint problem:

aωε

(
(vε, ψε); (ũε, φ̃ε)

)
= 0 ∀(vε, ψε) ∈ H1

0(ΩS,ε)×H1
mean(ΩF,ε).

Any solution (uε, φε) ∈ H1
0(ΩS,ε)×H1

mean(ΩF,ε) satisfies

(2.40)
‖uε‖2H1(ΩS,ε)

+ ‖φε‖2H1(ΩF,ε)
≤ C(ω)

(
‖uε‖2L2(ΩS,ε)

+ ‖φε‖2L2(ΩF,ε)

+‖f‖2L2(Ω) +‖g‖2H1(Ω)

)
for a constant C(ω) > 0, independent of ε but dependent on ω.

Remark 2.13. Note that nonzero solutions (ũε, φ̃ε), as introduced in Proposition
2.12, may exist since this is the case when, e.g., ω is an eigenvalue for the elasticity
problem in ΩS,ε with the boundary conditions σε(ũε) ·nS

ε = 0 such that the associated
eigenmode ũε satisfies at the same time the additional condition ũε · nS

ε = 0 on

ΓI
ε; see [30, 21]. The associated φ̃ε is then equal to zero. Since we cannot control

the apparition of these eigenmodes as ε varies, we have to be careful about the well-
posedness of (2.21).

3. Two-scale homogenization of the coupled model. In this section we
study the asymptotic behavior of the solution (uε, φε) as ε goes to zero. Usually we
follow the standard steps:

• prove existence of a solution for a given ε,
• derive a priori bounds, independent of ε,
• establish two-scale convergence up to a subsequence by the use of Proposition
2.9,

• identify of the two-scale homogenized problem.
However, the problem presented here satisfies neither the first point, because of the
two valid statements in the Fredholm alternative, nor the second point, since we only



58 P. CAZEAUX, C. GRANDMONT, AND Y. MADAY

have a G̊arding inequality and not a coercivity property. In fact, it happens that for
some values of the frequency ω, depending on ε, our problem is not well-posed due to
the occurrence of so-called traction-free oscillations, as explained in Remark 2.13.

A way to deal with this difficulty is to make the hypothesis that the required
existence, uniqueness, and boundedness results are true for ε small enough, and per-
form the homogenization process according to the usual theory. Then, by studying
the resulting homogenized problem, it is possible to get a better understanding of the
Fredholm alternative for the coupled problem (2.21) as ε goes to zero. This kind of
argument, already used in [33, 3, 14, 8, 5], allows us to prove that the initial assump-
tions (existence of a unique solution and a priori estimates for ε small enough) hold
true for all values of ω distinct from the spectrum of the limit homogenized problem.

Let us now present the main result of this section, which will allow us to pass to
the limit and obtain, as the main conclusion of the paper, the homogenized behavior
of the material. This theorem will be made more precise in section 3.2.

Theorem 3.1. There is a discrete set Λ such that, for any ω ∈ R\Λ, there exists
ε0(ω) and C(ω) in R∗

+ such that for any 0 < ε < ε0(ω) problem (2.21) is well-posed
for any data (f , g) ∈ L2(Ω) × H1(Ω), and its solution (uε, φε) satisfies the a priori
bounds

(3.1) ‖uε‖2H1(ΩS,ε)
+ ‖φε‖2H1(ΩF,ε)

≤ C(ω)
(
‖f‖2L2(Ω) + ‖g‖2H1(Ω)

)
.

The proof of this result is detailed in section 3.2, but we need to identify and
study the homogenized problem first.

3.1. Two-scale problem identification. In this whole section, we fix ω ∈ R

and (f , g) ∈ L2(Ω) × H1(Ω). We assume that the variational problem (2.21) with
data (f , g) has at least one solution (uε, φε) for ε small enough and that there exists
C > 0 independent of ε such that

(3.2) ‖uε‖2H1(ΩS,ε)
+ ‖φε‖2H1(ΩF,ε)

≤ C.

Remark 3.2. Note that (3.2) reflects the conclusion of Theorem 3.1, which we
prove in section 3.2.

Using the two-scale convergence framework, we are going to investigate the asymp-
totics of problem (2.21) and identify the homogenized two-scale problem. Thanks to
(3.2), the properties of the extension operators introduced in section 2.4, and (2.29),
we have then for some constant C > 0

(3.3) ‖ûε‖2H1(Ω) +
1

ε2
‖φ̂ε‖2L2(Ω) + |φ̂ε|2H1(Ω) ≤ C.

Thanks to Proposition 2.9, we know that there exists a subsequence, still indexed
by ε for simplicity, and three functions—u ∈ H1

0(Ω), u1 ∈ L2(Ω;H1
#(Y)/C), and

φ ∈ L2(Ω;H1
#(Y))—such that ûε, φ̂ε and their gradients two-scale converge:

(3.4)
ûε � u in L2(Ω× Y), ∇ûε � ∇xu+∇yu

1 in L2(Ω× Y),
φ̂ε/ε � φ in L2(Ω× Y), ∇φ̂ε � ∇yφ in L2(Ω× Y).

