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Abstract

The recent fabrication of weakly interacting incommensurate two-dimensional
lattices [9] requires an extension of the classical notion of the Cauchy-Born strain
energy density since these atomistic systems are not periodic. In this paper, we
rigorously formulate and analyze a Cauchy-Born strain energy density for weakly
interacting incommensurate one-dimensional lattices (chains) as a large body limit
and we give error estimates for its approximation by the popular supercell method.

Introduction

Graphene has recently been isolated as a free-standing two-dimensional hexagonal lattice
[4]. Its continuum mechanical deformation can be modeled by the classical Cauchy-Born
strain energy density [2,3,18], which is defined as the atomistic potential energy density
of the unit cell for a homogeneously deformed lattice or multilattice [8, 15,17,21].

Even more recently, weakly interacting incommensurate two-dimensional lattices
such as single layer molybdenum disulfide (MoS2) on graphene have been fabricated
with the potential for improved design of electronic properties [9]. The classical Cauchy-
Born rule can be used to link the macroscopic mechanical deformations to atomic dis-
placements in independent monolayers such as graphene since they are multilattices,
see e.g. [1], but an extension of the classical Cauchy-Born energy density is needed to
accurately model the deformation of few layers stackings of weakly interacting incom-
mensurate two-dimensional lattices since these atomistic systems have no periodicity,
either due to differences in lattice constants or to a rotation angle between the respec-
tive lattices.

The Cauchy-Born strain energy density has been used to coarse-grain the deformation
of a lattice away from defects in hybrid atomistic-to-continuum methods [7,14–16]. The
extension of these hybrid atomistic-to-continuum methods to incommensurate systems
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introduces the additional errors analyzed in this paper since the incommensurate Cauchy-
Born strain energy density must be approximated on supercells.

In this work, we consider some simple one-dimensional toy models as a setting in
which to rigorously formulate and analyze a Cauchy-Born strain energy density for
weakly interacting incommensurate two-dimensional lattices as a large body limit. In
particular, we show that the convergence with respect to system size of the energy density
of incommensurate system is slow and very nonuniform, but higher convergence rates
can be obtained for numerical computations when the system size is the denominator of
a rational approximation of the irrational (incommensurate) ratio of the lattice spacing
of the two weakly interacting chains. We also give error estimates for the popular su-
percell approximation which is based on approximating an incommensurate multi–layer
system by a sequence of periodic configurations [12,20].

1 An elementary model

1.1 Finite system

Let us first study a simple problem presented in Figure 1.1. We consider two parallel
one-dimensional chains of atoms of approximate length L ≥ 1, characterized by their
isolated ground state lattice constants, respectively 1 for chain C1 and α for chain Cα,
where α is an irrational real number in (0, 1). The chains are separated by a fixed
distance. In each chain, atoms interact via a smooth nearest-neighbor atomic potential,
respectively ψ1(∆s) and ψα(∆s) where ∆s is the distance between the atoms.

The two chains are also interacting through a long-range smooth pairwise atomic
potential, such as the Lennard-Jones or Morse potentials. This potential can be rewritten
as Vint(∆s) where ∆s is the abscissa difference between two atoms of each chain along
the direction of the chains, not their respective distance. The goal is to compute the
elastic resistance of the coupled system when the left end at 0 is held fixed, while a force
is applied at the right end at L.

L0

α

1

h

Strong nearest-neighbor interaction

Weak inter-atomic potentials

Figure 1: Sketch of a system of weakly coupled incommensurate atomic chains.

We assume that the intra-chain interaction (modeling covalent bonds) is much stronger
than the inter-chain interaction (modeling Van-der-Waals forces). We thus suppose that
the atoms in each chain are always equally spaced and the chains deform uniformly.
When the applied force moves the right end of the system from L to (1 + ε)L, the atom
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positions are given by:{
S1
i = (1 + ε)i for 0 ≤ i ≤ [L] for atoms in the first chain,

Sαj = (1 + ε)αj for 0 ≤ j ≤ [L/α] for atoms in the second chain,
(1.1)

where [·] denotes the closest integer to the real argument. Note that the lattice constants
remain incommensurate in the deformed state since their ratio remains α. Thanks to
this rigidity assumption, the rescaled potential energy of the coupled system per unit
length is given exactly by:

E(ε;L) =
1

L

(
[L]ψ1(1 + ε) + [α−1L]ψα(α+ εα)

)
+

1

L

[L]∑
i=0

[α−1L]∑
j=0

Vint ((αj − i)(1 + ε)) .
(1.2)

Note that the elastic constant per unit length of the system can be deduced from (1.2)
as

K(εeq;L) =
∂2E
∂ε2

(εeq(L);L) (1.3)

where εeq(L) corresponds to a minimum of the function E(ε;L), i.e., characterizes a
ground state of the coupled system.

