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Why study linear algebra?

While not as flashy as differential equations in its examples and uses (pen-
dulum, projectile trajectories, chemical reactions), linear algebra is a vital tool
for modern science and engineering. Examples abound and are too many to
draw a comprehensive list:

• Linear elasticity, relations between stresses and strains;

• Vibrations of structures;

• Electrical and models of fluid flows;

• Optimization problems;

• Big data, machine learning, Google search algorithms
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1

mailto:pcazeaux@umn.edu


1. Gaussian Elimination

• Image processing...

All these problems can be framed at some level into two basic equations:

1. A linear system: find ~x such that

(1) A~x =~b.

2. An eigenvalue equation: find λ and ~x such that

(2) A~x = λ~x.

Back in 170CE, the Chinese were already solving linear systems: One pint of
good wine costs 50 gold pieces, while one pint of poor wine costs 10. I bought two
pints of wine for 30 gold pieces. How much of each kind of wine did I buy? If x is
the amount of good wine I bought (in pints), and y the amount of bad wine,
then this problem writes in the modern notation:

(3)

{
x + y = 2,

50x + 10y = 30.

1 Gaussian Elimination

The formalism for a particular method to solve linear system, Gauss-Jordan
elimination1, was developed by Karl Friedrich Gauß(1777-1855) and Wilhelm
Jordan (1842-1899) Note that this is not the first approach developed for the
solution of linear systems, as Newton (1670) already discussed such methods
he knew from much older Chinese books of mathematics.

Gaussian elimination is an effective strategy for solving linear systems,
based on the idea of equivalent systems: the solution is unchanged by

1. Multiplication of one equation by a nonzero number,

2. Switching order of the equations,

3. Combining equations together by addition.

All of these operations preserve the information in the system.
Our particular motivation is to answer the following questions about a

system:

• Does it have any solutions? How many solutions?

• How can I compute these solutions?

The particular notation used for this computation is the augmented matrix:

(4)

{
x + y = 2,

50x + 10y = 30,
−→

[
1 1 2
50 10 30

]
.

1Textbook: section 3.2
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The operations introduced above have a natural interpretation in the aug-
mented matrix framework.

They form the elementary row operations:

1. Multiplication of all the entries in one row by a nonzero number,

2. Exchange of two rows,

3. Entry-wise addition of some multiple of one row to another row.

These are the three operations that enter into the Gauss-Jordan elimination
process, which writes as the following algorithm:

Gauß-Jordan elimination algorithm.

Step 1 Assemble the augmented matrix:
{

x + y = 2,

50x + 10y = 30,
−→

[
1 1 2
50 10 30

]
.

Step 2 Using elementary row operations, work left to right to obtain
zeros below the diagonal and ones on the diagonal:

[
1 1 2
50 10 30

]
−→

[
1 1 2
5 1 3

]

−→
[

1 1 2
0 −4 −7

]

−→
[

1 1 2
0 1 7/4

]

Step 3 Using elementary row operations, work right to left to obtain
zeros above the diagonal:

[
1 1 2
0 1 7/4

]
−→

[
1 0 1/4
0 1 7/4

]
.

This leads to the solution:
{

x = 1/4,

y = 7/4.
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1. Gaussian Elimination

Note that it is not always possible to obtain a diagonal of ones with zeros
everywhere. In any case, the goal is always to select successive pivots and
obtain a matrix which has the RREF form:

Reduced row echelon form or RREF

1. Zero rows (if there are any) are at the bottom of the array;

2. The leftmost nonzero entry in a nonzero row is 1; it is called the
pivot.

3. Each pivot is further to the right than the pivot in the row above
it.

4. Each pivot is the only nonzero entry in its column.

Let us work out another example:

Step 1





x + 2y− z = −1,

2x + 4y− z = 4,

−x− 2y + 3z = 5

−→



1 2 −1 −1
2 4 −1 4
−1 −2 3 5


 .