We are now going to identify the homogenized problem, satisfied by u, χSu
1, and

χFφ.
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3.1.1. Identification of the homogenized problem. To pass to the limit in
the variational formulation we shall use well chosen test functions:

• vε(x,x/ε) = v(x) + εv1(x,x/ε) with v ∈ D(Ω) and v1 ∈ D(Ω, C∞
# (Y)), and

• ψε(x,x/ε) = εψ(x,x/ε) with ψ ∈ D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)
.

We can then pass to the limit as ε goes to zero in the weak formulation (2.21), which
can be written as

(3.5)

∫
ΩS,ε

−ρsω
2uε · vε + σε(uε) : e(vε) + ρg

∫
ΓI
ε

iω
(
ψεuε · nS

ε − φεvε · nS
ε

)
+ ρgc

2
∑
k∈ZΩ

ε

1

εd|YF |

(∫
Γk
F,ε

uε · nS
ε

)(∫
Γk
F,ε

vε · nS
ε

)

+ ρg

∫
ΩF,ε

−ω2

c2
φεψε +∇φε · ∇ψε

=

∫
ΩS,ε

f · vε +

∫
ΩF,ε

∇g · vε

+

∫
ΩF,ε

(
g − 1

|YF |
Πε(χF,εg)

)(
div(vε)−

iω

c2
ψε

)
.

It is straightforward to pass to the limit in most of the terms in (3.5). For instance,∫
ΩS,ε

σε(uε) : e(vε) →
∫
Ω

∫
YS

(
σx(u) + σy(u

1)
)
: (ex(v) + ey(v1)),

where we denote by σx(·) and σy(·), respectively, the following tensor-valued opera-
tors:

σx(v)(x, y) = λ(x,y)divx(v)(x,y)Id + μ(x,y)ex(v)(x,y) for v ∈ H1(Ω, L2
#(Y)),

σy(v)(x, y) = λ(x,y)divy(v)(x,y)Id + μ(x,y)ey(v)(x,y) for v ∈ H1
#(Y, L2(Ω)).

The main difficulty consists of dealing with the nonstandard terms supported by the
interior boundary ΓI

ε, which are

ρgc
2
∑
k∈ZΩ

ε

1

εd|YF |

(∫
Γk
F,ε

uε · nS
ε

)(∫
Γk
F,ε

vε · nS
ε

)
,(3.6a)

ρg

∫
ΓI
ε

iω
(
ψεuε − φεvε

)
· nS

ε ,(3.6b) ∫
ΩF,ε

(
g − 1

|YF |
Πε(χF,εg)

)(
div(vε)−

iω

c2
ψε

)
.(3.6c)

First, we consider the product (3.6a) as in [4, 9]. We write

∑
k∈ZΩ

ε

ε−d

(∫
Γk
F,ε

uε · nS
ε

)(∫
Γk
F,ε

vε · nS
ε

)

=

∫
Ω

χF,ε div ûε Πε(χF,εdiv vε),
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where Πε is defined by (2.20). We know that for ψ ∈ C∞(Ω;C∞
# (Y)) (see, e.g., [9,

Lemma 2.3]),

(3.7) Πε

(
ψ
(
·, ·
ε

)
χF,ε

)
→
∫
YF

ψ(·,y)dy, strongly in L2(Ω).

Since div vε = divxv + εdivyv
1 + divxv

1, we obtain immediately

Πε(χF,εdiv vε) →
∫
YF

divxv + divyv
1, strongly in L2(Ω).

By definition of the two-scale convergence, we obtain

χF,εdiv ûε ⇀

∫
YF

divxu+ divyu
1, weakly in L2(Ω).

Combining these two results, we see that the term (3.6a) converges to

1

|YF |

∫
Ω

(∫
YF

(divxu+ divyu
1)dy

)(∫
YF

(divxv + divyv1)dy′
)
.

The term (3.6b) is easier to deal with since it can be rewritten as a standard bilinear
form by using the Stokes formula,∫

ΓI
ε

ψuε · nS
ε − φεvε · nS

ε =

∫
ΩF,ε

(
∇φε · vε + φεdiv vε −∇ψε · uε − ψεdiv vε

)
.

Because φ̂ε and ψε converge strongly to 0 in L2(Ω) from (3.4), passing to the two-scale
limit yields

lim
ε→0

∫
ΓI
ε

ψuε · nS
ε − φεv · nS

ε =

∫
Ω

∫
YF

∇yφ · v −∇yψ · u.

Finally, let us pass to the limit in (3.6c). Let g0ε =
(
g − 1

|YF |Πε(gχF,ε)
)
∈ L2(Ω) as

in (2.38). Then, by (3.7), (g0ε)ε>0 converges strongly to 0 in L2(Ω). Hence

lim
ε→0

∫
ΩF,ε

g0ε

(
div(vε)−

iω

c2
ψε

)
= lim

ε→0

∫
Ω

χF,εg
0
ε

(
div(vε)−

iω

c2
ψε

)
= 0.

