Lecture 1: Review of Linear Algebra, 1. (February 2)

1.1 Matrices and Vectors. (Ch. 1)

Most of this class is focused on the topic of matrices and manipulations thereof. In these first few
lectures, we review the bases of linear algebra.

1.1.1 Notation.

e We will denote R the field of real numbers, and C the field of complex numbers.
F stands in for either R or C.

e F*™ is the ring of matrices with m columns and n rows.
o " =TF"*! is the vector space of (column) vectors with n components and dimension n.

e [F1X7™ is the vector space of row vectors with n components, which also has dimension 7.

Vector spaces Basic notions should be reviewed by reading paragraph 1.1 in the textbook:
linear combinations, independence, basis.

1.1.2 Matrix notation.

Row vectors:

7‘=[7’1 Tn], r; € F.
Column vectors:
C1
c=1|:1, c; eF.
C'Vl
Rectangular matrix:
a1 a12 e A1p
921 929 P Qony,
A= : : : - (aij)an - (aij)
Am1 Am2 ... Amn
The i-th row of the matrix A is the row vector of size n: [aﬂ - am]
ayj
The j-th column of the matrix A is the column vector of size m:
A5

When m = n the matrix is called square:

ay; ... Qip
A=
Ap1 -+ Qpp
and its main diagonal is the vector (an am).
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1.1.3 A few special vectors and matrices.

e Fixn >0, for each j € {1,...,n} the vector
0
0
€; = (52']')” =|1]| « j—th row
0
0]
is the j-th standard unit basis vector.
e 0,,xn 18 the m x n zero matrix.
e 0, is zero column vector of dimension n.
e [, is the n x n identity matrix:
1 0 0
I - 0 1
S
0 0 1
Its j — th column (or row) is the basis vector e;.
e Trapezoidal or triangular matrices:
m>n m=mn m<n
mxn i1 - Tin - =
R el i 1 ! ™M ... Tin M -« Tim .. Tin
Upper triangu- :
lar: 0 Tom
TijZOfOTi>j 0 _0 Tnn_ 0 "om -+ Tmn
d 0 - . - .
D e Fmxn H _ di1 0 diy 0
Diagonal : - 0
o 0
mXxXn — -
LeF . R I 0 I 0
Lower triangu- ) )
lnl lnn 0
lar: ' . ‘
lij:OfOri<j : : : lnl lnn _lml lmm |
_lml lmn_




1.1.4 Block form

A matrix can often be subdivided in blocks, which may for example have special structure. In
such cases, we may use the following block format:

ny ... Ny
All Ce Alq mi
A21 Ce qu meo
A=
Apl c. qu my

where each block A;; € ™" is an m; by n; matrix, and A is an F™*" with m =my +--- 4+ m,
and n =mn; + -+ ngy.

Remark 1.1. Annotating with the number of columns or rows per block may be omitted if the
context makes clear what they should be.

Examples. The big matrix:

D

[
PO = ~] UT O W © 00
B U1 W 0N © O~ —
© 00O~ WUl
— O 00D ~1 ULk O W
O W U= O R =] N O
TR NN O W T ©
00D O~ N W W
TN © W 00O i~
N = A TN 0O O

w

can be decomposed into a Sudoku using a 3 x 3 block array of 3 x 3 blocks:

41 2[3 8 9[576
8§ 756213409
9 6 3|4 75218
39 154 8|7 6 2
A=16 247 9 3|1 8 5 |=(4y),.,
58 7]2 1 6[9 3 4
736(85 2401
15 8/934(627
2 4916 7|85 3

where A;; € R**3. Alternatively, we can decompose A into it column form:

W
(O8]
oo
Ne)
\]

= (Cij)IXQ

N

I
DD~ ] Ul W © 00
AUt W 0N O]~
© 00O~ WU
0RO N WD
W T~ T 0O D

= O 00 N ~J OO

DD W UL = O N

~N = DN O W oo Ot
TT DN O© W oo O =~

|
L

w



or its row form:

(412389576
8 756213409
96 3475218
391548762
A=16 2 479 318 5|=(Ry),,,
58721609 34
736852491
158934627
(2 49167 85 3]

1.1.5 Matrix operations

Let us fix three matrices

A= (aij)mxn’ b= (bij)mxn’ C= (Cij)nxp

We recall now the following operations:

e Transpose: A” = (aj;)

. T .
Remark 1.2. If z = (xl xn) is a row vector, then z1 = (ml xn) 18 a column
vector, and vice versa.

e Conjugate: A = (@)

mxn’

e Adjoint: A* or A7 = (@

)n><m’
e Multiplication by a scalar:

aA = (O‘aij)mm’
e Addition of matrices of the same size:

A+B= (aij—l—blj),

e Linear combinations:

)

aA+ BB = (CMCLZ']' + ﬁbw>

mXxXn
e Matrix-matrix multiplication:
AC = (XL aicrj)

mxp

Remark 1.3. The matriz product is only defined when A has as many columns as C' has rows!

Remark 1.4. The matriz product is non-commutative, such that in general AC # CA even if
both products make sense.

Property 1.5. If A e F™*" and C' € F"*P, then

(AC)T = CTAT  and  (AC)* = C*A*.



Examples Take A = [1 1 1] and

1 01
B=1]1010
0 01
We compute then
AB=[1 1 2],
while BA is undefined.
Next, we take
01 0 0
S U AR )
Then we have
10 0 0
I R

This shows in particular that AB # BA.

1.1.6 Block operations

When the matrices have a (compatible) block structure, the operations above can be written using
that block structure. In particular, assume we have

ny ... Ny ny ... Ng
All ce Alq mq Bll c. qu mq
A= : : and B=]: : :
Apl . qu my Bpl e qu my

Then we can write:

e the transpose and adjoint:

mp ... My mp ... my
Al o Al m A o A m
AT =] Pl AT B
Al o Al ng Af, o A ng
e Linear combinations:
ny . ng
aAn + BB ... oAy + BBy | ma
aA + BB =
aAp + BBy ... aApy + BBy, | my

Next, if we also have a matrix C' with block structure:

k1 ks

Cn Cis | m
C = s

Cq Cys | g



then the matrix-vector product takes the block form

nq ce Uz
q q
ijl Alejl e ijl Alejs mq
AC = : : :
q (. q (.
j=1 ApiCin ... =1 ApiCis | my

Lecture 2: Review of Linear Algebra, 2. (February 4)

2.1 Matrix-vector product

When computing the matrix-vector product Az where A € F*" and x € F", we may consider it
under different viewpoints.

e First, recall that A can be identified with a linear map A : F* — F" x — b = Az € F™.

e Next, if we use the block row form of A:

A= : TiEFn7

T T
] T
b=Axr=| ! |z = : e F™,
T T
T r.xT,

whereby the entries of the result are the obtained (in the real case) as the Euclidean in-
ner/scalar product between the corresponding row of A and the vector .

e Third, if we use the block column form of A:

Az[cl cn,] c; e F™,
then we obtain the column-oriented or linear combination version of the matrix-vector prod-
uct:
T n
b= Ax = [Cl Cn,] ZEIJ'C]'.
Tn, i=1

Here the result is framed as a linear combination of the columns of the matrix A with the
entries of z as coeflicients.

We usually focus on the column-oriented version in algorithm, as it proves more convenient.



2.2 Range, nullspace and rank

Let A € F™*" be a rectangular matrix. The action of A as a linear map F" — F™ motivate the
following definitions:

e Range / Column space of A:
Ran (A) = {Az, xzeF"} ™

If we write the block column form of A = [01 cn] where ¢; € ", then we may also
identify
Ran (A) = Span{cy, ..., cn}.

e Range of AT / Row space of A:
Ran (A") = {A"z, zeF"}cF"
E{(mA)T, :ceIlem}gIF“”
This subspace of F" is spanned by the rows of A.

e Kernel or nullspace of A:

Ker (A) =null(A) = {z e F", Az =0} < F".

e Rank of A:
rank (A) = dim Ran (A)

The following results are fundamental to linear algebra.
Proposition 2.1. Let A € F™*" be a matriz, then
rank (A) + dim Ker (A) = n.
Proposition 2.2. Let A € F™*" be a matriz, then
rank (A) = rank (A”) = rank (4*).

Definition 2.3. A matriz A € F™ ™ has full rank if rank (A) = min{m,n}.
It is rank-deficient if rank (A) < min{m, n}.

Theorem 2.4. Let A € F™ ™ with m = n. Then the following statements are equivalent:
1. A has full rank: rank (A) = n,
2. A is one-to-one as a linear map F* — F™, i.e.

Au=Av < u=w,

3. Ker (A) = {0},
4. the columns of A are linearly independent and form a basis for Ran (A).

Proposition 2.5. A matriz A € Fm x n had rank 1 if and only if there exists nonzero vectors
uw e F™, velF" such that
A = uv*.



2.3 Trace and determinant
Definition 2.6. For a square matriz A € F"*", we define its trace
F>TrA= Z Qi
i=1

and its determinant
F>odet A= Z sgn(T) a1, - - - Ao, s

weP

where P is the set of n! permutations of {1,...,n}.

Property 2.7. Let Ae F™*™, B e F™*" then
Tr AB = Tr BA.
Let A, B € F"*" | then

det A = det AT det AB = det Adet B.

2.4 Matrix inverse.

Definition 2.8. A square matriz A € F™*™" is said to be wnvertible or non-singular if there
exists B € F™*™ such that
AB = BA =1,.

Such a matriz is unique and we denote then A~ = B.
If there exists no such matriz B then we say that A is singular.

Property 2.9. o A is invertible if and only if A has full rank or det(A) # 0.

o If A is invertible, then so are AT and A* and
(AT =)™, (AT = (A
e If A and B are invertible then AB is invertible and

(AB)™' = B1A™",

Practical remarks

e There exists an explicit formula for computing the elements of A~! in terms of the de-
terminant of A and its minors, but it is very impractical in practice as its cost is O(n!)
floating-point operations.

e Never compute A™1 explicitely if it is not necessary, as even the best algorithms have a cost
scaling as O(n?).



2.5 Special matrices

Definition 2.10. A square matriz A € F™*™ is said to be...

o Symmetric if A = AT,

Orthogonal if A~! = AT,

Hermitian or self-adjoint if A = A*,

Unitary if A= = A*,

Normal if AA* = A*A.

2.6 Scalar (or inner) product in finite dimension

Definition 2.11. A scalar product on a vector space V over F =R or Cis a map (-,-): VxV - TF
such that:

o (-,-) is linear in its second variable:
(z, ay1 + By2) = oz, y1) + By, y2),

o (-,-) is hermitian:

([E,y) = (yv :B),
e (-,-) is positive definite:

(x,2) =0 and (x,2) =0 = = =0.

Example: the standard inner product on F™ is
(:L’,y) =1ty = Zx_zyz
i=1

Remark 2.12. We adopt here the "physics” convention where, in the complex case, the scalar
product is linear in its second variable and anti-linear in its first variable. Often, the mathematical
literature adopts the different convention (linear in the first variable, anti-linear in the second
variable), leading to a different definition of the standard inner product, (z,y) = y*z.

Here are a couple properties of the standard Euclidean inner product:

Property 2.13. e Given a matrix A e F™*",

(x, Ay) = (A*z,y), Vo, yeF".

o Unitary matrices conserve the scalar product, in the sense that

(Qz,Qy) = (v,y), Vr,y e F".

The structure associated with scalar products is extremely useful. The concept of orthogonality in
particular has a wide range of uses.



Definition 2.14. e Two vectors x,y € F™ are orthogonal if
(z,y) = 0.
o Two sets of vectors X, Y < F" are orthogonal if

(x,y) =0, Vre X, yeV.

o A set of vectors {vy,..., vy} is orthogonal if
(vi,v) =0, Vi#je{l,...,m}.
It is orthonormal if, in addition,
(v, v;) = 1, Vie{l,...,m}.

Proposition 2.15. If {vy,...,v,} < F" is orthogonal and the v; are all nonzero, then {vy, vy} is
linearly independent and m < n.