Step 2




1 2 −1 −1
2 4 −1 4
−1 −2 3 5


 R2←R2−2R1−→




1 2 −1 −1
0 0 1 6
−1 −2 3 5




R3←R3+R1−→



1 2 −1 −1
0 0 1 6
0 0 2 4




R3←R3−2R2−→



1 2 −1 −1
0 0 1 6
0 0 0 −8




Step 3




1 2 −1 −1
0 0 1 6
0 0 0 −8


 R1←R1+R2−→




1 2 0 5
0 0 1 6
0 0 0 −8




We have obtained the RREF. Note that the last equation does not have a solu-
tion:

0x + 0y + 0z = −8!

We say that the system is inconsistent.
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Existence and uniqueness of solutions:

• A system is inconsistent when it has no solution,

• A system is consistent when it has one or more solutions. In this
case,

1. If every column in the RREF is a pivot column, then there is
only one solution: it is unique.

2. If one or more columns are non-pivot columns, then there is
an infinity of solutions. The system is underdetermined.

Not all consistent systems have as many equations as unknowns: for ex-
ample, let us reduce the following system:

Step 1





2x + y = 6,

−x− y = −2,

3x + 4y = 4,

3x + 5y = 2,

−→




2 1 6
−1 −1 −2
3 4 4
3 5 2


 .

Step 2




2 1 6
−1 −1 −2
3 4 4
3 5 2




R2↔R1−→




−1 −1 −2
2 1 6
3 4 4
3 5 2




R1←−R1−→




1 1 2
2 1 6
3 4 4
3 5 2




R2←R2−2R1−→




1 1 2
0 −1 2
3 4 4
3 5 2




R3←R3−3R1−→




1 1 2
0 −1 2
0 1 −2
3 5 2




R4←R4−3R1−→




1 1 2
0 −1 2
0 1 −2
0 2 −4




R2←−R2−→




1 1 2
0 1 −2
0 1 −2
0 2 −4




R3←R3+R2−→




1 1 2
0 1 −2
0 0 0
0 2 −4




R4←R4+2R2−→




1 1 2
0 1 −2
0 0 0
0 0 0



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1. Gaussian Elimination

Step 3




1 1 2
0 1 −2
0 0 0
0 0 0




R1←R1−R2−→




1 0 4
0 1 −2
0 0 0
0 0 0




This last form is the RREF. The system is consistent, and every column is a
pivot column: there is a unique solution.

Here is another example:

Step 1





x− y + 2z = 1,

2x + y + z = 8,

x + y = 5,

−→



1 −1 2 1
2 1 1 8
1 1 0 5


 .

Step 2




1 −1 2 1
2 1 1 8
1 1 0 5


 R2←R2−2R1−→




1 −1 2 1
0 3 −3 6
1 1 0 5




R3←R3−R1−→



1 −1 2 1
0 3 −3 6
0 2 −2 4




R2←R2/3−→



1 −1 2 1
0 1 −1 2
0 2 −2 4




R3←R3−2R2−→



1 −1 2 1
0 1 −1 2
0 0 0 0




Step 3




1 −1 2 1
0 1 −1 2
0 0 0 0


 R3←R3/2−→




1 0 2 3
0 1 −1 2
0 0 0 0




• The system is consistent, there are an infinity of solutions (the third
column is not a pivot column).

• z is a free variable: we apply the principle of superposition.

Particular solution: we choose z = 0, so that a solution is

Xp =




3
2
0


 .
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Homogeneous system: we solve with zero right-hand side,




1 −1 2 1
0 1 −1 2
0 0 0 0


 −→





x = −t,

y = t,

z = t,

where t is a free parameter. Thus

Xh = t



−1
1
0


 .

Superposition: all the solutions have the form



x
y
z


 = Xh + Xp = t



−1
1
0


+




3
2
0


 =




3− t
2 + t

t


 .

2 Matrices

Our goal in this section is to provide a formalization of the previous problems2.

2.1 Introduction

Definition: A matrix is a rectangular array of numbers.
If the matrix has m rows and n columns, then we say that it has order,
or dimensions, m× n.

In the Chinese problem example from the first lecture, we find that the
coefficients of the system form a 2× 2 matrix:

A =

[
1 1
50 10

]
.