We can now pass to the two-scale limit in every term of identity (3.5). We deduce
that u, u1, and φ are solutions of the following two-scale variational formulation: for
all v ∈ D(Ω), v1(x,y) ∈ D(Ω, C∞

# (Y)), and ψ ∈ D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)
,

(3.8)

∫
Ω

∫
YS

−ρsω
2u · v +

(
σx(u) + σy(u

1)
)
: (ex(v) + ey(v1))

+
ρgc

2

|YF |

∫
Ω

(∫
YF

(divxu+ divyu
1)dy

)(∫
YF

(divxv + divyv1)dy′
)
dx

+ ρg

∫
Ω

∫
YF

∇yφ · ∇yψ + ρgiω

∫
Ω

∫
YF

(
∇yφ · v −∇yψ · u

)
=

∫
Ω

∫
Y
(fχS +∇gχF ) · v.
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Corollary 3.3. We have

(3.9)

∫
YF

φ = 0 a.e. in Ω.

Proof. Note that χF,εφ̂ε/ε converges weakly to
∫
YF

φ in L2(Ω) since φ̂ε/ε � φ

and by definition of the two-scale convergence. Moreover, since φε ∈ H1
mean(ΩF,ε),

(3.10) Πε(χF,εφε/ε) =
∑
k∈ZΩ

ε

1

|Yk
ε |

(∫
Yk

F,ε

φε/ε

)
χYk

ε
= 0.

But for any test function ψ ∈ C∞(Ω) we have∫
ΩF,ε

Πε(χF,εφε/ε)ψ =

∫
Ω

χF,ε(φε/ε)Πε(χF,εψ).

Applying (3.7) yields∫
Ω

χF,ε(φε/ε)Πε(χF,εψ) →
∫
Ω

(∫
YF

φ

)
|YF |ψ as ε → 0.

Consequently, thanks to this convergence and (3.10), we obtain that for any test
function ψ ∈ C∞(Ω),

∫
Ω

( ∫
YF

φ
)
ψ = 0, and (3.9) follows.

Remark 3.4. Let us make a few comments on the homogenized model described
by system (3.8). At first glance, the only remaining inertia term seems to be ρsω

2u,
and so it seems that there is no added mass effect from the fluid on the structure.
However, we will see that we have the relationship ∇yφ = iωu, so the effective density
is equal to the average density of the mixture.

On the other hand, there is no impact from the microstructure geometry on the
effective density of the homogenized material, because u1 does not appear in the inertia
terms. This means, for example, that there is no possibility of a band gap effect as in
[8], as the mass does not depend on the frequency ω.

Remark 3.5. When ω is zero, the fluid and the structure decouple. We then
have

ρg

∫
Ω

∫
YF

∇yφ · ∇yψ = 0 ∀ψ ∈ D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)
.

Since D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)
is dense in L2(Ω;H1

mean(YF )), one can take ψ =
φ as a test function to obtain ∇yφ = 0 in Ω×YF . Moreover,

∫
YF

φ = 0 a.e. in Ω (see

Remark 3.3), and so we find that φ|YF = 0 a.e. in Ω. Our homogenized model then
reduces to the same homogenized two-scale system found in the static case in [9], as
expected.

The next step is to decompose this two-scale problem on Ω×Y into cell problems
for φ and u1 and an effective homogenized problem on u. Solving the cell problems
yields explicit corrector functions, which can be reinjected into (3.8) to write the
homogenized coefficients for the macroscopic problem.

3.1.2. Fluid cell problem. Choosing v = 0 and v1 = 0, we recover the follow-
ing variational problem for the homogenized fluid velocity potential φ. The restriction
φ|YF ∈ L2(Ω, H1

mean(YF )) verifies

ρg

∫
Ω

∫
YF

∇yφ · ∇yψ = ρgiω

∫
Ω

∫
YF

∇yψ · u ∀ψ ∈ D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)
.
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Since u does not depend on the y variable and YF is strictly included in Y, the
previous equation implies that ∇yφ = iωu a.e. in Ω × YF . This determines φ|YF

uniquely as a function of u. Remember that we have initially chosen the origin as the
barycenter of YF ; hence this yields

(3.11) φ = iωy · u and ∇yφ = iωu on Ω× YF .

Remark 3.6. We see that the limit velocity of the fluid coincides locally with the
limit velocity of the structure. This result is mainly a consequence of the completely
disconnected geometry of the fluid domain: since the pores are closed, there is no
independent motion of the gas with respect to the structure.

3.1.3. Elastic cell problem. From (3.8), by taking v = 0 and ψ = 0, we obtain
that for almost every x ∈ Ω and for all v1 ∈ C∞

# (Y),
(3.12)∫

YS

(
σx(u) + σy(u

1)
)
: ey(v1) =

ρgc
2

|YF |

(∫
YF

divxu+ divyu
1dy

)(∫
ΓF

v1 · nS

)
.

The strong formulation associated with (3.12) is⎧⎪⎪⎪⎨⎪⎪⎪⎩
−divy

(
σy(u

1)
)
= divy (σx(u)) in YS ,

σy(u
1)nS − ρgc

2

|YF |

(∫
ΓF

u1 · nS

)
nS = ρgc

2divx(u)nS − σx(u)nS on ΓF ,

u1 is Y-periodic.

