Partial Notes 2373

Andrew Binder

October 10, 2016

Problem. Consider a mass-spring system which satisfies the following second-order differential equation:

$$
\begin{equation*}
\ddot{x}+5 \dot{x}+4 x=0 . \tag{1}
\end{equation*}
$$

Here, $x(t)$ represents the position at time t of the mass on a spring, and we use the usual dot notation to denote time derivatives. Solve for the motion of this spring system with the initial values $x(0)=2$ and $\dot{x}(0)=0$. Is this system overdamped, critically damped, or underdamped?

Solution. The first step is to find the general solution for the motion of the mass-spring system. In order to do so, it is necessary to find the characteristic equation. The characteristic equation is the quadratic equation that results when we attempt a trial solution of $x(t)=e^{r t}$. Substituting this guess into the differential equation yields

$$
\begin{equation*}
r^{2} e^{r t}+5 r e^{r t}+4 e^{r t}=e^{r t}\left(r^{2}+5 r+4\right)=0 . \tag{2}
\end{equation*}
$$

As the exponential can never be zero, the only way the above statement can hold is if r is a root of the characteristic equation $r^{2}+5 r+4$; that is, if r is such that $r^{2}+5 r+4=0$. For such an r, our trial solution is indeed an actual solution to the mass-spring system. In order to find the roots to the characteristic equation, we simply use the quadratic formula. The two distinct roots can be shown to be $r_{1}=-1$ and $r_{2}=-4$. As we have two distinct, real roots, the general solution is then

$$
\begin{equation*}
x(t)=c_{1} e^{-t}+c_{2} e^{-4 t} \tag{3}
\end{equation*}
$$

where c_{1} and c_{2} are constants. This corresponds with the solution to second-order differential equations with constant coefficients in the case of a positive discriminant ($\Delta=b^{2}-4 m k>0$) discussed in class. The constants c_{1} and c_{2} are determined from the initial conditions. In order to find these constants, let us first write the derivative of $x(t)$:

$$
\begin{equation*}
\dot{x}(t)=-c_{1} e^{-t}-4 c_{2} e^{-4 t} . \tag{4}
\end{equation*}
$$

Now,

$$
\begin{align*}
& 2=x(0)=c_{1}+c_{2}, \quad \text { and } \tag{5}\\
& 0=\dot{x}(0)=-c_{1}-4 c_{2} . \tag{6}
\end{align*}
$$

This leaves us with a system of two linear equations with two variables. One can write this into a matrix system and then reduce it into reduced row echelon form to find the solution. Add the two equations together to remove c_{1} and show that $c_{2}=-2 / 3$, from which we can easily compute that $c_{1}=8 / 3$. The solution to this initial-value problem is then

$$
\begin{equation*}
x(t)=\frac{8}{3} e^{-t}-\frac{2}{3} e^{-4 t} \tag{7}
\end{equation*}
$$

To finish the problem, we note that mass-spring systems with two distinct, real roots (which have $\Delta>0$) are called overdamped. This is an overdamped system. Mass-spring systems are called critically damped if they have a repeated, real root $(\Delta=0)$, and they are called underdamped if they have a pair of complex conjugate roots $(\Delta<0)$.

Definition. A set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ is linearly dependent if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$ with at least one nonzero such that

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0} . \tag{8}
\end{equation*}
$$

Otherwise, they are linearly independent.

Problem. Are the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \tag{9}\\
3 \\
4
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right]
$$

linearly independent?
Solution. From the definition of linear independence, we can see that we need to find any scalars such that

$$
\begin{align*}
& 2 c_{1}+1 c_{2}-c_{3}=0 \\
& 3 c_{1}+0 c_{2}+c_{3}=0 \tag{10}\\
& 4 c_{1}+3 c_{2}+3 c_{3}=0
\end{align*}
$$

holds. Note that the above equation is simply (8) with the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ substituted in explicitly. We can write this in matrix format in the following way:

$$
\left[\begin{array}{ccc}
2 & 1 & -1 \tag{11}\\
3 & 0 & 1 \\
4 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Let