1.2 Limit behavior.

Let us now study the elastic behavior of the system in the limit L→∞, and in particular
the definition of a length-independent elastic constant as the limit of (1.3). We will
assume that the long-range potential Vint is smooth and decays fast enough at infinity:
for a given η > 0,

Vint(s) = O
(

1

|s|1+η

)
, V ′int(s) = O

(
1

|s|2+η

)
and V ′′int(s) = O

(
1

|s|3+η

)
as s→ ±∞.

(1.4)

Remark 1.1. Note that this forbids us to consider electrostatic interactions.

We will also assume that the intra-chain potentials ψ1(s) and ψα(s) are smooth on
R \ {0} and are bounded as well as their derivatives when s goes to +∞.

Remark 1.2. We could also easily study, e.g., convex potentials that blow up as s
goes to +∞. In this case, the minima εeq(L) would remain bounded in some interval
[εmin, εmax]. The estimates and convergence analysis that follows would then apply in
this compact interval.
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We will further assume that ψ1(s) and ψα(s) blow up as s→ 0, i.e., for some s0 > 0,

∀s ∈ (−s0, s0), ψ1(s), ψα(αs) ≥ 2

|s|

∫
R
|Vint(t)|dt. (1.5)

This technical assumption allows us to avoid situations where εeq(L) → −1, i.e., the
chains collapse, as shown by the following result.

Lemma 1.1. If (1.4) and (1.5) are satisfied and L is large enough, there exists εmin >
−1 such that:

εmin ≤ εeq(L), (1.6)

where εeq(L) is any minimizer of E(ε, L) defined by (1.2).

Proof. Since Vint is smooth and (1.4) is satisfied, the Riemann sum

(1 + ε)
∑
i∈Z
|Vint (s− i(1 + ε))|

exists for all s ∈ R and converges uniformly to
∫
R |Vint(t)|dt as 1 + ε goes to zero. As a

consequence, there exists ε0 > −1 independent of L such that for ε ∈ (−1, ε0), we have
for all L ≥ 1: ∣∣∣∣∣∣

[L]∑
i=0

Vint (s− i(1 + ε))

∣∣∣∣∣∣ ≤ 2

1 + ε

∫
R
|Vint(t)|dt.

Replacing this estimate in (1.2) and using (1.5), we find that for ε ∈ (−1,min(ε0, s0−1))
and L large enough,

E(ε;L) ≥ 2

1 + ε

(
[L] + [α−1L]

L

∫
R
|Vint(t)|dt−

[α−1L] + 1

L

∫
R
|Vint(t)|dt

)
≥ 1

1 + ε

∫
R
|Vint(t)|dt.

On the other hand, assumption (1.4) implies that E(0;L) is bounded from above for
L ≥ 1. Indeed, the series

s 7→
∞∑

i=−∞
|Vint (s− i)|

is absolutely convergent and defines a smooth 1-periodic function, in particular it is
bounded. Substituting in (1.2), we find

E(0;L) ≤ 1

L

(
[L]ψ1(1) + [α−1L]ψα(α)

)
+

[α−1L] + 1

L

∥∥∥∥∥
∞∑

i=−∞
|Vint (· − i)|

∥∥∥∥∥
∞

≤ C,

where C > 0 is some constant independent of L. Hence, there exists εmin > −1 such
that for ε ∈ (−1, εmin), E(ε;L) > E(0;L) for all L large enough. This proves (1.6).
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Now, due to Lemma 1.1, we can restrict our attention to those values of ε which
belong to [εmin,∞). Thanks to (1.4), the absolutely convergent series

Vper : (s, ε) 7→
∞∑

i=−∞
Vint ((s− i)(1 + ε)) (1.7)

defines a smooth function Vper ∈ C2(R× [εmin,∞)) which is 1-periodic in the s variable.
We then consider the approximate periodized energy per unit length

Ẽ(ε;L) = ψ1(1 + ε) + α−1ψα(α+ εα) + α−1
1

[α−1L] + 1

[α−1L]∑
j=0

Vper ({αj}, ε) , (1.8)

where {·} denotes the fractional part of a real number. The following lemma shows
that (1.8) defines a good approximation to the exact energy.

