
Lecture 1: Review of Linear Algebra, 1. (February 2)

1.1 Matrices and Vectors. (Ch. 1)

Most of this class is focused on the topic of matrices and manipulations thereof. In these first few
lectures, we review the bases of linear algebra.

1.1.1 Notation.

• We will denote R the field of real numbers, and C the field of complex numbers.
F stands in for either R or C.

• Fmˆn is the ring of matrices with m columns and n rows.

• Fn ” Fnˆ1 is the vector space of (column) vectors with n components and dimension n.

• F1ˆn is the vector space of row vectors with n components, which also has dimension n.

Vector spaces Basic notions should be reviewed by reading paragraph 1.1 in the textbook:
linear combinations, independence, basis.

1.1.2 Matrix notation.

Row vectors:
r “

“

r1 . . . rn
‰

, ri P F.

Column vectors:

c “

»

—

–

c1
...
cn

fi

ffi

fl

, ci P F.

Rectangular matrix:

A “

»

—

—

—

–

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

fi

ffi

ffi

ffi

fl

“
`

aij
˘

mˆn
“
`

aij
˘

The i-th row of the matrix A is the row vector of size n:
“

ai1 . . . ain
‰

The j-th column of the matrix A is the column vector of size m:

»

—

–

a1j
...
amj

fi

ffi

fl

When m “ n the matrix is called square:

A “

»

—

–

a11 . . . a1n
...

...
an1 . . . ann

fi

ffi

fl

and its main diagonal is the vector
`

a11 . . . ann
˘

.
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1.1.3 A few special vectors and matrices.

• Fix n ě 0, for each j P t1, . . . , nu the vector

ej “
`

δij
˘

n
“

»

—

—

—

—

—

—

—

—

—

–

0
...
0
1
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ð j-th row

is the j-th standard unit basis vector.

• 0mˆn is the mˆ n zero matrix.

• 0n is zero column vector of dimension n.

• In is the nˆ n identity matrix:

In “

»

—

—

—

–

1 0 . . . 0

0 1
. . . ...

... . . . . . . 0
0 . . . 0 1

fi

ffi

ffi

ffi

fl

Its j ´ th column (or row) is the basis vector ej.

• Trapezoidal or triangular matrices:
m ą n m “ n m ă n

R P Fmˆn
Upper triangu-
lar:
rij “ 0 for i ą j

»

—

—

—

–

r11 . . . r1n

. . . ...
0 rnn

0

fi

ffi

ffi

ffi

fl

»

—

–

r11 . . . r1n

. . . ...
0 rnn

fi

ffi

fl

»

—

–

r11 . . . r1m . . . r1n

. . . ...
...

...
0 rmm . . . rmn

fi

ffi

fl

D P Fmˆn
Diagonal :
dij “ 0 for i ‰ j

»

—

—

—

–

d11 0
. . .

0 dnn
0

fi

ffi

ffi

ffi

fl

»

—

–

d11 0
. . .

0 dnn

fi

ffi

fl

»

—

–

d11 0
. . . 0

0 dmm

fi

ffi

fl

L P Fmˆn
Lower triangu-
lar:
lij “ 0 for i ă j

»

—

—

—

—

—

–

l11 0
... . . .
ln1 . . . lnn
...

...
...

lm1 . . . lmn

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

–

l11 0
... . . .
ln1 . . . lnn

fi

ffi

fl

»

—

–

l11 0
... . . . 0
lm1 . . . lmm

fi

ffi

fl
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1.1.4 Block form

A matrix can often be subdivided in blocks, which may for example have special structure. In
such cases, we may use the following block format :

A “

n1 . . . nq
»

—

—

—

–

A11 . . . A1q

A21 . . . A2q
...

...
Ap1 . . . Apq

fi

ffi

ffi

ffi

fl

m1

m2
...
mp

where each block Aij P Fmiˆnj is an mi by nj matrix, and A is an Fmˆn with m “ m1 ` ¨ ¨ ¨ `mp

and n “ n1 ` ¨ ¨ ¨ ` nq.

Remark 1.1. Annotating with the number of columns or rows per block may be omitted if the
context makes clear what they should be.

Examples. The big matrix:

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

4 1 2 3 8 9 5 7 6
8 7 5 6 2 1 3 4 9
9 6 3 4 7 5 2 1 8
3 9 1 5 4 8 7 6 2
6 2 4 7 9 3 1 8 5
5 8 7 2 1 6 9 3 4
7 3 6 8 5 2 4 9 1
1 5 8 9 3 4 6 2 7
2 4 9 1 6 7 8 5 3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

can be decomposed into a Sudoku using a 3ˆ 3 block array of 3ˆ 3 blocks:

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

4 1 2 3 8 9 5 7 6
8 7 5 6 2 1 3 4 9
9 6 3 4 7 5 2 1 8
3 9 1 5 4 8 7 6 2
6 2 4 7 9 3 1 8 5
5 8 7 2 1 6 9 3 4
7 3 6 8 5 2 4 9 1
1 5 8 9 3 4 6 2 7
2 4 9 1 6 7 8 5 3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
`

Aij
˘

3ˆ3

where Aij P R3ˆ3. Alternatively, we can decompose A into it column form:

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

4 1 2 3 8 9 5 7 6
8 7 5 6 2 1 3 4 9
9 6 3 4 7 5 2 1 8
3 9 1 5 4 8 7 6 2
6 2 4 7 9 3 1 8 5
5 8 7 2 1 6 9 3 4
7 3 6 8 5 2 4 9 1
1 5 8 9 3 4 6 2 7
2 4 9 1 6 7 8 5 3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
`

Cij
˘

1ˆ9
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or its row form:

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

4 1 2 3 8 9 5 7 6
8 7 5 6 2 1 3 4 9
9 6 3 4 7 5 2 1 8
3 9 1 5 4 8 7 6 2
6 2 4 7 9 3 1 8 5
5 8 7 2 1 6 9 3 4
7 3 6 8 5 2 4 9 1
1 5 8 9 3 4 6 2 7
2 4 9 1 6 7 8 5 3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
`

Rij

˘

9ˆ1
.

1.1.5 Matrix operations

Let us fix three matrices

A “
`

aij
˘

mˆn
, B “

`

bij
˘

mˆn
, C “

`

cij
˘

nˆp

We recall now the following operations:

• Transpose: AT “
`

aji
˘

nˆm
,

Remark 1.2. If x “
`

x1 . . . xn
˘

is a row vector, then xT “
`

x1 . . . xn
˘T is a column

vector, and vice versa.

• Conjugate: A “
`

aij
˘

mˆn
,

• Adjoint: A˚ or AH “
`

aji
˘

nˆm
,

• Multiplication by a scalar:
αA “

`

αaij
˘

mˆn
,

• Addition of matrices of the same size:

A`B “
`

aij ` bij
˘

,

• Linear combinations:
αA` βB “

`

αaij ` βbij
˘

mˆn
,

• Matrix-matrix multiplication:
AC “

`
řn
i“1 aikckj

˘

mˆp

Remark 1.3. The matrix product is only defined when A has as many columns as C has rows!

Remark 1.4. The matrix product is non-commutative, such that in general AC ‰ CA even if
both products make sense.

Property 1.5. If A P Fmˆn and C P Fnˆp, then

pACqT “ CTAT and pACq˚ “ C˚A˚.
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Examples Take A “
“

1 1 1
‰

and

B “

»

–

1 0 1
0 1 0
0 0 1

fi

fl

We compute then
AB “

“

1 1 2
‰

,

while BA is undefined.
Next, we take

A “

„

0 1
0 0



, B “

„

0 0
1 0



.

Then we have
AB “

„

1 0
0 0



, BA “

„

0 0
0 1



.

This shows in particular that AB ‰ BA.

1.1.6 Block operations

When the matrices have a (compatible) block structure, the operations above can be written using
that block structure. In particular, assume we have

A “

n1 . . . nq
»

—

–

A11 . . . A1q
...

...
Ap1 . . . Apq

fi

ffi

fl

m1
...
mp

and B “

n1 . . . nq
»

—

–

B11 . . . B1q
...

...
Bp1 . . . Bpq

fi

ffi

fl

m1
...
mp

.

Then we can write:

• the transpose and adjoint:

AT “

m1 . . . mp
»

—

–

AT11 . . . ATp1
...

...
AT1q . . . ATpq

fi

ffi

fl

n1
...
nq

, A˚ “

m1 . . . mp
»

—

–

A˚11 . . . A˚p1
...

...
A˚1q . . . A˚pq

fi

ffi

fl

n1
...
nq

• Linear combinations:

αA` βB “

n1 . . . nq
»

—

–

αA11 ` βB11 . . . αA1q ` βB1q
...

...
αAp1 ` βBp1 . . . αApq ` βBpq

fi

ffi

fl

m1
...
mp

Next, if we also have a matrix C with block structure:

C “

k1 . . . ks
»

—

–

C11 . . . C1s
...

...
Cq1 . . . Cqs

fi

ffi

fl

n1
...
nq
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then the matrix-vector product takes the block form

AC “

n1 . . . nq
»

—

–

řq
j“1A1jCj1 . . .

řq
j“1A1jCjs

...
...

řq
j“1ApjCj1 . . .

řq
j“1ApjCjs

fi

ffi

fl

m1
...
mp

Lecture 2: Review of Linear Algebra, 2. (February 4)

2.1 Matrix-vector product

When computing the matrix-vector product Ax where A P Fmˆn and x P Fn, we may consider it
under different viewpoints.

• First, recall that A can be identified with a linear map A : Fn Ñ Fm, x ÞÑ b “ Ax P Fm.

• Next, if we use the block row form of A:

A “

»

—

–

rT1
...
rTm,

fi

ffi

fl

ri P Fn,

then we obtain the row-oriented or inner-product version of the matrix-vector product:

b “ Ax “

»

—

–

rT1
...
rTm,

fi

ffi

fl

x “

»

—

–

rT1 x
...

rTmx,

fi

ffi

fl

P Fm,

whereby the entries of the result are the obtained (in the real case) as the Euclidean in-
ner/scalar product between the corresponding row of A and the vector x.

• Third, if we use the block column form of A:

A “
“

c1 . . . cn,
‰

cj P Fm,

then we obtain the column-oriented or linear combination version of the matrix-vector prod-
uct:

b “ Ax “
“

c1 . . . cn,
‰

»

—

–

x1
...
xn

fi

ffi

fl

“

n
ÿ

j“1

xjcj.

Here the result is framed as a linear combination of the columns of the matrix A with the
entries of x as coefficients.

We usually focus on the column-oriented version in algorithm, as it proves more convenient.
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2.2 Range, nullspace and rank

Let A P Fmˆn be a rectangular matrix. The action of A as a linear map Fn Ñ Fm motivate the
following definitions:

• Range / Column space of A:

Ran pAq “ tAx, x P Fnu Ď Fm.

If we write the block column form of A “
“

c1 . . . cn
‰

where cj P Fm, then we may also
identify

Ran pAq “ Spantc1, . . . , cnu.

• Range of AT / Row space of A:

Ran
`

AT
˘

“ tATx, x P Fmu Ď Fn

” tpxAqT , x P F1ˆm
u Ď F1ˆn

This subspace of Fn is spanned by the rows of A.

• Kernel or nullspace of A:

Ker pAq “ nullpAq “ tx P Fn, Ax “ 0u Ď Fn.

• Rank of A:
rank pAq “ dim Ran pAq

The following results are fundamental to linear algebra.

Proposition 2.1. Let A P Fmˆn be a matrix, then

rank pAq ` dim Ker pAq “ n.

Proposition 2.2. Let A P Fmˆn be a matrix, then

rank pAq “ rank
`

AT
˘

“ rank pA˚q .

Definition 2.3. A matrix A P Fmˆn has full rank if rank pAq “ mintm,nu.
It is rank-deficient if rank pAq ă mintm,nu.

Theorem 2.4. Let A P Fmˆn with m ě n. Then the following statements are equivalent:

1. A has full rank: rank pAq “ n,

2. A is one-to-one as a linear map Fn Ñ Fm, i.e.

Au “ Av ô u “ v,

3. Ker pAq “ t0u,

4. the columns of A are linearly independent and form a basis for Ran pAq.

Proposition 2.5. A matrix A P Fmˆ n had rank 1 if and only if there exists nonzero vectors
u P Fm, v P Fn such that

A “ uv˚.
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2.3 Trace and determinant

Definition 2.6. For a square matrix A P Fnˆn, we define its trace

F Q TrA “
n
ÿ

i“1

aii,

and its determinant
F Q detA “

ÿ

πPP

sgnpπqa1π1 . . . anπn ,

where P is the set of n! permutations of t1, . . . , nu.

Property 2.7. Let A P Fnˆm, B P Fmˆn, then

TrAB “ TrBA.

Let A,B P Fnˆn, then

detA “ detAT detAB “ detA detB.

2.4 Matrix inverse.

Definition 2.8. A square matrix A P Fnˆn is said to be invertible or non-singular if there
exists B P Fnˆn such that

AB “ BA “ In.

Such a matrix is unique and we denote then A´1 “ B.
If there exists no such matrix B then we say that A is singular.

Property 2.9. • A is invertible if and only if A has full rank or detpAq ‰ 0.

• If A is invertible, then so are AT and A˚ and

pA´1
q
T
“ pAT q´1, pA´1

q
˚
“ pA˚q´1.

• If A and B are invertible then AB is invertible and

pABq´1
“ B´1A´1.

Practical remarks

• There exists an explicit formula for computing the elements of A´1 in terms of the de-
terminant of A and its minors, but it is very impractical in practice as its cost is Opn!q
floating-point operations.

• Never compute A´1 explicitely if it is not necessary, as even the best algorithms have a cost
scaling as Opn3q.
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2.5 Special matrices

Definition 2.10. A square matrix A P Fnˆn is said to be...

• Symmetric if A “ AT ,

• Orthogonal if A´1 “ AT ,

• Hermitian or self-adjoint if A “ A˚,

• Unitary if A´1 “ A˚,

• Normal if AA˚ “ A˚A.

2.6 Scalar (or inner) product in finite dimension

Definition 2.11. A scalar product on a vector space V over F “ R or C is a map p¨, ¨q: V ˆV Ñ F
such that:

• p¨, ¨q is linear in its second variable:

px, αy1 ` βy2q “ αpx, y1q ` βpy, y2q,

• p¨, ¨q is hermitian:
px, yq “ py, xq,

• p¨, ¨q is positive definite:

px, xq ě 0 and px, xq “ 0 ùñ x “ 0.

Example: the standard inner product on Fn is

px, yq “ x˚y “
n
ÿ

i“1

xiyi.

Remark 2.12. We adopt here the "physics" convention where, in the complex case, the scalar
product is linear in its second variable and anti-linear in its first variable. Often, the mathematical
literature adopts the different convention (linear in the first variable, anti-linear in the second
variable), leading to a different definition of the standard inner product, px, yq “ y˚x.

Here are a couple properties of the standard Euclidean inner product:

Property 2.13. • Given a matrix A P Fnˆn,

px,Ayq “ pA˚x, yq, @x, y P Fn.