Proof. Let {vy,...,v,} an orthogonal subset of F"\{0} as in the theorem. Suppose a linear com-
bination Z;Ll c;v; vanishes, then for all ¢ = 1,...,m we have
(Ui, Z ijj) = Z ¢ (i, v5) = ¢i(vi, v;) = 0.
j=1 j=1
Now since v; # 0, we have (v;,v;) # 0 and hence ¢; = 0. By definition, this shows that the set
{vi,..., v} is linearly independent. Thus m must be lesser or equal than the dimension of the
vector space, which is n. O

Corollary 2.16. If {vy,...,v,} is as in Proposition with m = n, then it is a basis for F™.
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Lecture 3: Gram-Schmidt Process; Vector Norms. (February
9)

3.1 Orthogonal Projection.
Given a set of orthonormal vectors {qi, ..., ¢n} € F" spanning a subspace S < F", we define the

linear map
m

F*sv +— Pv= Z(qi,v)qi = Zqi(q;"v) eSs.
i—1

i=1

Note that P corresponds to the matrix, also denoted P,

P = qq.
i=1
Then for any q € S, we have the property
(q,v) = (q, Pv) or (g,v — Pv) =0,
meaning that the difference v — Pv is orthogonal to the subspace S.

Definition 3.1. The matriz P = Y| ¢;q} is called the orthogonal projector onto S.

This matrix has the classical property of projectors, P? = P, and also it is Hermitian, P = P*.

3.2 Gram-Schmidt Process.

Let {v,...,v,} < F™ be a set of independent vectors, m < n. The following procedure yields an
orthonormal set of vectors ¢, ..., ¢, spanning the same subspace of [F":
1. Set
1
w; = Vg then ¢ = —F——w,
(w17 wl)

such that (¢1,¢1) = 1.

2. Next, set

wy = vy — (q1,V2)¢1 and (o = ———=Wo,
(w27 w?)

such that (¢1,w2) = (q1,v2) — (q1,v2)(¢1,¢1) = 0 and hence (¢2,¢1) = 0, (g2,¢2) = 1.

Step j. Continue the process with

jfl « 1
Wi =Yj — Z qiq; vj and 45 = ij,
=1 RN}
;/_/

orthogonal projector onto Span(qz,...,qj—1)

such that (g;, w;) = (gi,v;) — (¢;, Pj—1v;) = 0 for i < j where P;_; is the orthogonal pro-
jector onto the subspace spanned by ¢i,...,q;—1, and hence the vectors q,...,¢; form an
orthonormal family.
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3.3 Vector Norms.

We define now a central object for the study of vectors, and in particular for the introduction of
a topology and notions such as limits and continuity.

Definition 3.2. Let V' be a vector space over F. A map |- | : V — Ry is a norm on V if
1. |v| = 0 implies v = 0,
2. |awv| = |a||v| for any scalar « € F and vector v € V' (homogeneity),

3. |u+v| < |ul + |[v| for any two vectors u,v € V' (triangular inequality).

Examples. for xz € F", we define the classical definitions:

e The Fuclidean norm:

1/2
Jelz = A/ (2, 2) = (a¥2)"? = <Z%I2>

e The Holder p-norm: for p > 1, we set

n 1/p
|zl = (2 I%'Ip)
i=1

(Note that the Euclidean norm is a special case obtained for p = 2.)

e The maximum or infinity norm:

|2]ec = max |z,
1<i<n

e Given a full-rank matrix A € F™*" with m > n and p € [1, 0], we define

[zl ap = [ Az]p.

One can check that each of these examples satisfies properties 1-3 above, and define proper norms
on V = F". Norms bear a strong relations to scalar products, in particular the Fuclidean or
2-norm. For example, we have the following classical result:

Proposition 3.3. Let x,y be two vectors in F™ equipped with the scalar product (x,y) = x*y.

o Cauchy-Schwartz inequality:
(@, y)| < llzl2]yl2-

o The above is a special case of the Hélder inequality:

1 1
@ )| < [ lplyllo, where p.g € [1, 50} and =4 = 1.

Since there are many possible norms, it is important to understand to which extent these norms
are fundamentally different - in particular, are they comparable? In finite dimension, the following
definition and theorem answer this question.
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Definition 3.4 (Equivalence of norms). Two norms || - || and |||-|| on V are equivalent if there
exists two constants ¢, C' > 0 such that

cllzlll < =l < Cllll for anyveV.
Theorem 3.5. Let V' be a finite-dimensional vector space. Then all norms on V are equivalent.

Corollary 3.6. Let | - | be any norm on F" and a sequence (x*))i=q of elements of F*. Then we
say that (z®) converges to x € ", or

lim 2z = z,
k—o0

(k)

if and only if limy_,o, x; as number sequences for alli =1,...,n, and this is equivalent to

lim |z® — 2| = 0.
k—o0

3.4 Matrix Norms

Similarly to vector spaces, spaces of matrices can be equipped with norms, defined in the same
way.

Definition 3.7. A function | - |: F™" — R, is a norm if

1. |A]| =0, and ||A] =0 iff A=0, for all A F™™.
2. | aAll = |a|||A], , for all A€ F™ ™ and a € F.
3. |[A+ B| < |A| + |B|, for all A, B € F™*".

Because matrices can be multiplied, the following notion is useful.
Definition 3.8. We say that a matriz norm | - || is sub-multiplicative if
|AB| < ||A]| B, VA e F™" and B € F"*P,

In some cases, matrix norms may be related to norms on the vectors spaces on which they act as
linear transformations: A : F" — F™.

Definition 3.9. A matriz norm | -|| on F™*™ is called compatible or consistent with vector norms

also denoted || - | on F™ and F™ if
| Az]gm < Al

Note that not all matrix norms are sub-multiplicative or consistent. For example, the function
|A|a = max; ; |la;;| is a norm on the space of 2 x 2 matrices, yet

A5 = ] | bove nom Jla) 1 - 1
but
2 2
AB = lz 2] has norm |AB|a = 2,

so | - |a is not submultiplicative.
On the other hand, define the Frobenius norm:

n 1/2
Aﬁ:(Emmﬁ _ T A
ij=1
Property 3.10. The Frobenius norm is sub-multiplicative, compatible with the FEuclidean norm
| ]2, and )

[Alr = 1A = 1A% -
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Lecture 4: Induced Norms, Eigen-problems. (February 11)

4.1 Induced Norms

Definition 4.1. Let || - | be a vector norm. The function:
HAZL“H
Al = sup o = sup |Az] (4.1)

18 a matriz norm, called the induced norm or natural matriz norm associated with the vector norm

-1
Property 4.2. If |A| is induced by the vector norm |z|, then

o ||Ax| < |A||x|| for any matriz A € F™™ and vector x € F",

o |AB| < ||A]|B| for any matrices A € F™*"™ B e F"*P

(all induced norms are sub-multiplicative),
o |L] =1

Before proving that (4.1) indeed defines a norm on matrices, let us propose and compute a few
such induced norms. Given 1 < p < o, the Hélder p-norm on vectors defines an induced matrix
norm by

|All, = sup [|Az],.

lzl=1

e For p = 1, we can compute explicitely this quantity. Let A € F™*" with columns ¢4, ..., ¢, €
F™, for any vector z € F",

n

n
Z l2jlllelh < (max feglh) 3 Jyl,
<j<n o

|Azy =

where we have used the triangular inequality for the 1-norm. Since the last quantity on the
right is |z];, we have that for any vector z,

|Az]; _ :
= J - (]
|z JEaX el = Jrr%ax Z|a |

1=1

Taking the maximum over the left-hand side of the inequality shows that

n
|Aly < max | Y ay| |-
Jj=1,...,n -1 J

Taking = = e; where j is chosen such that |c¢;|; = max;—; . x| =1, |Az|; =
lejlh = maxj—y,n (30, |ai;|), which shows that in fact this inequality is an equality:

Al = max (2 w)

=1

The induced 1-norm on matrices is dubbed the "column sum norm".
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e For p = o0, one computes similarly,

n
| Al = max (Z |a1:j|> :
i=1,...,n 4
Jj=1

The induced 1-norm on matrices is dubbed the "row sum norm".
The expressions above lead to the following properties of the induced 1- and co-norms, since
transposition exchanges the role of rows and columns:

Proposition 4.3. Let A e F™*", then

— Al = AT = [ A* oo
= 1Al = 14T = 4%
e Finally, the induced 2-norm or spectral norm does not have a simple expression in terms of

the entries of A, and is rather more difficult to compute. Thanks to the sub-multiplicativity
of the Frobenius norm, we have however

Ax
apy = S A2l gy

=zl

Let us now prove that these objects are indeed norms on matrices!

Proof. Let | - || be a norm on F™ and F", and define the quantity

A
4] = sup 142

z#0 HIH '

e Clearly, ||A] is a positive quantity. If A # 0, there exists at least one vector z ¢ Ker (A),
hence such that |Az| > 0. As a result,

|Ax|

1Al = T >
]

0.

e Next, let A, B two matrices and take z € F™ with norm 1, then using the properties of vector

norms,
[(A+ B)a| = [Az + Bz < |Az| + [ Bz| < [ A] + [ B].

Taking the supremum on the left-hand side, we have thus the triangle inequality,

|A+ Bl < [A] +[B].

e Finally, for o € F, |aAz|| = |a||Az|, so by taking the maximum on both sides, we have
clearly homogeneity: ||aA| = |af|Al|.

Hence the induced norm |Al| is indeed a norm on matrices.
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4.2 Eigenvalues and Eigenvectors.

Definition 4.4. Given a square matriz A € F"*", we say that A € C is an eigenvalue of A if
there exists a vector v € F"\{0} such that

Az = dx.

The wvector x is called a (right) eigenvector of A, and the set of all eigenvalues is called the
spectrum of A and denoted o(A).
A left eigenvector of A is a vector y satisfying

yrA = \y*.

Definition 4.5. We further define ...

*

e the Rayleigh quotient: ——, which equals an eigenvalue A if x is the corresponding
T*x

etgenvector,
e the spectral radius: p(A) = maxyeo(a) ||,

e the characteristic polynomial: po(\) = det A — \I, which is a polynomial of degree n.
Note that the spectrum o(A) is the set of roots of pa(\).

Property 4.6. o The spectrum of A coincides with the spectrum of its transpose: o(A) =
a(AT).

o The spectrum of A coincides with the complex conjugate of the spectrum of its adjoint:
o(A*) = o(A) = o(A).

Definition 4.7. For a given eigenvalue A € o(A), we define

e the algebraic multiplicity, which is the mupltiplicity of A\ as a root of the characteristic
polynomial p 4,

e the geometric multiplicity, which is the dimension of Ker (A — A\I,).
If the two are different, we say that the eigenvalue (and the matriz) is defective.

Note that the geometric multiplicity is always smaller or equal than the algebraic multiplicity.

Example: the matrix A = 8 (1)} such that p4()\) = A2, has a unique eigenvalue A = 0 with

algebraic multiplicity 2 and geometric multiplicity 1.

4.3 Similarities

Definition 4.8. Two matrices A, B € F"*" are called similar if there exists an invertible matrix

C such that
B =CtAC.

They are unitarily similar if the matriz C' is unitary.
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Property 4.9. If two matrices A, B are similar, their characteristic polynomials and spectra are
1dentical:

PA = D5, o(A) = a(B).
Proof.
pp =det CTAC — NC7'C =det C"H(A — \I,,)C = det Cdet C ' det A — M\ = py.
[l

A very important result in the theory of square matrices is that any matrix is unitarily similar to
a triangular matrix.

Theorem 4.10 (Schur decomposition). Given A € F"*", there exists a unitary matriz U such that

/\1 b12 e bln
U AU = U*AU = A2 =T,
bn—ln
0 An

i.e. A is unitarily similar with an upper triangular matriz T with the eigenvalues of A (counting
algebraic multiplicity) on the diagonal.

We omit the proof of this result.

Corollaries.

e The determinant of a matrix is the product of its eigenvalues, counting algebraic multiplicity:

i=1

e If a matrix A is Hermitian: A = A* then T* = (U*AU)* = U*AU = T, which implies that
T is diagonal with real entries.

e If A is a normal matrix, then 7" is also normal, which can be shown to imply that T is a
diagonal matrix (but may have complex entries).