The notation for a matrix is with square brackets [· · · ] or occasionally with
parenthesis (· · · ). Usually they are noted with capital letters. When both of
the dimensions are equal to n (square n× n matrix), we may abbreviate and
say that it has order n.

Definition: When one of the dimensions is 1, then we obtain a row
or column vector.

An example of column vector is the right-hand side of the problem:

~b =

[
2

30

]
,

2Textbook: Section 3.1
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2. Matrices

as well as the vector of unknowns:

~x =

[
x
y

]
.

A vector is occasionally noted with an arrow on top as here ~x or~b, but this is
not mandatory.

Our goal here is to make sense of the matrix notation for linear systems,

A~x =~b,

where we see a matrix-vector product and an equality. Let us proceed slowly.

Definition: Two matrices are equal if

• They have the same order,

• All corresponding entries are equal.

Special matrices

• Zero matrix: all entries are equal to zero. It is denoted by 0, while
keeping track of its dimensions! For example,

[
0 0 0
0 0 0

]

is a 2× 3 zero matrix.

• Diagonal matrices: those are square matrices where only diagonal
entries are different from zero. For example,

D =




1 0 0
0 2 0
0 0 3




is a diagonal matrix of order 3.

• Identity matrices: this is a square diagonal matrix where diagonal
entries are all equal to 1. For example,

I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




is an identity matrix of order 4. It is usually noted by the letter I
indexed by the order n: In.
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2.2. Operations on matrices

2.2 Operations on matrices

Matrices can be manipulated like simple numbers: they can be added, sub-
stracted, multiplied. However the rules are more complicated! Let us begin
with the simple addition and substraction.

Definition: Addition.

• Two matrices A and B of the same order can be added.

• A + B denotes the matrix obtained by adding the corresponding
entries of A and B.

For example,
[

1 0
2 3

]
+

[−1 2
0 4

]
=

[
1 + (−1) 0 + 2

2 + 0 3 + 4

]
=

[
0 2
2 7

]
.

Definition: Substraction.

• Two matrices A and B of the same order can be substracted.

• A − B denotes the matrix obtained by substracting the corre-
sponding entries of A and B.

For example,
[

1 0
2 3

]
+

[−1 2
0 4

]
=

[
1− (−1) 0− 2

2− 0 3− 4

]
=

[
2 −2
2 −1

]
.

Another possibility is to multiply a matrix by a number:

Definition: Multiplication by a number.

• Any matrix A can be multiplied by a real or complex number c.

• cA denotes the matrix obtained by multiplying each entry of that
matrix by the number c.

For example,

2 ·
[

1 0
2 3

]
=

[
2 · 1 2 · 0
2 · 2 2 · 3

]
=

[
2 9
4 6

]
.
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2. Matrices

The multiplication of matrices is not as straightforward.

Definition: Multiplication of matrices.

• One can multiply two matrices A and B only if the number of
columns of A is the same as the number of rows of B.

• If A has order m× r and B has dimension r× n, then the product
C = AB is a m× n matrix where the entry in the ith row and jth

column is the scalar product of the ith row of A and jth row of B.

To remember this definition, it is useful to keep in mind the following
diagram:

2
66664

· · � · · ·
· · � · · ·
· · � · · ·
· · � · · ·
· · � · · ·

3
77775

2
664

· · · · ·
� � � � �
· · · · ·
· · · · ·

3
775

2
664

· · · · · ·
· · � · · ·
· · · · · ·
· · · · · ·

3
775A

B

r columns

r rows

⇢
⇢

A⇥B

i, j

ith row

jth column

For example,




3 1
2 −4
−1 0


 ·
[

2 −1
0 4

]
=




3× 2 + 1× 0 3× (−1) + 1× 4
2× 2 + (−4)× 0 2× (−1) + (−4)× 4
−1× 2 + 0× 0 −1× (−1) + 0× 4


 =




6 1
4 −18
−2 1


 .
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2.3. Properties of the matrix operations

2.3 Properties of the matrix operations

Let A, B, C be three matrices of the same order m × n, d and e two
numbers. Then,