• Unitary matrices conserve the scalar product, in the sense that

pQx,Qyq “ px, yq, @x, y P Fn.

The structure associated with scalar products is extremely useful. The concept of orthogonality in
particular has a wide range of uses.
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Definition 2.14. • Two vectors x, y P Fn are orthogonal if

px, yq “ 0.

• Two sets of vectors X, Y Ă Fn are orthogonal if

px, yq “ 0, @x P X, y P Y.

• A set of vectors tv1, . . . ,vmu is orthogonal if

pvi, vjq “ 0, @i ‰ j P t1, . . . ,mu.

It is orthonormal if, in addition,

pvi, viq “ 1, @i P t1, . . . ,mu.

Proposition 2.15. If tv1, . . . , vmu Ă Fn is orthogonal and the vi are all nonzero, then tv1, vmu is
linearly independent and m ď n.

Proof. Let tv1, . . . , vmu an orthogonal subset of Fnzt0u as in the theorem. Suppose a linear com-
bination

řm
j“1 cjvj vanishes, then for all i “ 1, . . . ,m we have

˜

vi,
m
ÿ

j“1

cjvj

¸

“

m
ÿ

j“1

cjpvi, vjq “ cipvi, viq “ 0.

Now since vi ‰ 0, we have pvi, viq ‰ 0 and hence ci “ 0. By definition, this shows that the set
tv1, . . . , vmu is linearly independent. Thus m must be lesser or equal than the dimension of the
vector space, which is n.

Corollary 2.16. If tv1, . . . , vnu is as in Proposition 2.15 with m “ n, then it is a basis for Fn.
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Lecture 3: Gram-Schmidt Process; Vector Norms. (February
9)

3.1 Orthogonal Projection.

Given a set of orthonormal vectors tq1, . . . , qmu P Fn spanning a subspace S Ă Fn, we define the
linear map

Fn Q v ÞÑ Pv “
m
ÿ

i“1

pqi, vqqi “

m
ÿ

i“1

qipq
˚
i vq P S.

Note that P corresponds to the matrix, also denoted P ,

P “
m
ÿ

i“1

qiq
˚
i .

Then for any q P S, we have the property

pq, vq “ pq, Pvq or pq, v ´ Pvq “ 0,

meaning that the difference v ´ Pv is orthogonal to the subspace S.

Definition 3.1. The matrix P “
řm
i“1 qiq

˚
i is called the orthogonal projector onto S.

This matrix has the classical property of projectors, P 2 “ P , and also it is Hermitian, P “ P ˚.

3.2 Gram-Schmidt Process.

Let tv1, . . . , vmu Ă Fm be a set of independent vectors, m ď n. The following procedure yields an
orthonormal set of vectors q1, . . . , qm spanning the same subspace of Fn:

1. Set
w1 “ v1 then q1 “

1
a

pw1, w1q
w1,

such that pq1, q1q “ 1.

2. Next, set

w2 “ v2 ´ pq1, v2qq1 and q2 “
1

a

pw2, w2q
w2,

such that pq1, w2q “ pq1, v2q ´ pq1, v2qpq1, q1q “ 0 and hence pq2, q1q “ 0, pq2, q2q “ 1.

. . .

Step j. Continue the process with

wj “ vj ´

˜

j´1
ÿ

i“1

qiq
˚
i

¸

looooomooooon

orthogonal projector onto Spanpq1,...,qj´1q

vj and qj “
1

a

pwj, wjq
wj,

such that pqi, wjq “ pqi, vjq ´ pqi, Pj´1vjq “ 0 for i ă j where Pj´1 is the orthogonal pro-
jector onto the subspace spanned by q1, . . . , qj´1, and hence the vectors q1, . . . , qj form an
orthonormal family.
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3.3 Vector Norms.

We define now a central object for the study of vectors, and in particular for the introduction of
a topology and notions such as limits and continuity.

Definition 3.2. Let V be a vector space over F. A map } ¨ } : V Ñ R` is a norm on V if

1. }v} “ 0 implies v “ 0,

2. }αv} “ |α|}v} for any scalar α P F and vector v P V (homogeneity),

3. }u` v} ď }u} ` }v} for any two vectors u, v P V (triangular inequality).

Examples. for x P Fn, we define the classical definitions:

• The Euclidean norm:

}x}2 “
a

px, xq “ px˚xq1{2 “

˜

n
ÿ

i“1

|xj|
2

¸1{2

• The Hölder p-norm: for p ě 1, we set

}x}p “

˜

n
ÿ

i“1

|xj|
p

¸1{p

(Note that the Euclidean norm is a special case obtained for p “ 2.)

• The maximum or infinity norm:
}x}8 “ max

1ďiďn
|xi|.

• Given a full-rank matrix A P Fmˆn with m ě n and p P r1,8s, we define

}x}A,p “ }Ax}p.

One can check that each of these examples satisfies properties 1-3 above, and define proper norms
on V “ Fn. Norms bear a strong relations to scalar products, in particular the Euclidean or
2-norm. For example, we have the following classical result:

Proposition 3.3. Let x, y be two vectors in Fn equipped with the scalar product px, yq “ x˚y.

• Cauchy-Schwartz inequality:
|px, yq| ď }x}2}y}2.

• The above is a special case of the Hölder inequality:

|px, yq| ď }x}p}y}q, where p, q P r1,8s and
1

p
`

1

q
“ 1.

Since there are many possible norms, it is important to understand to which extent these norms
are fundamentally different - in particular, are they comparable? In finite dimension, the following
definition and theorem answer this question.
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Definition 3.4 (Equivalence of norms). Two norms } ¨ } and |||¨||| on V are equivalent if there
exists two constants c, C ą 0 such that

c|||x||| ď }x} ď C|||x|||, for any v P V.

Theorem 3.5. Let V be a finite-dimensional vector space. Then all norms on V are equivalent.
Corollary 3.6. Let } ¨ } be any norm on Fn and a sequence pxpkqqkě0 of elements of Fn. Then we
say that pxpkqq converges to x P Fn, or

lim
kÑ8

xpkq “ x,

if and only if limkÑ8 x
pkq
i as number sequences for all i “ 1, . . . , n, and this is equivalent to

lim
kÑ8

}xpkq ´ x} “ 0.

3.4 Matrix Norms

Similarly to vector spaces, spaces of matrices can be equipped with norms, defined in the same
way.
Definition 3.7. A function } ¨ }: Fmˆn Ñ R` is a norm if

1. }A} ě 0, and }A} “ 0 iff A “ 0, for all A P Fmˆn.

2. }αA} “ |α|}A}, , for all A P Fmˆn and α P F.

3. }A`B} ď }A} ` }B}, for all A,B P Fmˆn.
Because matrices can be multiplied, the following notion is useful.
Definition 3.8. We say that a matrix norm } ¨ } is sub-multiplicative if

}AB} ď }A}}B}, @A P Fmˆn and B P Fnˆp.
In some cases, matrix norms may be related to norms on the vectors spaces on which they act as
linear transformations: A : Fn Ñ Fm.
Definition 3.9. A matrix norm } ¨ } on Fmˆn is called compatible or consistent with vector norms
also denoted } ¨ } on Fm and Fn if

}Ax}Fm ď }A}}x}Fn .

Note that not all matrix norms are sub-multiplicative or consistent. For example, the function
}A}∆ “ maxi,j }aij} is a norm on the space of 2ˆ 2 matrices, yet

A “ B “

„

1 1
1 1



have norm }A}∆}B}∆ “ 1,

but
AB “

„

2 2
2 2



has norm }AB}∆ “ 2,

so } ¨ }∆ is not submultiplicative.
On the other hand, define the Frobenius norm:

}A}F “

˜

n
ÿ

i,j“1

|ai,j|
2

¸1{2

“
?

TrA˚A.

Property 3.10. The Frobenius norm is sub-multiplicative, compatible with the Euclidean norm
} ¨ }2, and

}A}F “ }A
T
}F “ }A

˚
}F .
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Lecture 4: Induced Norms, Eigen-problems. (February 11)

4.1 Induced Norms

Definition 4.1. Let } ¨ } be a vector norm. The function:

}A} “ sup
x‰0

}Ax}

}x}
“ sup
}x}“1

}Ax} (4.1)

is a matrix norm, called the induced norm or natural matrix norm associated with the vector norm
} ¨ }.

Property 4.2. If }A} is induced by the vector norm }x}, then

• }Ax} ď }A}}x} for any matrix A P Fmˆn and vector x P Fn,

• }AB} ď }A}}B} for any matrices A P Fmˆn, B P Fnˆp
(all induced norms are sub-multiplicative),

• }In} “ 1.

Before proving that (4.1) indeed defines a norm on matrices, let us propose and compute a few
such induced norms. Given 1 ď p ď 8, the Hölder p-norm on vectors defines an induced matrix
norm by

}A}p “ sup
}x}“1

}Ax}p.

• For p “ 1, we can compute explicitely this quantity. Let A P Fmˆn with columns c1, . . . , cn P
Fm, for any vector x P Fn,

}Ax}1 “

›

›

›

›

›

n
ÿ

j“1

xjcj

›

›

›

›

›

1

ď

n
ÿ

j“1

|xj|}cj}1 ď pmax
1ďjďn

}cj}1q
n
ÿ

j“1

|xj|,

where we have used the triangular inequality for the 1-norm. Since the last quantity on the
right is }x}1, we have that for any vector x,

}Ax}1
}x}1

ď max
j“1,...,n

}cj}1 “ max
j“1,...,n

˜

n
ÿ

i“1

|aij|

¸

.

Taking the maximum over the left-hand side of the inequality shows that

}A}1 ď max
j“1,...,n

˜

n
ÿ

i“1

|aij|

¸

.

Taking x “ ej where j is chosen such that }cj}1 “ maxk“1,...,n }ck}1 yields }x}1 “ 1, }Ax}1 “
}cj}1 “ maxj“1,...,n p

řn
i“1 |aij|q, which shows that in fact this inequality is an equality:

}A}1 “ max
j“1,...,n

˜

n
ÿ

i“1

|aij|

¸

.

The induced 1-norm on matrices is dubbed the "column sum norm".

14



• For p “ 8, one computes similarly,

}A}8 “ max
i“1,...,n

˜

n
ÿ

j“1

|aij|

¸

.

The induced 1-norm on matrices is dubbed the "row sum norm".

The expressions above lead to the following properties of the induced 1- and 8-norms, since
transposition exchanges the role of rows and columns:

Proposition 4.3. Let A P Fmˆn, then

– }A}1 “ }AT }8 “ }A˚}8
– }A}8 “ }AT }1 “ }A˚}1

• Finally, the induced 2-norm or spectral norm does not have a simple expression in terms of
the entries of A, and is rather more difficult to compute. Thanks to the sub-multiplicativity
of the Frobenius norm, we have however

}A}2 “
ÿ

x‰0

}Ax}2
}x}2

ď }A}F .

Let us now prove that these objects are indeed norms on matrices!

Proof. Let } ¨ } be a norm on Fm and Fn, and define the quantity

}A} “ sup
x‰0

}Ax}

}x}
.

• Clearly, }A} is a positive quantity. If A ‰ 0, there exists at least one vector x R Ker pAq,
hence such that }Ax} ą 0. As a result,

}A} ě
}Ax}

}x}
ą 0.

• Next, let A,B two matrices and take x P Fn with norm 1, then using the properties of vector
norms,

}pA`Bqx} “ }Ax`Bx} ď }Ax} ` }Bx} ď }A} ` }B}.

Taking the supremum on the left-hand side, we have thus the triangle inequality,

}A`B} ď }A} ` }B}.

• Finally, for α P F, }αAx} “ |α|}Ax}, so by taking the maximum on both sides, we have
clearly homogeneity: }αA} “ |α|}A}.

Hence the induced norm }A} is indeed a norm on matrices.
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4.2 Eigenvalues and Eigenvectors.

Definition 4.4. Given a square matrix A P Fnˆn, we say that λ P C is an eigenvalue of A if
there exists a vector v P Fnzt0u such that

Ax “ λx.

The vector x is called a (right) eigenvector of A, and the set of all eigenvalues is called the
spectrum of A and denoted σpAq.
A left eigenvector of A is a vector y satisfying

y˚A “ λy˚.

Definition 4.5. We further define ...

• the Rayleigh quotient:
x˚Ax

x˚x
, which equals an eigenvalue λ if x is the corresponding

eigenvector,

• the spectral radius: ρpAq “ maxλPσpAq |λ|,

• the characteristic polynomial: pApλq “ detA´ λI, which is a polynomial of degree n.
Note that the spectrum σpAq is the set of roots of pApλq.

Property 4.6. • The spectrum of A coincides with the spectrum of its transpose: σpAq “
σpAT q.

• The spectrum of A coincides with the complex conjugate of the spectrum of its adjoint:
σpA˚q “ σpAq “ σpAq.

Definition 4.7. For a given eigenvalue λ P σpAq, we define

• the algebraic multiplicity, which is the mupltiplicity of λ as a root of the characteristic
polynomial pA,

• the geometric multiplicity, which is the dimension of Ker pA´ λInq.

If the two are different, we say that the eigenvalue (and the matrix) is defective.

Note that the geometric multiplicity is always smaller or equal than the algebraic multiplicity.

Example: the matrix A “
„

0 1
0 0



, such that pApλq “ λ2, has a unique eigenvalue λ “ 0 with

algebraic multiplicity 2 and geometric multiplicity 1.

4.3 Similarities

Definition 4.8. Two matrices A,B P Fnˆn are called similar if there exists an invertible matrix
C such that

B “ C´1AC.

They are unitarily similar if the matrix C is unitary.
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Property 4.9. If two matrices A,B are similar, their characteristic polynomials and spectra are
identical:

pA “ pB, σpAq “ σpBq.

Proof.

pB “ detC´1AC ´ λC´1C “ detC´1
pA´ λInqC “ detC detC´1 detA´ λI “ pA.

A very important result in the theory of square matrices is that any matrix is unitarily similar to
a triangular matrix.

Theorem 4.10 (Schur decomposition). Given A P Fnˆn, there exists a unitary matrix U such that

U´1AU “ U˚AU “

»

—

—

—

–

λ1 b12 . . . b1n

λ2
. . . ...
. . . bn´1n

0 λn

fi

ffi

ffi

ffi

fl

“ T,

i.e. A is unitarily similar with an upper triangular matrix T with the eigenvalues of A (counting
algebraic multiplicity) on the diagonal.

We omit the proof of this result.

Corollaries.

• The determinant of a matrix is the product of its eigenvalues, counting algebraic multiplicity:

detA “
n
ź

i“1

λi.

• If a matrix A is Hermitian: A “ A˚, then T ˚ “ pU˚AUq˚ “ U˚AU “ T , which implies that
T is diagonal with real entries.

• If A is a normal matrix, then T is also normal, which can be shown to imply that T is a
diagonal matrix (but may have complex entries).