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 \tag{12}\\
3 & 0 & 1 \\
4 & 3 & 3
\end{array}\right]
$$

An obvious solution to this problem is the case when all the scalars are zero; that is, when $c_{1}=c_{2}=c_{3}=0$. Since A is a square matrix, recall from previous classes that the above
system will have only the trivial solution (all scalars c_{k} equal to 0) if the matrix A is invertible, which would imply that the vectors are linearly independent by definition. We can easily check the invertibility of A by computing its determinant. If the determinant of A is non-zero, then as we have shown previously, the matrix is invertible. So, we compute the determinant using the expansion method along the first column:

$$
\begin{align*}
\operatorname{det}(A) & =2\left|\begin{array}{ll}
0 & 1 \\
3 & 3
\end{array}\right|-3\left|\begin{array}{cc}
1 & -1 \\
3 & 3
\end{array}\right|+4\left|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right| \tag{13}\\
& =2(0-3)-3(3+3)+4(1-0) \tag{14}\\
& =-20 \neq 0 . \tag{15}
\end{align*}
$$

The determinant is non-zero, so we can only have that $c_{1}=c_{2}=c_{3}=0$. By definition, these vectors are linearly independent. Linear dependence requires that at least one of the c_{k} 's be non-zero.

Definition. A vector \mathbf{v} is called a linear combinatin of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$ such that $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}$.

Problem. (Linear Combination) Is the vector

$$
\mathbf{w}=\left[\begin{array}{l}
1 \tag{16}\\
2 \\
3
\end{array}\right]
$$

a linear combination of the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \tag{17}\\
0 \\
3
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
-3
\end{array}\right] ?
$$

Solution. The vector \mathbf{w} is a linear combination of the vectors \mathbf{v}_{1} and \mathbf{v}_{2} if there exist scalars c_{1} and c_{2} such that

$$
\begin{equation*}
\mathbf{w}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} . \tag{18}
\end{equation*}
$$

We can write the above equation as the following:

$$
\begin{align*}
c_{1}-c_{2} & =1 \tag{19}\\
0 c_{1}+c_{2} & =2 \tag{20}\\
3 c_{1}-3 c_{2} & =3 \tag{21}
\end{align*}
$$

By defining,

$$
\mathbf{A}:=\left[\begin{array}{cc}
1 & 1 \tag{22}\\
0 & 1 \\
3 & -3
\end{array}\right], \quad \mathbf{x}:=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right], \quad \mathbf{b}:=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

we see that finding c_{1} and c_{2} amount to solving the linear system of equations given by $\mathbf{A x}=\mathbf{b}$. This can be solved using Gauss-Jordan Reduction. To do so, we write the problem in its augmented matrix form. The augmented matrix form is simply the matrix \mathbf{A} with the column vector \mathbf{b} appended at the end. The augmented matrix for this problem is

$$
[\mathbf{A} \mid \mathbf{b}]=\left[\begin{array}{cc|c}
1 & -1 & 1 \tag{23}\\
0 & 1 & 2 \\
3 & -3 & 3
\end{array}\right]
$$

We can now attempt to solve for the scalars c_{1} and c_{2} by using row operations to convert the matrix into reduced row echelon form. We find that

$$
\begin{align*}
{\left[\begin{array}{cc|c}
1 & -1 & 1 \\
0 & 1 & 2 \\
3 & -3 & 3
\end{array}\right] } & \xrightarrow{R_{3}^{*}=R_{3}-3 R_{1}}\left[\begin{array}{cc|c}
1 & -1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \tag{24}\\
& \xrightarrow{R_{1}^{*}=R_{1}+R_{2}}\left[\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \tag{25}
\end{align*}
$$

Thus, we have found that $c_{1}=3$ and $c_{2}=2$ satisfies the problem. Hence, $\mathbf{w}=3 \mathbf{v}_{1}+2 \mathbf{v}_{2}$. By definition, \mathbf{w} is a linear combination of the vectors \mathbf{v}_{1} and \mathbf{v}_{2}.