Hence, any normal matrix A (including Hermitian matrices) is diagonalizable, it is not defec-
tive (the algebraic and geometric multiplicities coincide for each eigenvalue), and the columns
of U form an orthonormal basis of eigenvectors of A for F™:

rank 1 term

" —
i=1

unitary diagonal

Finally, by relaxing the conditions on C' one may find a matrix which is similar to A, but with
further structure.
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Theorem 4.11 (Jordan Canonical Form). Let A € F"*". There exists an invertible matriz X
such that

my ... My
Jl O mq
XTAX = L=,
0 Jp | my

where the Jordan blocks Jy are my x my, blocks with the form Jy = [Ag] if my =1, or

Ay 1 0

Jk = mek > 1,
o1
0 Ak

where A, is an eigenvalue of A, and my + --- +m, = n.
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Lecture 5: Singular Values and Singular Value Decomposition
(SVD) (February 18)

5.1 Singular Values

Definition 5.1. Let A e F™*" and let 0 = 0, ue C™, v e C" two vectors with ||uls = |v]2 = 1,
such that
Av = ou and u*A = ov*.

Then we say that o is a singular value of A and u, v are respectively the left and right singular
vectors associated with o.

Remark 5.2. Note that if o is a singular value of A,
o A*Av = g A*u = o(u*A)* = o(ov*)* = d%v, and
o UAA* = 0 A*u = o(u*A)* = g?u*.

Hence o? is an eigenvalue of both AA* and A*A.

Proposition 5.3. Given a matriz A € F™*", the matric H = A*A € F"*" is Hermitian positive
semi-definite, meaning:

e H*=H, and r*Hx = 0Vx € F".
e rank (H) = rank (A).
e H is positive definite if an only if rank (A) =n, i.e. 2*Hr =0 = x =0.

Proof. First,
H* = (A*A)* = A*(A*)* = A*A = H.

Hence H = A*A is Hermitian. Next, we compute
v*Hz = (Az)*Ax = |Az|3 = 0.

Furthermore, this shows that if z € Ker (H), then 2*Hxz = |Az|3 = 0 and hence Az = 0, that is
x € Ker (A). Thus Ker (A*A) < Ker (A). Since the reverse inclusion is obvious, this proves that
Ker (A*A) = Ker (A). Then, using the fundamental theorem of linear algebra,

rank (A) = n — dim Ker (4) = n — dim Ker (A*A) = rank (A*A).
If rank (A) = n, then Ker (A) = {0}, thus 2*Hx = 0 which implies z € Ker (A) now implies
x=0. []
5.2 Singular Value Decomposition

Theorem 5.4. Suppose A € F™*™. Then,

o There exists unitary matrices U € ™™ and V € F"*" such that
A=UXV*

where ¥ = diag(oy,...,0,) is an m x n diagonal matriz, with p = min(m,n) and oy >
..,0p = 0 are positive real numbers in decreasing order.
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e The o;, i =1...p are the singular values of A and are uniquely determined.

e The corresponding columns w;, v; of U and V' are respectively the left and right singular
vectors of A fori=1,...,p and form an orthonormal basis of F™ and F™ respectively.

o I[fAeR™" then U and V can be chosen as real orthogonal matrices.

The Singular Value Decomposition, or SVD, has countless applications in scientific computing,
data science, engineering, etc. such as Principal Component Analysis (PCA), Proper Orthogonal
Decomposition (POD), data fitting, low rank approximation based on the equivalent expression

P

*

A= Z iUV
i=1

Proof. Let A be rectangular, m x n matrix with real or complex entries. As we have seen, A*A €
F"*™ is Hermitian and positive definite, so it is unitarily diagonalizable with positive eigenvalues:
let V' be a unitary n x n matrix such that

A 0
VEHA*A) = ,
(44) N
0 On—r
where A\ = -+ > \. > Ay = -+ = A\, = 0 are the eigenvalues of A*A arranged in decreasing

order, where r = rank (A) = rank (A*A). Let us write now the block decomposition

with Vi € F**" and V;, € F**("=") We can rewrite the expression

A1 0
0 Op—r
so identifying the blocks of the matrix leads to
A 0
VIPA*AV, = and Vi A*AVy =0,
0 Ar

Let us first define, since A\; = --- > \, > 0,
Vi 0 A 0
Y, = so that Y, = = V[FA* AV,
0 VA 0 Ar

and thus
(E)vrATAvE = (0SSR = 1,



or in other terms,

(AVISTH)*(AViST) = 1.
This means that U; = AViX 1 is an m x r matrix with 7 orthonormal columns. Using, for example,
the Gram-Schmidt process, we can find Uy, € F™*(m=") such that U = [U1 Ug] is a unitary matrix
(i.e. its columns form an orthonormal basis for F).
Next, since Tr (AV5)* AV, = 0 = |AVy|% = 0, it follows that AV, = 0.
Finally, we obtain:

Y (U (n—r)

AV = [AVi AV] = [UZ, Onon] = [U1 U] Otm—r)sr Ofm—r)x (n—r)

~ Uy,

where X is as in the theorem:

(p—r) zeros

—
A=UXV* with ¥ = diag( O1y..,Op, 0,...,0).
_
r non-zero square roots of the eiganvalues of A* A
O
Remark 5.5. e The singular values of A are the square roots of the largest p = min(m,n)

eigenvalues of A*A, or equivalently of AA*.

e If A is square and normal and X is an eigenvalue of A, then |\| is a singular value of A.
Proof: if A is normal, it is unitarily diagonalizable: there is U unitary such that

A=UANU* = Z Al = Zaiui(e_wiui)* =UXV"*,
i=1 i=1

where \; = |\ are the eigenvalues of A with phase 0;, o; = || are the singular values,
and v; = e~ %u; are orthonormal vectors forming the columns of a unitary matriz V.

Note that in general, eigenvalues and singular values are not directly related. For example, the
matrix
11
=10 o

has eigenvalues 1 and 0, but the eigenvalues of AA* = [

(2) 8] are 2 and 0, hence the singular

values of A are v/2 and 0.
The proof also shows that the full SVD expression can be compactified:

Corollary 5.6 (Compact SVD.). For any A € F™*" with rank r, there exists Uy € F™ " and
Vi e F™*" with orthonormal columns:

Ul = I, ViWi = I,
such that i
A= UlZ,,Vl* = Z aiuivf,
i=1
g1 0
where o, = with the singular values o1 = --- = 0, > 0. Note that the columns of U
0 o,

form an orthonormal basis of the range of A and the columns of V' form an orthonormal basis of
the range of A*, which is the orthogonal subspace to Ker (A).
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5.3 Examples and Applications.

Examples. Consider the diagonal matrix:

1 0 0 0
D=0 -1 0 O
0 0 -3 0
1 00
Since DD* = |0 1 0], the p = min(3,4) = 3 largest eigenvalues of DD* are 9,1,1 and the
0 09

singular values of D are 3,1, 1.
Counsider the deficient matrix:

1 1
A:[O 1].
31\/5_

Now AA* = E ﬂ has eigenvalues 3(3 + v/5), hence the singular values of A are 5
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Lecture 6: Applications of the SVD. (February 23)

6.1 Moore Pseudo-Inverse

Given a matrix A with SVD UXV* we can define a matrix
At =S Uy,

which we call the generalized inverse of A. This object coincides with A=! if A is invertible, and
has many more interesting properties (see the homework problems).

6.2 Low-rank Approximation.
The singular value decomposition A = UXV* can be recast as the expression

rank(A)

Z O-IUZ 7

where the matrix u,;v; is a rank one matrix formed as the outer product of the i-th column of U
and i-th column of V, hence each term in the sum o;u;v} can be stored using m + n + 1 real or
complex values. If the rank of A is small, this allows to store A with a reduced amount of storage
compared to the mn total entries of A. If the rank of A is not small but the singular values of A
decay rapidly, this will allow to approrimate A using a smaller amount of storage - we will quantify
this later on.

6.3 Spectral norm / induced 2-norm

Recall the induced 2-norm on matrices:

|A]2 = max | Azl

Theorem 6.1. Consider a matriz A € F™*™.

o Let 01(A) be the largest singular value of A. Then

|All2 = A/p(AA*) = \/p(A*A) = 51(A).

o If A is Hermitian, then |Als = p(A).
o [f A is unitary, then |A|, = 1.
Proof. Set A € F"™*" since A*A is Hermitian hence diagonalizable with unitary U:
U*A*AU = diag(p1, - - -, fin)

where p1 = -+ = u, = 0 are the eigenvalues of A.
Let x € F", |z|2 = 1, and set y = U*x such that |y|s = 1 (since the Euclidean norm is unitary
invariant). Then

|Az|3 = (Az)* Az = 2* A* Az = 2*UU*A*AUU*z = y*(U*A*AU )y Z LY = Zui|yi|2.
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Since p; < i, we deduce that |Az|3 < p1 >, [y:i|* = pa: this holds for any vector x with

|z||2 = 1. Furthermore, equality is achieved if we choose y = e, or x = Ue; = uy. Hence, by

definition

[Al2 = Vi = A/ p(A*A).
The same reasoning can be followed by looking at AA* to prove that |A[y = /p(AA*). O
Corollary 6.2. If A e F"™" is invertible, then

[Allz = 01(A),  and A2 = o (A)
Using the previous characterization of the induced | - |2 norm on matrices, we obtain that for
A=UXV* =37 ouvf,
k r
A— Zaiuiv;“ = Z oiuvy | = ori1(A).
i—1 i=k+1 2

Rank k matrix.llg

Hence, the difference between A and the rank k£ matrix Zf;l o;uv; is directly related to the
singular value oy41(A), and in particular decreases as k increases.

Theorem 6.3. For Ae F™*" and 1 < k < p = min(m,n), let

k
A, = Z o V;
i=1

Then we have the best-approximation results in the 2- and Frobenius norms:
o |A— Al = 0p41(A) = minyanky)<k |[A — B2, and
L4 HA - AkHFro = Jk+1<A> = minrank(()B)ék HA - BHFro-

Proof. Take B € F"™*" with rank rank (B) < k. Then, dimKer (B) = n — k. In particular, since
v1,..., Vg1 are independent vectors, the intersection between Span(vy, ..., vx.1) and Ker (B) has
dimension at least 1. Let x € " such that

k+1
& T= Z¢:1 YiVi,
e Bxr =0,

o [zl =1 =1yl

such that in particular,

p k+1 k+1
Az = Z OiU;V; Z yjv; | = Z 0;Y;U; since v;v; = 0;;.
i=1 j=1 j=1

Thus, since the u; form an orthonormal basis and oy = - -+ = 0}, = op41:
k+1 1/2 k+1 1/2
|Az — B[ = |Az| = (Z ’%%\2) = Okl (Z !%’\2) = ki1
j=1 j=1

Bye definition of the induced norm, this ensures the estimate:
|A= B2 = [(A=B)x|s = ok

Since |A — Ag|2 = ox+1 as proved above, we have that the best approximation for A by a rank k
matrix B, measured in the 2-norm, is A;. We skip the similar proof for the Frobenius norm. [
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6.4 Examples of Numerical Linear Algebra questions.

e Algorithms to solve linear systems:
Find z4,...,x, such that Z?Zl a;jxj = b;, or in matrix form

Ax =b.
e Algorithms to solve eigenvalue problems:

Find z, A such that Az = A\x.
e Algorithms to compute the singular value decomposition, an eigenvalue decomposition, etc.

e Assert stability and efficiency of the above algorithms.

6.5 Solution of linear systems.

As a first question, we are interested in understanding, and ultimately developing algorithms such
that, given a square matrix A € F"*", a right-hand side b € F",

Solve the linear system Az =b. (6.1)

Before developing these algorithms, we need to understand this problem well: in particular,
whether it is well-posed, that is if it has a unique solution, and if this solution depends con-
tinuously (read: in a stable manner) on the data. The following statements are known to be
equivalent:

1. Problem has a unique solution z,
2. A is invertible,
3. rank (A) = n,
4. Ax =0 = x = 0.
There is an explicit formula for the entries of the solution, given by Cramer’s rule:
x; = A
7 det A’

where A; is the determinant of the matrix obtained by substituting the j-th column of A by b. In
practice however, the numerical cost in the order of (n + 1)! flops (floating-point operations) to
evaluate directly this formula is unacceptable.

Numerical Approaches. There are two broad categories of algorithms for the solution of linear
systems:

e Direct solvers: for example, Gaussian elimination. These algorithms see to obtain an
"exact" answer (modulo rounding errors due to floating-point operations) in a finite number
of steps.

e Iterative solvers: with this approach, one seeks to reduce the error at each step, but
possibly convergence happens only after an infinite number of total steps.