Remark 3.7. Note that there is no dependence on ω in the structure cell problem,
so the homogenized material’s elastic behavior is independent of frequency.

Remark 3.8. The cell problem is nonstandard as there is a nonlocal term in the
boundary conditions, as in the static case [9], which corresponds to the case ω = 0.

Since this problem is linear, we are going to take advantage of the superposition
principle to express u1 in terms of u. We define the classical auxiliary functions
pkl ∈ H1(YS) (see, e.g., [10]) by

(3.13) pkl(y) =
1

2

(
yke

l + yle
k
)

for 1 ≤ k, l ≤ d,

where the vectors ek for 1 ≤ k ≤ d are the unit vectors of Rd whose components
are ekl = δkl for 1 ≤ k, l ≤ d. Using the superposition principle in the local problem
(3.12), we decompose u1|Ω×YS as follows:

(3.14) u1(x,y) = ex(u)kl(x)χ
kl(x,y) for x ∈ Ω, y ∈ YS ,

where the functions χkl ∈ L∞(Ω, H1
#(YS ,R)/R), 1 ≤ k, l ≤ d, are solutions of the cell

problems

(3.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−divy

(
σy(p

kl + χkl)
)
= 0 in YS ,

σy(p
kl + χkl)nS − ρgc

2

|YF |

(∫
ΓF

(pkl + χkl) · nS

)
nS = 0 on ΓF ,

χkl is Y-periodic.

Remark 3.9. The functions χkl are called the correctors for the homogenized
problem (3.8). The cell problems (3.15) have only real coefficients and data; therefore,
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the family of correctors (χkl)kl are in fact Rd-valued functions by opposition to the
complex-valued displacement. This will be important when computing the homogenized
coefficients; see Proposition 3.11.

The necessary compatibility conditions for existence of solutions of (3.15), or more
generally for any problem of the form

(3.16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−divy (σy(u)) = F in YS

σy(u)nS − ρgc
2

|YF |

(∫
ΓF

u · nS

)
nS = G on ΓF

u is Y-periodic,

read
∫
YS

F+
∫
ΓF

G = 0, since
∫
ΓF

nS = 0. In our case, we can write∫
YS

divy

(
σy(p

kl)
)
+

∫
ΓF

(
ρgc

2divy(p
kl)nS − σy(p

kl)nS

)
=

∫
ΓF

σy(p
kl)nS −

∫
ΓF

σy(p
kl)nS = 0.

Thus, the compatibility conditions are satisfied, and the local problems (3.15) as well
as (3.12) are well posed. Notice that the function pkl +χkl, which appears in the cell
problem (3.15), describes the microstructure’s response to a spatially slowly varying
strain.

3.1.4. Homogenized problem. Thanks to the expressions of φ given by (3.11)
and of u1 parameterized by u given by (3.14), we can eliminate u1 and φ from the
two-scale system (3.8) to obtain the homogenized variational formulation satisfied by
the displacement u. We obtain, for any v ∈ D(Ω),

(3.17)

∫
Ω

−(|YS |ρs + |YF |ρg)ω2u · v +

(∫
YS

σx(u) + ex(u)klσy(χ
kl)

)
: ex(v)

+ ρgc
2

∫
Ω

(
|YF |divxu− ex(u)kl

∫
ΓF

χkl · nS

)
divxvdx

=

∫
Ω

(|YS |f + |YF |∇g) · v.

Now, this formulation motivates the introduction of the homogenized coefficients, re-
spectively the homogenized density, elastic tensor, and stress of the effective material:

ρ∗ = |YS |ρs + |YF |ρg,(3.18)

A∗
ijkl =

∫
YS

(
σy(p

kl + χkl)ij − ρgc
2δijdivyχ

kl
)
+ ρgc

2|YF |δijδkl,(3.19)

σ∗(u) =
(
A∗

ijkle(u)kl
)
1≤i,j≤d

= A∗e(u).(3.20)

Finally, by the density of test functions v ∈ D(Ω) in H1
0(Ω), u is a solution of the

following variational problem on H1
0(Ω): find u ∈ H1

0(Ω) such that for any v ∈ H1
0(Ω),∫

Ω

−ρ∗ω2u · v +A∗e(u) : e(v) =
∫
Ω

(|YS |f + |YF |∇g) · v.(3.21)

Remark 3.10. Let us make some comments on the properties of the homogenized
problem (3.21). From the definitions of the effective density (3.18) and of the homog-
enized elastic tensor (3.19) the effects of the fluid on the structure are the following:



64 P. CAZEAUX, C. GRANDMONT, AND Y. MADAY

• An added mass effect, so that the effective density (3.18) of the homogenized
porous medium is also its averaged density.

• A mean pressure term, which is nonlocal in the microscale cell problems (3.15)
and appears in the effective elastic tensor (3.19) as a contribution to the com-
pressibility factor of the material. This is the consequence of the phenomenon
described in Remark 2.2 for finite values of ε: the pressure term in each hole
results in an effect which is nonlocal at the microscopic scale but local at the
macroscopic scale. In fact, this is the same effective tensor that was found
in [9] in the static case (modulo a different air compressibility factor, because
we have used here a different state law for the gas).