Hence, any normal matrix A (including Hermitian matrices) is diagonalizable, it is not defec-
tive (the algebraic and geometric multiplicities coincide for each eigenvalue), and the columns
of U form an orthonormal basis of eigenvectors of A for Fn:

A “ U
loomoon

unitary

Λ
loomoon

diagonal

U˚ “
n
ÿ

i“1

λi

rank 1 term
hkkikkj

uiu
˚
i .

Finally, by relaxing the conditions on C one may find a matrix which is similar to A, but with
further structure.
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Theorem 4.11 (Jordan Canonical Form). Let A P Fnˆn. There exists an invertible matrix X
such that

X´1AX “

m1 . . . mp
»

—

–

J1 0
. . .

0 Jp

fi

ffi

fl

m1
...
mp

“ J,

where the Jordan blocks Jk are mk ˆmk blocks with the form Jk “ rλks if mk “ 1, or

Jk “

»

—

—

—

–

λk 1 0
. . . . . .

. . . 1
0 λk

fi

ffi

ffi

ffi

fl

if mk ą 1,

where λk is an eigenvalue of A, and m1 ` ¨ ¨ ¨ `mp “ n.
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Lecture 5: Singular Values and Singular Value Decomposition
(SVD) (February 18)

5.1 Singular Values

Definition 5.1. Let A P Fmˆn, and let σ ě 0, u P Cm, v P Cn two vectors with }u}2 “ }v}2 “ 1,
such that

Av “ σu and u˚A “ σv˚.

Then we say that σ is a singular value of A and u, v are respectively the left and right singular
vectors associated with σ.

Remark 5.2. Note that if σ is a singular value of A,

• A˚Av “ σA˚u “ σpu˚Aq˚ “ σpσv˚q˚ “ σ2v, and

• u˚AA˚ “ σA˚u “ σpu˚Aq˚ “ σ2u˚.

Hence σ2 is an eigenvalue of both AA˚ and A˚A.

Proposition 5.3. Given a matrix A P Fmˆn, the matrix H “ A˚A P Fnˆn is Hermitian positive
semi-definite, meaning:

• H˚ “ H, and x˚Hx ě 0@x P Fn.

• rank pHq “ rank pAq.

• H is positive definite if an only if rank pAq “ n, i.e. x˚Hx “ 0 ùñ x “ 0.

Proof. First,
H˚

“ pA˚Aq˚ “ A˚pA˚q˚ “ A˚A “ H.

Hence H “ A˚A is Hermitian. Next, we compute

x˚Hx “ pAxq˚Ax “ }Ax}22 ě 0.

Furthermore, this shows that if x P Ker pHq, then x˚Hx “ }Ax}22 “ 0 and hence Ax “ 0, that is
x P Ker pAq. Thus Ker pA˚Aq Ă Ker pAq. Since the reverse inclusion is obvious, this proves that
Ker pA˚Aq “ Ker pAq. Then, using the fundamental theorem of linear algebra,

rank pAq “ n´ dim Ker pAq “ n´ dim Ker pA˚Aq “ rank pA˚Aq .

If rank pAq “ n, then Ker pAq “ t0u, thus x˚Hx “ 0 which implies x P Ker pAq now implies
x “ 0.

5.2 Singular Value Decomposition

Theorem 5.4. Suppose A P Fmˆn. Then,

• There exists unitary matrices U P Fmˆm and V P Fnˆn such that

A “ UΣV ˚,

where Σ “ diagpσ1, . . . , σpq is an m ˆ n diagonal matrix, with p “ minpm,nq and σ1 ě

. . . , σp ě 0 are positive real numbers in decreasing order.
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• The σi, i “ 1 . . . p are the singular values of A and are uniquely determined.

• The corresponding columns ui, vi of U and V are respectively the left and right singular
vectors of A for i “ 1, . . . , p and form an orthonormal basis of Fm and Fn respectively.

• If A P Rmˆn, then U and V can be chosen as real orthogonal matrices.

The Singular Value Decomposition, or SVD, has countless applications in scientific computing,
data science, engineering, etc. such as Principal Component Analysis (PCA), Proper Orthogonal
Decomposition (POD), data fitting, low rank approximation based on the equivalent expression

A “
p
ÿ

i“1

σiuiv
˚
i .

Proof. Let A be rectangular, mˆ n matrix with real or complex entries. As we have seen, A˚A P
Fnˆn is Hermitian and positive definite, so it is unitarily diagonalizable with positive eigenvalues:
let V be a unitary nˆ n matrix such that

V ˚pA˚AqV “

»

—

—

—

–

λ1 0
. . .

λr
0 0n´r

fi

ffi

ffi

ffi

fl

,

where λ1 ě ¨ ¨ ¨ ě λr ą λr`1 “ ¨ ¨ ¨ “ λn “ 0 are the eigenvalues of A˚A arranged in decreasing
order, where r “ rank pAq “ rank pA˚Aq. Let us write now the block decomposition

V “
“

V1 V2

‰

,

with V1 P Fnˆr and V2 P Fnˆpn´rq. We can rewrite the expression

V ˚A˚AV “

„

V ˚1 A
˚

V ˚2 A
˚



“

AV1 AV2

‰

“

„

V ˚1 A
˚AV1 V ˚1 A

˚AV2

V ˚2 A
˚AV1 V ˚2 A

˚AV2



“

»

—

—

—

–

λ1 0
. . .

λr
0 0n´r

fi

ffi

ffi

ffi

fl

,

so identifying the blocks of the matrix leads to

V ˚1 A
˚AV1 “

»

—

–

λ1 0
. . .

0 λr

fi

ffi

fl

and V ˚2 A
˚AV2 “ 0n´r.

Let us first define, since λ1 ě ¨ ¨ ¨ ě λr ą 0,

Σr “

»

—

–

?
λ1 0

. . .
0

?
λr

fi

ffi

fl

so that Σ˚rΣr “

»

—

–

λ1 0
. . .

0 λr

fi

ffi

fl

“ V ˚1 A
˚AV1,

and thus
pΣ´1

r q
˚V ˚1 A

˚AV1Σ´1
r “ pΣ´1

r q
˚Σ˚rΣrΣ

´1
r “ Ir,
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or in other terms,
pAV1Σ´1

r q
˚
pAV1Σ´1

r q “ Ir.

This means that U1 “ AV1Σ´1
r is anmˆr matrix with r orthonormal columns. Using, for example,

the Gram-Schmidt process, we can find U2 P Fmˆpm´rq such that U “
“

U1 U2

‰

is a unitary matrix
(i.e. its columns form an orthonormal basis for Fm).
Next, since Tr pAV2q

˚AV2 “ 0 “ }AV2}
2
F “ 0, it follows that AV2 “ 0.

Finally, we obtain:

AV “
“

AV1 AV2

‰

“
“

U1Σr 0mpn´rq
‰

“
“

U1 U2

‰

„

Σr 0rˆpn´rq
0pm´rqˆr 0pm´rqˆpn´rq



“ UΣ,

where Σ is as in the theorem:

A “ UΣV ˚, with Σ “ diagp σ1, . . . , σr,
loooomoooon

r non-zero square roots of the eiganvalues of A˚A

pp´rq zeros
hkkikkj

0, . . . , 0 q.

Remark 5.5. • The singular values of A are the square roots of the largest p “ minpm,nq
eigenvalues of A˚A, or equivalently of AA˚.

• If A is square and normal and λ is an eigenvalue of A, then |λ| is a singular value of A.
Proof: if A is normal, it is unitarily diagonalizable: there is U unitary such that

A “ UΛU˚ “
n
ÿ

i“1

λiuiu
˚
i “

n
ÿ

i“1

σiuipe
´iθiuiq

˚
“ UΣV ˚,

where λi “ |λi|eiθi are the eigenvalues of A with phase θi, σi “ |λi| are the singular values,
and vi “ e´iθiui are orthonormal vectors forming the columns of a unitary matrix V .

Note that in general, eigenvalues and singular values are not directly related. For example, the
matrix

A “

„

1 1
0 0



has eigenvalues 1 and 0, but the eigenvalues of AA˚ “
„

2 0
0 0



are 2 and 0, hence the singular

values of A are
?

2 and 0.
The proof also shows that the full SVD expression can be compactified:

Corollary 5.6 (Compact SVD.). For any A P Fmˆn with rank r, there exists U1 P Fmˆr and
V1 P Fnˆr with orthonormal columns:

U˚1U1 “ Ir, V ˚1 V1 “ Ir,

such that

A “ U1ΣrV
˚

1 “

r
ÿ

i“1

σiuiv
˚
i ,

where σr “

»

—

–

σ1 0
. . .

0 σr

fi

ffi

fl

with the singular values σ1 ě ¨ ¨ ¨ ě σr ą 0. Note that the columns of U

form an orthonormal basis of the range of A and the columns of V form an orthonormal basis of
the range of A˚, which is the orthogonal subspace to Ker pAq.
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5.3 Examples and Applications.

Examples. Consider the diagonal matrix:

D “

»

–

1 0 0 0
0 ´1 0 0
0 0 ´3 0

fi

fl .

Since DD˚ “

»

–

1 0 0
0 1 0
0 0 9

fi

fl, the p “ minp3, 4q “ 3 largest eigenvalues of DD˚ are 9, 1, 1 and the

singular values of D are 3, 1, 1.
Consider the deficient matrix:

A “

„

1 1
0 1



.

Now AA˚ “

„

2 1
1 1



has eigenvalues 1
2
p3˘

?
5q, hence the singular values of A are

b

3˘
?

5
2

.
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Lecture 6: Applications of the SVD. (February 23)

6.1 Moore Pseudo-Inverse

Given a matrix A with SVD UΣV ˚, we can define a matrix

A: “ V1Σ´1
r U˚1 ,

which we call the generalized inverse of A. This object coincides with A´1 if A is invertible, and
has many more interesting properties (see the homework problems).

6.2 Low-rank Approximation.

The singular value decomposition A “ UΣV ˚ can be recast as the expression

A “

rankpAq
ÿ

i“1

σiuiv
˚
i ,

where the matrix uiv˚i is a rank one matrix formed as the outer product of the i-th column of U
and i-th column of V , hence each term in the sum σiuiv

˚
i can be stored using m ` n ` 1 real or

complex values. If the rank of A is small, this allows to store A with a reduced amount of storage
compared to the mn total entries of A. If the rank of A is not small but the singular values of A
decay rapidly, this will allow to approximate A using a smaller amount of storage - we will quantify
this later on.

6.3 Spectral norm / induced 2-norm

Recall the induced 2-norm on matrices:

}A}2 “ max
}x}“1

}Ax}2.

Theorem 6.1. Consider a matrix A P Fmˆn.

• Let σ1pAq be the largest singular value of A. Then

}A}2 “
a

ρpAA˚q “
a

ρpA˚Aq “ σ1pAq.

• If A is Hermitian, then }A}2 “ ρpAq.

• If A is unitary, then }A}2 “ 1.

Proof. Set A P Fmˆn, since A˚A is Hermitian hence diagonalizable with unitary U :

U˚A˚AU “ diagpµ1, . . . , µnq

where µ1 ě ¨ ¨ ¨ ě µn ě 0 are the eigenvalues of A.
Let x P Fn, }x}2 “ 1, and set y “ U˚x such that }y}2 “ 1 (since the Euclidean norm is unitary
invariant). Then

}Ax}22 “ pAxq
˚Ax “ x˚A˚Ax “ x˚UU˚A˚AUU˚x “ y˚pU˚A˚AUqy “

n
ÿ

i“1

yiµiyi “
n
ÿ

i“1

µi|yi|
2.
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Since µi ď µ1, we deduce that }Ax}22 ď µ1

řn
i“1 |yi|

2 “ µ1: this holds for any vector x with
}x}2 “ 1. Furthermore, equality is achieved if we choose y “ e1, or x “ Ue1 “ u1. Hence, by
definition

}A}2 “
?
µ1 “

a

ρpA˚Aq.

The same reasoning can be followed by looking at AA˚ to prove that }A}2 “
a

ρpAA˚q.
Corollary 6.2. If A P Fnˆn is invertible, then

}A}2 “ σ1pAq, and }A´1
}2 “

1

σnpAq
.

Using the previous characterization of the induced } ¨ }2 norm on matrices, we obtain that for
A “ UΣV ˚ “

řr
i“1 σiuiv

˚
i ,
›

›

›

›

›

›

›

›

›

A´
k
ÿ

i“1

σiuiv
˚
i

loooomoooon

Rank k matrix.

›

›

›

›

›

›

›

›

›

2

“

›

›

›

›

›

r
ÿ

i“k`1

σiuiv
˚
i

›

›

›

›

›

2

“ σk`1pAq.

Hence, the difference between A and the rank k matrix
řk
i“1 σiuiv

˚
i is directly related to the

singular value σk`1pAq, and in particular decreases as k increases.
Theorem 6.3. For A P Fmˆn and 1 ď k ă p “ minpm,nq, let

Ak “
k
ÿ

i“1

σiuiv
˚
i .

Then we have the best-approximation results in the 2- and Frobenius norms:

• }A´ Ak}2 “ σk`1pAq “ minrankppqBqďk }A´B}2, and

• }A´ Ak}Fro “ σk`1pAq “ minrankppqBqďk }A´B}Fro.

Proof. Take B P Fmˆn with rank rank pBq ď k. Then, dim Ker pBq ě n ´ k. In particular, since
v1, . . . , vk`1 are independent vectors, the intersection between Spanpv1, . . . , vk`1q and Ker pBq has
dimension at least 1. Let x P Fn such that
• x “

řk`1
i“1 yivi,

• Bx “ 0,

• }x}2 “ 1 “ }y}2,
such that in particular,

Ax “
p
ÿ

i“1

σiuiv
˚
i

˜

k`1
ÿ

j“1

yjvj

¸

“

k`1
ÿ

j“1

σjyjuj since v˚i vj “ δij.

Thus, since the uj form an orthonormal basis and σ1 ě ¨ ¨ ¨ ě σk ě σk`1:

}Ax´Bx}2 “ }Ax}2 “

˜

k`1
ÿ

j“1

|σjyj|
2

¸1{2

ě σk`1

˜

k`1
ÿ

j“1

|yj|
2

¸1{2

“ σk`1.

Bye definition of the induced norm, this ensures the estimate:

}A´B}2 ě }pA´Bqx}2 ě σk`1.

Since }A´ Ak}2 “ σk`1 as proved above, we have that the best approximation for A by a rank k
matrix B, measured in the 2-norm, is Ak. We skip the similar proof for the Frobenius norm.
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6.4 Examples of Numerical Linear Algebra questions.

• Algorithms to solve linear systems:
Find x1, . . . , xn such that

řn
j“1 aijxj “ bi, or in matrix form

Ax “ b.

• Algorithms to solve eigenvalue problems:

Find x, λ such that Ax “ λx.

• Algorithms to compute the singular value decomposition, an eigenvalue decomposition, etc.

• Assert stability and efficiency of the above algorithms.