• A + B = B + A: the matrix addition is commutative,

• (A + B) + C = A + (B + C): the matrix addition is associative,

• A + 0 = A: the zero matrix is a neutral element for the addition,

• A + (−A) = 0: opposite element for the addition,

• (d + e) · A = dA + eA: multiplication by a number is distributive,

• e · (A + B) = dA + dB: ———— ,

• Im · A = A · In = A: the identity matrix is a neutral element for the
multiplication,

• 0 · A = A · 0 = 0: the zero matrix is an absorbing element for the
multiplication,

Now if A1 and A2 are of order m× r and B is of order r× n,

• (A1 + A2) · B = A1 · B + A2 · B: multiplication of matrices is dis-
tributive,

• d · (A1 · B) = (d · A1) · B = A1 · (d · B): the multiplication by a
number is compatible with the matrix product.

As a conclusion, we note that the definition of the matrix product gives a
well-defined meaning to the usual notation for linear systems:

A~x =~b,

where A is the matrix of coefficients of the system, ~x is the column vector of
unknowns, and~b is the column vector collecting the right-hand side data. For
example, the system

{
x + y = 2,

50x + 10y = 30.

corresponds to the matrix notation
[

1 1
50 10

]
·
[

x
y

]
=

[
2

30

]
.
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3. Determinants

3 Determinants

Motivation

We have seen that square systems of linear equations can have either:

• zero solutions (inconsistent system),

• a unique solution (consistent system),

• an infinity of solutions (consistent underdetermined system).

A first criterion to know which category a given system belongs to is the
RREF obtained by Gauß-Jordan reduction. In particular, we have seen that if
the RREF is an identity matrix, then the system is consistent. This indicates
that this property depends only on the coefficients of the system: the entries
of the coefficient matrix A.

We will see in this section a second criterion: the determinant3. This is a
number associated to any square matrix such that in particular,

det(A) 6= 0

is equivalent to the fact that associated systems always have a unique solution.

3.1 Definition

First, we may look at the simplest possible system: a 1× 1 problem,

a · x = b.

The matrix of coefficients is then

A =
[
a
]

and we define its determinant as

det(A) =
∣∣A
∣∣ = a.

We can check that this system will have a unique solution if a 6= 0.
Next, we may look at a 2× 2 system:
{

ax + by = 0,

cx + dy = 0.

The matrix associated with this system is

A =

[
a b
c d

]
.

3Textbook: Section 3.4
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3.1. Definition

We define its determinant as

det(A) =

∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc.

As an example, we can compute the 2× 2 determinant,
∣∣∣∣
1 2
3 4

∣∣∣∣ = 1 · 4− 2 · 3 = −2.

Since this determinant is not zero, any system described by these coefficients
is consistent.

Next, we examine the case of a 3 × 3 system. This time, the evaluation
of the determinant is a bit more complicated, and can be executed using the
so-called basketweave method:

Basketweave method

Step 1. Write the matrix and repeat the first two columns to the right
of the matrix:

A =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 −→

∣∣∣∣∣∣

a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32

∣∣∣∣∣∣
.

Step 2. Compute the determinant by adding the product of the en-
tries on each of the three downwards diagonals and substracting the
product of the entries on each of the upwards diagonals:

������

a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32

������
.

� � �

+ + +

det(A) =

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
=

{
a11a22a33 + a12a23a31 + a13a21a32

−a31a22a13 − a32a23a11 − a33a21a12.

We may use this method to compute the following 3× 3 determinant:
∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
=

{
1 · 5 · 9 + 2 · 6 · 7 + 3 · 4 · 8
−7 · 5 · 3− 8 · 6 · 1− 9 · 4 · 2 = 0.
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3. Determinants

Going to higher orders, we need to find a systematic method to compute
the determinant. Note that we do not expand here on the theory behind the
determinant, but give a practical method that allows to compute it. You have
to believe that there are good reasons why this is the right thing to do!

The idea is to apply a recursive method: large n× n determinants are ex-
pressed in terms of slightly smaller (n− 1)× (n− 1) determinants; these can
in turn be expressed in terms of (n− 2)× (n− 2) determinants, and so on until
we reach determinants we already know how to compute (2× 2 or 3× 3).

First, we introduce two notions. Let A be a n× n matrix.