On the whole, the resulting homogenized model (3.21) behaves like a linearized elastic
material. This is in agreement with the experimental data since low-frequency sound
propagates in the lungs without much attenuation [36].

Let us study the properties of problem (3.21). The sesquilinear form that appears
on the left-hand side is not coercive. However, the following ellipticity properties ofA∗

show that the homogenized problem keeps much of the operator structure of linearized
elasticity.

Proposition 3.11. The fourth-order real-valued tensor A∗(x) defined in (3.19)
has the following properties:

1. (Symmetry) The coefficients of A∗ satisfy the property

A∗
ijkl = A∗

ijlk = A∗
klij .(3.22)

2. (Strong ellipticity) There exists κ > 0 depending only on μ0 and the geometry
of the cell Y such that for any x ∈ Ω and any d× d real symmetric matrix ξ,

A∗(x)ξ : ξ ≥ κξ : ξ.(3.23)

3. (Definite positiveness)

A∗(x)ξ : ξ = 0 ⇔ ξ = 0.(3.24)

A proof of this result is provided in the appendix. We are going to apply the
Fredholm theory to the homogenized problem to show that there is a discrete set of
resonant frequencies ω for this limit problem. We denote by ( · , · )L2 the L2-scalar
product in L2(Ω).

Definition 3.12. Let B be the unbounded operator L2(Ω) → L2(Ω) such that

(3.25)

{
D(B) =

{
u ∈ H1

0(Ω),−div (A∗(x)e(u)) ∈ L2(Ω)
}
,

Bu = −div (A∗(x)e(u)) ,

and let b be the associated sesquilinear form in H1(Ω); that is,

(3.26) b(u,v) =

∫
Ω

A∗(x)e(u) : e(v) = (Bu,v)L2 .

Define the family of operators Aω = B − ρ∗ω2I with D(Aω) = D(B), and the associ-
ated family of sesquilinear forms aω appearing on the left-hand side of (3.21):

(3.27) aω(u,v) =

∫
Ω

−ρ∗ω2u · v +A∗(x)e(u) : e(v) = (Aωu,v)L2 .

Then, we have the following well-known properties, since B is elliptic.
Proposition 3.13. The following hold:
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1. B is self-adjoint and has compact resolvent.
2. The eigenvalues of B form a sequence of nonnegative real numbers converging

to +∞ (λn)n≥0, 0 < λ0 < · · · < λn < · · · .
3. Aω is invertible iff ρ∗ω2 /∈ {λn}n≥0.
4. If ρ∗ω2 = λn, the solutions of Aωu = 0 form a subspace Vn of finite dimen-

sion dn for which there exists an orthonormal basis of eigenvectors of B, (φk)1≤k≤dn ,

and Aωu = f is solvable iff (φk, f)L2 = 0 ∀1 ≤ k ≤ dn.
Remark 3.14. In the case of Neumann boundary conditions, the main difference

is that λ0 = 0 is an eigenvalue of the problem (with multiplicity d0 = 6) corresponding
to the infinitesimal rigid displacements. Except for this, everything else stands. In-
deed, the homogenization process and A∗ do not depend on the boundary conditions.

3.2. Proof of the a priori bounds and Theorem 3.1. We are now going to
prove Theorem 3.1, making use of our knowledge of the homogenized system (3.21)
and its eigenvalue set. Let us define the spaces Vε = H1

0(ΩS,ε) × H1
mean(ΩF,ε) and

Xε = L2(ΩS,ε)×L2(ΩF,ε); using the standard Riesz representation, we identify Vε ⊂
Xε = X ′

ε ⊂ V ′
ε , where X ′

ε denotes the space of antilinear forms on Xε. Let ω ∈ R be
fixed such that ρ∗ω2 /∈ {λn}n≥0. For any ε > 0, problem (2.21) can be written as:
find (uε, φε) ∈ Vε such that for any (vε, ψε) ∈ Vε,

(3.28) aεω ((uε, φε); (vε, ψε)) = bεω(vε, ψε),

where aεω is defined by (2.32) and bεω by (2.33). Note that (bεω)ε>0 is uniformly
bounded in V ′

ε (see (2.37)) but not in Xε as is usually the case. The sesquilinear form
aεω, Hermitian and continuous on Vε, is naturally associated with both

• a bounded operator Ãε
ω: Vε → V ′

ε , defined by

〈Ãε
ω(uε, φε); (vε, ψε)〉V ′

ε ,Vε
= aεω ((uε, φε); (vε, ψε)) ∀(vε, ψε) ∈ Vε,

• an unbounded symmetric operator Aε
ω : Xε → Xε, defined by

D(Aε
ω) = {(vε, ψε) ∈ Vε s.t. Ãε

ω(vε, ψε) ∈ Xε} and Aε
ω ≡ Ãε

ω on D(Aε
ω).