6.5 Solution of linear systems.

As a first question, we are interested in understanding, and ultimately developing algorithms such
that, given a square matrix A P Fnˆn, a right-hand side b P Fn,

Solve the linear system Ax “ b. (6.1)

Before developing these algorithms, we need to understand this problem well: in particular,
whether it is well-posed, that is if it has a unique solution, and if this solution depends con-
tinuously (read: in a stable manner) on the data. The following statements are known to be
equivalent:

1. Problem (6.1) has a unique solution x,

2. A is invertible,

3. rank pAq “ n,

4. Ax “ 0 ô x “ 0.

There is an explicit formula for the entries of the solution, given by Cramer’s rule:

xj “
∆j

detA
,

where ∆j is the determinant of the matrix obtained by substituting the j-th column of A by b. In
practice however, the numerical cost in the order of pn ` 1q! flops (floating-point operations) to
evaluate directly this formula is unacceptable.

Numerical Approaches. There are two broad categories of algorithms for the solution of linear
systems:

• Direct solvers: for example, Gaussian elimination. These algorithms see to obtain an
"exact" answer (modulo rounding errors due to floating-point operations) in a finite number
of steps.

• Iterative solvers: with this approach, one seeks to reduce the error at each step, but
possibly convergence happens only after an infinite number of total steps.

The right choice of approach depends on the matrix, in particular its size, but also its properties
(symmetry, etc.)
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Lecture 7: Conditioning of Linear Systems (February 25)

7.1 Stability Analysis.

Consider the linear system:
Ax “ b.

How sensitive is the solution x to perturbations in the data A, b?

Definition 7.1. The condition number of a matrix A P Fnˆn is defined as the number

KpAq “ }A}}A´1
},

where } ¨ } is an induced norm.
If A is not invertible, we set KpAq “ `8.

Application

• Matrix-vector product: given an exact computation x “ Ab, an inexact one writes:

x` δx “ Apb` δbq,

where δx is the perturbation in the computed result as a consequence of the perturbation in
the data δb. In this case, we have by linearity δx “ Aδb

}δx} ď }A}}δb},

using the properties of the induced norm } ¨ }. On the other hand, b “ A´1x and hence

}b} ď }A´1
}}x},

so after some manipulations we find the estimate

}δx}

}x}
ď

}A}}δb}

}b}{}A´1}
“ KpAq

}δb}

}b}
.

Hence, the condition number of }A} is also the condition number of the matrix-vector product
operation with the matrix A.

• Solution of a linear system: given an exact solution x to the problem Ax “ b, an inexact one
writes:

Apx` δxq “ b` δb,

where δx is the perturbation in the computed result as a consequence of the perturbation in
the data δb. In this case, we have by linearity δx “ A´1δb and thus

δx} ď }A´1
}}}δb},

using the properties of the induced norm } ¨ }. On the other hand, b “ x and hence

}b} ď }A}}x},

so after some manipulations we find the estimate

}δx}

}x}
ď
}A´1}}δb}

}b}{}A}
“ KpAq

}δb}

}b}
.

Hence, the condition number of }A} is also the condition number of the linear system with
the matrix A.
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Remark 7.2. • In general, the condition number depends on the norm: for example, we note

K8pAq “ }A}8}A
´1
}8.

• The condition number is always greater than one:

KpAq ě 1 since }A}}A´1
} ě }AA´1

} “ }I} “ 1,

using the properties of induced norms.

• KpAq “ KpA´1q.

Special case: Spectral condition number. When p “ 2, we compute explicitely

}A}2 “ σ1pAq and }A´1
}2 “ 1{σnpAq,

where σ1pAq and σnpAq are respectively the largest and smallest singular values of A. Hence the
condition number of A is the ratio:

K2pAq “
σ1pAq

σnpAq
.

In particular, when A is symmetric positive definite, its singular values are its eigenvalues and
hence

K2pAq “
λmax
λmin

“ ρpAqρpA´1
q.

Because of these properties, we call K2pAq the spectral condition number of A.

7.2 A priori / Forward Analysis

In this section, we aim to find the result of a perturbation of the matrix A and the right-hand side
b on the solution of the linear system Ax “ b.

Theorem 7.3. Let A, δA P Fnˆn such that

}A´1
}}δA} ă 1,

and x, δx, b, δb P Fn such that b ‰ 0,

Ax “ b and pA´ δAqpx` δxq “ b` δb.

Then,
}δx}

}x}
ď

KpAq

1´KpAq }δA}
}A}

ˆ

}δb}

}b}
`
}δA}

}A}

˙

Proof. First, let us prove that A ´ δA is non singular and compute its inverse. To this effect, we
define S, the limit of the series

S “ I ` A´1δA` pA´1δAq2 ` ¨ ¨ ¨ “
8
ÿ

k“0

pA´1δAqk.

This sum converges absolutely because }A´1δA} ď }A´1}}δA} ă 1, and by the triangular inequal-
ity,

}S} ď

8
ÿ

k“0

p}A´1
}}δA}qk “

1

1´ }A´1}}δA}
. (7.1)

27



Furthermore, we observe that

A´1δA “
8
ÿ

k“0

pA´1δAqk`1
“

8
ÿ

k“1

pA´1δAqk “ S ´ I,

which leads to the identity

pI ´ A´1δAqS “ I or S “ pI ´ A´1δAq´1.

In particular, pA´ δAq´1 “ SA´1, and A´ δA is an invertible matrix.
Now, we have by linearity

pA´ δAqx` pA´ δAqδx “ b` δb,

and since Ax “ b,
pA´ δAqδx “ δb` δAx or δx “ SA´1

pb` δAxq.

Using the properties of the induced norms and the triangular inequality, this leads to

}δx} ď }S}}A´1
} p}b} ` }δA}}x}q ,

and using (7.1) for }S},

}δx}

}x}
ď

}A´1}

1´ }A´1}}δA}
}A}

ˆ

}δb}

}A}}x}
`
}δA}

}A}

˙

.

To conclude, we note that }b} ď }A}x}, }A}}A´1} “ KpAq and }A´1}}δA} “ KpAq }δA}
}A}

.

Corollary 7.4. If δA “ 0 above (perturbation on the RHS only), then

1

KpAq

}δb}

}b}
ď
}δx}

}x}
ď KpAq

}δb}

}b}
.

Indeed, to obtain the left inequality we observe that b is the solution of the linear system A´1b “ x
and KpAq “ KpA´1q. More particularly, we may be interested in the case where the perturbations
are very small, perhaps caused by rounding errors:

}δA}

}A}
“ Opuq,

}δb}

}b}
“ Opuq,

where u “ β1´t is the machine precision - on the order of 10´16 for double precision (64-bit floating
point numbers).

Theorem 7.5. Assume }δA} ď ε}A}, }δb} ď ε}b}, where ε ą 0 and A, δA P Fnˆn, b, δb P Fn.
Then, if εKpAq ă 1, we have

1.
}x` δx}

}x}
ď

1` εKpAq

1´ εKpAq
,

2.
}δx}

}x}
ď

2KpAq

1´ εKpAq
ε.
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Proof. The second estimate follows directly from Theorem 7.3. To get the first one, using the
notations from the proof of that theorem we note

x` δx “ SA´1
pb` δbq “ Spx` A´1δbq,

hence

}x` δx} ď
1

1´ }A´1}}δA}

`

}x} ` }A´1
}}δb}

˘

“
}x}

1´ εKpAq

ˆ

1`KpAq
ε}b}

}A}}x}

˙

Now since }b} ď }A}}x},
}x` δx}

}x}
ď

1

1´ εKpAq
p1` εKpAqq

7.3 Backward Analysis

Importantly, in most cases the chosen numerical algorithm is itself the source of errors (in partic-
ular, rounding errors), which are not predetermined by a perturbation at the data level. As such,
it is often very useful to observe that the numerical algorithm is producing an exact solution px to
an approximate problem:

px “ Cb, where C « A´1.

In such cases, the following proposition may prove useful:

Proposition 7.6. Let R “ AC ´ I. If }R} ă 1, then A and C are both invertible and

}C´1
} ď

}A}

1´ }R}
, }A´1

} ď
}C}

1´ }R}
, and

}R}

}A}
ď }C ´ A´1

} ď
}C}}R}

1´ }R}
. (7.2)

If the frame of backward analysis, we see C as the exact inverse or solution operator to a modified
problem with perturbed matrix A` δA, such that

δA “ C´1
´ A “ p´AC ´ IqC´1

“ ´RC´1

is small. Indeed, we have the estimate, provided }R} ă 1:

}δA} ď
}R}}A}

1´ }R}
.

7.4 A posteriori Analysis

Finally, given an approximate solution y « x “ A´1b, one may seek to estimate the error e “ y´x
from known quantities, which at this point include the approximate solution y (which is absent
from the original estimate in Theorem 7.3). A good starting point to such analysis is the residual
vector :

r “ b´ Ay,

which measures how y fails to solve the linear system. In particular, since the error writes

e “ A´1
pAy ´ bq “ ´A´1r,
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we obtain from (7.2):

}e} ď
}C}

1´ }R}
}r},

meaning that the norm of r is indeed related to the error. Another estimate may be derived from
interpreting

Ay “ b` r, i.e.r “ δb,

which results (using the forward estimate) in the bound

}e}

}x}
ď KpAq

}r}

}b}
.

Variations of these formulae, including the additional effects of rounding errors, have been estab-
lished for use in modern linear algebra libraries (notably LAPACK implementations).
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Lecture 8: Gaussian elimination.

8.1 Solution of triangular systems. March 2

First, let us consider solving upper or lower triangular systems such as:
»

–

l11 0 0
l21 l22 0
l31 l32 l33

fi

fl

»

–

x1

x2

x3

fi

fl “

»

–

b1

b2

b3

fi

fl or

»

–

u11 u12 u13

0 u22 u23

0 0 u33

fi

fl

»

–

x1

x2

x3

fi

fl “

»

–

b1

b2

b3

fi

fl .

In such cases, a simple criterion for the system to be nonsingular is that all diagonal elements
should be different from zero: lii ‰ 0 or uii ‰ 0 for i “ 1, 2, 3.

Forward Substitution. Linear systems Lx “ b with a lower triangular coefficient matrix L:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

l11x1 “ b1,

l21x1 ` l22x2 “ b2,

l31x1 ` l32x2 ` l33x3 “ b3,

. . .

ln1x1 ` ln2x2 ` . . . ` lnnxn “ bn,

can be solved without inverting L by the following elimination procedure:

1. x1 “ b1{l11, then

2. x2 “ pb2 ´ l21x1q{l22, then

3. x3 “ pb3 ´ l31x1 ´ l32x2q{l33,

4. . . .

5. xn “ pbn ´ ln1x1 ´ ¨ ¨ ¨ ´ ln,n´1xn´1q{lnn.

This procedure clearly produces a solution, with a cost of order 2 ˆ npn´1q
2

« n2 floating-point
operations, using the general formula

x1 “
b1

l11

then xi “
1

lii

˜

bi ´
i´1
ÿ

j“1

lijxj

¸

, for i “ 2, . . . , n.

Backward Substitution. Similarly, linear systems Ux “ b with an upper triangular coefficient
matrix L can be solved without inverting U by the similar following procedure:

xn “
bn
unn

then xi “
1

uii

˜

bi ´
n
ÿ

j“i`1

uijxj

¸

, for i “ n´ 1, . . . , 1.

The computational cost in floating-point operations is again of the order n2.
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8.2 Solution of general linear systems.

As we shall see, the process of Gaussian elimination converts the solution of one linear system
(a difficult task) into the solution of two triangular systems (an easy task, using the substitution
methods from the previous paragraph.)
This is a template for algorithms in Numerical Linear Algebra:

Step 1. Transform the problem / matrix, converting the original problem into a series of easier
systems in condensed form.

Step 2. Solve the transformed system using the special structures of the condensed form.

Step 3. Recover the solution of the original problem using the solution of the transformed systems.

8.2.1 Elementary matrices

Consider a nonsingular matrix A P Rnˆn, where a11 ‰ 0. We denote Ap1q :“ A and bp1q :“ b, and
introduce the multipliers

mi1 “
a
p1q
i1

a
p1q
11

, i “ 2, . . . , n,

which allow to eliminate the unknown x1 from a row (equation) other than the first one:

a
p1q
i1 x1 ` a

p1q
i2 x2 ` ¨ ¨ ¨ ` a

p1q
in xn “ b

p1q
i

by substracting from it mi1 times the first row:

mi1a
p1q
11

loomoon

“a
p1q
i1

x1 `m21a
p1q
12 x2 ` ¨ ¨ ¨ `mi1a

p1q
1nxn “ mi1b

p1q
1

yielding the new equation:

0` pa
p1q
i2 ´mi1a

p1q
12 q

loooooooomoooooooon

a
p2q
i2

x2 ` ¨ ¨ ¨ ` pa
p1q
in ´mi1a

p1q
1n q

loooooooomoooooooon

a
p2q
in

xn “ b
p1q
i ´mi1b

p1q
1

loooooomoooooon

b
p2q
i

.

In matrix form, the new set of equations forms a new system, which has the same solution as the
first one:

»

—

—

—

–

a
p1q
11 a

p1q
12 . . . a

p1q
1n

0 a
p2q
12 . . . a

p2q
1n

...
...

...
0 a

p2q
n2 . . . a

p2q
nn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x1

x2
...
xn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

b
p1q
1

b
p2q
2
...

b
p2q
n ,

fi

ffi

ffi

ffi

fl

where the coefficients of the coefficient matrix Ap2q are given by

a
p2q
ij “ a

p1q
ij ´mi1a

p1q
1j

b
p2q
i “ b

p1q
i ´mi1b

p1q
i , 1 ă i ď n, 1 ď j ď n.

It is notable that this coefficient transformation can be recast as a matrix-vector product: intro-
ducing the column vector of multipliers

m1 “ r0,m21, . . . ,mn1s
T

32



then we find that

Ap2q “ Ap1q ´m1A
p1q
p1, :q “ Ap1q ´m1e

T
1A

p1q
“ pI ´m1e

T
1 qA

p1q,

where Ap1qp1, :q “ eT1A
p1q is the first row of the matrix Ap1q. Hence, if we introduce the matrix

M1 “ I ´m1e
T
1 “

»

—

—

—

–

1 0
´m21 1

... . . .
´mn1 0 1

fi

ffi

ffi

ffi

fl

,

then Ap2q “M1A
p1q and bp2q “M1b

p1q.
This motivates the introduction of the following elementary matrices :

Definition 8.1. An elementary lower triangular matrix of order n has the form:

Mk “ In ´mke
T
k “

»

—

—

—

—

—

—

—

—

—

—

–

1
. . . 0

1

´mk`1
. . .

0
... . . .

´mn 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where mk “ r0, . . . , 0,mk`1, . . .mns
T is a column vector where the first k entries vanish.

Property 8.2. Let Mk “ In ´mke
T
k as above, then

• M´1
k “ In `mke

T
k ,

• M´1
k1
. . .M´1

kp
“ In `mk1e

T
k1
` ¨ ¨ ¨ `mkpe

T
kp
, when k1 ă ¨ ¨ ¨ ă kp.