Lemma 1.2. If (1.4) holds, there exists C > 0 independent of L and ε such that for
ε > εmin and n ∈ {0, 1, 2}:∣∣∣∣∣∂nẼ∂εn (ε;L)− ∂nE

∂εn
(ε;L)

∣∣∣∣∣ ≤

C/Lη if 0 < η < 1,

C · ln(L)/L if η = 1,

C/L if η > 1.

(1.9)

Proof. Thanks to (1.4), there exists C > 0 independent of L and ε such that the potential
Vper and its first derivatives, n ∈ {0, 1, 2}, satisfy for 0 < s < L:∣∣∣∣∣∣∂

nVper
∂εn

(s, ε)−
[L]∑
i=0

(s− i)nV (n)
int ((s− i)(1 + ε))

∣∣∣∣∣∣
≤ C

|1 + ε|1+η
max

(
1,

1

|s|η
+

1

|L− s|η

)
.

(1.10)

Taking the difference between (1.2) and (1.8) and using (1.10), we obtain immedi-
ately (1.9).

As a consequence, the difference between the two energies Ẽ −E converges uniformly
to zero in C2([εmin,∞)) as L → ∞. Therefore, it suffices to study the limit behavior
of Ẽ to determine the averaged elastic properties of the coupled system of chains in the
limit L→∞. It is well-known [13] that the sequence {αj}j∈N is equidistributed in [0, 1)
for irrational α. This proves the following proposition.

Proposition 1.3 (Pointwise convergence of elastic energies). Let

E∞(ε) = ψ1(1 + ε) + α−1ψα(α+ εα) + α−1
∫ 1

0
Vper (s, ε) ds. (1.11)

Then, for all ε ≥ εmin, n ∈ {0, 1, 2},

lim
L→∞

∂nE
∂εn

(ε;L) = lim
L→∞

∂nẼ
∂εn

(ε;L) =
∂nE∞

∂εn
(ε). (1.12)
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The energy functional E∞(ε) can thus be considered as the Cauchy-Born elastic
energy density of the coupled system of chains, relating the strain ε to the potential
energy of the system.

2 Convergence analysis

The convergence result obtained in Proposition 1.3 is not enough to ensure either the
uniform convergence of the energy functionals E and Ẽ , nor the convergence of their
minimizers (Γ-convergence). To prove these statements, and to obtain more precise
error estimates useful e.g. for the numerical computation of the quantities of interest at
the macroscopic level, we need some results from discrepancy theory which we recall in
the following.

2.1 A primer on discrepancy and Birkhoff sums

Let ω = (xn)n≥1 be a given sequence of real numbers in I. For a positive integer N and
a subset E of I, let the counting function A(E;N ;ω) be defined as the number of terms
xn for 1 ≤ n ≤ N for which {xn} ∈ E. Where no confusion is possible, we write A(E;N)
instead of A(E;N ;ω).

Definition 2.1 (Discrepancy). Let x1, . . . , xN be a finite sequence of real numbers in I.
The number

DN = DN (x1, . . . , xN ) = sup
0≤α<β≤1

∣∣∣∣A([α, β);N)

N
− (β − α)

∣∣∣∣ (2.1)

is called the discrepancy of the given sequence. For an infinite sequence ω of real numbers,
or for a finite sequence containing at least N terms, the discrepancy DN (ω) is meant to
be the discrepancy of the initial segment formed by the first N terms of ω.

