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1 First-order differential equations

1.1 Dynamical systems and models

Systems that change over time are often better described by the continuous
variations of some quantity (temperature, height, amount) than by discrete
variations, although ultimately minute discrete quantities can be isolated (atoms).
The attempt of such a description leads to the process of modeling:

• What are the important processes?

• What variables are necessary to describe the system?

• How do I describe this evolution?

The process of modeling is iterative: refinements to the model are brought in
over time as errors are detected and analyzed.

Note that time is not the only possible independent variable which can
be considered, e.g. space can be also an interesting parameter. It is however
a very intuitive variable, and we will study many models which take time as
the independent variable. Differential equations relate rate of changes to other
variables. Such equations are natural candidates for mathematical modeling,
for example:
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1. First-order differential equations

x(t),
dx
dt

= x2 + t2,

or

y(t),
d2y
dt2 + 3

dy
dt

+ 7y = 0.

Definition: A Differential Equation is an equation which contains
derivatives of one, or more, dependent variables with respect to one, or
more independent variables.

• If there is only one independent variable, the equation contains
only ordinary derivatives, and it is called an ordinary differential
equation.

• If there is more than one independent variable, the equation con-
tains only partial derivatives, and it is called an partial differen-
tial equation.

The order of a differential equation is the highest order of the deriva-
tives that appear in the equation.

1.2 Example: the Malthus model.

The problem is to model world population growth over time.

Step I: Discover a differential equation describing the situation.

• P(t): the population at time t,

• dP
dt (t): the rate of change of the population.

• Modeling hypothesis: both are proportional!

dP
dt

= κP(t),

where κ is a constant of proportionality.

Step II: Solve the proposed model equation. Here, we know the solution:

P(t) = Ceκt,

where C is an arbitrary constant.
Indeed, we may compute

P′(t) = Cκeκt = κ(Ceκt) = κP(t).X
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1.2. Example: the Malthus model.

Furthermore, we can determine the constant C by some additional informa-
tion. Here, this could be the population at the starting time t = 0:

P(0) = P0,

since then

P(0) = Ceκ0 = C = P0.

We find the solution to the problem:

P(t) = P0eκt.

A problem of the form{
Differential equation: y′ = f (y),

Initial condition: y(t0) = P0

with t0, P0 given is called an initial value problem (IVP).

We remark that the Malthus problem is an IVP:{
P′ = κP,

P(0) = P0.

Step III: Interpret the result and compare to reality.
Malthus (in 1798) estimated κ = .03 and P0 = 0.9 billion humans. This led

to a prediction 60 times too high (363.81 billion people in 2000). Clearly this
was an oversimplified model!
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• In this case, κ = 0.03 > 0: the population grows exponentially to infinity.
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1. First-order differential equations

• We can also look at the case when κ = −.03 < 0: the population decays
exponentially to zero:
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1.3 Simple first-order models

Typically, the most simple models assume proportionality between a rate of
change and some function of the quantity.

• We have seen above the case where the rate of change of y is proportional
to y:

dy
dt

= κy.

• The rate of change of y is inversely proportional to y:

dy
dt

=
κ

y
.

• The rate of change of y is proportional to y2 and inversely proportional
to et:

dy
dt

=
κy2

et = κy2e−t.

• Logistic growth (disease modeling): the rate of increase of the number
N of infected people in a total population Ntot is proportional to the
product of the number of people infected and the number of still healthy
people:

dN
dt

= kN(Ntot − N)

• Newton’s law of cooling / heating: the rate of change of the temperature of
an object is proportional to the difference between the temperature Tf of
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1.4. Higher order equations

the surroundings and the temperature of the object:

dT
dt

= κ(Tf − T)

1.4 Higher order equations

A first possibility of higher order system is when higher order derivatives are
involved. An example is Newton’s law of gravity,

d2h
dt2 = −g,

where h is the height of a mass in free fall. Such an equation is a 2nd order
ordinary differential equation.

Hooke’s law

Let us model the displacement x of mass attached to a spring. The
restoring force of the spring is

Fspring = −κx,

where κ > 0 is the spring constant. When friction is negligible and
a mass m is attached to the spring, Newton’s First Law gives us the
equation of motion,

m
d2x
dt2 = −κx.

This is a 2nd order ordinary differential equation.

It is important to notice that this problem can be transposed into an equiva-
lent system of first-order equations! We introduce another dependent variable

y =
dx
dt

,

the velocity of the mass, and we can convert the above problem into a first-
order system of two equations:

dx
dt

= y,

dy
dt

= −κx.
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2. Direction fields and solution of first-order ordinary differential

equations.

2 Direction fields and solution of first-order ordinary

differential equations.

A very general form for a first-order ODE is

(1)
dy
dt

= f (t, y) for y′ = f (t, y),

where t is the independent variable, y the dependent variable, and f is a given
function describing the relation between the rate of change of y and t, y.

Definition: A solution of a differential equation is a function y(t)
such that substituting y(t) for y in (1) satisfies the identity on some
appropriate domain for t.

Examples:

1. The Malthus problem,

y′ = .03y.

The solution is y(t) = Ceκt with a fixed constant C:
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The slope of the tangent, i.e. the derivative, is prescribed by the differ-
ential equation at any point of the curve representing the solution! This
can be seen on the graph with the arrows that are tangent to the curve.
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2.

y′ = 1/y.

The solution is y(t) = ±
√

2t + C for any constant C and t ≥ −C/2:
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Again, arrows describing tangent lines can be drawn at each point of the
curve thanks to the differential equation.

3.

y′ = 2
√

y :

A family of solutions is y(t) = (t +C)2 for any constant C. However this
problem has in fact multiple solutions satisfying y(0) = 0:

y1(t) = 0, y2(t) = t2.
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