Proof. We compute directly:

MkpIn `mke
T
k q “ pIn ´mke

T
k qpIn `mke

T
k q “ In ´mke

T
k `mke

T
k ´mkpe

T
kmkqe

T
k .

Now the k-th entry of mk is zero, hence eTkmk “ 0. Therefore

MkpIn `mke
T
k q “ In,

which proves that M´1
k “ In `mke

T
k . To prove the second formula, one uses induction on p; let

us show that the case p “ 2, with k1 “ k ă k2 “ l:

M´1
k M´1

l “ pIn `mke
T
k qpIn `mle

T
l q “ In `mke

T
k `mle

T
l `mkpe

T
kmlqe

T
l “ In `mke

T
k `mle

T
l ,

because the k-th entry of ml is zero since k ă l.

This elementary Gauss transformation matrices can be used to create zeros in vectors! Indeed, let
ak “

“

a1k . . . akk . . . ank
‰T with akk ‰ 0, and define

mk “
“

0, . . . , 0, ak`1,k{akk, . . . , ank{akk
‰T
, Mk “ In ´mke

T
k .

Then, we have
Mkak “

“

a1k, . . . , akk, 0, . . . , 0
‰T
,

and we have eliminated all entries below the k-th one.
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8.2.2 Continuing the GEM

We can now continue the elimination method started earlier with the first step Ap1q Ñ Ap2q.
Starting from any step k where Apkq has the form

Apkq “

»

—

—

—

—

—

—

—

—

—

–

a
p1q
11 a

p1q
12 ¨ ¨ ¨ a

p1q
1n

0 a
p2q
22 ¨ ¨ ¨ a

p2q
2n

. . . . . . ...
... 0 a

pkq
kk ¨ ¨ ¨ a

pkq
kn

...
...

0 ¨ ¨ ¨ 0 a
pkq
nk ¨ ¨ ¨ a

pnq
nn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Note that we have eliminated all entries below the diagonal in columns 1 . . . k´ 1, and are looking
to continue the process. Using the elementary matrices introduced in the previous section, this
can be achieved by forming the matrix

Mk “ In ´mke
T
k , where mk “

»

—

—

—

—

—

—

—

—

–

0
...
0

a
pkq
k`1,k{a

pkq
kk

...
a
pkq
nk {a

pkq
kk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and then proceed to the next step via

Apk`1q
“MkA

pkq.

Indeed, the resulting matrix Apk`1q has the right form with zeros under the diagonal in columns
1, . . . , k. At the end of this process, we obtain a matrix

Apnq “Mn´1 . . .M1A,

which has zeros below the diagonal throughout and is an upper triangular matrix. Let us define

U :“ Apnq “Mn´1 . . .M1A, bpnq “Mn´1 . . .M1b,

then we can solve the transformed system Ux “ bpnq using backward substitution. The total cost
for this operation is around 2pn ´ 1qnpn ` 1q{3 ` Opn2q floating-point operations (around 2n3{3
flops).
Note that the Gaussian Elimination Method terminates safely if and only if apkqkk ‰ 0 at every step,
for k “ 1, . . . , n´ 1. These entries are called the pivot.

8.3 Gaussian Elimination as a factorization method

We have seen that Gaussian Elimination transforms a given matrix into an upper triangular one
via a series of elementary transformations,

U “ Apnq “Mn´1 ¨ ¨ ¨M1A,
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which leads to the alternative form

A “ pMn´1 ¨ ¨ ¨M1q
´1U “M´1

¨ ¨ ¨M´1
n´1U.

NowM´1 ¨ ¨ ¨M´1
n´1 is the product of lower triangular matrices, hence it is a lower triangular matrix

which has the specific form according to Prop. 8.2:

L “M´1
¨ ¨ ¨M´1

n´1 “ In `m1e
T
1 ` ¨ ¨ ¨ `mn´1e

T
n´1 “

»

—

—

—

–

1 0 ¨ ¨ ¨ 0

m21 1
. . . ...

... . . . . . . 0
mn1 ¨ ¨ ¨ mn´1,n 1

fi

ffi

ffi

ffi

fl

.

Note that the multipliers of the Gaussian elimination process appear below the diagonal, which is
filled with elements equal to 1.

Definition 8.3 (LU Factorization from the Gaussian Elimination Method).

A “ LU

is the LU factorization of A, where L “ M´1 ¨ ¨ ¨M´1
n´1 is a unit lower triangular matrix with

diagonal elements equal to 1, and U “Mn´1 ¨ ¨ ¨M1A is an upper triangular matrix.

LU factorization algorithm via Gaussian elimination. Given a matrix A P Rnˆn:
1: function LUfact(A)
2: Set U “ A, L “ I.
3: for k “ 1, . . . , n´ 1 do
4: for i “ k ` 1, . . . , n do
5: Lpi, kq “ Upi, kq{Upk, kq;
6: Upi, kq “ 0;
7: for h “ k ` 1, ..., n do
8: Upi, jq “ Upi, jq ´ Lpi, kqUpk, jq;
9: end for

10: end for
11: end for
12: return L, U
13: end function

Existence and Uniqueness.

Definition 8.4. The k-th leading principal minor of a matrix A P Rnˆn for 1 ď k ď n is the
submatrix

Ak “

»

—

–

a11 ¨ ¨ ¨ a1k
...

...
ak1 ¨ ¨ ¨ akk

fi

ffi

fl

,

i.e. the first k rows and columns of A.

Theorem 8.5. An nˆ n matrix has a unique LU factorization if and only if its leading principal
minors Ak, k “ 1, . . . , n´ 1 are all non-singular.

The proof of this result is worked out in Homework 5.
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Lecture 9: LU factorization with pivoting. March 4

9.1 Difficulties of Gaussian elimination without pivoting.

• The Gaussian elimination algorithm fails if any of the pivots vanishes, apkqkk “ 0.

• One obtains an even worse situation if apkqkk « 0: then the method may finish, but (due to
rounding errors and catastrophic cancellation) the algorithm may produce the wrong results!

Example by Forsythe and Moler (1967). Let us consider in 3-digit decimal arithmetic the
matrix

A “

„

10´4 1
1 1



.

We compute the first multiplier m21 “ 1{10´4 “ 104 and

M1 “

„

1 0
´104 1



and U “ Ap2q “M1A “

„

10´4 1
0 flp1´ 104q



“

„

10´4 1
0 ´104



,

where we note that the bottom right entry in U , whose exact value is ´0.9999 ˆ 104 has been
rounded down to ´0.100ˆ 105 since we are operating in 3-digit floating-point arithmetic. Hence,
the computed factors pL, pU read

pL “M´1
1 “

„

1 0
´104 1



, pU “

„

10´4 1
0 ´104



.

We compute from this the product

pLpU “

„

10´4 1
1 0



and A´ pLpU “

„

0 0
1 0



.

This is a really large error: }A ´ pLpU}Fro “ 1, even though the conditioning of A is very good:
condpAq “ 2.6 . . . ! The issue is that the pivot is very small: 10´4, resulting in a huge multiplier
m21. The problem can be entirely avoided if we exchange the two rows:

A1 “

„

1 1
10´4 1



, M 1
1 “

„

1 0
´10´4 1



, U 1 “M 1
1A

1
“

„

1 1
0 flp1´ 10´4q



,

such that
pL1 “

„

1 0
´10´4 1



, pU 1 “

„

1 1
0 1



.

This time, rounding happened again in the computation of pU yet

pL1 pU 1 “

„

1 1
10´4 flp1` 10´4q



“

„

1 1
10´4 1



“ A.

9.2 Permutation Matrices

In order to enact the row exchanges used in the previous example, we introduce:
Definition 9.1. A square matrix is called a permutation matrix if there is exactly one non-zero
entry in each row and in each column, which equals one.
If pα1, . . . , αnq is a permutation of p1, . . . , nq, then the associated permuation matrix is

P “
“

eα1 ¨ ¨ ¨ eαn .
‰T

Similarly, P´1 “ P T “
“

eα1 ¨ ¨ ¨ eαn .
‰

is also a permutation matrix.
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Effect of multiplying a matrix by a permutatioin matrix. Let P1 “
“

eα1 ¨ ¨ ¨ eαn .
‰T be

the permutation matrix associated with the permutation pα1, . . . , αnq, then we compute the entries
of P1A:

pP1Aqij “
n
ÿ

k“1

P1,ikAkj “
n
ÿ

k“1

δk,αi
Akj “ Aαi,j,

Therefore

P1A “

»

—

–

α1-th row of A
...

αn-th row of A

fi

ffi

fl

is the matrix obtained by permuting the rows of A in the order α1, . . . , αn.
Similarly, if P2 “ P T

1 “ P´1
1 “

“

eα1 ¨ ¨ ¨ eαn

‰

then AP2 is the matrix obtained by permuting the
columns of A in the order α1, . . . , αn. To sum things up: multiplying a matrix by a permutation
matrix...

• from the left: permutes the rows of A,

• from the right: permutes the columns of A.

In the earlier example, the permutation matrix associated with the permutation p2, 1q leads to the
transformation

A1 “

„

0 1
1 0



A.

9.3 Gaussian Elimination with Partial Pivoting.

As a rule of thumb, disaster in the GEM may be avoided by choosing a good pivot (with large
magnitude). There are many strategies to achieve this. We can look for a good pivot:

• in the k-th column of Apkq (partial pivoting), or

• in a submatrix of Apkq (complete pivoting).

Algorithm: Gaussian Elimination with partial pivoting. Set Ap1q “ A, then at step k,
k “ 1, . . . , n´ 1:

1. Identify the largest element (by magnitude) in column k below the diagonal. Let it be

a
pkq
rk,k

pNote that rk ě k.q

2. Exchange the rows rk and k bringing apkqrk,k on the diagonal.

3. Apply the normal k-th step of the Gaussian elimination method.

In terms of matrix multiplications, this algorithm yields the following sequence:

Ap1q “ A,

Ap2q “M2P2A
p2q,

...

Apnq “Mn´1Pn´1A
pn´1q

Hence we obtain the upper triangular matrix after n´ 1 steps:

U “ Apnq “Mn´1Pn´1Mn´2Pn´2 . . .M1P1A.
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LU factorization from GEPP. Let us now show that the above process yields a factorization
PA “ LU , where P is a permutation matrix and LU is a factorization of the matrix A with
permuted rows.

• First, by construction:
U “Mn´1Pn´1Mn´2Pn´2 . . .M1P1A.

is an upper triangular matrix.

• Second, let M “ M´1Pn´1 ¨ ¨ ¨M1P1. How to extract L, P from M? We note that since Pi
represents the exchange of two rows, the action of PiPi returns the matrix to its original
state, i.e. P 2

i “ In. Let us define:

M 1
n´1 “Mn´1,

M 1
n´2 “ Pn´1Mn´2Pn´1,

M 1
n´3 “ Pn´1Pn´2Mn´3Pn´2Pn´1,

...
M 1

1 “ Pn´1 . . . P2M1P2 . . . Pn´1,

Then we observe that

M “Mn´1Pn´1Mn´2Pn´2 . . .M1

“Mn´1pPn´1Mn´2Pn´1qpPn´1Pn´2Mn´2Pn´2Pn´1qPn´1Pn´2Pn´3Mn´4 . . .M1

“M 1
n´1M

1
n´2 ¨ ¨ ¨M

1
1Pn´1 ¨ ¨ ¨P1.

Denoting P “ Pn´1 ¨ ¨ ¨P1 and L “ pM 1
n´1M

1
n´2 ¨ ¨ ¨M

1
1q
´1, it follows that

PA “ LU.

Furthermore, construction of the M 1
k from Mk involves multiplying Mk from the left and

right by permutation matrices Pj, j ě l, exchanging its rows and columns j and rj. Because
rj ě j for all j and Mk has the form

Mk “ In ´mke
T
k “

»

—

—

—

—

—

—

—

—

—

—

–

1
. . . 0

1

´mk`1
. . .

0
... . . .

´mn 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

these operations only permute the multipliers ´mk`1, . . . ,´mn but keeps the structure in-
tact. We can see this also by direct computation:

M 1
k “ Pn´1 ¨ ¨ ¨Pk`1pIn ´mke

T
k qPk`1 ¨ ¨ ¨Pn´1

“ Pn´1 ¨ ¨ ¨Pk`1Pk`1 ¨ ¨ ¨Pn´1 ` Pn´1 ¨ ¨ ¨Pk`1mkpPk`1 ¨ ¨ ¨Pn´1ekq
T

“ In `m
1
ke
T
k ,

wherem1
k “ Pn´1 ¨ ¨ ¨Pk`1mk is a vector of permuted multipliers (still with entriesm1

1, . . . ,m
1
k

equal to zero), because ek has entries all zero for indices j, rj ą k. Hence, as before we obtain

L “ pM 1
1q
´1
¨ ¨ ¨ pM 1

n´1q
´1
“ In `m

1
1e
T
1 ` ¨ ¨ ¨ `m

1
n´1e

T
n´1.
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Lecture 10: Complete pivoting for LU and other factoriza-
tions. March 9

10.1 Complete Pivoting.

In this paragraph, we investigate a strategy of complete pivoting for the LU factorization algorithm,
meaning that at step k “ 1, . . . , n´ 1, given the partial factorization of the type

Apkq “

»

—

—

—

—

—

—

—

—

—

–

a
p1q
11 a

p1q
12 ¨ ¨ ¨ a

p1q
1n

0 a
p2q
22 ¨ ¨ ¨ a

p2q
2n

. . . . . . ...
... 0 a

pkq
kk ¨ ¨ ¨ a

pkq
kn

...
...

0 ¨ ¨ ¨ 0 a
pkq
nk ¨ ¨ ¨ a

pnq
nn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

:

• Identify the largest element in magnitude among all elements of the submatrix of Apkq with

rows and column indices larger than k, aka the block

»

—

–

a
pkq
kk ¨ ¨ ¨ a

pkq
kn

...
...

a
pkq
nk ¨ ¨ ¨ a

pnq
nn

fi

ffi

fl

; let it be apkqrk,sk such

that rk, sk ě k.

• Exchange the rows k and rk and columns k and sk of Apkq, bringing the pivot apkqrk,sk to the
diagonal in position pk, kq.

• Apply the k-th step of Gaussian elimination:

Apk`1q
“MkPkA

pkqQk,

where Pk, Qk are permutation matrices exchanging respectively the rows k, rk and the
columns k, sk of Apkq.

At the end of this procedure, we obtain an upper triangular matrix U “ Apnq, with the full process
being summarized as

U “Mn´1Pn´1Mn´2Pn´2 ¨ ¨ ¨M1P1AQ1 ¨ ¨ ¨Qn´1.

Let us define
$

’

&

’

%

Q “ Q1Q2 ¨ ¨ ¨Qn´1,

P “ Pn´1Pn´2 ¨ ¨ ¨P1,

L “ pM 1
1q
´1
¨ ¨ ¨ pM 1

n´1q
´1 as for the GEPP previously.