An alternate definition is given by

Definition 2.2. For a finite sequence of real numbers x1, . . . , xN in I, we define

D∗N = D∗N (x1, . . . , xN ) = sup
0<α≤1

∣∣∣∣A([0, α);N)

N
− α

∣∣∣∣ . (2.2)

This definition is extended as the previous one to infinite sequences. The discrepan-
cies DN and D∗N are related by the following inequality, see [13]:

D∗N ≤ DN ≤ 2D∗N . (2.3)

Theorem 2.3 (Koksma’s inequality, [13]). Let φ be a function on I of bounded variation
‖φ‖TV, and suppose we are given N points x1, . . . , xN in I with discrepancy D∗N . Then,∣∣∣∣∣ 1

N

N∑
i=1

φ(xi)−
∫ 1

0
φ(x)dx

∣∣∣∣∣ ≤ ‖φ‖TVD
∗
N . (2.4)
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In general, the discrepancy of the sequence generated by iterating an irrational ro-
tation, xi = {iα} ∈ T with α ∈ R \ Q, goes to zero as N goes to infinity thanks to
the ergodic theorem. However this rate of convergence could be arbitrarily slow and
depends in general strongly on the number theoretical properties of α. A more precise
convergence rate can be deduced in an average sense from the following result owing to
Kesten [11]:

Theorem 2.4. Let DN (α) be the discrepancy of the sequence ({iα})0≤i<N ⊂ T for
α ∈ [0, 1], N ∈ N. Then:

N ·DN (α)

logN · loglogN
→ 2

π2
in measure on [0, 1] as N →∞. (2.5)

To obtain pointwise estimates, e.g. to bound the error in numerical computations,
it is necessary to choose carefully N , the number of atoms in our model. For irrational
α, we say that p

q ∈ Q is a rational approximation of α if p ∈ Z, q ∈ N, p ∧ q = 1, and∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
. (2.6)

For irrational α, an infinite number of such rational approximations exist and they can
be obtained as the convergents from its continued fraction expansion, see [10].

Remark 2.1. Note that the following result also allows to tackle the general case of
homeomorphisms of the circle which are not necessarily rigid rotations, a situation which
appears in relaxed configurations as will be studied in a second paper [5].

Theorem 2.5 (Denjoy-Koksma inequality [10]). Let f be an orientation-preserving
homeomorphism of T with rotation number ρ(f) = α ∈ R\Q, and p/q a rational approx-
imation of α. Let φ : T 7→ R be a function with bounded variation ‖φ‖TV, not necessarily
continuous, and let µ be a probability measure on T invariant by f (i.e. f∗µ = µ). Then,
for all x ∈ T, we have: ∣∣∣∣∣

q−1∑
i=0

φ ◦ f i(x)− q
∫ 1

0
φ(x)dµ

∣∣∣∣∣ ≤ ‖φ‖TV . (2.7)

In fact, an improved result is obtained for continuous functions, if we restrict ourselves
to the situation of a rigid rotation:

Proposition 2.6 (Improved Denjoy-Koksma inequality [10]). Let Rα be an irrational
rotation of T, and p

q a rational approximation of α. Let φ : T 7→ R be an absolutely
continuous function, and w its continuity modulus. Then, for all x ∈ T, we have:∣∣∣∣∣1q

q−1∑
i=0

φ ◦Riα(x)−
∫ 1

0
φ(x)dµ

∣∣∣∣∣ ≤ w
(

1

q

)
. (2.8)
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More precisely, we have the following result:

Proposition 2.7 ( [10]). Let Rα be an irrational rotation of T, and pn
qn

the sequence
of rational approximations of α obtained from its continued fraction expansion. Then if
φ : T 7→ R is an absolutely continuous function, we have∥∥∥∥∥

qn−1∑
i=0

φ ◦Riα − qn
∫ 1

0
φ(x)dx

∥∥∥∥∥
C0

→ 0 as n→∞. (2.9)

The convergence rate can be improved if we assume some more regularity:

Proposition 2.8. Let Rα be an irrational rotation of T and p
q a rational approximation

of α. Then if φ : T 7→ R is differentiable and its derivative is a function with bounded
variation, we have: ∥∥∥∥∥

q−1∑
i=0

φ ◦Riα − q
∫ 1

0
φ(x)dx

∥∥∥∥∥
C0

≤ 2

q

∥∥φ′∥∥
TV

. (2.10)

Proof. It is enough to consider φ : T 7→ R with zero average, such that φ′ has bounded
variation ‖φ′‖TV. Let us denote

φq =

q−1∑
i=0

φ ◦Riα.

Since φ′ has mean value zero,

‖φ′‖∞ = max
x∈T

∣∣∣∣∫ 1

0
φ(x)− φ(y)dy

∣∣∣∣ ≤ ∥∥φ′∥∥TV
,

and by the Denjoy-Koksma inequality,

∥∥φ′q∥∥∞ =

∥∥∥∥∥
q−1∑
i=0

φ′ ◦Riα

∥∥∥∥∥
∞

≤
∥∥φ′∥∥

TV
.