The right choice of approach depends on the matrix, in particular its size, but also its properties
(symmetry, etc.)

25



Lecture 7: Conditioning of Linear Systems (February 25)

7.1 Stability Analysis.

Consider the linear system:
Ax =b.

How sensitive is the solution = to perturbations in the data A, b?
Definition 7.1. The condition number of a matrix A € F**" is defined as the number
K(A) =]A[]A™,
where || - | is an induced norm.
If A is not invertible, we set K(A) = +o0.
Application
e Matrix-vector product: given an exact computation x = Ab, an inexact one writes:
x4+ dz = A(b+ b),

where dz is the perturbation in the computed result as a consequence of the perturbation in
the data db. In this case, we have by linearity dx = Adb

[0z < [[A][ob],
using the properties of the induced norm || - ||. On the other hand, b = A~'z and hence
ol < A= [l
so after some manipulations we find the estimate
98]

[0zl _ A0
< = K(A)"—.
l= - lol/lA=] W o]

Hence, the condition number of || Al| is also the condition number of the matrix-vector product
operation with the matrix A.

e Solution of a linear system: given an exact solution x to the problem Ax = b, an inexact one
writes:

A(x + 6x) = b+ 6b,

where 0z is the perturbation in the computed result as a consequence of the perturbation in
the data 0b. In this case, we have by linearity dx = A~16b and thus

ozl < A7 ob],
using the properties of the induced norm | - |. On the other hand, b = x and hence
16 < A=,
so after some manipulations we find the estimate
|6z _ 1A~"l160] [60]
< = K(A)—-.
[ lol/lAl o]

Hence, the condition number of | A| is also the condition number of the linear system with
the matrix A.
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Remark 7.2. e [n general, the condition number depends on the norm: for example, we note

Koo (A) = [Alo| A7 oo

e The condition number is always greater than one:
K(A)=1  since [|AJJA7Y] = [AAT = |1 =1,
using the properties of induced norms.

o K(A) = K(A_l).

Special case: Spectral condition number. When p = 2, we compute explicitely
|Al2 = o1(4)  and A2 = 1/on(A),

where 01(A) and o,,(A) are respectively the largest and smallest singular values of A. Hence the

condition number of A is the ratio:
01(A)

on(A)
In particular, when A is symmetric positive definite, its singular values are its eigenvalues and
hence

Ky(A) =

Ky(A) = 219 _ p(a)p(A7),

>\min

Because of these properties, we call K5(A) the spectral condition number of A.

7.2 A priori / Forward Analysis

In this section, we aim to find the result of a perturbation of the matrix A and the right-hand side
b on the solution of the linear system Az = b.

Theorem 7.3. Let A,0A € F"*" such that
| A 6A] < 1,
and x,0x,b,6b € F"™ such that b # 0,
Az =10 and (A—0A)(z + dz) = b+ 6b.
Then,

oal KU (1 18
ol S 1o KB\ Tl " TA]

Proof. First, let us prove that A — JA is non singular and compute its inverse. To this effect, we
define S, the limit of the series

e¢]
S=T+A'6A+ (A15A)? Z AT15A)E

This sum converges absolutely because |A'dA| < |A7Y|||6A] < 1, and by the triangular inequal-
ity,
- 1
IS < S04 AN = =

k=0

(7.1)
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Furthermore, we observe that

o0 e}
A0y = Y (ATISAM = Y (AT6A) =5 - 1,

k=0 k=1
which leads to the identity
(I—-A1A)S=1T or S=({I-A15A)"

In particular, (A —§A)™t = SA™! and A — §A is an invertible matrix.
Now, we have by linearity

(A= d6A)z + (A—0A)dx = b+ 0b,

and since Ax = b,
(A—0A)0x = 6b+0Ax or dx = SA ' (b+ 0Ax).

Using the properties of the induced norms and the triangular inequality, this leads to

[z < ISIIA~H (1ol + loAll=])

and using (7.1)) for | S|,

lox| _ A7 A‘( 0] +H5A).
lzl 1= JA=loA] [A[=] Al

To conclude, we note that b < [Af[, [A[[A™] = K(A) and [A~Y[|6A] = K (A) 5. B

Corollary 7.4. If §A = 0 above (perturbation on the RHS only), then

601

L

K(A) o]~ ]
Indeed, to obtain the left inequality we observe that b is the solution of the linear system A~'b = z

and K(A) = K(A™'). More particularly, we may be interested in the case where the perturbations
are very small, perhaps caused by rounding errors:

[0A]
Al

i

= O(u), W

= O(u),

where u = 3~ is the machine precision - on the order of 1076 for double precision (64-bit floating
point numbers).

Theorem 7.5. Assume [0A| < e||A|, 00| < €|b|, where ¢ > 0 and A,JA € F"*", b,5b € F".
Then, if eK(A) < 1, we have

1.
|z + dx|| _ 1+ eK(A)

lal " 1= eK(A)

lou| __2K(4)
o] = T eK(4)
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Proof. The second estimate follows directly from Theorem To get the first one, using the
notations from the proof of that theorem we note

x+0r=SA(b+ 6b) = S(z + A6b),

hence

I ) o] o)
2l + - ionl) = — L (14 gy <1
Ty U+ A7) = T Talls]

Now since [|b] < |A[|z],

|z + 0z| <

|z + ox|| _ 1
lz] T 1-cK(A)

(1 + eK(A))

7.3 Backward Analysis

Importantly, in most cases the chosen numerical algorithm is itself the source of errors (in partic-
ular, rounding errors), which are not predetermined by a perturbation at the data level. As such,
it is often very useful to observe that the numerical algorithm is producing an ezact solution T to

an approximate problem:
7 =0Cb, where C ~ A7L.

In such cases, the following proposition may prove useful:

Proposition 7.6. Let R = AC — 1. If |R|| < 1, then A and C are both invertible and

[Al
1[R[’

le] IR| .
and <O - AT <
I [R] 4]

ICll =]
1—|R|

[OR IS A < (7.2)

If the frame of backward analysis, we see C' as the exact inverse or solution operator to a modified
problem with perturbed matrix A + § A, such that

SA=C"t1—A=(-AC-1)C' = -RC™
is small. Indeed, we have the estimate, provided |R| < 1:

| RINA]
Al < — -
[0Al < 7= Iz

7.4 A posteriori Analysis

Finally, given an approximate solution y ~ x = A~'b, one may seek to estimate the error e = y —x
from known quantities, which at this point include the approximate solution y (which is absent
from the original estimate in Theorem [7.3)). A good starting point to such analysis is the residual
vector:

r=>b— Ay,

which measures how y fails to solve the linear system. In particular, since the error writes

e=A"1(Ay —b) = —-A""r,
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we obtain from ([7.2)):
IC1

1—|R]
meaning that the norm of r is indeed related to the error. Another estimate may be derived from
interpreting

lell <

I,

Ay=>b+r, ier = b,

which results (using the forward estimate) in the bound

I~

el _ o ol
B

El

Variations of these formulae, including the additional effects of rounding errors, have been estab-
lished for use in modern linear algebra libraries (notably LAPACK implementations).
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Lecture 8: (Gaussian elimination.

8.1 Solution of triangular systems. March 2

First, let us consider solving upper or lower triangular systems such as:

lir O 0 € by Uyp U2 U13 T by
log I O To | = | by or 0 uge ug3 To| = | by
l31 132 33 €3 b3 0 0 ussz xs b3

In such cases, a simple criterion for the system to be nonsingular is that all diagonal elements
should be different from zero: [; # 0 or u; # 0 for ¢ = 1,2, 3.

Forward Substitution. Linear systems Lx = b with a lower triangular coefficient matrix L:

.
lllfL’l = bl7
o1y + logxs = by,

gy + 3029 + l3323 = bs,

\lmxl + lpoxe + ... Flppx, = by,

can be solved without inverting L by the following elimination procedure:
1. T = bl/llla then
2. To = (bg — lgll'l)/lgg, then

3. w3 = (b3 — ls121 — lI3aw2) /I33,

4. ...
5. Tp = (bn - lnlxl - ln,n—lxn—l)/lnn-
This procedure clearly produces a solution, with a cost of order 2 x @ ~ n? floating-point

operations, using the general formula

b 1 i—1
I e then xTr; = E (bl —Jz_ll”l'j> s for i = 2, e, .

T

Backward Substitution. Similarly, linear systems Ux = b with an upper triangular coefficient
matrix L can be solved without inverting U by the similar following procedure:

b, 1 -
r, = — then xi=—<bi— 2 uijx]), fori=n-—1,...,1.

Unn Ui j=it1

The computational cost in floating-point operations is again of the order n?.
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8.2 Solution of general linear systems.

As we shall see, the process of Gaussian elimination converts the solution of one linear system
(a difficult task) into the solution of two triangular systems (an easy task, using the substitution
methods from the previous paragraph.)

This is a template for algorithms in Numerical Linear Algebra:

Step 1. Transform the problem / matrix, converting the original problem into a series of easier
systems in condensed form.

Step 2. Solve the transformed system using the special structures of the condensed form.

Step 3. Recover the solution of the original problem using the solution of the transformed systems.

8.2.1 Elementary matrices

Consider a nonsingular matrix A € R"*", where a;; # 0. We denote A := A and b := b, and
introduce the multipliers

mi = 222,...,71,

i
ag1)
which allow to eliminate the unknown z; from a row (equation) other than the first one:

ag)wl + ag)xg + - F agi)xn = bgl)

by substracting from it m;; times the first row:
1 1 1 1
milagl) 1+ m21a§2)x2 + -t mﬂagn)xn = milbg )
——

o

yielding the new equation:

0+ (ag) — mﬂa%)) Ty + o0+ (ag,ll) — mﬂa&)) Ty = bgl) — mﬂbgl) )
—_— —_—

@ b

in

afy

In matrix form, the new set of equations forms a new system, which has the same solution as the
first one:

1 1 1 1
oty ayy .o oa)] [= otV
NORSRCY B P I 0
0 a\f ... an] [ b,

where the coefficients of the coefficient matrix A are given by

ag») = agjl-) — m“aﬁ»)

&
>
Il
S
=
|
E
=
S
ST~
=
—_
A
~
N

n, 1 <j<n.

It is notable that this coefficient transformation can be recast as a matrix-vector product: intro-
ducing the column vector of multipliers

my = [O, may, ... 7mn1]T
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then we find that
A® = AW — i AW(1) = AV — T AV = (1 — myel) AW,

where AW (1,:) = eI’ AW is the first row of the matrix A®"). Hence, if we introduce the matrix

1 0
—1MM91 1
M1 = ] — m1€¥1 = . . )
—Mp1 0 1

then A® = M;AD and @ = MM,
This motivates the introduction of the following elementary matrices:

Definition 8.1. An elementary lower triangular matriz of order n has the form:

1
0
My = I, — myey, = 1 ;
—Mk+1
0
| —My, 0 1]
where my, = [0,...,0,mpy1,...myu]7 is a column vector where the first k entries vanish.

Property 8.2. Let My, = I,, — myel as above, then
o M, ' =1, +myel,
° ]\4,;11...Mk_p1 :]n+mkle£1 +~--+mkpefp, when ky < --- < k.
Proof. We compute directly:
My(I, + myet) = (I, — mpe} ) (I, + mper ) = I, — mper + myei — my(efmy)e .
Now the k-th entry of my, is zero, hence el my = 0. Therefore
My (I, + myer) = I,

which proves that M, V-1, + mge}. To prove the second formula, one uses induction on p; let
us show that the case p = 2, with k1 = k < ky = [:

MM = (1, + myep ) (I, + myel ) = L, + myey, +mye] +mi(efmy)el = I, + myei + myef
because the k-th entry of m; is zero since k < [. O

This elementary Gauss transformation matrices can be used to create zeros in vectors! Indeed, let

ap = law ... awr ... ank]T with az, # 0, and define
mp = [0, ceey 0, ak;+1,k/akk’ ey ank/akk]T, Mk = In — mkef.
Then, we have
Mkak = [alk, ceey Ok, 0, ceey O]T,

and we have eliminated all entries below the k-th one.
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8.2.2 Continuing the GEM

We can now continue the elimination method started earlier with the first step AM — A®),
Starting from any step k where A®) has the form

[ (1 1 1)
N
0 ay - aj
A — h ‘
o a
0 - 0 al) .. agﬁ)_

Note that we have eliminated all entries below the diagonal in columns 1...%k — 1, and are looking
to continue the process. Using the elementary matrices introduced in the previous section, this
can be achieved by forming the matrix

0

T

My = I, — myey,, where my, = ROBSNONE
k+1,k/ Uk

K, (k
| /ey |
and then proceed to the next step via
A®FD — A AK)

Indeed, the resulting matrix A%**Y has the right form with zeros under the diagonal in columns

1,...,k. At the end of this process, we obtain a matrix
A = M, ;... M A,
which has zeros below the diagonal throughout and is an upper triangular matrix. Let us define
U:=A™ = M, ;... M A, b™ = M,y ... Mb,

then we can solve the transformed system Uz = b using backward substitution. The total cost
for this operation is around 2(n — 1)n(n + 1)/3 + O(n?) floating-point operations (around 2n?/3
flops).