Then we obtain the fully pivoted LU factorization:

PAQ “ LU.
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LU factorization algorithm via Gaussian elimination with complete pivoting.
Given a matrix A P Rnˆn:
1: function LUCPfact(A)
2: Set U “ A, L “ I, p “ r1 : ns, q “ r1 : ns.
3: for k “ 1, . . . , n´ 1 do
4: Determine rk, sk such that |urk,sk | “ maxkďi,jďn |uij|.
5: Up:, kq Ø Up:, skq; Ź Exchange the columns k, sk of U
6: qpkq Ø qpskq; Ź Update column permutation vector q
7:
8: Exchange the rows k, rk of L,U :
9: Upk, :q Ø Uprk, :q; Ź Exchange the rows k, rk of U

10: Lpk, 1 : k ´ 1q Ø Lprk, 1 : k ´ 1q; Ź Permute multipliers stored in L
11: ppkq Ø pprkq; Ź Update column permutation vector p
12:
13: Lpk ` 1 : n, kq “ Upk ` 1 : n, kq{Upk, kq;
14: Upk ` 1 : n, kq “ 0;
15: Upk ` 1 : n, k ` 1 : nq “ Upk ` 1 : n, k ` 1 : nq ´ Lpk ` 1 : n, kqUpk, k ` 1 : nq;
16: end for
17: return L, U , p, q Ź Now App, qq “ LU .
18: end function

10.2 Other types of factorizations.

10.2.1 The LDMT factorization.

Given an LU factorization of U , let us introduce the diagonal matrix:

D “

»

—

–

u11 0
. . .

0 unn

fi

ffi

fl

, andM “ pD´1UqT .

The matrix M is then unit lower triangular (i.e., it has all ones on its diagonal).

Theorem 10.1. If all leading principal minors Ak, k “ 1, . . . , n of A are non-singular, then there
exists a unique diagonal matrix D and unit lower triangular matrices L,M such that

A “ LDMT .

10.2.2 The LDLT factorization.

If furthermore, A “ AT is symmetric, then the factorization further simplifies:

AT “ pLDMT
q
T
“MDLT “ LDMT

“ A,

so by uniqueness of the factorization, we have M “ L.

Theorem 10.2. If all leading principal minors Ak, k “ 1, . . . , n of A are non-singular, then there
exists a unique diagonal matrix D and unit lower triangular matrix L such that

A “ LDLT .

The advantage of such a factorization is that the computational cost and memory necessary to
compute it is halved compared to the usual LU factorization.
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10.2.3 The Cholesky factorization.

If, in addition, A is a symmetric positive definite matrix: A “ AT and

xTAx ą 0 ô x ‰ 0,

then all of its leading principal minors are also symmetric positive definite matrix: indeed, for
xk P Rkzt0u,

xTkAkxk “

„

xk
0

T

A

„

xk
0



ą 0.

In such a case, the elements u11, . . . , unn forming the diagonal of the matrix D must all be positive,
since the determinants detpAkq “ u11 ¨ ¨ ¨ukk are strictly positive for k “ 1, . . . , n. Then we can
compute their square roots:

S “

»

—

–

?
u11 0

. . .
0

?
unn

fi

ffi

fl

such that D “ S2,

leading to the new factorization A “ LS2LT “ LSpLSqT “ HHT where H is a lower triangular
matrix.

Theorem 10.3. Let A P Rnˆn be a symmetric positive definite matrix. Then, there exists a lower
triangular matrix H P Rnˆn with strictly positive diagonal entries such that

A “ HHT .

This is the Cholesky factorization. The entries of H are given by the algorithm:

1: function Cholesky(A)
2: Set Hp1, 1q “

a

Ap1, 1q.
3: for i “ 2, . . . , n do
4: for j “ 1, . . . , n´ 1 do
5: Hpi, jq “

´

Api, jq ´
řj´1
k“1Hpj, kqHpi, kq

¯

{Hpj, jq

6: end for
7: Hpi, iq “

´

Api, iq ´
ři´1
k“1Hpi, kq

2
¯1{2

8: end for
9: return H Ź Now A “ HHT .

10: end function

Proof. We proceed by induction on n, without relying on the LU factorization.

• The result is trivial for n “ 1: A “ ra11s “ r
?
a11sr

?
a11s

T .

• If n ą 1, write the block decomposition

A “

„

An´1 v
vT ann



,
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where An´1 is the n ´ 1-th leading principal minor of A and v “ ran1, . . . , an,n´1s
T P Rn´1.

By induction, assume there exists a matrix Hn´1 given by the above algorithm such that

An´1 “ Hn´1H
T
n´1.

Then, we seek a matrix H of the form

H “

„

Hn´1 0
hT hnn



such that HHT
“

„

Hn´1H
T
n´1 Hn´1h

pHn´1hq
T h2

nn ` h
Th



“

„

An´1 v
vT ann



“ A.

The vector h has entries rhn1, . . . , hn,n´1s
T . Hence, we want Hn´1h “ v. Since Hn´1 is lower

triangular, this system can be uniquely solved by forward substitution, with the formula:

hnj “

˜

anj ´
j´1
ÿ

k“1

hjkhnk

¸

{hjj, for j “ 1, . . . , n´ 1.

Compare this to Line 5 of the above algorithm, with i “ n. In addition, we want ann “
h2
nn ` hTh. Since h P Rn´1 is determined by the algorithm above, this gives as a unique

solution

hnn “

˜

ann ´
n´1
ÿ

j“1

h2
nj

¸1{2

.

Compare this to Line 7 of the algorithm, again with i “ n. The resulting number hnn is real
and positive, because Hn´1 is real (by induction) and

h2
nn

2

detpHn´1q “ detpAq ą 0,

hence h2
nn and also hnn is strictly positive, and H has all real entries with strictly positive

diagonal entries.

Computational complexity. The total cost of this procedure is about i2 at each step for
i “ 2, . . . , n (solution of the system by forward substitution), adding up to a total n3{3 floating-
point operations over the loop, with an additional 2i operations and square root computation to
compute the element hii, adding up to n2 flops. The total, n3{3 ` n2 flops and n square root
computations is about half of the cost of the LU factorization.

Stability property. Let A P Rnˆn, symmetric positive definite. The above algorithm yields an
approximate Cholesky factor pH in floating-point arithmetic. It can be shown (Demmel, 1989) that
this result satisfies the relation

A` E “ pH pHT ,

where the perturbation E “ reijs can be bounded componentwise:

|eij| ď
pn` 1qu

1´ pn` 1qu

?
aiiajj,

where u is the round-off unit (« 10´16 in double precision). This result shows that the Cholesky
factorization is always backwards stable (which is not necessarily the case for the LU factorization,
as we will see.)
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Lecture 11: Solving linear systems. Stability and Accuracy.
(March 11)

11.1 A practical method for solving linear systems.

Any factorization of A suggests a method for solving the linear system

Ax “ b,

for one or more right-hand sides b. We will focus on the LU factorizations, possibly with pivoting:

1. A “ LU (no pivoting),

2. PA “ LU (partial pivoting),

3. PAQ “ LU (complete pivoting).

In all cases, the linear system can be solved by solving two triangular systems with coefficient
matrices L and U , possibly with permutations of the resulting vectors:

1. Ax “ b ô LUx “ b, suggesting the method
#

Ly “ b solved using forward substitution,
Ux “ y solved using backward substitution.

2. Ax “ b ô PAx “ Pb ô LUx “ Pb:
#

Ly “ Pb solved using forward substitution,
Ux “ y solved using backward substitution.

3. Ax “ b ô PAQQTx “ Pb ô LUpQTxq “ Pb:
$

’

&

’

%

Lz “ Pb solved using forward substitution,
Uy “ z solved using backward substitution,
x “ Qy permutation of the vector y.

Computational Complexity:

• LU decomposition, „ 2
3
n3 `Opn2q;

• Two triangular solves: „ 2n2;

• Permutations: no operations, just data movement.

The total cost is thus on the order of 2
3
n3`Opn2q floating-point operations, with the actual solves

contributing relatively little the the overall cost.
Pivoting strategies add to this cost a total of Opn2q comparisons in the case of the partial pivoting
strategy, and Opn3q in the case of the complete pivoting strategy - improving the stability of the
approach at the expense of greatly increasing the computational cost of the solution.

In particular, computing explicitely the inverse of A can now be achieved by solving n linear
systems:

A´1
“
“

A´1e1 ¨ ¨ ¨A´1en
‰

for a total cost around 2
3
n3 ` 2n3 `Opn2q floating-point operations.
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Numerical stability. Floating-point operations in most computers obey the following IEEE
error model: if ¨ is one of the operations `, ´, ˆ or ˜, and no overflow occurs then

xd y “ px ¨ yqp1` δq, for x, y P Fpβ, t, L, Uq, |δ| ď u,

where u “ 1
2
β1´t is the round-off unit. In base 2 with t “ 53 binary digits (double-precision

accuracy), we have u “ 2´53 « 10´16.

11.1.1 Error analysis for back-substitution.

Let Ux “ b be a linear system with upper triangular coefficient matrix U and denote by pxj « xj the
computed solution, using the back-substitution algorithm but taking into account floating-point
rounding errors. Denoting by ‘, a, b, c the floating-point operations approximating the exact
operations `, ´, ˆ or ˜:
Recall the process:

• pxn “ bn c unn,

• pxn´1 “ pbn´1 a un´1,n b pxnq c un´1,n´1,

• ¨ ¨ ¨ ,

• px1 “ pb1 a u12 b px2 a ¨ ¨ ¨ a u1n b pxnq c u11.

Using the error model above with α¨,¨, β¨,¨ and δ¨ indicating errors smaller than u, the round-off
unit, occuring through floating-point computations:

• First step:

pxn “ pbn{unnqp1` δnq “

1{punn
hkkikkj

1` δn
unn

bn “

which can thus be rewritten:
pxn “

1

punn
bn,

• Second step:

pxn´1 “

»

–bn´1 ´ un´1,npxn

from b
hkkkkkkikkkkkkj

p1` αn´1,nq

fi

fl

from a
hkkkkkikkkkkj

p1` βn´1,nq {un´1,n´1

from c
hkkkikkkj

p1` δnq

“

»

—

–

pbn´1
hkkkkkkkkikkkkkkkkj

p1` βn´1,nqbn´1´

pun´1,n
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

p1` βn´1,nqp1` αn´1,nqun´1,n pxn

fi

ffi

fl

1{pun´1,n´1
hkkkikkkj

1` δn
un´1,n´1

or
pxn´1 ““

1

pun´1,n´1

´

pbn´1 ´ pun´1,npxn

¯

,

• ¨ ¨ ¨ ,
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and we see that, without going through all the details, the process becomes equivalent to the exact
solution of a perturbed triangular system

pUpx “ pb.

Explicit inspection of the coefficients puij and pbi shows directly that

|puij ´ uij|

|uij|
ď nu`Opu2

q,
|pbi ´ bi|

|bi|
ď pn´ 1qu`Opu2

q.

Such estimates lead to the following stability result:

Theorem 11.1 (Backwards stability of back-substitution). Let px be the solution of Ux “ b com-
puted in finite precision with floating-point round-off unit u using the back-substitution algorithm.
Then, px is the exact solution of a system pUpx “ pb, where pU “ U ` δU , pb “ b` δb with U, δU upper
triangular,

|δuij|

|uij|
ď nu`Opu2

q,
|δbi|

|bi|
ď pn´ 1qu`Opu2

q.

In particular, in any norm } ¨ } on vectors and matrices we have

}δU}

}U}
“ Opuq,

}δb}

}b}
,

and by the stability theorem of linear systems, we have the forward stability estimate

}px´ x}

}x}
“ KpUqOpuq.

11.1.2 Error estimates for Gaussian elimination.

When rounding errors are taken into account, the Gaussian elimination algorithms described in
previous lectures produce approximate factors pL, pU such that

pLpU “ A` δA,

where δA is a perturbation resulting from the imperfect computation. One can estimate, if nu ă 1
then the following entrywise estimate holds:

|δA| ď
nu

1´ nu
|pL||pU |,

where we have adopted the notation |A| “ r|aij|s. However, we do not control directly the entries
of the factors pL, pU , so the goal is in general to find a stability bound of the form:

|δA| ď gpuq}A}.

In general, such an estimate can only be obtained if one controls the growth of elements during
the Gaussian elimination process, i.e. the maximum magnitude of the entries in the sequence of
matrices

Ap1q, Ap2q, . . . , Apnq “ U.
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Definition 11.2. The growth factor ρpAq is the quantity

ρ “
maxα1, . . . , αn

α
,

where α “ maxi,j |aij and αk “ maxi,j |a
pkq
ij .

In particular, whenever pivoting (whether complete or partial) is used, it is easy to check that the
elements of the matrix L are bounded:

|lik| “
|a
pkq
ik |

|a
pkq
rk,k|

ď 1,

since the pivot apkqrk,k is the largest entry by magnitude in the column k below the diagonal, or even
larger in the complete pivoting case. Furthermore, we have

|uij| ď ρmax
ij
|aij|.

Theorem 11.3 (Round-off property for GEPP method). The matrices pL and pU computed via
GEPP satisfy

pLpU “ A` δA,

where }δA}8 ď 8n3ρ}A}8u`Opu
2q.

Proof: omitted.
To claim backwards stability, the question is then: how large can the growth factor ρpAq get?

Growth factor for GEPP The following result is known:

Using GEPP, ρpAq can be as big as 2n´1.

This worst-case scenario can be attained, for example for matrices of the type:

A “

»

—

—

—

—

—

—

–

1 0 ¨ ¨ ¨ 0 1

´1 1
. . . ...

...

´1 ´1
. . . 0 1

...
... . . . 1 1

´1 ´1 ¨ ¨ ¨ ´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

However, in most cases, this extreme behavior does not happen! For example:

• For symmetric positive definite matrices: ρpAq “ 1,

• For tri-diagonal matrices: ρpAq ď 2,

• . . .

Growth factor for GECP Complete pivoting yields a better upper range for the growth factor:

ρpAq ď
?
n
`

231{241{3
¨ ¨ ¨n1{n´1

˘1{2

In most cases, the additional stability gained is not worth the additional computational complexity
due to the complete pivoting.
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Without pivoting, the growth factor cannot be bounded. This shows that Gaussian elimination
without pivoting is a completely unstable algorithm!

11.1.3 Iterative Refinement.

Finally, let us sketch a simple method allowing to increase the accuracy of the solution obtained
using one of the LU factorizations above. Let px be the approximate computed solution to the
system Ax “ b « Apx.
Usually, the residual vector r “ b´Apx is different from zero. To improve on the computed solution,
one may solve the system again with r as the new right-hand side:

Apc « r,

using the factorization at hand. Then, because }r} is much smaller than }b}, the relative error on
pc is much smaller than the relative error on px, and

py “ px` pc

is usually a better approximation of the exact solution x. This process can be repeated to increase
progressively the accuracy of the solution, usually until the residual is small enough:

Iterative refinement.
Given A, b and an initial approximation to the solution pxp0q:
1: function IterativeRefinement(A, b, pxp0q)
2: for i “ 0, 1, . . . until convergence do
3: Compute rpiq “ b´ Axpiq,
4: Solve Az “ rpiq,
5: Update xpi`1q “ xpiq ` z,
6: If }z}{}xpi`1q} ă tolerance, terminate.
7: end for
8: end function

Analysis: if }|A´1||pL||pU |}8 is small enough, this iterative process will reduced the error by a
fixed factor at each step.
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Lecture 12: Householder Triangularization. (March 16)

New problem of interest: we turn now to the solution of least-squares problems of the type

Find x minimizing the functional }Ax´ b}2,

where A P Rmˆn is in general a rectangular matrix, b is a vector of length m and x is a vector of
length n.