We notice that for any x ∈ T,

|φq(x+ α)− φq(x)| = |φ(x+ qα)− φ(x)| ≤
∥∥φ′∥∥∞ |qα− p| ≤ ‖φ′‖TV

q2
. (2.11)

By the mean value property, there exists x0 ∈ T such that φq(x0) = 0. By (2.11), we
deduce that

|φq(x0 + jα)| ≤ j

q2
∥∥φ′∥∥

TV
≤
‖φ′‖TV

q
, ∀1 ≤ j ≤ q. (2.12)

Now for any interval Ii = [ iq ,
i+1
q ], i = 0 . . . q − 1, there exists a unique j ∈ 1 . . . q such

that jα ∈ Ii, see e.g. [10] V.8.1. Then for any x ∈ T, there exists j ∈ 1 . . . q such that
x− x0 ∈ Ii and jα ∈ Ii, and thus

|φq(x)− φq(x0 + jα)| ≤
∥∥φ′∥∥∞ |x− (x0 + jα)| ≤

‖φ′‖TV

q
. (2.13)
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Combining (2.12) and(2.13), we obtain the desired result:

∀x ∈ T, |φq(x)| < 2

q

∥∥φ′∥∥
TV

.

We present in Fig. 2 a graphical representation of the behavior of the Birkhoff sums
measured by the deviation

δq(φ) =

∣∣∣∣∣
q−1∑
i=0

φ ◦Riα(x)− q
∫ 1

0
φ(x)dµ

∣∣∣∣∣
when α is chosen as the golden mean. These results indicate that the Denjoy-Koksma
inequalities (2.7) and (2.8) give a sharp estimate of the effective convergence rate.

• For a discontinuous function, δq is bounded from above but does not decrease as
in Fig. 2(a);

• For an absolutely continuous function, δq converges to zero. If the derivative of
the function has bounded variation as in Fig. 2(c), then the rate of convergence is
linear as 1/q, otherwise it is only sub-linear as in Fig. 2(b).

In all cases, we observe that the behavior for general N appears chaotic with oscillations
spanning orders of magnitude. To achieve accurate and efficient numerical computations,
it thus appears necessary to use criterion (2.6) to choose an appropriate finite number of
atoms N in our experiments, at least for this elementary problem of computing averaged
quantities. Equivalently, good choices for q are obtained from the continued fraction
expansion of α.

We will further show in [5] that this choice also allows for accurate predictions in a
relaxed state, involving optimization of the positions of the atoms.

2.2 Error estimates

Using these results, it is straightforward to obtain formulas for the averaged properties
of the double chain model from Section 1 and study the rate of convergence.

First, thanks to Koskma’s inequality (2.4) and the fact that the discrepancy of the
sequence {αj}0≤j≤[α−1L] goes to zero as L → ∞, we obtain immediately the uniform
convergence of the elastic energies defined in (1.2), (1.8) and (1.11):

Theorem 2.9. Under assumptions (1.4) and (1.5), we have:{
E(ε;L)→ E∞(ε)

Ẽ(ε;L)→ E∞(ε)
as L→∞, uniformly in C1([εmin,∞)). (2.14)

Remark 2.2. Note that the rate of convergence in (2.14) could be arbitrarily slow.
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(a) Discontinuous φ
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(b) Absolutely continuous, non-Lipschitz φ
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(c) Lipschitz φ

Figure 2: Convergence behavior of the Birkhoff sums for various choices of φ and α
chosen as the golden mean. In each case, we plot on the left the function φ on [0, 1].
On the right is the log-plot for the deviation of the sum from the asymptote (left-hand
term in (2.7). The values obtained for general N is in blue, in red we plot the values for
N = q satisfying (2.6), in green the optimal convergence rate N−1, in black a constant.
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Proof. To show (2.14), we need only show that ‖Vper(·, ε)‖TV and
∥∥ ∂
∂εVper(·, ε)

∥∥
TV

in
[0, 1] are bounded for ε ≥ εmin. Then Koskma’s inequality (2.4) is sufficient to finish
the proof.