Definition: The minor Mij of a coefficient aij of A is an (n − 1) ×
(n− 1) matrix obtained by deleting the ith row and jth column of A.

A =

2

664

· · � ·
· · � ·
� � � �
· · � ·

3

775 �! M33 =

2

4
· · ·
· · ·
· · ·

3

5

Definition: The cofactor Cij of a coefficient aij of A is a number ob-
tained by computing the determinant of the minor:

Cij = (−1)i+j ∣∣Mij
∣∣ .

Note the (−1)i+j sign in front of the cofactor, which depends on the row
and column index. These follow a checkerboard pattern:

1 2 3 4 · · ·
1 + − + − · · ·
2 − + − + · · ·
3 + − + − · · ·
4 − + − + · · ·
...

...
...

...
...

. . .

Finally, we can write any determinant by using the cofactors. More pre-
cisely, we can choose any column or row of the matrix.
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3.1. Definition

Development along a column or row.

• Let i be a row number, then we develop along the ith row as

det(A) =
n

∑
j=1

aijCij =
n

∑
j=1

(−1)i+jaij
∣∣Mij

∣∣ .

• Let j be a column number, then we develop along the jth column
as

det(A) =
n

∑
i=1

aijCij =
n

∑
i=1

(−1)i+jaij
∣∣Mij

∣∣ .

Property: Any choice leads to the same number in the end.

In this process, we obtain smaller matrices at each step!

Let us compute our favorite 3× 3 determinant using this approach. Devel-
oping along the first column, we have

∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
= a11C11 + a21C21 + a31C31 = 1 · C11 + 4 · C21 + 7 · C31,

where we compute the cofactors:

M11 =

������

1 2 3
4 5 6
7 8 9

������
=

����
5 6
8 9

���� = �3, C11 = (�1)1+1
��M11

�� = �3;

M21 =

������

1 2 3
4 5 6
7 8 9

������
=

����
2 3
8 9

���� = �6, C21 = (�1)2+1
��M21

�� = +6;

M31 =

������

1 2 3
4 5 6
7 8 9

������
=

����
2 3
5 6

���� = �3, C31 = (�1)3+1
��M31

�� = �3.

The result is then:
∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
= 1 · (−3) + 4 · 6 + 7 · (−3) = 0.

The result is the same as the basketweave method!
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3. Determinants

Next, we compute a 4× 4 determinant:

∣∣∣∣∣∣∣∣

7 6 0 1
9 −3 2 −1
4 5 0 1
2 3 0 −1

∣∣∣∣∣∣∣∣

Due to the 3rd column having almost only zeros, it is advantageous to develop
along it.

∣∣∣∣∣∣∣∣

7 6 0 1
9 −3 2 −1
4 5 0 1
2 3 0 −1

∣∣∣∣∣∣∣∣
= 0 ·

∣∣∣∣∣∣

9 −3 −1
4 5 1
2 3 −1

∣∣∣∣∣∣
− 2 ·

∣∣∣∣∣∣

7 6 1
4 5 1
2 3 −1

∣∣∣∣∣∣

+ 0 ·

∣∣∣∣∣∣

7 6 1
9 −3 −1
2 3 −1

∣∣∣∣∣∣
+ 0 ·

∣∣∣∣∣∣

7 6 1
9 −3 −1
4 5 1

∣∣∣∣∣∣

= −2 ·

∣∣∣∣∣∣

7 6 1
4 5 1
2 3 −1

∣∣∣∣∣∣
.

We continue by computing the remaining 3× 3 determinant. We develop it
along the first row:

∣∣∣∣∣∣

7 6 1
4 5 1
2 3 −1

∣∣∣∣∣∣
= 7 ·

∣∣∣∣
5 1
3 −1

∣∣∣∣− 6 ·
∣∣∣∣
4 1
2 −1

∣∣∣∣+ 1 ·
∣∣∣∣
4 5
2 3

∣∣∣∣

= 7 · (−8)− 6 · (−6) + 1 · 2
= −10.