• When A is square and invertible, the solution is simply the solution of the linear system
Ax “ b: x “ A´1b,

• If the SVD of A is available, then the solution may be found using the pseudo-inverse:
x “ A:b,

• If A P Rmˆn with m ě n and rank ppqAq “ n, the tool of choice is the QR factorization:

A “ QR,

where Q is a matrix with orthogonal columns, either square of size mˆm (full factorization)
or of size m ˆ n (reduced factorization), and R is an upper trapezoidal / triangular matrix
of size mˆ n (full factorization) or of size nˆ n (reduced factorization).

The QR factorization may be computed several ways:

• Using Householder reflectors;

• Using Givens rotations;

• Using the Classical or Modified Gram-Schmidt algorithms.

We will present the first method in this lecture, the Gram-Schmidt approach in the next one, and
the Givens rotations will be introduced if time permits in later discussions.

12.1 Householder matrices.

Definition 12.1. A matrix of the form

H “ Im ´ 2
uuT

uTu
,

where u P Rm is a nonzero vector (called the Householder vector), is called a Householder matrix,
or Householder reflector, or Householder transformation.

Remark 12.2. These transformations bear the name of Alston S. Householder, an American
numerical analyst (1904-1993) who invented them and the Householder method, among many other
contributions to numerical linear algebra and numerical analysis.

These transformations have a simple geometric interpretation: taking }u} “ 1 for simplicity, we
draw the following diagram, upon which one observes that the result Hx is simply the reflection
of a vector x across the hyperplane of vectors orthogonal to u:
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As a result, these matrices have the following properties:

Proposition 12.3 (Properties of Householder reflectors). Let H “ Im ´ 2uu
T

uTu
, where Rm Q u ‰ 0

is the Householder vector. Then

1. H is symmetric: HT “ H,

2. H is orthogonal: HT “ H´1,

3. H2 “ Im,

4. Hu “ ´u,

5. Hv “ v iff vTu “ 0,

6. If u is a nonzero multiple of x´y, with x, y two distinct vectors in Rm such that }x}2 “ }y}2,
then

Hx “ y.

Proof. Define β “ 2{uTu. To prove 1/, we compute directly

HT
“ pIm ´ βuu

T
q
T
“ Im ´ βpu

T
q
TuT “ Im ´ βuu

T
“ H.

Next, 2/ follows from the computation

HTH “ pIm ´ βuu
T
qpIm ´ βuu

T
q “ I ´ βuuT ´ βuuT ` β2uuTuuT “ I ` pβ2

puTuq ´ 2βquuT ,

since we notice that β2uTu “ 4{puTuq2uTu “ 4{uTu “ 2β.
Now 3/ is a consequence of 1/ and 2/, 4/ and 5/ are left as an exercise (and can be observed
directly on the diagram above.)
Finally, we show 6/: taking x, y as in the proposition, we define u “ αpx´ yq and note

x “
1

2
px` yq `

1

2
px´ yq and Hx “

1

2
Hpx` yq `

1

2
Hpx´ yq.
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Now, since x` y is a multiple of u it follows that Hpx´ yq “ ´px´ yq, and in addition

px` yqTu “ αpx` yqT px´ yq “ αpxTx´ xTy ` yTx´ yTyq “ 0,

because xTy “ yTx (symmetry of the scalar product) and xTx “ }x}22 “ }y}22 “ yTy. Therefore,
we have Hpx` yq “ x` y, so

Hx “
1

2
px` yq ´

1

2
px´ yq “ y.

12.2 Computing matrix-vector and matrix-matrix products involving
Householder transformations.

When using Householder transformations, one should avoid forming explicit the matrix H to apply
it to a vector or a matrix. Instead, the special structure allows to compute the result with a much
lower complexity:

• Matrix-vector product:
Hx “ pI ´ βuuT qx “ x´ βpuTxqu.

The scalar product uTx may be computed in 2m flops, then computing the difference x ´
pβuTxqu takes an additional 2m flops.
In total, the computation of Hx takes 4m floating-point operations.

• Matrix-matrix product: for A P Rnˆm,

HAT “ pI ´ βuuT qAT “ AT ´ upβAuqT or AH “ ApI ´ βuuT q “ A´ pβAuquT

The matrix-vector product βAu may be computed in 2mn flops, then computing the outer
product βupAuqT takes an additional mn flops, for a total of 4mn floating-point operations
including the matrix difference.

• Product of Householder reflectors:

Q “ H1 ¨ ¨ ¨Hr with Hi “ I ´ βiuiu
T
i .

This product may be computed in 4pm2r ´mr2 ` r3{3q floating-point operations.

• Finally, the product QTA, where Q is as above and A P Rmˆn, can be computed two ways:

– if the matrix Q is computed explicitely, in 2m2n floating-point operations,
– if computing the sequence of matrix products with the Householder reflectorsHr ¨ ¨ ¨H1A

and r ď m, then the cost is only 2nrp2m´ rq.

Numerical stability. It can be shown that, when pH is a Householder reflector computed in
floating-point arithmetic:

} pH ´H} “ Opuq,

flp pHAq “ HpA` Eq, where }E}2 “ Opu}A}2q,

flpA pHq “ pA` EqH, where }E}2 “ Opu}A}2q.

Hence, all computations involving Householder reflectors are inherently backward stable.
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12.3 Creating zeros in vectors.

Theorem 12.4. Given x ‰ ˘}x}2e1, let H be the Householder reflector defined by the Householder
vector u “ x¯ }x}2e1. Then

Hx “ ˘}x}2e1.

Proof. From Prop. 12.3 with y “ ˘}x}2e1, the result follows.

Hence, there is an easily computed Householder reflection allowing us to transform a given vector
x into a multiple of e1:

x “

»

—

–

x1
...
xm

fi

ffi

fl

H
ÝÑ Hx “ }x}2e1 “

»

—

—

—

–

}x}2
0
...
0

fi

ffi

ffi

ffi

fl

.

Notes.

• Typically, to avoid cancellations we choose the sign that makes the first entry of u as large
as possible in magnitude, i.e.:

u “ x` signpx1q}x}2e1.

• u only differs from x in the first component.

• For additional stability, one may choose to scale the Householder vector, e.g.:

u “
1

µ
px` signpx1q}x}2e1q , where µ “ max

i
|xi|.

12.4 Householder triangularization.

Let us now apply a sequence of Householder transformations with the goal of obtaining an upper
triangular or trapezoidal matrix R:

Hn ¨ ¨ ¨H1A “ R.

We begin by setting Ap1q “ A, an mˆ n real matrix with m ě n.

Step 1. Let a1 be the first column of Ap1q “ A. Using a Householder reflector H1 with vector
u1 “ a1 ` signpa11q}a1}2e1, by the previous theorem we have H1a1 “ r}a1}2, 0, . . . , 0s

T and hence

Ap2q :“ H1A
p1q
“

»

—

—

—

–

ˆ ¨ ¨ ¨ ¨ ¨ ¨ ˆ

0 ˆ ¨ ¨ ¨ ˆ
...

...
...

0 ˆ ¨ ¨ ¨ ˆ

fi

ffi

ffi

ffi

fl

,

i.e. we have eliminated all entries below the diagonal in the 1st column of A.
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Step 2. Now, let pAp2q be the submatrix formed by the last m´1 rows and n´1 columns of Ap2q:
in block form,

Ap2q “

„

ˆ ˆ

0 pAp2q



Let pa2 “ ra
p2q
22 , . . . , a

p2q
m2s

T be the first column of pAp2q, we can form a Householder reflector pH2 of size
m´ 1ˆm´ 1 with vector pu2 “ pa2 ` signpa

p2q
22 q}pa2}2pe1, such that by the previous theorem we have

pH2pa2 “ r}pa2}2, 0, . . . , 0s
T . To apply pH2 to the submatrix pAp2q of Ap2q, we can form the Householder

reflector

H2 “

„

I1 0

0 pH2



“ I ´ 2u2u
T
2 {u

T
2 u2 with u2 “

„

0
pu2



,

such that

Ap3q :“ H2A
p2q
“

„

ˆ ˆ

0 pH2
pAp2q



“

»

—

—

—

—

—

–

ˆ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ˆ

0 ˆ ¨ ¨ ¨ ¨ ¨ ¨ ˆ
... 0 ˆ ¨ ¨ ¨ ˆ
...

...
...

...
0 0 ˆ ¨ ¨ ¨ ˆ

fi

ffi

ffi

ffi

ffi

ffi

fl

,

i.e. we have eliminated all entries below the diagonal in the first two columns of A.

Step k. The process is now clear. Assuming that, after k ´ 1 steps we have obtained a matrix
of the form

Apkq “

»

—

—

—

—

—

—

—

—

—

–

ˆ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ˆ

0
. . . ...

... . . . ˆ ¨ ¨ ¨ ¨ ¨ ¨ ˆ

... 0 ˆ ¨ ¨ ¨ ˆ

...
...

...
...

0 ¨ ¨ ¨ 0 ˆ ¨ ¨ ¨ ˆ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

we denote by pApkq the pm´ k` 1qˆ pn´ k` 1q block of entries on the bottom right of the matrix,
we denote by pak “ ra

pkq
kk , . . . , a

pkq
mks

T its first column and form a Householder reflector with vector
puk “ pak ` signpa

pkq
k q}pak}2pe1 that will eliminate all entries in the first column on pApkq below the

diagonal. We form the Householder reflector

Hk “

„

Ik´1 0

0 pHk



“ I ´ 2uku
T
k {u

T
k uk with uk “

„

0k´1

puk



,

then we obtain Apk`1q “ HkA
pkq with zeros below the diagonal in columns 1, . . . , k, and continue

onto step k ` 1.

Conclusion. After n steps, we obtain R :“ Apn`1q an upper triangular matrix, which is formed
by the sequence of products

Hn ¨ ¨ ¨H1A “ R.

Hence, if we form Q “ H1 ¨ ¨ ¨Hn then, since Hi “ H´1
i “ HT

i :

A “ QR, with QTQ “ Im, R upper triangular.

The full algorithm is detailed as follows.
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Householder QR algorithm.
Input: an mˆ n matrix A, with m ě n.
Output: (i) the Householder vectors u1, . . . ,un,
(ii) an upper triangular matrix R of size mˆ n.
Storage:

• The matrix R is stored in the upper triangular part of A,

• Householder vector components: uk`1,k, . . . , um,k in the (strictly) lower triangular part of A,

• u11, . . . , ukk in a separate array v.

1: function HouseholderQR(A)
2: for k “ 1, . . . , n do
3: Form the Householder vector puk “ rukk, . . . , umksT with

#

ukk “ akk ` signpakkq}pak}2,
uk`1,k, . . . , um,k “ ak`1,k, . . . , am,k

,

such that pHkpak “ pHk

»

—

—

—

–

akk
ak`1,k

...
amk

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

rkk
0
...
0

fi

ffi

ffi

ffi

fl

, where rkk “ }pak}2.

4: vk “ ukk.
5: akk “ rkk.
6: β “ 2{puTk puk
7: Apk : m, k ` 1 : nq “ Apk : m, k ` 1 : nq ´ βpuk

`

Apk : m, k ` 1 : nqT puk
˘T

8: end for
9: return A, v

10: end function

Remark 12.5. Q is not formed explicitely; rather, the Householder vectors pu1, . . . , puk are stored
for later application of the corresponding reflectors when multiplication by Q or QT is needed.

Computational complexity. For each step k: when m “ n, we need

• about 4pn´ kq floating-point operations to construct puk,

• about 4pn´ kq2 flops to update pApkq.

These costs add up to about 4
řn
k“1pn´ kq ` pn´ kq

2 „
4n3

3
`Opn2q flops.

When m ě n in general, the total cost is about 2n2pm´ n{3q floating-point operations.

Computational stability. The result of the Householder QR factorization method in floating-
point arithmetic yields

pQ pR “ A` E,

where pQ, pR are the computed factors, and }E}F ď gpnq}A}Fu, where gpnq is a slowly increasing
function of n and u the round-off precision.
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Lecture 13: QR Factorization, Modified Gram Schmidt. (March
18)

13.1 Full and reduced QR factorizations.

The Householder algorithm presented in the previous lecture yields the so-called full QR factor-
ization:

• a matrix Q P Fmˆm, orthogonal (QTQ “ I) in the real case, and unitary (Q˚Q “ I) in the
complex case),

• and a matrix R P Fmˆn upper trapezoidal (rij “ 0 for i ą j), such that

A “ QR.

Now we note that R has all zeros under the diagonal, and ifm ě n we can reduce this factorization:

A “ QR “
”

pQ pQ
ı

„

pR
0



“ pQ pR,

where pQ is composed of the first n columns of Q and pR of the first n rows of R.
The resulting smaller factors pQ P Fmˆn, a matrix with orthogonal columns such that pQ˚ pQ “ In
and pR P Fnˆn, an upper triangular square matrix, form the reduced QR factorization (also
called thin or economy-sized factorization):

A “ pQ pR.

Remark 13.1. Note that A˚A “ p pQ pRq ˚ p pQ pRq “ pR˚ pR, i.e. pR˚ is the Cholesky factor of the
symmetric positive definite matrix A˚A.

Property 13.2. The columns of pQ form an orthonormal basis for the range of A.

This property shows that computing the (reduced) QR factorization of A is equivalent to generating
an orthonormal basis out of a set of vectors, such as the columns of A.

Proposition 13.3. • Every matrix A P Fmˆn with m ě n has a full QR factorization as well
as a reduced QR factorization.

• If A has full rank n, there exists a unique reduced QR factorization with all positive entries
on the diagonal of R.

• If m ă n, then the QR factorization takes the form A “ Q
“

R1 R2

‰

where R1 P Fmˆm is
upper triangular, and R2 P Fmˆn´m is rectangular.

Proof. Existence results from the Householder algorithm presented earlier. The new result is the
uniqueness for full rank A. Assume that

pQ1
pR1 “ pQ2

pR2

or, since pQ˚1
pQ1 “ In and R2 is invertible,

pQ˚1
pQ1

pR1
pR´1

2 “ pQ˚1
pQ2 or pR1

pR´1
2 “ pQ´1

1
pQ2.