Note that the Gaussian Elimination Method terminates safely if and only if a,(;z) # (0 at every step,
for k =1,...,n — 1. These entries are called the pivot.

8.3 Gaussian Elimination as a factorization method

We have seen that Gaussian Elimination transforms a given matrix into an upper triangular one
via a series of elementary transformations,

U=A™ = M, |- MA,
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which leads to the alternative form

A= M, ---M)'U=M"- MU

n—

Now M~1... M1 is the product of lower triangular matrices, hence it is a lower triangular matrix
which has the specific form according to Prop.

1 0 0

_ _ m 1 :
L=M"' MY =I+me + - +mu_jel | = 21

0

Mp1 - Mp_1n 1

Note that the multipliers of the Gaussian elimination process appear below the diagonal, which is
filled with elements equal to 1.

Definition 8.3 (LU Factorization from the Gaussian Elimination Method).
A=LU

is the LU factorization of A, where L = M~'--- M, is a unit lower triangular matriz with
diagonal elements equal to 1, and U = M,,_1 --- M1 A is an upper triangular matrix.

LU factorization algorithm via Gaussian elimination. Given a matrix A € R"*™:

1: function LUFACT(A)
9 SetU=A, L=1I.

3: for k=1,...,n—1do

4: fori=k+1,...,ndo

5: L(i, k) =U(i, k)/U(k, k),

6: U(i,/{?) = 0;

7: for h=k+1,...ndo

8: U(Zvj) ZU(Z,])—L(Z,]{?)UU{?,]),
9: end for

10: end for

11: end for

12: return L, U

13: end function

Existence and Uniqueness.
Definition 8.4. The k-th leading principal minor of a matrix A € R™™ for 1 < k < n is the

submatrix

i.e. the first k rows and columns of A.

Theorem 8.5. An n x n matriz has a unique LU factorization if and only if its leading principal
minors Ax, k =1,...,n—1 are all non-singular.

The proof of this result is worked out in Homework 5.
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Lecture 9: LU factorization with pivoting. March 4

9.1 Difficulties of Gaussian elimination without pivoting.
e The Gaussian elimination algorithm fails if any of the pivots vanishes, a,(jc) = 0.

e One obtains an even worse situation if agz) ~ 0: then the method may finish, but (due to
rounding errors and catastrophic cancellation) the algorithm may produce the wrong results!

Example by Forsythe and Moler (1967). Let us consider in 3-digit decimal arithmetic the

matrix A
107 1
A= { 1 1].
We compute the first multiplier mgy, = 1/107* = 10* and
1 0 1074 1 107 1
_ — A® _— = —
M l—1o4 1] and U =A" =204 [ 0 fi(1- 104)] l 0 —104] ’

where we note that the bottom right entry in U, whose exact value is —0.9999 x 10* has been
rounded down to —0.100 x 10° since we are operating in 3-digit floating-point arithmetic. Hence,
the computed factors L, U read

~ o [ 1 0 ~ 0% 1
L= _{—1041’ U=10 -0t

We compute from this the product
PN 1074 1 EPN 00
A I

This is a really large error: |A — LU|po = 1, even though the conditioning of A is very good:
cond(A) = 2.6...! The issue is that the pivot is very small: 1074, resulting in a huge multiplier
msa1. The problem can be entirely avoided if we exchange the two rows:

, [ 11 A I N b 1
A‘[10—4 1]’ Ml_l—m—‘* 1}’ U_MlA_lo ﬂ(1—10—4)]’

such that
A/ _ 1 0 A/ _ 1 1
L= [—10_4 1]’ U= [O 1]'

This time, rounding happened again in the computation of U yet
~n, |1 1 1
Lo = [10—4 (1 + 10—4)] - [10—4 1] -4

9.2 Permutation Matrices

In order to enact the row exchanges used in the previous example, we introduce:

Definition 9.1. A square matriz is called a permutation matriz if there is exactly one non-zero
entry in each row and in each column, which equals one.

If (a1, ..., ap) is a permutation of (1,...,n), then the associated permuation matriz is
P = [eal ean.]T
Similarly, P71 = PT = [eal e ean.] s also a permutation matrix.
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Effect of multiplying a matrix by a permutatioin matrix. Let P, = [%1 ean.]T be

the permutation matrix associated with the permutation (ay, ..., @,), then we compute the entries
of PlAZ
n n
(PLA)y; = Z P Ay = Z Ok AkJ = Aa, j,
k=1 k=1
Therefore
aq-th row of A
PA = "
a,-th row of A
is the matrix obtained by permuting the rows of A in the order ay, ..., a,.
Similarly, if P, = PT = P[! = [eal e ean] then AP, is the matrix obtained by permuting the
columns of A in the order ay, ..., a,. To sum things up: multiplying a matrix by a permutation
matrix...

e from the left: permutes the rows of A,
e from the right: permutes the columns of A.
In the earlier example, the permutation matrix associated with the permutation (2, 1) leads to the

transformation
A=Yty
|1 0|7

9.3 Gaussian Elimination with Partial Pivoting.

As a rule of thumb, disaster in the GEM may be avoided by choosing a good pivot (with large
magnitude). There are many strategies to achieve this. We can look for a good pivot:

e in the k-th column of A®) (partial pivoting), or

e in a submatrix of A*) (complete pivoting).

Algorithm: Gaussian Elimination with partial pivoting. Set A®) = A, then at step k,
k=1,...,n—1:

1. Identify the largest element (by magnitude) in column & below the diagonal. Let it be
at (Note that ry > k.)

T,k

(k)

2. Exchange the rows 7 and k bringing a,

on the diagonal.

3. Apply the normal k-th step of the Gaussian elimination method.
In terms of matrix multiplications, this algorithm yields the following sequence:
AW — 4,
A® = M,P,A®.

A = M, P, ;A"
Hence we obtain the upper triangular matrix after n — 1 steps:

U=A"™ =M, P, 1M, 9P, ... M;P,A.
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LU factorization from GEPP. Let us now show that the above process yields a factorization
PA = LU, where P is a permutation matrix and LU is a factorization of the matrix A with
permuted rows.

e First, by construction:
U=M, P, 1M, 3P, ... M{PA.

is an upper triangular matrix.

e Second, let M = M_1P,_1---M;P,. How to extract L, P from M? We note that since P,
represents the exchange of two rows, the action of P;P; returns the matrix to its original
state, i.e. P? = I,. Let us define:

7

Myllfl = Mn—17
MT{L—Q = Pnfan72Pnfla
M/rll_?) = Pn—lpn—QMn—SPn—QPn—h

M{ =P, ...B,MP,...P,
Then we observe that

M =M, 1P, 1M, oF, ... M
= My (P s MyoPy 1)(Py_1 Py oMy 5Py 3Pu1)Po1PyoPosMy ... M,
=M M , --MP, - P.
Denoting P =P, _y---Pyand L = (M _M! ,--- M)~ it follows that
PA=LU.

Furthermore, construction of the Mj from M} involves multiplying M} from the left and
right by permutation matrices P}, j > [, exchanging its rows and columns j and r;. Because
r; = j for all j and M}, has the form

1
0
Mk = In — mkez = 1 s
—Mp41
0
i —-my, 0 1]
these operations only permute the multipliers —my,1, ..., —m,, but keeps the structure in-
tact. We can see this also by direct computation:
]\4;/C =P, Pk+1<]n - mkef)PkH Py
=Po1 Pey1Peyr- - Poa+ Py Pk+1mk(Pk+1 T Pn—lek)T = I, + mkef,
where mj, = P,_1 - - - Pry1my is a vector of permuted multipliers (still with entries m/, ..., m},

equal to zero), because e, has entries all zero for indices j, 7; > k. Hence, as before we obtain

L=M)" (M _)t=1+mhel +---+m,_jel

n—1-
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Lecture 10: Complete pivoting for LU and other factoriza-
tions. March 9

10.1 Complete Pivoting.

In this paragraph, we investigate a strategy of complete pivoting for the LU factorization algorithm,
meaning that at step k =1,...,n — 1, given the partial factorization of the type

e 1 1)
T

oY) Aop

Ak — h ‘
0 ay - a
0 - 0 a® a;{;}_

e Identify the largest element in magnitude among all elements of the submatrix of A®) with

(k) (k)
Qg Qg

rows and column indices larger than k, aka the block | o] let it be affz?sk such

o L g

that Tk, Sk = k.

e Exchange the rows k and rj, and columns k and s;, of A®) bringing the pivot aﬁ?sk to the
diagonal in position (k, k).

e Apply the k-th step of Gaussian elimination:
AFD = M P ARQy,

where Py, @ are permutation matrices exchanging respectively the rows k,r, and the
columns k, s, of A®).

At the end of this procedure, we obtain an upper triangular matrix U = A with the full process
being summarized as

U=M""P,_ 1M, 2P, o M{PLAQ: -+ Q1.

Let us define

Q=Q1Q2- - Qn1,
P=PF, 1Ppo- P,
L=M)" (M ) as for the GEPP previously.

Then we obtain the fully pivoted LU factorization:

PAQ = LU.

39



LU factorization algorithm via Gaussian elimination with complete pivoting.
Given a matrix A € R™*":

1: function LUCPFACT(A)

2: Set U=A,L=1,p=[l:n],q=[1:n].

3: for k=1,....,n—1do

4: Determine ry, s; such that |u,, s, | = maxg<; j<n |Uijl-

5: U, k) o U(:, sp); > Exchange the columns k, s of U

6: q(k) < q(sk); > Update column permutation vector ¢

T

8: Exchange the rows k,ry of L, U:

9: Ulk,:) & Ul(rg,:); > Exchange the rows k,rj of U
10: L(k,1:k—1) < L(rg,1: k—1); = Permute multipliers stored in L
11: p(k) < p(ry); > Update column permutation vector p
12:

13: Lk+1:nk)=Uk+1:nk)/U(k,k);

14: Ulk+1:nk)=0;

15: Uk+1:nk+1:n)=Uk~+1:nk+1:n)—Lk+1:nk)U(kk+1:n);

16: end for

17: return L, U, p, q > Now A(p,q) = LU.

18: end function

10.2 Other types of factorizations.
10.2.1 The LDMT factorization.
Given an LU factorization of U, let us introduce the diagonal matrix:

U1l 0
D = ., andM = (D"'U)T.

0 Unn,

The matrix M is then unit lower triangular (i.e., it has all ones on its diagonal).

Theorem 10.1. If all leading principal minors Ag, k =1,...,n of A are non-singular, then there
exists a unique diagonal matriz D and unit lower triangular matrices L, M such that
A=LDM".

10.2.2 The LDL? factorization.
If furthermore, A = AT is symmetric, then the factorization further simplifies:
AT = (LDM™Y' = MDL" = LDM™ = A,

so by uniqueness of the factorization, we have M = L.

Theorem 10.2. If all leading principal minors Ay, k =1,...,n of A are non-singular, then there
exists a unique diagonal matriz D and unit lower triangular matrixz L such that
A=LDL".

The advantage of such a factorization is that the computational cost and memory necessary to
compute it is halved compared to the usual LU factorization.
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10.2.3 The Cholesky factorization.

