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Problem. Consider a mass-spring system which satisfies the following second-order
differential equation:
&+ 53 +4x = 0. (1)
Here, x(t) represents the position at time t of the mass on a spring, and we use the usual
dot notation to denote time derivatives. Solve for the motion of this spring system with
the initial values x(0) = 2 and ©(0) = 0. Is this system overdamped, critically damped, or
underdamped?

Solution. The first step is to find the general solution for the motion of the mass-spring
system. In order to do so, it is necessary to find the characteristic equation. The charac-
teristic equation is the quadratic equation that results when we attempt a trial solution of
x(t) = €. Substituting this guess into the differential equation yields

r2e’ 4 5re’t 4 4ett = e”(r2 +5r+4)=0. (2)

As the exponential can never be zero, the only way the above statement can hold is if 7 is
a root of the characteristic equation 72 + 5r + 4; that is, if r is such that 72 + 5r +4 = 0.
For such an r, our trial solution is indeed an actual solution to the mass-spring system. In
order to find the roots to the characteristic equation, we simply use the quadratic formula.
The two distinct roots can be shown to be r; = —1 and r, = —4. As we have two distinct,
real roots, the general solution is then

z(t) = cre”t + cpe™ ™, (3)

where ¢; and ¢y are constants. This corresponds with the solution to second-order differential
equations with constant coefficients in the case of a positive discriminant (A = b*—4mk > 0)
discussed in class. The constants ¢; and ¢y are determined from the initial conditions. In
order to find these constants, let us first write the derivative of x(¢):

@(t) = —cre™t — dege™™. (4)
Now,

2=2x(0) =c; + ¢, and (5)

0= $(0> = —C1 — 462. (6)



This leaves us with a system of two linear equations with two variables. One can write this
into a matrix system and then reduce it into reduced row echelon form to find the solution.

Add the two equations together to remove ¢; and show that ¢; = —2/3, from which we can
easily compute that ¢; = 8/3. The solution to this initial-value problem is then
8 2
t)=-et— e 7
o{t) = Se = Ze (7

To finish the problem, we note that mass-spring systems with two distinct, real roots (which
have A > 0) are called overdamped. This is an overdamped system. Mass-spring systems
are called critically damped if they have a repeated, real root (A = 0), and they are called
underdamped if they have a pair of complex conjugate roots (A < 0).

Definition. A set of vectors vy, va, ..., vy is linearly dependent if there are scalars c1,ca, . . ., cy
with at least one nonzero such that

C1Vy + -+ vy = 0. (8)

Otherwise, they are linearly independent.

Problem. Are the vectors

linearly independent?

Solution. From the definition of linear independence, we can see that we need to find any

scalars such that
261 -+ 162 — C3 = 0

3C1 + 002 + C3 =0 (10)
461 + 302 + 303 =0

holds. Note that the above equation is simply (8) with the vectors vy, vo, v3 substituted in
explicitly. We can write this in matrix format in the following way:

21 —1| [ 0
3 0 1 ca| = |0]f. (11)
4 3 3 C3 0
Let
2 1 -1
A=13 0 1. (12)
4 3 3

An obvious solution to this problem is the case when all the scalars are zero; that is, when
c1 = c3 = ¢c3 = 0. Since A is a square matrix, recall from previous classes that the above
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system will have only the trivial solution (all scalars ¢, equal to 0) if the matrix A is invertible,
which would imply that the vectors are linearly independent by definition. We can easily
check the invertibility of A by computing its determinant. If the determinant of A is non-zero,
then as we have shown previously, the matrix is invertible. So, we compute the determinant
using the expansion method along the first column:

det(A):QB ;'—3’;) _31‘+4’(1) _11‘ (13)
=2(0-3)—3(3+3)+4(1-0) (14)
= —20 #0. (15)

The determinant is non-zero, so we can only have that ¢; = ¢o = ¢3 = 0. By definition, these
vectors are linearly independent. Linear dependence requires that at least one of the ¢;’s be
1ON-Zero.

Definition. A vector v is called a linear combinatin of vectors vi,va,...,Vy if there
are scalars cy,co, ..., c, Such that v.=civy + covg + « -+ + V.

Problem. (Linear Combination) Is the vector
1
w= |2 (16)
3

a linear combination of the vectors
-1

1
Vi = 0 and Vo = 117 (17)
3 -3

Solution. The vector w is a linear combination of the vectors v, and vy if there ex-
ist scalars ¢; and ¢y such that
W = V] + V. (18)

We can write the above equation as the following:

Cl — Co = 1 (19)
Oci + cp =2 (20)
3¢; — 3¢y = 3. (21)
By defining,
1 1 1
A=|0 1 ,X:M,b:2, (22)
3 —3 © 3



we see that finding ¢; and ¢, amount to solving the linear system of equations given by
Ax = b. This can be solved using Gauss-Jordan Reduction. To do so, we write the problem
in its augmented matrix form. The augmented matrix form is simply the matrix A with the
column vector b appended at the end. The augmented matrix for this problem is

1 —-1]1
Albl=|0 1 |2]. (23)
3 —33

We can now attempt to solve for the scalars ¢; and ¢y by using row operations to convert
the matrix into reduced row echelon form. We find that

1 -1 I
0 1 |2 === 0 1|2 (24)
3 =313 0 010
Ri=Ri1+R3 103
— | 0 1]2 (25)
0 0]0

Thus, we have found that ¢; = 3 and ¢y = 2 satisfies the problem. Hence, w = 3vy + 2vs.
By definition, w is a linear combination of the vectors v; and vs.