Thus we conclude
∣∣∣∣∣∣∣∣

7 6 0 1
9 −3 2 −1
4 5 0 1
2 3 0 −1

∣∣∣∣∣∣∣∣
= 20.
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3.2. Row and column properties: elementary operations

3.2 Row and column properties: elementary operations

Multiplication by a number.

Let k be a real or complex number and i a row number. Suppose we
have two matrices A, B of the same size n, that we write as a vertical
stack of rows R1, . . . , Rn:

A =




− R1 −
...

− Ri −
...

− Rn −




and B =




− R1 −
...

− kRi −
...

− Rn −




THE ONLY DIFFERENCE BETWEEN THESE MATRICES IS THE ith

ROW, FOR WHICH ALL ENTRIES ARE MULTIPLIED BY k IN B
COMPARED TO A.

Then, we have the rule:

det(B) = k det(A),

i.e. we can take the factor k out of the determinant.

Exchange of rows.

Let i, j be two different row numbers. Suppose we have two matrices A,
B of the same size n:

A =




...
− Ri −

...
− Rj −

...




and B =




...
− Rj −

...
− Ri −

...




THE ONLY DIFFERENCE BETWEEN THESE MATRICES IS THE ith

and jth ROWS, WHICH ARE EXCHANGED.

Then, we have the rule:

det(B) = −det(A),

i.e. exchanging two rows changes the sign of the determinant.
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3. Determinants

Addition.

Let i be a row number. Suppose we have three matrices A1, A2 and B
of the same size n,

A1 =




...
− Ri −

...


 and A2 =




...
− Si −

...


 ,

B =




...
− Ri + Si −

...


 .

THE ONLY DIFFERENCE BETWEEN THE A1, A2 AND B
MATRICES IS THE ith ROW.

THE ith ROW OF B IS THE ENTRYWISE SUM OF THE ith ROWS OF
A1 AND A2.

Then, AND ONLY THEN, we have the rule:

det(B) = det(A1) + det(A2),

i.e. exchanging two rows changes the sign of the determinant.

Consequences:

1. If two rows of A are identical, then we have

det(A) = 0.

2. We can use addition of a multiple of a row to another: if we have two
matrices A, B, two row numbers i, j and a real or complex number k:

A =




...
− Ri −

...
− Rj −

...




and B =




...
− Ri −

...
− Rj + kRi −

...




then we have the rule,

det(A) = det(B).
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3.3. Special properties of the determinant.

Here is an example:
∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
R2←R2−4R1−→

∣∣∣∣∣∣

1 2 3
0 −3 −6
7 8 9

∣∣∣∣∣∣
R3←R3−7R1−→

∣∣∣∣∣∣

1 2 3
0 −3 −6
0 −6 −12

∣∣∣∣∣∣

R2←R2/(−3)−→ (−3)

∣∣∣∣∣∣

1 2 3
0 1 2
0 −6 −12

∣∣∣∣∣∣

R3←R3/(−6)−→ (−3)(−6)

∣∣∣∣∣∣

1 2 3
0 1 2
0 1 2

∣∣∣∣∣∣

Now this last determinant has two identical rows: it is zero.

3.3 Special properties of the determinant.

Zero determinant: if det(A) = 0, then the homogeneous system

A~x =~0

has infinitely many solutions (consistent, underdetermined system).

Matrix product and determinant. If A, B are of the same order n, then

det(AB) = det(A)det(B).

Triangular matrices. If A is upper or lower triangular4 then the determi-
nant is the product of the diagonal elements:

∣∣∣∣∣∣

1 6 10
0 5 8
0 0 7

∣∣∣∣∣∣
= 1 · 5 · 7 = 35,

∣∣∣∣∣∣

1 0 0
3 7 0
4 6 6

∣∣∣∣∣∣
= 1 · 7 · 6 = 42.

4A matrix is upper (resp. lower) triangular if all elements below (resp above) the diagonal are
zero.
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3. Determinants

Cramer’s rule. Let A be a matrix of order n with det(A) 6= 0, and
consider a linear system

A~x =~b.

Let Ai be the matrix obtained by replacing the ith column by the col-
umn vector~b. Then, we obtain the ith component of the solution of the
linear system A~x =~b by the formula,

xi =
det(Ai)

det(A)
.