If, in addition, A is a symmetric positive definite matrix: A = A” and
TAr >0 < 1z #0,

then all of its leading principal minors are also symmetric positive definite matrix: indeed, for
7 € RM\{0},

T

0 0
In such a case, the elements uq1, ..., u,, forming the diagonal of the matrix D must all be positive,
since the determinants det(Ag) = wuyq - - - ugy are strictly positive for £ = 1,...,n. Then we can

compute their square roots:

S = such that D =52

0 Unn

leading to the new factorization A = LS*LT = LS(LS)" = HH” where H is a lower triangular
matrix.

Theorem 10.3. Let A € R™"™ be a symmetric positive definite matriz. Then, there exists a lower
triangular matrix H € R™"™ with strictly positive diagonal entries such that

A=HHT.

This is the Cholesky factorization. The entries of H are given by the algorithm:

1: function CHOLESKY(A)

2: Set H(1,1) = 4/A(1,1).

3: fori=2,...,ndo

4: for j=1,...,n—1do

5 H(i,j) = (AG.) = XIZ HGL R HGLE)) /HG,5)

6: end for "

7 H(i,i) = (AG,1) = S, H, k)

8: end for

9: return H > Now A = HHT.

10: end function

Proof. We proceed by induction on n, without relying on the LU factorization.

e The result is trivial for n = 1: A = [a11] = [\/a11|[/a11]".

e If n > 1, write the block decomposition
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where A,,_; is the n — 1-th leading principal minor of A and v = [a,1,...,0n, 1] € R*7L
By induction, assume there exists a matrix H,_; given by the above algorithm such that

An1=H, H .

Then, we seek a matrix H of the form

H = [H"—l 0 ] such that HHT = [

Hn—ng_l Hn—lh o An—l v = A
hT hnn B n -

(Ho_1h)T B2, +h"h ol ay,
The vector h has entries [hy1, ..., hy,1]?. Hence, we want H,_1h = v. Since H,,_; is lower
triangular, this system can be uniquely solved by forward substitution, with the formula:

j—1
hnj = (anj—zhjkhnk> [hig,  forgj=1,...,n-1
k=1

Compare this to Line 5 of the above algorithm, with ¢ = n. In addition, we want a,, =
h% + hTh. Since h € R"! is determined by the algorithm above, this gives as a unique

solution
n—1 1/2
2
hon = <am - hnj> .
j=1

Compare this to Line 7 of the algorithm, again with ¢ = n. The resulting number h,,, is real
and positive, because H,,_; is real (by induction) and

2
hZ, det(H,_ ;) = det(A) > 0,

hence h2 and also h,, is strictly positive, and H has all real entries with strictly positive
diagonal entries.

]

Computational complexity. The total cost of this procedure is about > at each step for
i =2,...,n (solution of the system by forward substitution), adding up to a total n*/3 floating-
point operations over the loop, with an additional 2i operations and square root computation to
compute the element h;, adding up to n? flops. The total, n3/3 + n? flops and n square root
computations is about half of the cost of the LU factorization.

Stability property. Let A€ R"*", symmetric positive definite. The above algorithm yields an
approximate Cholesky factor H in floating-point arithmetic. It can be shown (Demmel, 1989) that
this result satisfies the relation R

A+ FE=HHT,
where the perturbation E = [e;;] can be bounded componentwise:

(n+1u

leij] <
where u is the round-off unit (~ 107!% in double precision). This result shows that the Cholesky
factorization is always backwards stable (which is not necessarily the case for the LU factorization,

as we will see.)
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Lecture 11: Solving linear systems. Stability and Accuracy.
(March 11)

11.1 A practical method for solving linear systems.
Any factorization of A suggests a method for solving the linear system
Az = b,
for one or more right-hand sides b. We will focus on the LU factorizations, possibly with pivoting:
1. A= LU (no pivoting),
2. PA = LU (partial pivoting),
3. PAQ = LU (complete pivoting).

In all cases, the linear system can be solved by solving two triangular systems with coefficient
matrices L and U, possibly with permutations of the resulting vectors:

1. Ax =0 = LUz = b, suggesting the method

Ly=5b solved using forward substitution,
Uz =y solved using backward substitution.
2. Az =0 = PAx = Pb = LUx = Pb:
Ly = Pb solved using forward substitution,
Ur =y solved using backward substitution.
3. Ar =b = PAQQ"z = Pb = LU(Q"z) = Pb:
Lz = Pb solved using forward substitution,
Uy ==z solved using backward substitution,
= Qy permutation of the vector y.

Computational Complexity:
e LU decomposition, ~ 2n* + O(n?);
e Two triangular solves: ~ 2n?;

e Permutations: no operations, just data movement.

The total cost is thus on the order of %n?’ + O(n?) floating-point operations, with the actual solves
contributing relatively little the the overall cost.

Pivoting strategies add to this cost a total of O(n?) comparisons in the case of the partial pivoting
strategy, and O(n?®) in the case of the complete pivoting strategy - improving the stability of the
approach at the expense of greatly increasing the computational cost of the solution.

In particular, computing explicitely the inverse of A can now be achieved by solving n linear

systems:
AN =[ATtey - ATl

for a total cost around §n3 + 2n3 + O(n?) floating-point operations.

43



Numerical stability. Floating-point operations in most computers obey the following IEEE
error model: if - is one of the operations +, —, x or +, and no overflow occurs then

rQy=(z-y)(l+9), forzyeF(BtLU), [§<u
where u = %ﬁlft is the round-off unit. In base 2 with ¢ = 53 binary digits (double-precision
accuracy), we have u = 2753 ~ 10716,
11.1.1 Error analysis for back-substitution.

Let Uz = b be a linear system with upper triangular coefficient matrix U and denote by ; ~ z; the
computed solution, using the back-substitution algorithm but taking into account floating-point
rounding errors. Denoting by @, ©, ®, @ the floating-point operations approximating the exact
operations +, —, X or =+:

Recall the process:

® Ty = bn @unna
® Tp—1= (bnfl © Up—1,n ® xn) ® Up—1n—1,

® ...

¢ 1 =0 QULR®TO - Ou, ®T,) @ upy.

Using the error model above with a.., 8.. and 0. indicating errors smaller than u, the round-off
unit, occuring through floating-point computations:

e First step:

1/finn
1446
~ +

Tn = (bn/tnn) (1 + 6y) = " b, =

unn

which can thus be rewritten: {
/x\n = /\_bn7
unn
e Second step:

[ from ® from © from @

r R r R}

. —
Tp—1 = bnfl — Un—1,nTn (1 + anfl,n) (1 + ﬁnfl,n> /unfl,nfl (1 + 5n)

_ ~ =N 1/1/277,71,77,71
bn—1 Un—1,n e A
- A ~ - A RPN 1 + 571
= (]- + Bn—l,n)bn—l - (1 + 6n—1,n)(1 + an—l,n)”n—l,n Tn
Up—1,n—1

or

~ 1 ~ N ~
Tp—1 == < (bnfl - unfl,nxn> )
unfl,nfl
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and we see that, without going through all the details, the process becomes equivalent to the ezact
solution of a perturbed triangular system

U% =b.
Explicit inspection of the coefficients #;; and EZ shows directly that

|Uij — gl

|uij|

< nu + O(u?),

Such estimates lead to the following stability result:

Theorem 11.1 (Backwards stability of back-substitution). Let T be the solution of Ux = b com-
puted in finite precision with floating-point round-off unit u using the back-substitution algorithm.
Then, T is the exact solution of a system U7 = b where U = U + oU, b= b+ 6b with U,oU upper

triangular,
06| _

|Ouiy|
u+ O(u?) < (n—1Du+ O(u?).
| i
In particular, in any norm | - | on vectors and matrices we have
[6U] [60]
Tz (u)7 BT
Ul o]

and by the stability theorem of linear systems, we have the forward stability estimate

@:fﬂ:Kanowy

|z

11.1.2 Error estimates for Gaussian elimination.

When rounding errors are taken into account, the Gaussian elimination algorithms described in
previous lectures produce approzimate factors L, U such that

LU = A+ 64,

where §A is a perturbation resulting from the imperfect computation. One can estimate, if nu < 1
then the following entrywise estimate holds:

6A] < —=—|L|0],
— Nu

where we have adopted the notation |A| = [|a;;|]. However, we do not control directly the entries
of the factors L, U, so the goal is in general to find a stability bound of the form:

0A] < g(u)[Al.

In general, such an estimate can only be obtained if one controls the growth of elements during
the Gaussian elimination process, i.e. the maximum magnitude of the entries in the sequence of
matrices

AN A@ A = U
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Definition 11.2. The growth factor p(A) is the quantity

max aq, . . ., iy
p= )
o'

where o = max; ; |a;; and oy = o
= 1,5 |Qij k= Max, ; |aij .

In particular, whenever pivoting (whether complete or partial) is used, it is easy to check that the
elements of the matrix L are bounded:

(k)
‘lzk:|: ‘azk| <1,
| (k)

since the pivot af,l,?’ . 1s the largest entry by magnitude in the column & below the diagonal, or even

larger in the complete pivoting case. Furthermore, we have

uij| < pmax |-

Theorem 11.3 (Round-off property for GEPP method). The matrices L and U computed via
GEPP satisfy L
LU = A+ 0A,

where ||6A] < 8n®p|Alou + O(u?).
Proof: omitted.
To claim backwards stability, the question is then: how large can the growth factor p(A) get?
Growth factor for GEPP The following result is known:
Using GEPP, p(A) can be as big as 2771,

This worst-case scenario can be attained, for example for matrices of the type:

1 0 - 0 1
~1 1 :
A=1-1 -1 . 0 1
: : - 1
-1 —1 - =1 1]

However, in most cases, this extreme behavior does not happen! For example:
e For symmetric positive definite matrices: p(A) = 1,
e For tri-diagonal matrices: p(A) < 2,

Growth factor for GECP Complete pivoting yields a better upper range for the growth factor:
p(A) < y/n (2312413 .. -nl/"_l)l/2

In most cases, the additional stability gained is not worth the additional computational complexity
due to the complete pivoting.
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Without pivoting, the growth factor cannot be bounded. This shows that Gaussian elimination
without pivoting is a completely unstable algorithm!

11.1.3 Iterative Refinement.

Finally, let us sketch a simple method allowing to increase the accuracy of the solution obtained
using one of the LU factorizations above. Let T be the approximate computed solution to the
system Ax = b~ AZT.

Usually, the residual vector r = b— AT is different from zero. To improve on the computed solution,
one may solve the system again with r as the new right-hand side:

Ac ~r,

using the factorization at hand. Then, because ||r| is much smaller than ||, the relative error on
¢ is much smaller than the relative error on z, and

j=z+e

is usually a better approximation of the exact solution x. This process can be repeated to increase
progressively the accuracy of the solution, usually until the residual is small enough:

Iterative refinement.

Given A, b and an initial approximation to the solution z(®:
1: function ITERATIVEREFINEMENT(A, b, 7(?)
2: for i = 0,1,... until convergence do

3 Compute r® = b — Az®,

4 Solve Az = 1@,

5: Update 20+Y = 20) 4 2,

6 If ||z]/|=%+Y)| < tolerance, terminate.
7 end for

8: end function

Analysis: if [|[A!||L||U]| is small enough, this iterative process will reduced the error by a
fixed factor at each step.
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Lecture 12: Householder Triangularization. (March 16)

New problem of interest: we turn now to the solution of least-squares problems of the type
Find x minimizing the functional |Az — b/,

where A € R™*" is in general a rectangular matrix, b is a vector of length m and x is a vector of
length n.

e When A is square and invertible, the solution is simply the solution of the linear system

Az =b: o = A7 'b,

o If the SVD of A is available, then the solution may be found using the pseudo-inverse:
x = A'b,

o If Ae R"™" with m > n and rank (() A) = n, the tool of choice is the QR factorization:
A=QR,

where (@ is a matrix with orthogonal columns, either square of size m x m (full factorization)
or of size m x n (reduced factorization), and R is an upper trapezoidal / triangular matrix
of size m x n (full factorization) or of size n x n (reduced factorization).

The QR factorization may be computed several ways:
e Using Householder reflectors;
e Using Givens rotations;
e Using the Classical or Modified Gram-Schmidt algorithms.

We will present the first method in this lecture, the Gram-Schmidt approach in the next one, and
the Givens rotations will be introduced if time permits in later discussions.