Let Idε denote the identity operator in Xε. Thanks to Lemma 2.10, there exists a
constant C(ω) > 0 such that the shifted operator Aε

ω +C(ω)Idε is coercive uniformly
with respect to ε, self-adjoint, and has a bounded, compact, self-adjoint inverse, de-
noted Kε

ω. Let us also define an extended operator K̂ε
ω from L2(Ω)× L2(Ω) to itself,

bounded, compact, and self-adjoint, such that K̂ε
ω(wε, γε) = (t̂ε, ν̂ε), where the ex-

tension operators ·̂ are defined in section 2.4 and (tε, νε) ∈ Vε is given by

(3.29) (Aε
ω + C(ω)Idε)(tε, νε) = (wε|ΩS,ε , γε|ΩF,ε ).

Let (wε, γε)ε>0 be a sequence which converges weakly in Xε to (w, γ). Problem (3.29)
is equivalent to the following variational formulation: for any (vε, ψε) ∈ Vε,

aεω ((tε, νε); (vε, ψε))+C(ω)

(∫
ΩS,ε

tε · vε +

∫
ΩF,ε

νε · ψε

)
=

∫
ΩS,ε

wε ·vε+

∫
ΩF,ε

γε ·ψε.

Following the steps of section 3.1, we obtain that the sequence of extended solutions
(t̂ε, ν̂ε) = K̂ε

ω(wε, γε) converges weakly in Vε (and strongly in Xε) to K0
ω(w, γ), where
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K0
ω is the following bounded, compact, self-adjoint operator:

K0
ω : L2(Ω)× L2(Ω) → L2(Ω)× L2(Ω)

(w, γ) �→ (t0, 0), where t0 is the unique solution to

(Aω + C(ω)Id)t0 = |YS |w,

with Aω given in Definition 3.12. The sequence of operators (K̂ε
ω)ε>0 thus converges

uniformly to K0
ω and is collectively compact. Also, it is easy to check that Kε

ω and

K̂ε
ω have the same spectrum, denoted σ(Kε

ω). Then we have the following result (see,
e.g., [6, 33, 3]).

Lemma 3.15. The set σ(Kε
ω) converges uniformly in C to σ(K0

ω).
Now, (3.28) is equivalent to solving

(3.30)
(
Ãε

ω + C(ω)Idε

)(
Idε − C(ω)Kε

ω

)
(uε, φε) = bεω.

Since ρ∗ω2 /∈ {λn}n≥0, C(ω)−1 does not belong to σ(K0
ω). From Lemma 3.15 we

obtain immediately that the eigenvalues of Kε
ω are uniformly bounded away from

C(ω)−1 for ε > 0 small enough. Then the bounded, self-adjoint operator Idε−C(ω)Kε
ω

is invertible, and this inverse is uniformly bounded with respect to ε. By the Lax–
Milgram lemma, (3.30) has a unique solution for ε > 0 small enough. In addition, the
solutions (uε, φε) satisfy uniform a priori estimates in Xε, as

• Ãε
ω +C(ω)Idε is uniformly coercive and (bεω)ε>0 is uniformly bounded in V ′

ε ,

• (Idε − C(ω)Kε
ω)

−1
is uniformly bounded on Xε for ε small enough.

Hence problem (2.21) is well-posed and, thanks to (2.40), we deduce uniform a priori
estimates in H1

0(ΩS,ε)×H1
mean(ΩF,ε). This ends the proof of Theorem 3.1.

We have in fact proved the following result, which completes Theorem 3.1.
Theorem 3.16. Let 0 < λ0 ≤ · · · < λn ≤ · · · be the ordered sequence of

eigenvalues of the homogeneous variational problem on H1
0(Ω),

−ρ∗λ2u− div (σ∗(u)) = 0.

Then, for any ω ∈ R such that ρ∗ω2 /∈ {λn}n∈N, there exists ε0(ω) and C(ω) in
R∗

+ such that for 0 < ε < ε0(ω) problem (2.21) has a unique solution, and for any
data f ∈ L2(Ω) and g ∈ H1(Ω) the solution (uε, φε) satisfies the following a priori
estimate:

‖uε‖2H1(ΩS,ε)
+ ‖φε‖2H1(ΩF,ε)

≤ C(ω)
(
‖f‖2L2(Ω) + ‖g‖2H1(Ω)

)
.

3.3. Convergence theorem and homogenized problem. We can now sum
up the asymptotic behavior of the solutions in the following theorem.

Theorem 3.17 (Two-scale homogenization of problem (2.21)). Let f ∈ L2(Ω)
and g ∈ H1(Ω). Let the frequency ω ≥ 0 be such that ρ∗ω2 is in the resolvent set of
B; then for ε small enough the problem (2.21) is well posed.

Moreover the solutions (uε, φε) of the problem (2.21) two-scale converge in the
sense that

χS,εûε � uχS ,

φ̂ε � 0, χF,ε∇φ̂ε � uχF ,
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where u is the solution of the homogenized problem,

−ρ∗ω2u− div(σ∗(u)) = |YS |f + |YF |∇g on Ω,(3.31)

u = 0 on ∂Ω,

and the coefficients σ∗ and ρ∗ can be explicitly computed using formulas (3.18), (3.19),
and (3.20).

Proof. The only result of this theorem which we have not yet proved is the two-

scale convergence of the whole sequences χS,εûε, χF,εφ̂ε, and not only subsequences.
This is a consequence of the uniqueness of the solution of the homogenized problem
(3.31), since every subsequence then converges to the same limit.