Now, from (1.7) we deduce:

‖Vper(·, ε)‖TV =

∫ 1

0

∣∣∣∣ ∂∂sVper(s, ε)
∣∣∣∣ ds

≤
∫ 1

0

∑
i∈Z

∣∣(1 + ε)V ′int((s− i)(1 + ε))
∣∣ ds.

By a change of variables, this leads to

‖Vper(·, ε)‖TV ≤
∫
R

∣∣V ′int(s)∣∣ ds. (2.15)

Note that ‖Vint‖TV =
∫
R |V

′
int(s)| ds is finite because of the bounds (1.4). Hence ‖Vper(·, ε)‖TV

is uniformly bounded. Similarly,∥∥∥∥ ∂∂εVper(·, ε)
∥∥∥∥
TV

=

∫ 1

0

∣∣∣∣ ∂2∂s∂ε
Vper(s, ε)

∣∣∣∣ ds
≤
∫ 1

0

∑
i∈Z

∣∣(1 + ε)(s− i)V ′′int((s− i)(1 + ε))
∣∣+
∑
i∈Z

∣∣V ′int((s− i)(1 + ε))
∣∣ ds

≤ 1

1 + ε

(∫
R

∣∣sV ′′int(s)∣∣ ds+

∫
R

∣∣V ′int(s)∣∣ ds) .
Because of the bounds (1.4),

∫
R |sV

′′
int(s)| ds is finite, and this concludes the proof.

Corollary 2.10. The sequence of energy functionals ε 7→ Ẽ(ε;L) Γ-converges to E∞ as
L→∞. In particular, any converging sequence of minimizers ε̃eq(L) of E(·;L) converges
to a minimizer ε∞eq of E∞, and the associated elastic constants converge:

K̃(ε̃eq;L) =
∂2Ẽ
∂ε2

(ε̃eq(L);L)→ K∞(ε∞eq) =
∂2E∞

∂ε2
(ε∞eq). (2.16)

Remark 2.3. The same results hold also for E(ε;L), an associated converging sequence
of minimizers εeq(L) and the associated elastic constants K(εeq;L) thanks to (2.14).

Remark 2.4. In particular, if the Cauchy-Born energy density E∞eq has a unique min-
imum at ε∞eq ∈ (εmin,∞) and the minimizers of ε 7→ E(·;L) belong to a bounded set
(εmin, εmax) independently of L, then any sequence of minimizers converges to ε∞eq and
the elastic constants associated with these minimizers also converge to K∞(ε∞eq).

Proof. The uniform convergence of the sequence of functionals ε 7→ E(ε;L) to the contin-
uous functional E∞ implies its Γ-convergence, see e.g. [6]. The Fundamental Theorem of
Γ-convergence then implies that the limit of a converging sequence of minimizers εeq(L)
of E(·;L) is a minimizer ε∞eq of E∞.
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Since ∂2Ẽ
∂ε2

does not necessarily converge uniformly, we cannot deduce (2.16) directly.
By (1.12), we have

lim
L→∞

∂2Ẽ
∂ε2

(ε∞eq ;L) =
∂2E∞

∂ε2
(ε∞eq). (2.17)

However, ∂2

∂ε2
Vper is uniformly continuous in a neighborhood of [0, 1] × {ε∞eq}, so for all

δ > 0 there exists γ > 0 such that if |εeq(L)− ε∞eq | < γ,

1

L

∣∣∣∣∣∣
[α−1L]∑
j=0

∂2

∂ε2
Vper

(
{αj}, ε∞eq

)
−

[α−1L]∑
j=0

∂2

∂ε2
Vper ({αj}, εeq(L))

∣∣∣∣∣∣ < δ.

Hence, considering (1.8), (2.17) and since εeq(L)→ ε∞eq , there exists Lδ > 0 such that

L > Lδ =⇒

∣∣∣∣∣∂2Ẽ∂ε2 (εeq(L);L)− ∂2E∞

∂ε2
(ε∞eq)

∣∣∣∣∣ < 2δ.

This proves (2.16).

Note that we have obtained in this one-dimensional toy model a closed-form ex-
pression (1.11) for the ’macroscopic’ (limit) energy E∞eq . In more complex systems, for
example in the relaxed configurations we will study in a forthcoming paper [5], such
explicit formulae do not exist. It is then necessary to employ numerical simulations to
determine the macroscopic energy density. When dealing with commensurate systems,
this typically leads to solving so-called corrector problems which are set on a unit cell of
the commensurate lattice, using periodic boundary conditions. However for incommen-
surate systems, such unit cells do not exist and the corrector problem, if it is well-posed,
is set on the whole space.