Since the left-hand side is an upper triangular matrix with positive diagonal entries and the right-
hand side a unitary one, they must be in fact the identity, which yields

rR1 “ rR2, and rQ1 “ rQ2.
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13.2 Gram-Schmidt algorithm for the QR factorization

Since the columns of pQ form an orthonormal basis for the columns of A, an alternative to the
Householder approach is to use the Gram-Schmidt algorithm to construct an orthonormal set of
vectors out of the columns of A. Suppose

A “
“

a1 ¨ ¨ ¨ an
‰

, ai P Fm.

Step 1. Compute

q1 “
1

r11

a1, where r11 “ }a1}2,

Step 2. Next,

pq2 “ a2 ´ r12q1, where r12 “ q˚1a2,

q2 “
1

r22

pq2 where r22 “ }pq2}2,

More generally: Step k.

pqk “ ak ´
k´1
ÿ

i“1

rikqi, where rik “ q˚i ak,

qk “
1

rkk
pqk where rkk “ }pqk}2,

until we reach k “ n. Note that, in exact arithmetic, we have the resulting relation for each column
of the matrix A,

ak “ q1r1k ` ¨ ¨ ¨ ` qk´1rk´1,k
` qkrkk,

which is summed up by the expression
A “ pQ pR

where pQ “
“

q1 ¨ ¨ ¨ qn
‰

and pR is the upper triangular matrix with entries rij computed in the
course of the algorithm above, which is called the classical Gram-Schmidt algorithm.

Numerical issues. It turns out that, implemented in floating-point arithmetic, the classical
Gram-Schmidt suffers from catastrophic floating-point cancellation. As a result, the columns qk
of the computed matrix are often not orthogonal to each other, and the resulting decomposition
is, at best, not useful.

Modified Gram-Schmidt algorithm A simple modification is enough to stabilize the compu-
tation of the reduced QR factorization by the Gram-Schmidt algorithm, resulting in a much more
stable computation.
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Modified Gram-Schmidt algorithm.
Input: an mˆ n matrix A “

“

a1 ¨ ¨ ¨ an
‰

, with rank pAq “ n.
Output: Matrices pQ and pR of the reduced QR factorization.
1: function ModifiedGramSchmidtQR(A)
2: Set R an nˆ n matrix with all zero entries.
3: Set Q “ A.
4: for k “ 1, . . . , n do
5: rkk “ }qk}2.
6: qk “ qk{rkk.
7: for j “ k ` 1, . . . , n do
8: rkj “ q˚kqj
9: qj “ qj ´ rkjqk

10: end for
11: end for
12: return pQ, pR.
13: end function
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Lecture 14: Solving least-squares problems with factorizations.
(March 23)

14.1 Problem statement.

Given a coefficient matrix A P Fmˆn and a vector b P Fn, we seek to determine the vector x P Fm
which minimizes

}Ax´ b}2. (14.1)

Definition 14.1. The vector r “ b´ Ax is called the residual.

Definition 14.2. If the least-squares problem has more than one solution, the one having minimal
Euclidean norm is called the minimum length or minimum norm solution.

• If m ă n (less equations than unkowns), we say that the system is underdetermined, and

• if m ą n (more equations than unknowns), the system is overdetermined.

14.2 Geometric interpretation.

The solution x P Fn is the vector x such that Ax is the orthogonal projection of b onto the range
of A:

As a result, there is always at least one solution to the least-squares problem. Furthermore, we
note that }r}2 is the distance of b to the range of A.
Next, we observe that r “ b´Ax is orthogonal to the range of A, and since the columns of A are
a generating set of vectors for the range, we deduce that

A˚r “ 0, or A˚Ax “ A˚b.

Definition 14.3. Let A P Fmˆn. The linear system

A˚Ax “ A˚b

is called the normal equations.
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14.3 Existence, Uniqueness and Properties

We have seen that the least-squares problem always has a solution, which satisfies the normal
equations. In general, we can only expect uniqueness if the system is overdetermined and the
matrix has full rank, i.e. rank pAq “ n.

Theorem 14.4. Given A P Fmˆn with m ě n, b P Fn, define

rpxq “ b´ Ax P Fn.

The following statements are equivalent:

(a) x minimises }rpxq}2,

(b) x satisfies A˚r “ 0,

(c) x solves the normal equations A˚Ax “ A˚b,

(d) x solves Ax “ Pb, where P is the orthogonal projector onto Ran pAq.

Proof. First, a geometrical proof. We start with showing the equivalence (a) ô (b). We know
that

b´ Pb K Pb´ Ax P Ran pAq .

Hence,

}rpxq}22 “ }b´ Ax}
2
2 “ }b´ Pb` Pb´ Ax}

2
2 “ }b´ Pb}

2
2 ` }Pb´ Ax}

2
2 ě }b´ Pb}2.

Now }b´ Pb}2 is the minimum for }rpxq}2, attained if and only if Ax “ Pb. Note that such an x
always exists since Pb P Ran pAq by definition.
Next, we show (d) ô (b). Writing again the decomposition

r “ pb´ Pbq ` pPb´ Axq,

we note that r K Ran pAq if and only if Pb´ Ax “ 0.
Finally, we note that (b) is trivially equivalent to (c).
Another, analytical proof. For simplicity, let us investigate the real case. Here

Φpyq “ }rpyq}22 “ pb´ Ayq
T
pb´ Ayq.

We develop this expression:

Φpyq “ bT b´ bTAy ´ yTAT b` yTATAy

“ }b}22 ´ 2yTAT b` yTATAy.

The gradient of this expression is:

∇Φpyq “ 2pATAy ´ AT bq.

Therefore the normal equations are necessarily satisfied by the minimum x, solution of the least-
squares problem, since the gradient must be zero at any critical point.
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14.4 Numerical solution: over-determined case.

14.4.1 Normal equations method

When m ě n and A has full rank: rank pAq “ n, then A˚A is Hermitian positive definite.

Proposition 14.5. If rank pAq “ n (A has full rank), then the least-squares problem has a unique
solution

x “ pA˚Aq´1A˚b “ A:b,

where A: is the pseudo-inverse of the matrix A.

This proposition then leads to the following numerical method: we can form the matrix A˚A and
then solve the normal equations, using the Cholesky factorization of A˚A “ RR˚ with R upper
triangular.
1: function NormalEquations LS(A)
2: Compute A˚A and A˚b.
3: Compute the Cholesky factorization

A˚A “ RR˚.

4: Solve Ry “ A˚b using back-substitution.
5: Solve R˚x “ y using forward substitution.
6: end function
Complexity: the computation ofA˚A can be achieved inmn2 floating-point operations, exploiting
the symmetry of the result. The Cholesky factorization is then computed in 1

3
n3 floating-point

operations, and the triangular systems solved in Opn2q operations.
The total cost is hence on the order mn2 ` n3

3
`Opn2q flops.

Numerical difficulties.

• A˚A may be close to singular, and

• K2pA
˚Aq “ K2pAq

2 is often much larger than the condition number of A - meaning that the
normal equations may have worse conditioning than the least-squares problem itself.

14.4.2 QR factorization approach.

Given A P Fmˆn with rank pAq “ n, write its reduced QR factorization A “ pQ pR where pQ P

Fmˆn has orthogonal columns, forming an orthonormal basis of Ran pAq, and pR P Fnˆn is upper
triangular.
In particular, the orthogonal projector onto the range is obtained as

P “ pQ pQ˚ P Fmˆm.

Hence, x solves the least-squares problem if and only if

Ax “ pQ pRx “ pQ pQ˚b,

or, multiplying from the left by pQ˚,
pRx “ pQ˚b.
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1: function ReducedQR LS(A)
2: Compute a reduced QR factorization A “ pQ pR,
3: Compute pQ˚b,
4: Solve pRx “ pQ˚b using back-substitution.
5: end function
Complexity: The QR factorization may be computed in different ways, resulting in different
costs:

• using the Householder method, the QR factorization is obtained in 2mn2 ´ 2n3{3 flops. In
this case there is no need to store pQ, rather we apply the Householder reflectors to b as the
factor R is computed. Then pQ˚b is obtained in Opn2q flops.

• Using the modified Gram-Schmidt method, the cost of computing the factors is 2mn2. In
this case, pQ˚b should be computed by orthogonalizing b with respect to the columns of pQ
using the modified Gram-Schmidt, rather than by applying pQ˚.

In both cases, the final triangular solve has negligible cost Opn2q.

14.5 Numerical approach: rank-deficient or underdetermined case.

When r “ rank pAq ă n, in particular in the case m ă n, both previous approaches fail. In this
case, one may use the SVD decomposition, from which we also extract a reduced or thin variant:

A “ UΣV ˚ “
”

pU rU
ı

„

Σr

0 0



«

pV ˚

rV ˚

ff

“ pUΣr
pV ˚,

where pU P Fmˆr and pV P Fnˆr, formed by the first r columns of U and V respectively, have
orthogonal columns, and Σr “ diagpσ1, . . . , σrq is a diagonal matrix with the singular values of A
on the diagonal.

Remark 14.6. Numerical rank. In practice, due to numerical (floating-point) errors, the rank
is an ill-defined quantity. Given singular values σ1, . . . , σp where p “ minpm,nq and a tolerance
δ ą 0, one may set a numerical rank r ě 0 such that

σ1 ě ¨ ¨ ¨σr ą δ ě σr`1 ě ¨ ¨ ¨ ě σp ě 0.

Now, the orthogonal projector onto the range is given by the expression P “ pU pU˚, so

Ax “ Pb ô Σr
pV ˚x “ pU˚b P Fr.

This suggests the following algorithm:
1: function SVD LS(A)
2: Compute a reduced SVD factorization A “ pUΣr

pV ˚,
3: Compute pU˚b,
4: Solve the diagonal system Σry “ pU˚b,
5: Compute x “ pV y.
6: end function

The result of this computation is

x “ pV Σ´1
r

pU˚b “ V Σ:U˚ “ A:b,

where A: is the pseudo-inverse of the matrix A.
Indeed, we have two cases:
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• Case 1: A has full rank n, then x “ V Σ´1
n

pU˚b. In this case, the computational complexity
is higher than for the other methods which are available, mainly due to the high cost of
computing an SVD.

• Case 2: if r rank pAq ă n, then x “ pV Σ´1
r

pU˚b. In this case, Ker pAq ‰ t0u, and there is an
infinity of solutions:

S “ tx0 ` y, x0 “ A:b, y P Ker pAqu.

Proposition 14.7. x0 “ A:b is the minimum norm solution to the least-squares problem min }Ax´
b}2.

Proof. Consider y “ V ˚x “

«

pV ˚x
rV ˚x

ff

“

„

y1

y2



. Then, using the unitary invariance of the 2-norm,

}rpxq}22 “ }UU
˚b´ UΣy}2

“ }U˚b´ Σy}22

“

›

›

›

›

›

«

pU˚b´ Σry1

rU˚b

ff›

›

›

›

›

2

2

“ }pU˚b´ Σry1}
2
2 ` }

rU˚b}22.

Hence, we solve the least squares problem if and only if y1 “ Σ´1
r

pU˚b, and furthermore

}y}22 “ }x}
2
2 “ }y1}

2
2 ` }y2}

2
2 “ }Σ

´1
r

pU˚b}22 ` }
rV ˚x}22.

Moreover, }x}2 is minimized if and only if y2 “ rV ˚x “ 0, i.e.

x “ pV y1 “ pV Σ´1
r

pU˚b “ A:b.

This shows that, unlike the other two methods, the SVD approach can solve underdetermined
least-squares problems, where rank pAq ă n.
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Lecture 15: Stability for least-squares problems

Let us investigate the sensitivity of the solutions to a least-squares problem:

Find the minimum x P Fn to the functional }b´ Ax}2.

Let us start by examining variations with respect to the vector b.

Theorem 15.1. Suppose x minimizes }Ax ´ b}2, and x ` δx minimizes }Apx ` δxq ´ pb ` δbq}2,
where A P Fmˆn with rank pAq “ n.
Then,

}δx}

}x}
ď KpAq

}δbR}

}bR}
if }bR} ‰ 0,

where KpAq “ }A}}A:}, bR “ Pb and δbR “ Pδb with P the orthogonal projector onto the range
Ran pAq.

Remark 15.2. If we pertub only the vector b, the condition number of the problem is

KpAq “ }A}}A:}.

Remark 15.3. If }bR} « 0 (e.g. if b is almost orthogonal to the range of A), a small change in b
might have a large effect.

Proof. The solution is given by

x “ A:b, x` δx “ A:pb` δbq, so δx “ A:δb.

Recall now that
A: “ pA˚Aq´1A˚, so A:δb “ A:δbR,

hence
}δx} ď }A:}}δbR}.

Furthermore, Ax “ Pb “ bR, so }x} ě }bR}{}A}. Hence,

}δx}

}x}
ď
}A:}}δbR}

}bR}{}A}
.

Next, we present a result on the stability of solutions with respect to the coefficients of A.

Theorem 15.4. Let A,E P Fmˆn such that rank pA` Eq “ rank pAq “ n, and

}E}2 ď ε}A}2.

Then, if x minimizes }Ax´ b}2, with r “ b´ Ax,
and y “ x` δx minimizes }pA` Eqy ´ b}2, with s “ b´ pA` Eqy, then

}δx}2
}x}2

ď
K2pAqε

1´K2pAqε

ˆ

2` pK2pAq ` 1q
}r}

}A}2}x}2

˙

We omit the proof.

Remark 15.5. Understanding the stability of the least-squares problem is tricker than for the
linear systems. In general, the solution seems sensitive as the square of the condition number
K2pAq.
On the other hand, if the residual is small (r “ b´Ax “ b´bR) then K2pAq serves as the condition
number of the problem.
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Application: stability of the Householder QR least-squares solution. As we saw earlier,
the Householder QR factorization is backwards stable, in the sense that there exists E such that

pQ pR “ A` E, where }E}F ď gpnqu}A}F ,

where gpnq is a slowly increasing function of n and u the machine precision. Furthermore, we know
that the application of Householder reflectors and the solution of triangular system by backward
substitution are backward stable algorithms. This shows that the computed solution px using the
Householder QR minimizes exactly an approximate problem of the form

}pA` Eqpx´ pb` δbq}2,

where
}E}F ď cun}A}F `Opu

2
q, and }δb}F ď cu}b}2 `Opu

2
q,

with u the machine precision and c « 6m´ 3n` 41.

15.1 Summary: comparison of approaches.

Case 1: m ě rank pAq “ n (overdetermined problem).

(a) Normal equations and Cholesky:
Computational cost: mn2 ` n3{3. This is the fastest approach.
Difficulties: stability of the computation of A˚A; sometimes produces more errors than
necessary.

(b) Householder-QR:
Computational cost: 2mn2 ´ 2n3{3.
Backward stable.

(c) Modified Gram-Schmidt QR:
Computational cost: 2mn2.
Almost as stable as the Householder QR.

Case 2: r “ rank pAq ă n (underdetermined problem).

(a) SVD and pseudo-inverse:
Computational cost: 4mn2 ` 8n3. This is the slowest approach.
Stable.

(b) Householder QR with column pivoting (aka, rank-revealing QR):
Computational cost: 2mr2 ´ r2pm` nq ` 2r3{3.
Forward stable, but not backward stable.
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