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Problem. Consider a mass-spring system which satis�es the following second-order

di�erential equation:

ẍ + 5ẋ + 4x = 0. (1)

Here, x(t) represents the position at time t of the mass on a spring, and we use the usual

dot notation to denote time derivatives. Solve for the motion of this spring system with

the initial values x(0) = 2 and ẋ(0) = 0. Is this system overdamped, critically damped, or

underdamped?

Solution. The �rst step is to �nd the general solution for the motion of the mass-spring
system. In order to do so, it is necessary to �nd the characteristic equation. The charac-
teristic equation is the quadratic equation that results when we attempt a trial solution of
x(t) = ert. Substituting this guess into the di�erential equation yields

r2ert + 5rert + 4ert = ert(r2 + 5r + 4) = 0. (2)

As the exponential can never be zero, the only way the above statement can hold is if r is
a root of the characteristic equation r2 + 5r + 4; that is, if r is such that r2 + 5r + 4 = 0.
For such an r, our trial solution is indeed an actual solution to the mass-spring system. In
order to �nd the roots to the characteristic equation, we simply use the quadratic formula.
The two distinct roots can be shown to be r1 = −1 and r2 = −4. As we have two distinct,
real roots, the general solution is then

x(t) = c1e
−t + c2e

−4t, (3)

where c1 and c2 are constants. This corresponds with the solution to second-order di�erential
equations with constant coe�cients in the case of a positive discriminant (∆ = b2−4mk > 0)
discussed in class. The constants c1 and c2 are determined from the initial conditions. In
order to �nd these constants, let us �rst write the derivative of x(t):

ẋ(t) = −c1e−t − 4c2e
−4t. (4)

Now,

2 = x(0) = c1 + c2, and (5)

0 = ẋ(0) = −c1 − 4c2. (6)
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This leaves us with a system of two linear equations with two variables. One can write this
into a matrix system and then reduce it into reduced row echelon form to �nd the solution.
Add the two equations together to remove c1 and show that c2 = −2/3, from which we can
easily compute that c1 = 8/3. The solution to this initial-value problem is then

x(t) =
8

3
e−t − 2

3
e−4t. (7)

To �nish the problem, we note that mass-spring systems with two distinct, real roots (which
have ∆ > 0) are called overdamped. This is an overdamped system. Mass-spring systems
are called critically damped if they have a repeated, real root (∆ = 0), and they are called
underdamped if they have a pair of complex conjugate roots (∆ < 0).

De�nition. A set of vectors v1,v2, . . . ,vk is linearly dependent if there are scalars c1, c2, . . . , ck
with at least one nonzero such that

c1v1 + · · ·+ ckvk = 0. (8)

Otherwise, they are linearly independent.

Problem. Are the vectors

v1 =

2
3
4

 , v2 =

1
0
3

 , v3 =

−1
1
3

 (9)

linearly independent?

Solution. From the de�nition of linear independence, we can see that we need to �nd any
scalars such that

2c1 + 1c2 − c3 = 0
3c1 + 0c2 + c3 = 0
4c1 + 3c2 + 3c3 = 0

(10)

holds. Note that the above equation is simply (8) with the vectors v1,v2,v3 substituted in
explicitly. We can write this in matrix format in the following way:2 1 −1

3 0 1
4 3 3

c1c2
c3

 =

0
0
0

 . (11)

Let

A =

2 1 −1
3 0 1
4 3 3

 . (12)

An obvious solution to this problem is the case when all the scalars are zero; that is, when
c1 = c2 = c3 = 0. Since A is a square matrix, recall from previous classes that the above
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system will have only the trivial solution (all scalars ck equal to 0) if the matrix A is invertible,
which would imply that the vectors are linearly independent by de�nition. We can easily
check the invertibility of A by computing its determinant. If the determinant of A is non-zero,
then as we have shown previously, the matrix is invertible. So, we compute the determinant
using the expansion method along the �rst column:

det(A) = 2

∣∣∣∣0 1
3 3

∣∣∣∣− 3

∣∣∣∣1 −1
3 3

∣∣∣∣+ 4

∣∣∣∣1 −1
0 1

∣∣∣∣ (13)

= 2(0− 3)− 3(3 + 3) + 4(1− 0) (14)

= −20 6= 0. (15)

The determinant is non-zero, so we can only have that c1 = c2 = c3 = 0. By de�nition, these
vectors are linearly independent. Linear dependence requires that at least one of the ck's be
non-zero.

De�nition. A vector v is called a linear combinatin of vectors v1,v2, . . . ,vk if there

are scalars c1, c2, . . . , ck such that v = c1v1 + c2v2 + · · ·+ ckvk.

Problem. (Linear Combination) Is the vector

w =

1
2
3

 (16)

a linear combination of the vectors

v1 =

1
0
3

 and v2 =

−1
1
−3

? (17)

Solution. The vector w is a linear combination of the vectors v1 and v2 if there ex-
ist scalars c1 and c2 such that

w = c1v1 + c2v2. (18)

We can write the above equation as the following:

c1 − c2 = 1 (19)

0c1 + c2 = 2 (20)

3c1 − 3c2 = 3. (21)

By de�ning,

A :=

1 1
0 1
3 −3

 , x :=

[
c1
c2

]
, b :=

1
2
3

 , (22)
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we see that �nding c1 and c2 amount to solving the linear system of equations given by
Ax = b. This can be solved using Gauss-Jordan Reduction. To do so, we write the problem
in its augmented matrix form. The augmented matrix form is simply the matrix A with the
column vector b appended at the end. The augmented matrix for this problem is

[A | b] =

 1 −1 1
0 1 2
3 −3 3

 . (23)

We can now attempt to solve for the scalars c1 and c2 by using row operations to convert
the matrix into reduced row echelon form. We �nd that 1 −1 1

0 1 2
3 −3 3

 R∗
3=R3−3R1−−−−−−−→

 1 −1 1
0 1 2
0 0 0

 (24)

R∗
1=R1+R2−−−−−−→

 1 0 3
0 1 2
0 0 0

 . (25)

Thus, we have found that c1 = 3 and c2 = 2 satis�es the problem. Hence, w = 3v1 + 2v2.
By de�nition, w is a linear combination of the vectors v1 and v2.
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