Remark 2.5. The same situation arises for example in homogenization of PDEs with
periodic vs. stationary random coefficients.

It is therefore instructive to study the convergence rate of the energy density Ẽ(ε;L)
as L → ∞. By comparing the respective definitions (1.8) and (1.11), we see that this
amounts to studying the convergence rate of the limit

1

N

N−1∑
j=0

Vper ({αj}, ε)→
∫ 1

0
Vper (s, ε) ds as N →∞, (2.18)

where N = [α−1L] is the number of atoms in the Cα layer.

Remark 2.6. Note that by studying Ẽ(ε;L) instead of the exact energy E(ε;L), we
remove boundary effects limiting the convergence rate to 1

L at best, see Lemma 1.2.

Now the left hand term in (2.18) is a Birkhoff sum. The classical results summarized
in Section 2.1 enable us to make the following statements:
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• From Theorems 2.3 and 2.4, we deduce that the measure of the set of α ∈ (0, 1)
such that, for any ε > εmin,∣∣∣∣∣∣ 1

N

N−1∑
j=0

Vper ({αj}, ε)−
∫ 1

0
Vper (s, ε) ds

∣∣∣∣∣∣ > 2 ‖Vper(·, ε))‖TV

π2
logN · log logN

N

goes to zero as N →∞. Hence, ’on average’, we expect to observe a convergence
rate close to 1

N . Still, for a vanishing set of α values the left-hand side could
converge arbitrarily slow.

• If N is chosen as the denominator q of a convergent of α, i.e.,

p, q ∈ N such that

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
,

then by Theorem 2.6, for all ε > εmin,∣∣∣∣∣∣1q
q−1∑
j=0

Vper ({αj}, ε)−
∫ 1

0
Vper (s, ε) ds

∣∣∣∣∣∣ < 2

q2

∥∥∥∥∂Vper∂s
(·, ε)

∥∥∥∥
TV

.

Note that similar convergence rates can be obtained for ∂
∂εVper if its derivative against

s has bounded variation.
We have thus obtained rigorous convergence rates for both Ẽ(ε;L) and ∂

∂ε Ẽ(ε;L).
Moreover, assuming that

∂2E∞

∂ε2
(ε∞eq) > 0,

it is readily seen that whenever a sequence of minimizers {εeq}L>0 converges to ε∞eq , the
convergence rate is the same as observed for the energies. Therefore, it is also the case
e.g. for the linearized Cauchy-Born elastic constant around the ground state.

To conclude the analysis of convergence for this toy model, let us point out that
the direct computation by simply increasing the number of atoms N achieves a nearly
linear rate of convergence on average, but a careful choice of the sample size yields a
quadratic convergence rate every time. This quite unusual result is a consequence of the
incommensurability of the system.

3 Approximation by periodic configurations

Finally, let us construct and analyze a second approximate model based on approximat-
ing the incommensurate system by a sequence of periodic configurations. This study is
interesting as an elementary example of this very common approach to the computa-
tional modeling of incommensurate composites, see e.g. [19]. While everything is explicit
in this one-dimensional example, the analysis will be extended in future papers to study
the elastic relaxation of incommensurate double chain models.
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Let us take a sequence of rational approximations of α, i.e., pairs of mutually prime
integers pn, qn such that:

pn
qn
−−−→
n→∞

α.

We now study the convergence of the energy of configurations where the ratio of the
atom spacing in the second chain compared to the first is pn/qn instead of α. Interactions
between atoms are given by the same potentials ψ1, ψα and Vint as before. These new
configurations can now be made periodic, such that the period at rest is pn. Over one
period, the first and second chain contain respectively pn and qn atoms. Furthermore, the
energy per unit length can be written similarly to the previous periodized energy (1.8):

Ẽn(ε) = ψ1(1 + ε) +
qn
pn
· ψα

(
(1 + ε)

pn
qn

)
+
qn
pn

1

qn

qn−1∑
j=0

Vper

({
j
pn
qn

}
, ε

)
. (3.1)

Note that this energy is obtained by averaging over one period. This effectively amounts
to taking the limit L → ∞ in this periodic setting. We can further simplify (3.1) by
observing that since pn and qn are mutually prime, we have equality between discrete
sets, up to some reordering:({

j
pn
qn

})
0≤j<qn

=

(
j

qn

)
0≤j<qn

.