Here is an example: we solve the system,
{

x + 2y = 5

3x + 4y = 6.

Then the corresponding matrix and vector are:

A =

[
1 2
3 4

]
, and ~b =

[
5
6

]
.

The determinant of A is:
∣∣∣∣
1 2
3 4

∣∣∣∣ = −2 6= 0,

so we can apply Cramer’s rule:

x =

∣∣∣∣
5 2
6 4

∣∣∣∣
−2

= −4, and y =

∣∣∣∣
1 5
3 6

∣∣∣∣
−2

= 9/2.
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4 Matrix inverse

4.1 Definition.

Questions:

1. What property must A fulfill so that

AB = AC implies B = C?

2. Is there a connexion with the determinant and linear systems with unique
solutions,

det(A) 6= 0?

Definition: A square matrix A is called invertible if there exists an-
other matrix B such that

AB = BA = In,

where In is the n× n identity matrix.

Such a matrix B is then called the inverse5 of A and noted A−1.
There is only one such inverse!

Answer to our previous question: If A is invertible, then

AB = AC =⇒ A−1 AB = A−1 AC

=⇒ InB = InC

=⇒ B = C.

4.2 How to compute the inverse?

1× 1 matrices. If A =
[
a
]
, then A−1 =

[
1/a

]
.

• This is possible only if a 6= 0.

2× 2 matrices. For a 2× 2 matrix, we have

A =

[
a b
c d

]
=⇒ A−1 =

1
ad− bc

[
d −b
−c a

]
.

• This is possible only if det(A) = ad− bc 6= 0.

Example:

[
1 2
3 4

]−1

=
1

(−2)

[
4 −2
−3 1

]
=

[−2 1
3/2 −1/2

]

5Textbook: Section 3.3
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4. Matrix inverse

General n× n matrices.

• A is invertible if, and only if, its Reduced Row Equivalent Form
is the identity matrix In.

• Algorithm: we apply the Gauß-Jordan elimination procedure!
[
A In

]
−→

[
In A−1] .

Example: find the inverse of

A =




4 3 2
5 6 3
3 5 2


 .

Step 1: Write the augmented matrix




4 3 2 1 0 0
5 6 3 0 1 0
3 5 2 0 0 1


 .

Step 2: Work left to right to obtain zeros under the diagonal and ones on the
diagonal.




4 3 2 1 0 0
5 6 3 0 1 0
3 5 2 0 0 1


 R1←R1−R3−→




1 −2 0 1 0 −1
5 6 3 0 1 0
3 5 2 0 0 1




R2←R2−5R1−→



1 −2 0 1 0 −1
0 16 3 −5 1 5
3 5 2 0 0 1




R3←R3−3R1−→



1 −2 0 1 0 −1
0 16 3 −5 1 5
0 11 2 −3 0 4




R2←R2−R3−→



1 −2 0 1 0 −1
0 5 1 −2 1 1
0 11 2 −3 0 4




R3←R3−2R2−→



1 −2 0 1 0 −1
0 5 1 −2 1 1
0 1 0 1 −2 2




R3↔R2−→



1 −2 0 1 0 −1
0 1 0 1 −2 2
0 5 1 −2 1 1




R3←R3−5R2−→



1 −2 0 1 0 −1
0 1 0 1 −2 2
0 0 1 −7 11 −9



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4.2. How to compute the inverse?

Step 3: Work right to left to obtain zeros above the diagonal.




1 −2 0 1 0 −1
0 1 0 1 −2 2
0 0 1 −7 11 −9


 R1←R1+2R2−→




1 0 0 3 −4 3
0 1 0 1 −2 2
0 0 1 −7 11 −9




Conclusion:

• A is row equivalent to In (they share the same RREF), thus A is invert-
ible.

• We have obtained its inverse:

A−1 =




3 −4 3
1 −2 2
−7 11 −9


 .

• Check: compute the matrix product,

AA−1 =




4 3 2
5 6 3
3 5 2


 ·



3 −4 3
1 −2 2
−7 11 −9


 =




1 0 0
0 1 0
0 0 1


 X
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