4. Numerical results. It is possible to numerically study the speed of sound
(as a compression wave in an elastic medium; see [39]) in the homogenized material
for various sets of parameters. The homogenized coefficients were computed using
a hexagonal cell geometry to model an alveolus, which results in an isotropic ho-
mogenized effective medium, using FreeFem++ [29]. Results are presented in Table
1.

Table 1

Speed of sound in the homogenized parenchyma for a few parameter choices. The coefficient ρ∗
is defined in (3.18), while λ∗ and μ∗ are the classical Lamé coefficients of the homogenized effective
medium defined by λ∗ = A∗

1122 = A∗
2211 and μ∗ = A∗

1212 = A∗
2121 .

Air proportion Density (kg/m3) Lamé parameters, air pressure (Pa) Sound speed (m/s)

|YF | ρs ρg λ μ P0

√
λ∗+2μ∗

ρ∗

0.85 103 1.3 109 105 105 34.1

0.85 103 0 109 105 0 11

0.85 103 1.3 109 109 105 871

0.5 103 1.3 109 105 105 22.6

In the first case, we note that by using realistic parameters (see, e.g., [39]), we
recover a realistic speed of sound close to that obtained by Wood’s formula (1.1)
derived by Rice [36]. Note that sound propagation in this porous material is very
slow, much slower than in either air (330 m/s) or soft tissue (approximately 1500
m/s). The second case, where the pores are void of air, shows that the absence of gas
in the bubbles significantly softens the material as in [9], which leads to a decrease of
the speed of sound. Next, when the shear modulus μ takes the value 109 Pa, which
corresponds to a stiff rubbery material instead of a soft living tissue (μ ≈ 105 Pa), the
material is stiffened and the sound speed greatly increases. Finally, in the last case
we see that the speed of sound is lower when the proportion of air in the material
diminishes from 85% to 50%. This is mainly due to the much increased density of
the homogenized material, since it is known [9] that this material is slightly stiffer for
smaller air bubbles (when |YF | → 0).

5. Conclusion. We have obtained a homogenized system of equations for mod-
eling sound propagation in a foam-like material such as the lung tissue. Starting from
a model coupling elastic and acoustic equations, we have obtained at the limit a lin-
earized elastic-like medium. In particular, we have shown that the resonances of the
material do not change the homogenized model: in fact, the resonances of the real
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material, for a given ε > 0, are shown to be close to the resonances of the homogenized
material.

Obviously, this model is limited in its physical description of the lung tissue, but
it is nevertheless valid for the low-frequency range since we recover the model intro-
duced by Rice [36]. However, for higher frequencies some of the phenomena we have
neglected may become more important, particularly viscous attenuation or scattering
by the alveoli as the wavelength becomes smaller [28]. Indeed, it is well known that
sounds of a frequency above 1 kHz are quickly attenuated when propagating through
the parenchyma [35, 37]. We refer to [17] for the numerical study of another model
showing some memory effects due to a viscoelastic microstructure.

Appendix.
Proof of Proposition 3.11. The proof of the first point is standard and follows

exactly the same lines as in [2, 9]. Consequently, we refer to these works for details.
We will focus only on the second point. Note that the third item follows directly

from the ellipticity property.
Let us prove the uniform coercivity. Since A∗(x) is positive definite in a finite-

dimensional space, it is known that there exists a scalar κ(x) > 0 such that A∗(x)ξ :
ξ ≥ κ(x)ξ : ξ. However, κ(x) depends both on the geometry and on the Lamé
coefficient μ(x,y), in a way that is not clear at this point. We are going to prove a
uniform lower bound for κ(x), independent of x and of the continuity properties of λ
and μ, that makes these dependencies explicit. Let us define the function

φξ = ξijφ
ij .

We have

(A.1) A∗(x)ξ : ξ = a#y (φξ(x),φξ(x)) ≥ μ0‖ey(φξ(x))‖2L2(YS).

Let z1, . . . , zd be a basis of Z (and Rd) such that for d faces of the unit cell Y, denoted
by F1, . . . , Fd, the translated surfaces F1 + z1, . . . , Fd + zd are also faces of YF . For
i = 1, . . . , d and any y ∈ Fi, by the Y-periodicity of χkl we have

ξzi = pξ(zi) = φξ(y + zi)− φξ(y).

Because the trace operator is continuous from H1(YS) on Fi and Fi + zi, there exists
a constant C depending only on YS , YF such that

‖ξzi‖ ≤ C‖φξ‖H1(YS).

Since the zi form a basis of Rd, we have√
ξ : ξ < C sup

i=1,...,d
‖ξzi‖ ≤ C‖φξ‖H1(YS).