Therefore,

Ẽn(ε) = ψ1(1 + ε) +
qn
pn
· ψα

(
(1 + ε)

pn
qn

)
+

1

pn

qn−1∑
j=0

Vper

(
j

qn
, ε

)
. (3.2)

Remark 3.1. By modifying the lattice constant in the second chain, we have obtained
a formula which involves only a finite number of atoms. For more complex systems, this
allows one to compute easily relaxed configurations or electronic properties. The price
for this simplification is that we have introduced some additional, artificial strain in the
system.

Proposition 3.1. Under assumptions (1.4) and (1.5), we have the error estimate:∣∣∣Ẽn(ε)− Ẽ∞(ε)
∣∣∣ ≤ C(1 + ε)2

(
1

q2n
+

∣∣∣∣pnqn − α
∣∣∣∣) . (3.3)

Remark 3.2. Note that, unlike the discrepancy-based estimates constructed for the ex-
act model in section 2.2, the rate of convergence cannot be arbitrarily slow as qn goes
to infinity. Note that the optimal convergence rate O(1/q2n) is again recovered for the
convergents of α.
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Proof. The last term in the definition (3.2) is simply a Riemann sum. Recall that Ẽ∞(ε)
is given by (1.11). Let us then bound by considering separately each term in the error:∣∣∣Ẽn(ε)− Ẽ∞(ε)

∣∣∣ ≤ ∣∣∣∣ qnpn · ψα
(

(1 + ε)
pn
qn

)
− 1

α
· ψα ((1 + ε)α)

∣∣∣∣
+

∣∣∣∣∣∣ 1

pn

qn−1∑
j=0

Vper

(
j

qn
, ε

)
− 1

α

∫ 1

0
Vper(s, ε)ds

∣∣∣∣∣∣ .
First, we have for some constant C > 0:∣∣∣∣ qnpn · ψα

(
(1 + ε)

pn
qn

)
− 1

α
· ψα ((1 + ε)α)

∣∣∣∣ ≤ C(1 + ε)

∣∣∣∣ qnpn − α
∣∣∣∣ , (3.4)

where we use the fact that ψα and ψ′α are bounded on the interval [εmin,∞). Next, to
evaluate the Riemann sum, we make use of the estimate∣∣∣∣∂2Vper∂s2

(s, ε)

∣∣∣∣ ≤ C(1 + ε)2,

where C > 0 is a constant independent of ε and s. This bound can be derived directly
from the definition (1.7) of the periodic potential under the assumptions (1.4). Then,
using the standard error estimate, we obtain:∣∣∣∣∣∣ 1

qn

qn−1∑
j=0

Vper

(
j

qn
, ε

)
−
∫ 1

0
Vper(s, ε)ds

∣∣∣∣∣∣ ≤ C (1 + ε)2

q2n
. (3.5)

To conclude, we observe that the sequence pn/qn is bounded, and also∣∣∣∣∫ 1

0
Vper(s, ε)ds

∣∣∣∣ ≤ ∫ 1

0

∑
i∈Z
|Vint((s− i)(1 + ε))| ≤ 1

1 + ε

∫
R
|Vint(S)| dS, (3.6)

where we use the change of variables S ≡ (1 + ε)(s − i). Bringing together esti-
mates (3.4), (3.5) and (3.6) we find the desired result (3.3).

4 Conclusion

In this work, we have studied a Cauchy-Born-type energy density for a coupled system
of one-dimensional incommensurate coupled chains. We have shown that it is given by
a closed-form formula, Eq. (1.11), in the thermodynamic limit of infinite system size.
This allows to study rigorous estimates of the convergence rate, as a function of either
the total length of the system or for periodic approximants to be used in numerical
computations.

This study provides a rigorous theoretical foundation for the modeling of incom-
mensurate heterostructures composed of monolayers such as graphene, boron nitride or
molybdenum disulfide. Work is ongoing on the further development and analysis of more
realistic models, including effects such as out-of-plane relaxation of the lattices forming
ripples [5].
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