12.1 Householder matrices.

Definition 12.1. A matriz of the form

T

H=1, 2%
uTy

)

where u € R™ is a nonzero vector (called the Householder vector), is called a Householder matriz,
or Householder reflector, or Householder transformation.

Remark 12.2. These transformations bear the name of Alston S. Householder, an American
numerical analyst (1904-1993) who invented them and the Householder method, among many other
contributions to numerical linear algebra and numerical analysis.

These transformations have a simple geometric interpretation: taking [lul = 1 for simplicity, we
draw the following diagram, upon which one observes that the result Hx is simply the reflection
of a vector x across the hyperplane of vectors orthogonal to u:
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o~ -~ -

: X
M—/
=2 (Wx)u
Wx

As a result, these matrices have the following properties:

SRt o

Proposition 12.3 (Properties of Householder reflectors). Let H = I,,, — 2%, where R™ s u # 0
1s the Householder vector. Then

1. H is symmetric: H' = H,

2. H is orthogonal: HT = H™!,

3. H? =1,

4. Hu = —u,

5. Hv =v iff viu =0,

6. If u is a nonzero multiple of x —y, with x,y two distinct vectors in R™ such that ||x||z = |ly|2,

then
Hx =y.

Proof. Define 3 = 2/u”u. To prove 1/, we compute directly
HT = (I, — Buu™)T = I, — B(u")"u" = I, — Buu’ = H.
Next, 2/ follows from the computation
H'H = (I, — puu) (I, — Buu®) = I — Buu” — Buu” + BPuvuu® = I + (B*(u"u) — 28)uu’,
since we notice that S%2u’u = 4/(u?u)?uTu = 4/u’u = 2.
Now 3/ is a consequence of 1/ and 2/, 4/ and 5/ are left as an exercise (and can be observed

directly on the diagram above.)
Finally, we show 6/: taking z,y as in the proposition, we define u = a(z — y) and note

1 1 1 1
x=§(x+y)+§(x—y) and Hx=§H(x+y)+§H(x—y).
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Now, since = + y is a multiple of u it follows that H(x —y) = —(z — y), and in addition

T

z+y)u=a@+y) (z—y) =al@'z-z"y+y"z—y"y) =0,

because 7y = yTz (symmetry of the scalar product) and 27z = |z||? = ||y||? = yTy. Therefore,
we have H(x +y) = + y, so
1 1
Hr == -y =y
=gty -gle-y) =y
[

12.2 Computing matrix-vector and matrix-matrix products involving
Householder transformations.

When using Householder transformations, one should avoid forming explicit the matrix H to apply
it to a vector or a matrix. Instead, the special structure allows to compute the result with a much
lower complexity:

e Matrix-vector product:
Hx = (I — puu’)r = v — Bu"2)u.

The scalar product v’z may be computed in 2m flops, then computing the difference z —
(Bulz)u takes an additional 2m flops.
In total, the computation of Hx takes 4m floating-point operations.

e Matrix-matrix product: for A € R™*™,
HAT = (I — Buu™) AT = AT —w(BAu)" or AH = A(I — Buu”) = A — (BAu)u”

The matrix-vector product SAu may be computed in 2mn flops, then computing the outer
product Su(Au)T takes an additional mn flops, for a total of 4mn floating-point operations
including the matrix difference.

e Product of Householder reflectors:
Q=H,---H, with H;=1— Bumu’l.
This product may be computed in 4(m?*r — mr? + r3/3) floating-point operations.
e Finally, the product QT A, where () is as above and A € R™*", can be computed two ways:

— if the matrix @ is computed explicitely, in 2m?n floating-point operations,

— if computing the sequence of matrix products with the Householder reflectors H,. - - - H{ A
and r < m, then the cost is only 2nr(2m — r).

Numerical stability. It can be shown that, when H is a Householder reflector computed in
floating-point arithmetic:

|H — H| = Ou),
A(HA) = H(A+ E), where | E||ly = O(u|| A1),
f(AH) = (A+ E)H, where |Ely = O(ul Al;).

Hence, all computations involving Householder reflectors are inherently backward stable.

20



12.3 Creating zeros in vectors.

Theorem 12.4. Given x # +|z|2ey, let H be the Householder reflector defined by the Householder

vector u = x F ||x|2e1. Then
Hzx = inH261.

Proof. From Prop. with y = £||z[2e1, the result follows. O

Hence, there is an easily computed Householder reflection allowing us to transform a given vector
x into a multiple of e;:

H$H2

r=|: A, Hr = |z]e; =

Notes.

e Typically, to avoid cancellations we choose the sign that makes the first entry of u as large
as possible in magnitude, i.e.:
u = x + sign(z)|x|2€1.

e y only differs from x in the first component.

e For additional stability, one may choose to scale the Householder vector, e.g.:

1
u = —(x + sign(zy)|z|2e1), where p1 = max |z;|.
1% 7

12.4 Householder triangularization.

Let us now apply a sequence of Householder transformations with the goal of obtaining an upper
triangular or trapezoidal matrix R:

H, --HA=R.

We begin by setting A = A, an m x n real matrix with m > n.

Step 1. Let a; be the first column of A®) = A. Using a Householder reflector H; with vector

u; = aj + sign(aqy)|a[2€1, by the previous theorem we have Hya; = [||ays,0, ..., 0] and hence
X e e %
A0 am = |0 ]
0 x - x

i.e. we have eliminated all entries below the diagonal in the 1st column of A.
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Step 2. Now, let A® be the submatrix formed by the last m — 1 rows and n — 1 columns of A®

in block form,
@ _ ¢
4= o )

Let ay = [a(22), cee %]T be the first column of A®) , we can form a Householder reflector H, of size
— 1 xm — 1 with vector uy = @y + 81gn(a22 )||a2H261, such that by the previous theorem we have
HQQQ = [|@s]2,0,...,0]". To apply H to the submatrix A® of A® | we can form the Householder
reflector
L 0 : 0
H, = lo ﬁfz] =1 — 2upul Judusy with wuy = l%] ,
such that B B
X “ e “ .. “ .. X
0 X el e X
®) o A = | L% — |
e T ) B
[0 0 x - x|

i.e. we have eliminated all entries below the diagonal in the first two columns of A.

Step k. The process is now clear. Assuming that, after £ — 1 steps we have obtained a matrix
of the form

>< .. .. .. “ e X
0
A(k) _ X . . X
0 x X
o --- 0 X . X
we denote by A® the (m—k+1) x (n—k+1) block of entries on the bottom right of the matrix,
we denote by ay = [a,(jc), e ,ag,f,)g]T its first column and form a Householder reflector with vector

U = ag + Sign(aé )|@x]281 that will eliminate all entries in the first column on A®) below the

diagonal. We form the Householder reflector

I 0 . 0p—
H, = [ kO ! ﬁf}j = I — 2upui /ui uy with w, = l gkl] ,

then we obtain A®*D = H, A®) with zeros below the diagonal in columns 1,. ...k, and continue
onto step k£ + 1.

Conclusion. After n steps, we obtain R := A®*1) an upper triangular matrix, which is formed

by the sequence of products
H, --HA=R.

Hence, if we form () = H; --- H,, then, since H; = H{l = HI:
A=QR, with QTQ = I,,, R upper triangular.

The full algorithm is detailed as follows.
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Householder QR algorithm.
Input: an m x n matrix A, with m > n.

Output: (i) the Householder vectors uy, ..., u,,
(ii) an upper triangular matrix R of size m x n.
Storage:

e The matrix R is stored in the upper triangular part of A,
e Householder vector components: w41, ..., Un in the (strictly) lower triangular part of A,
® Uip,..., Uk, IN & Separate array v.

1: function HOUSEHOLDERQR (A)
2: for k=1,...,ndo
3: Form the Householder vector Gy = [k, . - . , U]’ with

Y

U = Qg + sign(agg)|ax|z,
Uk+1,k>

e Umk = Qk4+1ks - - -5 Amk

Qakk T'kk
~ Q41K ~
such that Hkak = Hk + = . s where Tkk = Hak”g
Amk 0
4 Vg = Ukk-
5: gl = Tkk-
6: B = 2/uly,
7 Alk:m,k+1:n)=A(k:m,k+1:n)— puy (A(k‘:m,k:—l—l:n)Tﬁk)T
8 end for
9: return A, v
10: end function
Remark 12.5. ) is not formed explicitely; rather, the Householder vectors Uy, ..., u; are stored

or later application of the corresponding reflectors when multiplication by Q or QT is needed.
f pp P g p y

Computational complexity. For each step k: when m = n, we need
e about 4(n — k) floating-point operations to construct Uy,
e about 4(n — k)2 flops to update A®).

4 3
These costs add up to about 4> (n — k) + (n — k)* ~ % + O(n?) flops.

When m > n in general, the total cost is about 2n?(m — n/3) floating-point operations.

Computational stability. The result of the Householder QR factorization method in floating-
point arithmetic yields

@§=A+E

where Q, R are the computed factors, and |E|r < g(n)|Al|pu, where g(n) is a slowly increasing
function of n and u the round-off precision.
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Lecture 13: QR Factorization, Modified Gram Schmidt. (March
18)

13.1 Full and reduced QR factorizations.

The Householder algorithm presented in the previous lecture yields the so-called full QR factor-
ization:
e a matrix Q € F™™ orthogonal (QTQ = I) in the real case, and unitary (Q*Q = I) in the
complex case),

e and a matrix R € F"™*" upper trapezoidal (r;; = 0 for ¢ > j), such that
A= QR.

Now we note that R has all zeros under the diagonal, and if m > n we can reduce this factorization:
~ 1R A~
A=Qr=|Q Q [O] - QR

where Q is composed of the first n columns of ¢) and R of the first n rows of R.
The resulting smaller factors Q e F™*" a matrix with orthogonal columns such that Q Q =1,
and R € F™*" an upper triangular square matrix, form the reduced QR factorization (also
called thin or economy-sized factorization):

A=QR.

Remark 13.1. Note that A*A = (QR) « (QR) = R*R, i.e. R* is the Cholesky factor of the

symmetric positive definite matriz A*A.
Property 13.2. The columns of@ form an orthonormal basis for the range of A.

This property shows that computing the (reduced) QR factorization of A is equivalent to generating
an orthonormal basis out of a set of vectors, such as the columns of A.

Proposition 13.3. o Fvery matriz A € F™*™ with m = n has a full QR factorization as well
as a reduced QR factorization.

o If A has full rank n, there exists a unique reduced QR factorization with all positive entries
on the diagonal of R.

e [fm < n, then the QR factorization takes the form A = @Q [Rl RQ] where Ry € F™*™ 4s
upper triangular, and Ry € F™ ™™™ 4s rectangular.

Proof. Existence results from the Householder algorithm presented earlier. The new result is the
uniqueness for full rank A. Assume that

or, since @’{@1 = [, and R; is invertible,

Qi RR = QiQ2  or  RiRy =Q7'Qs
Since the left-hand side is an upper triangular matrix with positive diagonal entries and the right-
hand side a unitary one, they must be in fact the identity, which yields

§1 = f~32, and @1 = @2'
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13.2 Gram-Schmidt algorithm for the QR factorization

Since the columns of @ form an orthonormal basis for the columns of A, an alternative to the
Householder approach is to use the Gram-Schmidt algorithm to construct an orthonormal set of
vectors out of the columns of A. Suppose

A=[a1 an], aieIFm.
Step 1. Compute
1
g1 = —ar, where r1; = |ja1 ]2,
11
Step 2. Next,
qA2 = a2 — T124¢1, where 79 = QTGQ,
1 . ~
g2 = —q2 where 795 = ||32]2,
22
More generally: Step k.
k—1
Gk = ar — ). T, where 7y, = q; ax,
=1
1 . ~
QG = —qk where 7, = |Gk |2,
Tkk

until we reach k = n. Note that, in exact arithmetic, we have the resulting relation for each column
of the matrix A,
ap = @171k + Q-1 T QTR

which is summed up by the expression L

A=QR
where @ = [q1 qn] and R is the upper triangular matrix with entries r;; computed in the
course of the algorithm above, which is called the classical Gram-Schmidt algorithm.

Numerical issues. It turns out that, implemented in floating-point arithmetic, the classical
Gram-Schmidt suffers from catastrophic floating-point cancellation. As a result, the columns g
of the computed matrix are often not orthogonal to each other, and the resulting decomposition
is, at best, not useful.