Here, C depends only on YS , YF . To conclude, we need to use the following special
version of the Korn inequality for the space on which the φξ live. We recall the

definition of the functions pkl ∈ H1(YS):

(A.2) pkl(y) =
1

2

(
yke

l + yle
k
)

for 1 ≤ k, l ≤ d,

where the vectors ek for 1 ≤ k ≤ d are the unit vectors of Rd whose components are
ekl = δkl for 1 ≤ k, l ≤ d.
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Lemma A.1. Consider the space of real-valued functions on YS defined as follows:

(A.3) V = Span
{
(pkl)1≤k,l≤d

}
+H1

#(YS ,R)/R
d ⊂ H1(YS ,R)/R

d,

where the family (pkl)1≤k,l≤d is defined by (A.2). Then the following Korn inequality
holds in V: there exists C > 0 depending only on the geometry of YS such that

(A.4) ‖φ‖H1
#(YS) ≤ C‖e(φ)‖L2(YS) ∀φ ∈ V.

Let us conclude before giving a proof of this lemma. Combining estimates (A.1)
and (A.4), we have proved that for some constant C > 0 depending only on YS , YF ,

A∗(x)ξ : ξ > Cμ0ξ : ξ ∀x ∈ Ω.

Proof of Lemma A.1. We follow the steps of the proof of Theorem 6.3-4 in [18],
with some modifications due to the special vectorial space V we are dealing with.

Step 1. We begin by showing that V is a closed subspace of H1(YS)/R
d. H1

#(YS)

is closed in H1(YS) since it is the closure of C∞
# (YS)

d in H1(YS).

Since the space of constant functions, denoted Rd for simplicity, is a subspace of
H1

#(YS) with finite dimension, it is closed both inH1(YS) and inH1
#(YS). Identifying

the quotient spaces H1(YS)/R
d and H1

#(YS)/R
d with the orthogonal complement of

Rd in each space, it is clear that H1
#(YS)/R

d is a closed subspace of H1(YS)/R
d.

Step 2. Let M be the orthogonal complement of H1
#(YS)/R

d in H1(YS)/R
d. For

each choice of k, l, 1 ≤ k, l ≤ d, we can decompose each pkl according to the direct
sum H1(YS)/R

d = M⊕H1
#(YS)/R

d:

pkl = pkl
0 +ψkl, pkl0 ∈ M, ψkl ∈ H1

#(YS)/R
d.

Let (φn) be a sequence of elements in V such that φn → φ in H1(YS)/R
d. We have

a unique decomposition

φn = αn
klp

kl
0 +ψn, αn ∈ R

d×d, ψn ∈ H1
#(YS)/R

d,

and ‖φn‖2H1(YS) = ‖
∑

kl α
n
klp

kl
0 ‖2H1(YS) + ‖ψn‖2H1(YS), so (αn

klp
kl
0 ) is bounded. Since

the space Span{(pkl
0 )1≤k,l≤d} has a finite dimension, there exists p ∈ Span{(pkl

0 )1≤k,l≤d}
such that, up to a subsequence,

αn
klp

kl
0 → p.

Since H1
#(YS)/R

d is closed in H1(YS)/R
d and ψn converges to ψ in H1(YS)/R

d,

ψn → ψ ∈ H1
#(YS)/R

d.

Finally, φ = p+ψ ∈ V and V is closed as a subspace of H1(YS)/R
d.

Step 3. Let us show that V contains no infinitesimal rigid displacement of a solid
body. Suppose we have two vectors a,b ∈ Rd such that

V � a+ b× y = Bklp
kl +ψ, B ∈ R

d×d, ψ ∈ H1
#(YS).

Recall that pkl is defined by (A.2). Since pkl, b×y, and a are all polynomial functions
in the variable y, ψ is one too. Then ψ is a periodic polynomial function, and it has
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to be equal to a constant c. Then a = c because pkl(0) = 0; see definition (A.2).
Now, we have

b× y =
1

2
Bklyke

l +
1

2
Bklyle

k =
1

2
(B +BT )y.

Observe that the cross product on the left can be represented only by a skew-
symmetric matrix, while we have a symmetric matrix on the right of the identity.
Thus both matrices are in fact zero. This means that b = 0, and since we have taken
the quotient by the constants in definition (A.3), V contains no infinitesimal rigid
displacement of a solid body aside from {0}.

Step 4. Suppose that assertion (A.4) is wrong. Then, there exists (φn), a sequence
of elements of V, such that

‖φn‖H1(YS) = 1 ∀n ∈ N and lim
n→∞ ‖e(φn)‖L2(YS) = 0.

Using the Rellich–Kondrasov theorem, there exists a subsequence (still denoted by
n) such that φn converges strongly in L2(Ω). Since e(φn) also converges strongly in
L2(Ω), we deduce that φn is a Cauchy sequence with respect to the norm

φ �→
√
‖φ‖2L2(YS) + ‖e(φ)‖2L2(YS).

By the standard Korn inequality in H1(YS), this norm is equivalent to the norm
‖ · ‖H1(YS) on H1(YS). Since V is closed and therefore complete, there must exist
φ ∈ V such that φn converges to φ strongly. This limit φ satisfies

‖e(φ)‖L2(YS) = lim
n→∞ ‖e(φn)‖L2(YS) = 0.

Thus φ is an infinitesimal rigid displacement of a solid body and belongs to V, so
φ = 0. This is a contradiction, since ‖φn‖H1(YS) = 1 ∀n ∈ N.
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