Modified Gram-Schmidt algorithm A simple modification is enough to stabilize the compu-
tation of the reduced QR factorization by the Gram-Schmidt algorithm, resulting in a much more
stable computation.
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Modified Gram-Schmidt algorithm.
Input: an m x n matrix A = [a; -+ ay], with rank (4) = n.
Output: Matrices @ and R of the reduced QR factorization.

1: function MODIFIEDGRAMSCHMIDTQR (A)

2 Set R an n x n matrix with all zero entries.
3 Set Q = A.

4 for k=1,...,ndo

5: ik = [ gkll2-

6: Qe = Qr/Tr-

7 forj=k+1,...,ndo

8 Tkj = Q4

9: 45 = 45 — Tkjqk

10: end for

11: end for A

12: return @, R.
13: end function
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Lecture 14: Solving least-squares problems with factorizations.
(March 23)

14.1 Problem statement.

Given a coefficient matrix A € F™*"™ and a vector b € F", we seek to determine the vector z € F™
which minimizes

|Az — b|,. (14.1)
Definition 14.1. The vector r = b — Az is called the residual.

Definition 14.2. If the least-squares problem has more than one solution, the one having minimal
Euclidean norm is called the minimum length or minimum norm solution.

e If m < n (less equations than unkowns), we say that the system is underdetermined, and

e if m > n (more equations than unknowns), the system is overdetermined.

14.2 Geometric interpretation.

The solution = € F™ is the vector x such that Ax is the orthogonal projection of b onto the range

of A:

b r-b-Ax

Van l(/’)
Ax =t 7

o,

As a result, there is always at least one solution to the least-squares problem. Furthermore, we
note that |r|, is the distance of b to the range of A.

Next, we observe that r = b — Az is orthogonal to the range of A, and since the columns of A are
a generating set of vectors for the range, we deduce that

A*r =0, or A*Ax = A*b.
Definition 14.3. Let A € F™*". The linear system
A*Ax = A*b
18 called the normal equations.
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14.3 Existence, Uniqueness and Properties

We have seen that the least-squares problem always has a solution, which satisfies the normal
equations. In general, we can only expect uniqueness if the system is overdetermined and the
matrix has full rank, i.e. rank (A) = n.

Theorem 14.4. Given A € F™*™ with m > n, b€ F", define
r(zr) =b— Ax e F".
The following statements are equivalent:
(a) x minimises |r(x)|2,
(b) x satisfies A*r =0,
(c) x solves the normal equations A*Ax = A*D,
(d) x solves Ax = Pb, where P is the orthogonal projector onto Ran (A).

Proof. First, a geometrical proof. We start with showing the equivalence (a) < (b). We know
that
b—Pb L Pb— Az € Ran(A).

Hence,
[r(2)[3 = b — Az|3 = b — Pb+ Pb— Az = [b— Pb|5 + [Pb— Az > b — Pb]..

Now ||b — Pb|5 is the minimum for |r(x)|2, attained if and only if Ax = Pb. Note that such an x
always exists since Pb € Ran (A) by definition.
Next, we show (d) < (b). Writing again the decomposition

r=(b— Pb) + (Pb— Azx),

we note that » L Ran (A) if and only if Pb— Az = 0.
Finally, we note that (b) is trivially equivalent to (c).
Another, analytical proof. For simplicity, let us investigate the real case. Here

O(y) = [r(y)|3 = (0 — Ay)" (b — Ay).
We develop this expression:

d(y) =00 — " Ay — yT ATb + yT AT Ay
= |2 — 2y" ATb + yT AT Ay.
2

The gradient of this expression is:
Vo(y) = 2(AT Ay — A™b).

Therefore the normal equations are necessarily satisfied by the minimum =z, solution of the least-
squares problem, since the gradient must be zero at any critical point. O
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14.4 Numerical solution: over-determined case.

14.4.1 Normal equations method

When m > n and A has full rank: rank (A) = n, then A*A is Hermitian positive definite.

Proposition 14.5. Ifrank (A) = n (A has full rank), then the least-squares problem has a unique
solution
r = (A*A)A*D = AT,

where AT is the pseudo-inverse of the matriz A.

This proposition then leads to the following numerical method: we can form the matrix A*A and
then solve the normal equations, using the Cholesky factorization of A*A = RR* with R upper
triangular.

1: function NORMALEQUATIONS LS(A)
2: Compute A*A and A*b.
3: Compute the Cholesky factorization

A*A = RR".

4: Solve Ry = A*b using back-substitution.

5: Solve R*x = y using forward substitution.

6: end function
Complexity: the computation of A* A can be achieved in mn? floating-point operations, exploiting
the symmetry of the result. The Cholesky factorization is then computed in %n?’ floating-point
operations, and the triangular systems solved in O(n?) operations.
The total cost is hence on the order mn? + % + O(n?) flops.

Numerical difficulties.
e A*A may be close to singular, and

o Ky(A*A) = Ky(A)? is often much larger than the condition number of A - meaning that the
normal equations may have worse conditioning than the least-squares problem itself.

14.4.2 QR factorization approach.

Given A € F"™*" with rank (A) = n, write its reduced QR factorization A = @]% where @ €
F™*™ has orthogonal columns, forming an orthonormal basis of Ran (A), and R e F™m is upper
triangular.

In particular, the orthogonal projector onto the range is obtained as

P =QQ* e F™m.
Hence, x solves the least-squares problem if and only if

Ax = @}A‘Ex = @@*b,
or, multiplying from the left by @*,

Ry = @*b.
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1: function REDUCEDQR LS(A)

2: Compute a reduced QR factorization A = @ﬁ,

3: Compute Q*D,

4: Solve Rx = (Q*b using back-substitution.

5: end function
Complexity: The QR factorization may be computed in different ways, resulting in different
costs:

e using the Householder method, the QR factorization is obtained in 2mn? — 2n3/3 flops. In

this case there is no need to store ), rather we apply the Householder reflectors to b as the
factor R is computed. Then Q*b is obtained in O(n?) flops.

e Using the modified Gram-Schmidt method, the cost of computing the factors is 2mn?. In
this case, @*b should be computed by orthogonalizing b with respect to the columns of ¢
using the modified Gram-Schmidt, rather than by applying Q*.

In both cases, the final triangular solve has negligible cost O(n?).

14.5 Numerical approach: rank-deficient or underdetermined case.

When r = rank (A) < n, in particular in the case m < n, both previous approaches fail. In this
case, one may use the SVD decomposition, from which we also extract a reduced or thin variant:

14

A=USV* = [(? 17] er ] S| =050,

0 0

where U € F™*" and V e ™", formed by the first » columns of U and V respectively, have
orthogonal columns, and ¥, = diag(oy,...,0,) is a diagonal matrix with the singular values of A
on the diagonal.

Remark 14.6. Numerical rank. In practice, due to numerical (floating-point) errors, the rank
is an ill-defined quantity. Given singular values oy, ...,0, where p = min(m,n) and a tolerance
0 > 0, one may set a numerical rank r = 0 such that

0'12"'0-r>5>0'7«+12"'20'}720.
Now, the orthogonal projector onto the range is given by the expression P = Uu *, S0
Az =Pb < XNV2=U'el.

This suggests the following algorithm:
1: function SVD LS(A)
2: Compute a reduced SVD factorization A = U ET\A/*,
3: Compute U*b, R
4: Solve the diagonal system X,y = U*b,
5: Compute z = \7y
6: end function
The result of this computation is

z = VS tU* = vSTUu* = A",

where AT is the pseudo-inverse of the matrix A.
Indeed, we have two cases:
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e Case 1: A has full rank n, then x = V¥ L{7*b. In this case, the computational complexity
is higher than for the other methods which are available, mainly due to the high cost of
computing an SVD.

e Case 2: if r rank (A) < n, then z = ‘A/E;lﬁ*b. In this case, Ker (A) # {0}, and there is an
infinity of solutions:

S={zo+y, x0=AM yeKer(A)}.

Proposition 14.7. zy = A'b is the minimum norm solution to the least-squares problem min | Az—
b2

V*x

Proof. Consider y = V*x = | ~
V*x

= [zl] Then, using the unitary invariance of the 2-norm,
2

[r(@)]z = [TU*b — Uyl

— |07~ Sy
AN 2
U*b — Sy - Ny
- ‘ o ] = 0%~ Sl + 107013
2

Hence, we solve the least squares problem if and only if y; = ¥ 1y *b, and furthermore
lyl3 = N3 = lyall3 + lgal3 = 157 00l + V3.
Moreover, | ], is minimized if and only if y, = V*z = 0, i.e.
x=Vy = VS U = AMb.
O

This shows that, unlike the other two methods, the SVD approach can solve underdetermined
least-squares problems, where rank (A) < n.
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Lecture 15: Stability for least-squares problems

Let us investigate the sensitivity of the solutions to a least-squares problem:
Find the minimum z € F" to the functional ||b — Ax|s.

Let us start by examining variations with respect to the vector b.

Theorem 15.1. Suppose x minimizes |Ax — b|o, and x + dx minimizes |A(z + dx) — (b + 0b)|2,
where A € F™™ with rank (A) = n.
Then,

|0 |9bR|
2l < k(4
|z [oR|

where K(A) = |A||At|, bg = Pb and 5br = P3b with P the orthogonal projector onto the range
Ran (A).

Remark 15.2. If we pertub only the vector b, the condition number of the problem 1is
K (A) = | AJ]AT.

if |or| # 0,

Remark 15.3. If |bg|| ~ 0 (e.g. if b is almost orthogonal to the range of A), a small change in b
might have a large effect.

Proof. The solution is given by
r = A'b, x+0x =AYb+ b), so dx = Aléb.

Recall now that
AT = (A*A)7'A* so ATob = ATobp,

hence
[z < [AT][dbr].
Furthermore, Ax = Pb = bg, so |z| = |br]|/||A|. Hence,
[9x] _ [AT|16bx]
[ lor]/]Al

Next, we present a result on the stability of solutions with respect to the coefficients of A.
Theorem 15.4. Let A, E € F™ ™ such that rank (A + F) = rank (A) = n, and
|Ell2 < ]| A

Then, if x minimizes |Az — b|, with r = b — Az,
and y = x + dx minimizes |(A + E)y — bl2, with s =b— (A + E)y, then

Sele _ KalA)e Ir]
o S T- R (A): (2 @+ A|2|z|2>

We omit the proof.

Remark 15.5. Understanding the stability of the least-squares problem is tricker than for the
linear systems. In general, the solution seems sensitive as the square of the condition number
Ky(A).

On the other hand, if the residual is small (r = b—Ax = b—bg) then Ky(A) serves as the condition
number of the problem.
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Application: stability of the Householder QR least-squares solution. As we saw earlier,
the Householder QR factorization is backwards stable, in the sense that there exists E such that

QR = A+ E, where | E|r < g(n)u| Al r,

where g(n) is a slowly increasing function of n and u the machine precision. Furthermore, we know
that the application of Householder reflectors and the solution of triangular system by backward
substitution are backward stable algorithms. This shows that the computed solution Z using the
Householder QR minimizes exactly an approximate problem of the form

[(A+ E)x — (b+ b)|2,
where
|E|r < cun|Alp +O(u?),  and  [6b]F < cullblls + O(u?),

with u the machine precision and ¢ ~ 6m — 3n + 41.

15.1 Summary: comparison of approaches.

Case 1: m > rank (A) = n (overdetermined problem).

(a) Normal equations and Cholesky:
Computational cost: mn? + n3/3. This is the fastest approach.
Difficulties: stability of the computation of A*A; sometimes produces more errors than
necessary.

(b) Householder-QR:
Computational cost: 2mn? — 2n?/3.
Backward stable.

(c¢) Modified Gram-Schmidt QR:
Computational cost: 2mn?.
Almost as stable as the Householder QR.

Case 2: r = rank (4) < n (underdetermined problem).

(a) SVD and pseudo-inverse:
Computational cost: 4mn* + 8n3. This is the slowest approach.

Stable.

ouseholder with column pivoting (aka, rank-revealing :
b) H holder QR with col ivoti k k ling QR
Computational cost: 2mr* —r*(m +n) + 2r3/3.
Forward stable, but not backward stable.
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